EmotionMeter: A Multimodal Framework for Recognizing Human Emotions
In this paper, we present a multimodal emotion recognition framework called EmotionMeter that combines brain waves and eye movements. To increase the feasibility and wearability of EmotionMeter in real-world applications, we design a six-electrode placement above the ears to collect electroencephalo...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 49; no. 3; pp. 1110 - 1122 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we present a multimodal emotion recognition framework called EmotionMeter that combines brain waves and eye movements. To increase the feasibility and wearability of EmotionMeter in real-world applications, we design a six-electrode placement above the ears to collect electroencephalography (EEG) signals. We combine EEG and eye movements for integrating the internal cognitive states and external subconscious behaviors of users to improve the recognition accuracy of EmotionMeter. The experimental results demonstrate that modality fusion with multimodal deep neural networks can significantly enhance the performance compared with a single modality, and the best mean accuracy of 85.11% is achieved for four emotions (happy, sad, fear, and neutral). We explore the complementary characteristics of EEG and eye movements for their representational capacities and identify that EEG has the advantage of classifying happy emotion, whereas eye movements outperform EEG in recognizing fear emotion. To investigate the stability of EmotionMeter over time, each subject performs the experiments three times on different days. EmotionMeter obtains a mean recognition accuracy of 72.39% across sessions with the six-electrode EEG and eye movement features. These experimental results demonstrate the effectiveness of EmotionMeter within and between sessions. |
---|---|
AbstractList | In this paper, we present a multimodal emotion recognition framework called EmotionMeter that combines brain waves and eye movements. To increase the feasibility and wearability of EmotionMeter in real-world applications, we design a six-electrode placement above the ears to collect electroencephalography (EEG) signals. We combine EEG and eye movements for integrating the internal cognitive states and external subconscious behaviors of users to improve the recognition accuracy of EmotionMeter . The experimental results demonstrate that modality fusion with multimodal deep neural networks can significantly enhance the performance compared with a single modality, and the best mean accuracy of 85.11% is achieved for four emotions (happy, sad, fear, and neutral). We explore the complementary characteristics of EEG and eye movements for their representational capacities and identify that EEG has the advantage of classifying happy emotion, whereas eye movements outperform EEG in recognizing fear emotion. To investigate the stability of EmotionMeter over time, each subject performs the experiments three times on different days. EmotionMeter obtains a mean recognition accuracy of 72.39% across sessions with the six-electrode EEG and eye movement features. These experimental results demonstrate the effectiveness of EmotionMeter within and between sessions. In this paper, we present a multimodal emotion recognition framework called EmotionMeter that combines brain waves and eye movements. To increase the feasibility and wearability of EmotionMeter in real-world applications, we design a six-electrode placement above the ears to collect electroencephalography (EEG) signals. We combine EEG and eye movements for integrating the internal cognitive states and external subconscious behaviors of users to improve the recognition accuracy of EmotionMeter. The experimental results demonstrate that modality fusion with multimodal deep neural networks can significantly enhance the performance compared with a single modality, and the best mean accuracy of 85.11% is achieved for four emotions (happy, sad, fear, and neutral). We explore the complementary characteristics of EEG and eye movements for their representational capacities and identify that EEG has the advantage of classifying happy emotion, whereas eye movements outperform EEG in recognizing fear emotion. To investigate the stability of EmotionMeter over time, each subject performs the experiments three times on different days. EmotionMeter obtains a mean recognition accuracy of 72.39% across sessions with the six-electrode EEG and eye movement features. These experimental results demonstrate the effectiveness of EmotionMeter within and between sessions.In this paper, we present a multimodal emotion recognition framework called EmotionMeter that combines brain waves and eye movements. To increase the feasibility and wearability of EmotionMeter in real-world applications, we design a six-electrode placement above the ears to collect electroencephalography (EEG) signals. We combine EEG and eye movements for integrating the internal cognitive states and external subconscious behaviors of users to improve the recognition accuracy of EmotionMeter. The experimental results demonstrate that modality fusion with multimodal deep neural networks can significantly enhance the performance compared with a single modality, and the best mean accuracy of 85.11% is achieved for four emotions (happy, sad, fear, and neutral). We explore the complementary characteristics of EEG and eye movements for their representational capacities and identify that EEG has the advantage of classifying happy emotion, whereas eye movements outperform EEG in recognizing fear emotion. To investigate the stability of EmotionMeter over time, each subject performs the experiments three times on different days. EmotionMeter obtains a mean recognition accuracy of 72.39% across sessions with the six-electrode EEG and eye movement features. These experimental results demonstrate the effectiveness of EmotionMeter within and between sessions. |
Author | Zheng, Wei-Long Lu, Yifei Lu, Bao-Liang Cichocki, Andrzej Liu, Wei |
Author_xml | – sequence: 1 givenname: Wei-Long orcidid: 0000-0002-9474-6369 surname: Zheng fullname: Zheng, Wei-Long organization: Department of Computer Science and Engineering, Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Wei orcidid: 0000-0002-3840-1980 surname: Liu fullname: Liu, Wei organization: Department of Computer Science and Engineering, Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Yifei orcidid: 0000-0001-9529-7780 surname: Lu fullname: Lu, Yifei organization: Department of Computer Science and Engineering, Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Bao-Liang orcidid: 0000-0001-8359-0058 surname: Lu fullname: Lu, Bao-Liang email: blu@cs.sjtu.edu.cn organization: Department of Computer Science and Engineering, Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Andrzej surname: Cichocki fullname: Cichocki, Andrzej organization: Nicolaus Copernicus University, Torun, Poland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29994384$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctq3DAYhUVJaaZpHqAUiqGbbmaii23p7y4dcikkBEqyyErI8q9BqW1NJZuQPH00zCSLWUQbCfF9R5fzmRwMYUBCvjK6YIzCye3y_veCU6YWXIJksv5AZpzVas65rA7e1rU8JMcpPdA8VN4C9YkccgAohSpnZHnWh9GH4RpHjL-K0-J66kbfh9Z0xXk0PT6G-K9wIRZ_0YbV4J_9sCoup94MxU5NX8hHZ7qEx7v5iNydn90uL-dXNxd_lqdXc1uyapwzJhXQljJneVNJUKpyroLaNXUDyIQ1UINTrSkZVK60AhvKmWoBlORorDgiP7e56xj-T5hG3ftksevMgGFKmtNaCQH5kIz-2EMfwhSHfDudI8tKKikgU9931NT02Op19L2JT_r1ezIgt4CNIaWITls_ms2jx2h8pxnVmy70pgu96ULvusgm2zNfw99zvm0dj4hvvOJKKFaKF5uakjU |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_3390_robotics9020044 crossref_primary_10_1007_s12559_022_10016_4 crossref_primary_10_1088_1741_2552_ab260c crossref_primary_10_1002_smj_3597 crossref_primary_10_3390_s22145252 crossref_primary_10_1145_3583885 crossref_primary_10_1109_TII_2022_3217120 crossref_primary_10_3390_brainsci14040364 crossref_primary_10_1016_j_eswa_2022_118025 crossref_primary_10_1109_LSP_2024_3353679 crossref_primary_10_3390_e23101316 crossref_primary_10_1109_TSMC_2021_3114145 crossref_primary_10_1109_TITS_2023_3240407 crossref_primary_10_1007_s11517_023_02954_4 crossref_primary_10_1109_TAFFC_2022_3181053 crossref_primary_10_1016_j_knosys_2024_112287 crossref_primary_10_3390_brainsci12080987 crossref_primary_10_1038_s41597_024_03838_4 crossref_primary_10_1016_j_bspc_2023_104661 crossref_primary_10_3389_fnins_2024_1458815 crossref_primary_10_1016_j_bspc_2023_105875 crossref_primary_10_1109_JBHI_2023_3315974 crossref_primary_10_1016_j_compbiomed_2021_104589 crossref_primary_10_1109_TCSS_2024_3420445 crossref_primary_10_1109_TIFS_2022_3204222 crossref_primary_10_1109_TCYB_2021_3106638 crossref_primary_10_1109_TAFFC_2020_2994159 crossref_primary_10_1155_2021_9917246 crossref_primary_10_3389_fpsyg_2022_857891 crossref_primary_10_1109_TDSC_2022_3218782 crossref_primary_10_3390_systems10060236 crossref_primary_10_3390_s22145111 crossref_primary_10_1109_TMM_2024_3385676 crossref_primary_10_1109_TIM_2022_3168927 crossref_primary_10_1088_1741_2552_ac63ec crossref_primary_10_1051_itmconf_20235302011 crossref_primary_10_3389_fpsyg_2022_864047 crossref_primary_10_1109_TAFFC_2023_3336531 crossref_primary_10_1007_s00221_024_06974_w crossref_primary_10_1016_j_compbiomed_2024_108445 crossref_primary_10_1109_TAFFC_2023_3282704 crossref_primary_10_3389_fnhum_2023_1169949 crossref_primary_10_1109_TAFFC_2024_3399729 crossref_primary_10_3390_e24121830 crossref_primary_10_1016_j_brainresbull_2024_110901 crossref_primary_10_1109_TITS_2023_3345846 crossref_primary_10_1016_j_neunet_2025_107127 crossref_primary_10_2174_1573405619666230309103435 crossref_primary_10_1109_TAFFC_2023_3288118 crossref_primary_10_1016_j_asoc_2022_108889 crossref_primary_10_1109_TCSII_2022_3163141 crossref_primary_10_3390_e24091187 crossref_primary_10_1155_2021_8893795 crossref_primary_10_1109_TCYB_2020_3022647 crossref_primary_10_1109_TAFFC_2024_3395359 crossref_primary_10_1007_s10586_024_04994_3 crossref_primary_10_1016_j_bspc_2023_104998 crossref_primary_10_1088_1741_2552_ad4743 crossref_primary_10_3390_brainsci14040326 crossref_primary_10_1007_s11517_024_03094_z crossref_primary_10_1016_j_neunet_2023_12_034 crossref_primary_10_34133_cbsystems_0088 crossref_primary_10_1109_ACCESS_2024_3434675 crossref_primary_10_1109_ACCESS_2019_2941251 crossref_primary_10_3389_fnins_2024_1320645 crossref_primary_10_1109_JSEN_2023_3323290 crossref_primary_10_1007_s13042_023_01964_w crossref_primary_10_1016_j_neucom_2021_03_105 crossref_primary_10_1109_TCYB_2022_3197127 crossref_primary_10_3390_s23187853 crossref_primary_10_1007_s11517_023_02956_2 crossref_primary_10_1088_1741_2552_acbfe0 crossref_primary_10_3389_fnins_2022_872311 crossref_primary_10_3389_fpsyg_2023_1217178 crossref_primary_10_1360_nso_20220023 crossref_primary_10_1109_JBHI_2021_3131186 crossref_primary_10_3390_electronics12143188 crossref_primary_10_1007_s11571_024_10092_2 crossref_primary_10_1109_TCSS_2023_3314508 crossref_primary_10_1016_j_eswa_2023_121889 crossref_primary_10_3389_fphys_2024_1425582 crossref_primary_10_1016_j_compchemeng_2023_108526 crossref_primary_10_1109_JSEN_2021_3059304 crossref_primary_10_1145_3480968 crossref_primary_10_1016_j_aei_2020_101191 crossref_primary_10_1016_j_eswa_2024_126028 crossref_primary_10_3389_fnins_2022_989988 crossref_primary_10_1142_S1469026821500231 crossref_primary_10_1109_JSEN_2024_3398050 crossref_primary_10_3390_brainsci10100687 crossref_primary_10_3389_fphys_2021_823013 crossref_primary_10_1016_j_eswa_2023_121729 crossref_primary_10_7717_peerj_cs_1977 crossref_primary_10_1016_j_jksuci_2023_101648 crossref_primary_10_3389_fpsyg_2023_1141801 crossref_primary_10_1016_j_knosys_2025_113238 crossref_primary_10_1021_acsapm_3c01368 crossref_primary_10_1109_ACCESS_2023_3337424 crossref_primary_10_3389_fnhum_2023_1180533 crossref_primary_10_1109_TIM_2023_3338676 crossref_primary_10_1109_JSEN_2024_3471699 crossref_primary_10_1109_TMC_2023_3283022 crossref_primary_10_1109_JBHI_2024_3418010 crossref_primary_10_1109_TCYB_2020_2987575 crossref_primary_10_1016_j_bspc_2022_104141 crossref_primary_10_1109_JBHI_2023_3239053 crossref_primary_10_3390_electronics13163344 crossref_primary_10_1016_j_bspc_2023_105888 crossref_primary_10_1016_j_bspc_2024_106912 crossref_primary_10_1109_JSEN_2024_3390799 crossref_primary_10_1088_1741_2552_ac41ac crossref_primary_10_54097_hset_v61i_10293 crossref_primary_10_1016_j_jneumeth_2023_109978 crossref_primary_10_1016_j_heliyon_2024_e36411 crossref_primary_10_34133_cbsystems_0045 crossref_primary_10_1061_JTEPBS_TEENG_7802 crossref_primary_10_1109_TAFFC_2023_3261867 crossref_primary_10_3389_fnhum_2024_1464431 crossref_primary_10_3390_s20040969 crossref_primary_10_1109_TCDS_2020_2976112 crossref_primary_10_1109_TCYB_2021_3073210 crossref_primary_10_1109_JBHI_2023_3335854 crossref_primary_10_1016_j_knosys_2025_113018 crossref_primary_10_1007_s10489_024_06091_9 crossref_primary_10_3233_JCM_226794 crossref_primary_10_1016_j_neunet_2024_106497 crossref_primary_10_1109_TCDS_2024_3357618 crossref_primary_10_3934_mbe_2023505 crossref_primary_10_1109_JBHI_2021_3092412 crossref_primary_10_3390_systems10040111 crossref_primary_10_1109_TNSRE_2022_3175464 crossref_primary_10_1109_TCYB_2020_3033005 crossref_primary_10_3390_app132312832 crossref_primary_10_1016_j_bspc_2021_103291 crossref_primary_10_1109_ACCESS_2023_3329678 crossref_primary_10_1109_ACCESS_2024_3412328 crossref_primary_10_1109_JSEN_2023_3335229 crossref_primary_10_1109_JSEN_2024_3461682 crossref_primary_10_1109_JBHI_2022_3198688 crossref_primary_10_1016_j_bspc_2025_107536 crossref_primary_10_1016_j_neucom_2023_126866 crossref_primary_10_1155_2024_7499554 crossref_primary_10_1016_j_bspc_2024_106189 crossref_primary_10_3389_fphys_2023_1200656 crossref_primary_10_1016_j_bspc_2022_104314 crossref_primary_10_3389_fnins_2023_1219553 crossref_primary_10_9728_dcs_2022_23_2_217 crossref_primary_10_1109_TCYB_2023_3320107 crossref_primary_10_1016_j_procs_2020_06_117 crossref_primary_10_1109_TIM_2023_3277985 crossref_primary_10_3389_fncom_2019_00053 crossref_primary_10_1016_j_artmed_2021_102210 crossref_primary_10_1007_s12652_020_02037_4 crossref_primary_10_1016_j_neunet_2024_106148 crossref_primary_10_1038_s41598_022_07517_5 crossref_primary_10_1016_j_dsim_2025_02_003 crossref_primary_10_1088_1741_2552_abb580 crossref_primary_10_26599_BSA_2020_9050026 crossref_primary_10_1088_1741_2552_ad7060 crossref_primary_10_1109_JSEN_2021_3078087 crossref_primary_10_1109_LSENS_2023_3307111 crossref_primary_10_1016_j_compbiomed_2022_105327 crossref_primary_10_1109_TCDS_2020_2999337 crossref_primary_10_1016_j_neucom_2021_02_048 crossref_primary_10_1016_j_engappai_2025_110004 crossref_primary_10_1109_TNSRE_2023_3245069 crossref_primary_10_1109_ACCESS_2025_3526187 crossref_primary_10_1109_TCYB_2021_3052766 crossref_primary_10_1016_j_neunet_2024_106111 crossref_primary_10_3390_systems10020047 crossref_primary_10_1007_s11571_024_10211_z crossref_primary_10_1109_ACCESS_2021_3052246 crossref_primary_10_1016_j_bspc_2025_107674 crossref_primary_10_1016_j_bspc_2025_107550 crossref_primary_10_3389_fncom_2019_00080 crossref_primary_10_1109_TCYB_2024_3420958 crossref_primary_10_1016_j_bspc_2024_107019 crossref_primary_10_1109_TIM_2023_3240230 crossref_primary_10_1109_TAFFC_2024_3356511 crossref_primary_10_7717_peerj_cs_2610 crossref_primary_10_1016_j_jksuci_2023_03_014 crossref_primary_10_1109_ACCESS_2023_3266117 crossref_primary_10_1109_ACCESS_2020_3010311 crossref_primary_10_3389_fncom_2021_723843 crossref_primary_10_3389_fpsyg_2021_809459 crossref_primary_10_1007_s11042_024_18259_z crossref_primary_10_1016_j_eswa_2024_125089 crossref_primary_10_1109_TIM_2024_3369130 crossref_primary_10_3390_s22093248 crossref_primary_10_1109_JSEN_2023_3309260 crossref_primary_10_1111_exsy_13577 crossref_primary_10_3390_s24237856 crossref_primary_10_1016_j_bspc_2022_103660 crossref_primary_10_1109_TMM_2021_3063612 crossref_primary_10_1016_j_aei_2024_102956 crossref_primary_10_3389_fpsyg_2021_771591 crossref_primary_10_1007_s41870_024_02001_x crossref_primary_10_1007_s11571_024_10123_y crossref_primary_10_1016_j_eswa_2024_126081 crossref_primary_10_1007_s11571_021_09735_5 crossref_primary_10_1088_1741_2552_ac5c8d crossref_primary_10_1088_1741_2552_ac6d7d crossref_primary_10_1016_j_jneumeth_2023_109909 crossref_primary_10_1109_TNNLS_2022_3190448 crossref_primary_10_1109_JSEN_2022_3168572 crossref_primary_10_1007_s11571_023_10004_w crossref_primary_10_1007_s11517_025_03295_0 crossref_primary_10_1007_s13246_024_01495_w crossref_primary_10_3390_app13031954 crossref_primary_10_12688_f1000research_144962_3 crossref_primary_10_1109_TCSS_2023_3268505 crossref_primary_10_3390_s20030718 crossref_primary_10_1016_j_dim_2024_100078 crossref_primary_10_12688_f1000research_144962_2 crossref_primary_10_1109_ACCESS_2025_3530567 crossref_primary_10_12688_f1000research_144962_1 crossref_primary_10_1088_1741_2552_ad085a crossref_primary_10_1109_TNNLS_2022_3194957 crossref_primary_10_1016_j_asoc_2020_106756 crossref_primary_10_1038_s41598_024_82705_z crossref_primary_10_1038_s41598_025_88248_1 crossref_primary_10_1109_ACCESS_2020_3021994 crossref_primary_10_1109_TAFFC_2024_3357656 crossref_primary_10_2139_ssrn_4158273 crossref_primary_10_1016_j_measurement_2022_111738 crossref_primary_10_1007_s00500_022_06847_w crossref_primary_10_1007_s11760_022_02248_6 crossref_primary_10_1109_JBHI_2024_3384816 crossref_primary_10_1016_j_ins_2024_121198 crossref_primary_10_1109_JSEN_2023_3330090 crossref_primary_10_1109_TCYB_2020_2987064 crossref_primary_10_1109_TETCI_2024_3406422 crossref_primary_10_1016_j_bspc_2025_107594 crossref_primary_10_1007_s11042_021_11304_1 crossref_primary_10_1109_JTEHM_2023_3320132 crossref_primary_10_1109_TCYB_2021_3085744 crossref_primary_10_1109_TCDS_2018_2868121 crossref_primary_10_1016_j_bspc_2023_104835 crossref_primary_10_1002_aisy_202300359 crossref_primary_10_1016_j_bspc_2021_103029 crossref_primary_10_1016_j_compbiomed_2023_106860 crossref_primary_10_1016_j_heliyon_2024_e31485 crossref_primary_10_1016_j_jneumeth_2025_110360 crossref_primary_10_1007_s00521_022_07643_1 crossref_primary_10_1109_JAS_2022_105515 crossref_primary_10_3390_math12182892 crossref_primary_10_1007_s00521_020_05670_4 crossref_primary_10_1088_1741_2552_acb79e crossref_primary_10_3233_IDT_230267 crossref_primary_10_1109_TAFFC_2023_3318321 crossref_primary_10_1016_j_inffus_2023_102190 crossref_primary_10_32604_cmc_2022_029073 crossref_primary_10_3390_app13148469 crossref_primary_10_3390_s23052387 crossref_primary_10_3389_fpsyg_2021_705528 crossref_primary_10_1016_j_jneumeth_2024_110276 crossref_primary_10_1038_s41597_023_02248_2 crossref_primary_10_26102_2310_6018_2019_27_4_019 crossref_primary_10_1109_TAFFC_2020_3013711 crossref_primary_10_1109_ACCESS_2022_3201342 crossref_primary_10_3390_brainsci14070688 crossref_primary_10_1007_s11760_024_03360_5 crossref_primary_10_1109_ACCESS_2022_3181887 crossref_primary_10_1109_TAFFC_2024_3392791 crossref_primary_10_1109_TCYB_2022_3169017 crossref_primary_10_3390_s20185083 crossref_primary_10_1109_ACCESS_2024_3430850 crossref_primary_10_3389_fnins_2024_1519970 crossref_primary_10_1016_j_cmpb_2023_107927 crossref_primary_10_1016_j_inffus_2024_102697 crossref_primary_10_1109_TCYB_2020_2984670 crossref_primary_10_3389_fnbot_2024_1481746 crossref_primary_10_3389_fnins_2023_1247082 crossref_primary_10_1007_s11571_023_09968_6 crossref_primary_10_1016_j_neuroimage_2022_119666 crossref_primary_10_1007_s00521_024_10821_y crossref_primary_10_1142_S0129065722500496 crossref_primary_10_1109_JBHI_2022_3232497 crossref_primary_10_1016_j_bspc_2021_103235 crossref_primary_10_1049_cit2_12174 crossref_primary_10_3389_fnins_2024_1293962 crossref_primary_10_3389_fnins_2021_626277 crossref_primary_10_1109_ACCESS_2024_3460393 crossref_primary_10_1109_JBHI_2024_3416944 crossref_primary_10_3389_fpsyg_2022_899983 crossref_primary_10_1109_TIM_2025_3541801 crossref_primary_10_3389_fnbot_2022_834952 crossref_primary_10_1016_j_neunet_2023_08_031 crossref_primary_10_1016_j_bspc_2024_106204 crossref_primary_10_3390_biomimetics10030178 crossref_primary_10_1007_s11280_021_00865_8 crossref_primary_10_1109_TIM_2025_3548782 crossref_primary_10_3389_fnins_2022_1010951 crossref_primary_10_1109_ACCESS_2021_3072120 crossref_primary_10_1016_j_eswa_2022_116977 crossref_primary_10_1109_TCYB_2021_3069920 crossref_primary_10_1109_JSEN_2021_3120787 crossref_primary_10_1145_3666002 crossref_primary_10_1186_s40708_022_00175_3 crossref_primary_10_3934_mbe_2022369 crossref_primary_10_1016_j_neunet_2024_106643 crossref_primary_10_1038_s41598_024_78542_9 crossref_primary_10_1109_TCDS_2024_3432752 crossref_primary_10_1109_ACCESS_2020_3023871 crossref_primary_10_1016_j_jneumeth_2024_110358 crossref_primary_10_3390_s23031404 crossref_primary_10_1109_TCDS_2021_3086011 crossref_primary_10_1109_TCSS_2023_3298324 crossref_primary_10_5812_ijpbs_153551 crossref_primary_10_1007_s11042_022_13149_8 crossref_primary_10_1142_S0129065720500136 crossref_primary_10_1109_TIE_2022_3150097 crossref_primary_10_1016_j_neunet_2023_01_009 crossref_primary_10_1109_TAFFC_2022_3210441 crossref_primary_10_1109_TBME_2023_3339892 crossref_primary_10_1109_TCYB_2019_2924237 crossref_primary_10_1016_j_eswa_2024_124616 crossref_primary_10_1371_journal_pone_0274203 crossref_primary_10_1109_TAFFC_2024_3371540 crossref_primary_10_1088_1741_2552_ac59a4 crossref_primary_10_1002_brx2_57 crossref_primary_10_1007_s10723_021_09564_0 crossref_primary_10_1109_TCDS_2022_3175538 crossref_primary_10_1109_TIM_2023_3302938 crossref_primary_10_1109_ACCESS_2024_3430934 crossref_primary_10_1007_s10462_023_10690_2 crossref_primary_10_1109_ACCESS_2025_3541176 crossref_primary_10_1016_j_measurement_2024_116046 crossref_primary_10_1016_j_knosys_2024_112770 crossref_primary_10_1016_j_knosys_2021_107982 crossref_primary_10_1016_j_ipm_2022_103196 crossref_primary_10_1016_j_knosys_2021_107867 crossref_primary_10_1109_TIFS_2024_3369405 crossref_primary_10_3390_bios12121097 crossref_primary_10_1016_j_patcog_2019_107085 crossref_primary_10_1109_TAFFC_2024_3394873 crossref_primary_10_1109_TNSRE_2023_3236434 crossref_primary_10_3390_s20236856 crossref_primary_10_1109_ACCESS_2024_3506157 crossref_primary_10_1016_j_jestch_2021_03_012 crossref_primary_10_3389_fnins_2021_778488 crossref_primary_10_3389_fnhum_2023_1132254 crossref_primary_10_1371_journal_pone_0235908 crossref_primary_10_3154_jvs_41_161_21 crossref_primary_10_1007_s00521_022_07843_9 crossref_primary_10_1088_1741_2552_ac49a7 crossref_primary_10_1109_TCSVT_2021_3061719 crossref_primary_10_1016_j_knosys_2023_111011 crossref_primary_10_31083_j_jin2302033 crossref_primary_10_1109_TIM_2022_3204314 crossref_primary_10_3390_soc14090192 crossref_primary_10_1109_JBHI_2022_3210158 crossref_primary_10_1109_TIM_2023_3280529 crossref_primary_10_1109_TCYB_2022_3195739 crossref_primary_10_1016_j_bspc_2024_106249 crossref_primary_10_1016_j_physa_2022_127700 crossref_primary_10_1016_j_bspc_2024_107337 crossref_primary_10_1109_JSEN_2024_3369062 crossref_primary_10_1142_S0218001424570143 crossref_primary_10_1007_s13534_024_00405_z crossref_primary_10_1109_TAFFC_2022_3189222 crossref_primary_10_1080_10255842_2024_2417212 crossref_primary_10_3389_fnins_2023_1251677 crossref_primary_10_1109_TCDS_2021_3082803 crossref_primary_10_1007_s00521_024_09765_0 crossref_primary_10_3389_fpsyg_2023_1126994 crossref_primary_10_3390_math13020254 crossref_primary_10_1007_s12559_024_10287_z crossref_primary_10_1109_TCDS_2021_3051465 crossref_primary_10_1109_TIM_2022_3216829 crossref_primary_10_1145_3678503 crossref_primary_10_1016_j_compbiomed_2024_108705 crossref_primary_10_1016_j_bspc_2021_102883 crossref_primary_10_1109_TAFFC_2024_3349770 crossref_primary_10_1109_TCYB_2021_3068300 crossref_primary_10_1088_1741_2552_acae06 crossref_primary_10_1016_j_neubiorev_2021_08_014 crossref_primary_10_11834_jig_230031 crossref_primary_10_1109_TCSII_2023_3318814 crossref_primary_10_1109_TAFFC_2022_3221554 crossref_primary_10_1109_TAFFC_2022_3170428 crossref_primary_10_1109_TAFFC_2024_3433470 crossref_primary_10_1016_j_knosys_2023_111199 crossref_primary_10_1109_JBHI_2024_3419043 crossref_primary_10_1016_j_inffus_2023_102220 crossref_primary_10_1016_j_future_2022_10_034 crossref_primary_10_1088_1742_6596_2576_1_012001 crossref_primary_10_1109_TASLP_2024_3361374 crossref_primary_10_1109_TCDS_2020_3007453 crossref_primary_10_1109_TIM_2024_3398103 crossref_primary_10_3390_brainsci13040685 crossref_primary_10_3389_fnins_2022_865201 crossref_primary_10_3389_fnins_2023_1135850 crossref_primary_10_1109_TNSRE_2024_3457580 crossref_primary_10_1016_j_compbiomed_2023_107457 crossref_primary_10_3390_s22010020 crossref_primary_10_1109_TNSRE_2022_3225948 crossref_primary_10_1109_TCYB_2019_2939399 crossref_primary_10_1016_j_compbiomed_2023_107450 crossref_primary_10_1016_j_inffus_2023_102218 crossref_primary_10_3389_fcomp_2022_780580 crossref_primary_10_1109_TAFFC_2022_3199075 crossref_primary_10_1007_s11571_021_09751_5 crossref_primary_10_1016_j_medengphy_2025_104316 crossref_primary_10_1016_j_eswa_2020_114516 crossref_primary_10_1145_3524499 crossref_primary_10_32604_cmes_2024_056500 crossref_primary_10_1109_TCYB_2022_3198997 crossref_primary_10_3390_make2020007 crossref_primary_10_1109_TAFFC_2024_3394436 crossref_primary_10_1016_j_aei_2022_101601 crossref_primary_10_1016_j_aei_2024_102575 crossref_primary_10_1109_TCYB_2019_2905157 crossref_primary_10_1016_j_neucom_2024_128445 crossref_primary_10_3390_s22186736 crossref_primary_10_1109_TIM_2025_3544334 crossref_primary_10_1109_TCYB_2022_3185119 crossref_primary_10_1109_TCDS_2021_3071170 crossref_primary_10_7717_peerj_cs_2065 crossref_primary_10_3934_Neuroscience_2024006 crossref_primary_10_1016_j_knosys_2024_112669 crossref_primary_10_1145_3654664 crossref_primary_10_1016_j_compbiomed_2024_108857 crossref_primary_10_1088_1741_2552_ace07d crossref_primary_10_2139_ssrn_4123849 crossref_primary_10_1186_s40708_024_00245_8 crossref_primary_10_1109_LSP_2024_3410044 crossref_primary_10_1016_j_knosys_2022_108819 crossref_primary_10_3390_mti6060047 crossref_primary_10_1109_MIS_2024_3363895 crossref_primary_10_1109_TAFFC_2023_3288885 crossref_primary_10_1016_j_jad_2023_07_008 crossref_primary_10_1016_j_compbiomed_2022_105907 crossref_primary_10_1109_JSEN_2024_3466124 crossref_primary_10_1109_TAFFC_2020_2981440 crossref_primary_10_1109_TCDS_2021_3079712 crossref_primary_10_1109_TCSS_2024_3412074 crossref_primary_10_1155_2020_2909267 crossref_primary_10_1007_s13042_022_01523_9 crossref_primary_10_3389_fnhum_2025_1517273 crossref_primary_10_1080_10255842_2021_2007889 crossref_primary_10_1109_JPROC_2023_3277471 crossref_primary_10_1109_TCSS_2024_3406988 crossref_primary_10_3390_e24121735 crossref_primary_10_3389_fnhum_2023_1280241 crossref_primary_10_1109_TNNLS_2023_3319315 crossref_primary_10_3390_s21041262 crossref_primary_10_1109_TCYB_2020_2977602 crossref_primary_10_1007_s11042_022_13254_8 crossref_primary_10_1109_TBCAS_2020_3008766 crossref_primary_10_22399_ijcesen_829 crossref_primary_10_1109_TSMC_2024_3458949 crossref_primary_10_1109_TIM_2021_3124056 crossref_primary_10_1109_TNSRE_2023_3304660 crossref_primary_10_1016_j_eswa_2023_120948 crossref_primary_10_1088_1742_6596_1950_1_012040 crossref_primary_10_1016_j_neunet_2024_106624 crossref_primary_10_1109_TNNLS_2023_3238519 crossref_primary_10_1109_ACCESS_2020_3000066 crossref_primary_10_1016_j_compeleceng_2022_108332 crossref_primary_10_37394_232014_2021_17_4 crossref_primary_10_3390_s23031255 crossref_primary_10_1109_TSMC_2020_2969686 crossref_primary_10_1109_TIM_2025_3544326 crossref_primary_10_3390_diagnostics13050977 crossref_primary_10_1016_j_eswa_2024_125420 crossref_primary_10_3389_fnins_2021_611653 crossref_primary_10_1186_s40708_021_00141_5 crossref_primary_10_1007_s10489_022_04366_7 crossref_primary_10_1080_27706710_2022_2075241 crossref_primary_10_1007_s41060_025_00715_0 crossref_primary_10_1016_j_oceaneng_2024_117346 crossref_primary_10_1371_journal_pone_0230853 crossref_primary_10_1109_TMM_2021_3096080 crossref_primary_10_1088_1741_2552_ad5761 crossref_primary_10_1016_j_bspc_2021_102741 crossref_primary_10_1007_s41870_024_02400_0 crossref_primary_10_3389_fncom_2024_1416494 crossref_primary_10_1016_j_inffus_2023_102129 crossref_primary_10_1109_JBHI_2023_3307606 crossref_primary_10_3389_fnins_2023_1234162 crossref_primary_10_1109_MSMC_2020_2968638 crossref_primary_10_1109_TIM_2023_3293544 crossref_primary_10_1016_j_eswa_2024_124001 crossref_primary_10_1016_j_asoc_2022_108740 crossref_primary_10_1109_TAFFC_2021_3137857 crossref_primary_10_3390_brainsci11030378 crossref_primary_10_1007_s11760_024_03550_1 crossref_primary_10_1109_TAFFC_2024_3385651 crossref_primary_10_1016_j_bspc_2023_105136 crossref_primary_10_1016_j_isci_2024_111030 crossref_primary_10_1007_s11571_022_09890_3 crossref_primary_10_1016_j_bspc_2024_106646 crossref_primary_10_3389_fpsyg_2023_1333794 crossref_primary_10_3390_brainsci14121166 crossref_primary_10_1016_j_bspc_2023_105013 crossref_primary_10_3390_brainsci14121289 crossref_primary_10_1109_TIM_2024_3428607 crossref_primary_10_1109_TCYB_2021_3090770 crossref_primary_10_1109_TNSRE_2023_3268751 crossref_primary_10_1109_TAFFC_2022_3171782 crossref_primary_10_1016_j_knosys_2024_112599 crossref_primary_10_1109_JSEN_2020_3027181 crossref_primary_10_3389_fnhum_2024_1471634 crossref_primary_10_1016_j_teler_2024_100131 |
Cites_doi | 10.1080/02699930802204677 10.1016/j.ijpsycho.2003.12.001 10.7551/mitpress/1140.001.0001 10.1016/j.neuroimage.2014.11.030 10.1109/TAFFC.2016.2631469 10.1080/2326263X.2014.912881 10.1145/3025453.3025644 10.1109/CW.2010.37 10.1016/S1388-2457(99)00258-8 10.1109/TBME.2010.2048568 10.1016/j.jad.2016.10.021 10.1016/j.biopsycho.2004.03.002 10.1037/h0030377 10.1088/1741-2560/8/2/025008 10.1109/TBME.2014.2347318 10.1038/ncomms13749 10.1109/T-AFFC.2010.7 10.1093/cercor/bhv086 10.1109/TPAMI.2008.52 10.1109/MCI.2015.2501545 10.1145/2504335.2504406 10.1109/SMC.2015.460 10.1109/TPAMI.2010.86 10.1088/1741-2560/13/4/046022 10.1016/j.neuroimage.2014.06.069 10.1109/TAFFC.2015.2396531 10.1109/CVPR.2016.239 10.1109/JSTSP.2017.2764438 10.1177/0956797616687364 10.1109/TKDE.2009.191 10.1016/j.neucli.2017.01.009 10.1109/NER.2011.5910636 10.1145/3025453.3025669 10.1109/NER.2013.6695876 10.1073/pnas.1523980113 10.1145/3025453.3025953 10.1145/3025453.3025599 10.1145/2677199.2680565 10.1145/2682899 10.1177/1754073913512519 10.1016/j.tics.2017.01.001 10.1080/02699930903274322 10.1109/T-AFFC.2010.1 10.1016/j.neucom.2013.06.046 10.1038/nature14539 10.1088/1741-2560/8/3/036015 10.1109/T-AFFC.2011.37 10.1088/1741-2560/11/5/056020 10.1007/978-3-642-15184-2_8 10.1109/TAMD.2015.2431497 10.1111/j.1469-8986.1993.tb03207.x 10.1109/CW.2014.27 10.1037/0022-3514.54.6.1063 10.1080/02699939508408966 10.1109/ACII.2015.7344684 10.1111/j.1469-8986.2008.00654.x 10.1162/089976602760128018 10.1016/j.clinph.2007.06.018 10.1109/ICME.2014.6890166 10.1109/MPRV.2010.49 10.1088/1741-2560/11/4/046018 10.1145/2702123.2702510 10.1109/TAFFC.2014.2339834 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2018.2797176 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Aerospace Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 1122 |
ExternalDocumentID | 29994384 10_1109_TCYB_2018_2797176 8283814 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61673266 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities – fundername: Ministry of Education and Science of the Russian Federation grantid: 14.756.31.0001 funderid: 10.13039/501100003443 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 15JC1400103 funderid: 10.13039/501100003399 – fundername: Polish National Science Center grantid: 2016/20/W/N24/00354 – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2017YFB1002501 funderid: 10.13039/501100012166 – fundername: Technology Research and Development Program of China Railway Corporation grantid: 2016Z003-B – fundername: ZBYY-MOE Joint Funding grantid: 6141A02022604 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c415t-117890d01fc2b579885ff596fb6b9e13ca969f8da4195f4c3eb0218d99872eac3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 11:11:59 EDT 2025 Mon Jun 30 03:52:46 EDT 2025 Wed Feb 19 02:36:19 EST 2025 Tue Jul 01 00:53:50 EDT 2025 Thu Apr 24 22:57:19 EDT 2025 Wed Aug 27 08:36:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-117890d01fc2b579885ff596fb6b9e13ca969f8da4195f4c3eb0218d99872eac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9474-6369 0000-0001-8359-0058 0000-0002-3840-1980 0000-0001-9529-7780 |
PMID | 29994384 |
PQID | 2184578739 |
PQPubID | 85422 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2068339890 pubmed_primary_29994384 ieee_primary_8283814 proquest_journals_2184578739 crossref_citationtrail_10_1109_TCYB_2018_2797176 crossref_primary_10_1109_TCYB_2018_2797176 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 tang (ref48) 2017 ref12 ref59 ref15 ref14 zheng (ref80) 2016 ref52 ref55 ref54 bashivan (ref56) 2015 shi (ref68) 2010 ref17 ref16 ref19 ref18 liu (ref47) 2016 zheng (ref10) 2014 ngiam (ref58) 2011 lu (ref11) 2015 ref46 ref42 ref41 ref44 ref43 alarcao (ref26) 0 ref49 stober (ref57) 2015 ref8 ref7 mcevoy (ref50) 2000; 111 ref9 shi (ref66) 2013 ref4 ref6 ref5 lecun (ref53) 2015; 521 ref81 ref40 koelstra (ref25) 2012 ref79 ref35 duchowski (ref38) 2007; 373 ref78 ref34 ref37 ref36 ref75 ref74 ref30 ref77 ref33 ref76 ref32 ref2 ref39 lin (ref31) 2010; 57 ptaszynski (ref1) 2009 ref70 ref73 ref72 langer (ref45) 2017; 4 ref24 ref67 ref23 zheng (ref51) 0 ref64 ref20 li (ref71) 2009 ref63 fan (ref69) 2008; 9 ref22 picard (ref3) 1997 ref65 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – volume: 9 start-page: 1871 year: 2008 ident: ref69 article-title: LIBLINEAR: A library for large linear classification publication-title: J Mach Learn Res – ident: ref2 doi: 10.1080/02699930802204677 – ident: ref39 doi: 10.1016/j.ijpsycho.2003.12.001 – year: 1997 ident: ref3 publication-title: Affective Computing doi: 10.7551/mitpress/1140.001.0001 – ident: ref44 doi: 10.1016/j.neuroimage.2014.11.030 – ident: ref23 doi: 10.1109/TAFFC.2016.2631469 – ident: ref14 doi: 10.1080/2326263X.2014.912881 – ident: ref75 doi: 10.1145/3025453.3025644 – year: 2012 ident: ref25 article-title: Affective and implicit tagging using facial expressions and electroencephalography – ident: ref36 doi: 10.1109/CW.2010.37 – volume: 111 start-page: 457 year: 2000 ident: ref50 article-title: Test-retest reliability of cognitive EEG publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(99)00258-8 – volume: 57 start-page: 1798 year: 2010 ident: ref31 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2048568 – start-page: 689 year: 2011 ident: ref58 article-title: Multimodal deep learning publication-title: Proc Int Conf Mach Learn – year: 0 ident: ref51 article-title: Identifying stable patterns over time for emotion recognition from EEG publication-title: IEEE Trans Affect Comput – ident: ref5 doi: 10.1016/j.jad.2016.10.021 – ident: ref65 doi: 10.1016/j.biopsycho.2004.03.002 – ident: ref21 doi: 10.1037/h0030377 – ident: ref34 doi: 10.1088/1741-2560/8/2/025008 – ident: ref33 doi: 10.1109/TBME.2014.2347318 – ident: ref81 doi: 10.1038/ncomms13749 – ident: ref29 doi: 10.1109/T-AFFC.2010.7 – ident: ref13 doi: 10.1093/cercor/bhv086 – ident: ref22 doi: 10.1109/TPAMI.2008.52 – ident: ref79 doi: 10.1109/MCI.2015.2501545 – start-page: 5040 year: 2014 ident: ref10 article-title: Multimodal emotion recognition using EEG and eye tracking data publication-title: Proc 36th Annu Int Conf IEEE Eng Med Biol Soc – ident: ref17 doi: 10.1145/2504335.2504406 – ident: ref15 doi: 10.1109/SMC.2015.460 – ident: ref43 doi: 10.1109/TPAMI.2010.86 – volume: 4 year: 2017 ident: ref45 article-title: A resource for assessing information processing in the developing brain using EEG and eye tracking publication-title: Data Science Journal – ident: ref28 doi: 10.1088/1741-2560/13/4/046022 – ident: ref41 doi: 10.1016/j.neuroimage.2014.06.069 – ident: ref61 doi: 10.1109/TAFFC.2015.2396531 – ident: ref73 doi: 10.1109/CVPR.2016.239 – ident: ref9 doi: 10.1109/JSTSP.2017.2764438 – ident: ref16 doi: 10.1177/0956797616687364 – ident: ref76 doi: 10.1109/TKDE.2009.191 – start-page: 1469 year: 2009 ident: ref1 article-title: Towards context aware emotional intelligence in machines: Computing contextual appropriateness of affective states publication-title: Proc Int Joint Conf Artif Intell – ident: ref6 doi: 10.1016/j.neucli.2017.01.009 – start-page: 811 year: 2017 ident: ref48 article-title: Multimodal emotion recognition using deep neural networks publication-title: Proc Int Conf Neural Inf Process – ident: ref63 doi: 10.1109/NER.2011.5910636 – ident: ref20 doi: 10.1145/3025453.3025669 – start-page: 1170 year: 2015 ident: ref11 article-title: Combining eye movements and EEG to enhance emotion recognition publication-title: Proc Int Joint Conf Artif Intell – ident: ref67 doi: 10.1109/NER.2013.6695876 – ident: ref46 doi: 10.1073/pnas.1523980113 – ident: ref37 doi: 10.1145/3025453.3025953 – ident: ref74 doi: 10.1145/3025453.3025599 – start-page: 2732 year: 2016 ident: ref80 article-title: Personalizing EEG-based affective models with transfer learning publication-title: Proc Int Joint Conf Artif Intell – year: 0 ident: ref26 article-title: Emotions recognition using EEG signals: A survey publication-title: IEEE Trans Affect Comput – volume: 373 year: 2007 ident: ref38 publication-title: Eye Tracking Methodology Theory and Practice – ident: ref18 doi: 10.1145/2677199.2680565 – ident: ref8 doi: 10.1145/2682899 – ident: ref12 doi: 10.1177/1754073913512519 – ident: ref24 doi: 10.1016/j.tics.2017.01.001 – ident: ref60 doi: 10.1080/02699930903274322 – year: 2015 ident: ref56 article-title: Learning representations from EEG with deep recurrent-convolutional neural networks publication-title: arXiv preprint arXiv 1511 05271 – ident: ref4 doi: 10.1109/T-AFFC.2010.1 – ident: ref32 doi: 10.1016/j.neucom.2013.06.046 – volume: 521 start-page: 436 year: 2015 ident: ref53 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref54 doi: 10.1088/1741-2560/8/3/036015 – start-page: 521 year: 2016 ident: ref47 article-title: Emotion recognition using multimodal deep learning publication-title: Proc Int Conf Neural Inf Process – ident: ref7 doi: 10.1109/T-AFFC.2011.37 – ident: ref77 doi: 10.1088/1741-2560/11/5/056020 – start-page: 1223 year: 2009 ident: ref71 article-title: Emotion classification based on gamma-band EEG publication-title: Proc Annu Int Conf IEEE Eng Med Biol Soc – ident: ref72 doi: 10.1007/978-3-642-15184-2_8 – ident: ref55 doi: 10.1109/TAMD.2015.2431497 – ident: ref64 doi: 10.1111/j.1469-8986.1993.tb03207.x – start-page: 6587 year: 2010 ident: ref68 article-title: Off-line and on-line vigilance estimation based on linear dynamical system and manifold learning publication-title: Proc Int Conf IEEE Eng Med Biol Soc – year: 2015 ident: ref57 article-title: Deep feature learning for EEG recordings publication-title: arXiv preprint arXiv 1511 05271 – ident: ref52 doi: 10.1109/CW.2014.27 – ident: ref62 doi: 10.1037/0022-3514.54.6.1063 – ident: ref59 doi: 10.1080/02699939508408966 – ident: ref78 doi: 10.1109/ACII.2015.7344684 – ident: ref40 doi: 10.1111/j.1469-8986.2008.00654.x – ident: ref70 doi: 10.1162/089976602760128018 – ident: ref49 doi: 10.1016/j.clinph.2007.06.018 – ident: ref30 doi: 10.1109/ICME.2014.6890166 – start-page: 6627 year: 2013 ident: ref66 article-title: Differential entropy feature for EEG-based vigilance estimation publication-title: Proc 35th Annu Int Conf IEEE Eng Med Biol Soc – ident: ref42 doi: 10.1109/MPRV.2010.49 – ident: ref35 doi: 10.1088/1741-2560/11/4/046018 – ident: ref19 doi: 10.1145/2702123.2702510 – ident: ref27 doi: 10.1109/TAFFC.2014.2339834 |
SSID | ssj0000816898 |
Score | 2.6662874 |
Snippet | In this paper, we present a multimodal emotion recognition framework called EmotionMeter that combines brain waves and eye movements. To increase the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1110 |
SubjectTerms | Accuracy Affective brain-computer interactions Artificial neural networks Biological neural networks Brain Brain modeling deep learning EEG Electrodes Electroencephalography Emotion recognition Emotions Eye movements Fear Feature extraction Human computer interaction multimodal deep neural networks Neural networks |
Title | EmotionMeter: A Multimodal Framework for Recognizing Human Emotions |
URI | https://ieeexplore.ieee.org/document/8283814 https://www.ncbi.nlm.nih.gov/pubmed/29994384 https://www.proquest.com/docview/2184578739 https://www.proquest.com/docview/2068339890 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTtwwcLRw6oVCeTSwVK7EgVZkSWInsbnRFSuEtBwQSPQUxY9cgN2qu3vh65lxnEgginqzFDtxZsbz8LwAjqhMfq61ies6sbFIM-SDkptYWKGFkppbQQnO0-vi8k5c3ef3Azjpc2Gccz74zI1o6H35dm5WdFV2itYBChixBmtouLW5Wv19im8g4VvfZjiIUasogxMzTdTp7fj3L4rjkqOsVGjBUOciZMRKcCleSSTfYuXf2qaXOpPPMO322wabPIxWSz0yz29KOf7vD23CRlA_2XlLL1swcLMvsBUO-IIdhyrUP7ZhfNE2-JlSvMwZO2c-VfdpbnH5pIvoYqjysps2BukZhSDzPgEWli524G5ycTu-jEPHhdigIF_GaUp5sTZJG5PpnEqZ5U2Tq6LRhVYu5aZWhWqkrUWq8kYY7jTpCBZttjJDFs53YX02n7mvwGxtirJspKwzJXSe1I1LSiNzi1wl00UaQdJBvTKhHDl1xXisvFmSqIpwVhHOqoCzCH72S_60tTg-mrxN8O4nBlBHMOxQW4XTuqjIzCXOxVUE3_vHeM7IeVLP3HyFc5JCcq4QPBHstSTRv7ujpP33v3kAn3Bnqo1cG8L68u_KHaIqs9TfPA2_AB2x6wo |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcFTKAS5AKY9AASNxAES2cWwnNrey6mqBbg9oK5VTFD9yAXYRu3vp1zPjOJFAgLhZip04M-N5eF4AL6hMvrLW5W1b-FzyEvmgFi6XXlpptBVeUoLz4ryaX8gPl-pyD96MuTAhhBh8FiY0jL58v3Y7uio7RusABYy8BtdR7iveZ2uNNyqxhURsflviIEe9ok5uTF6Y4-X08zuK5NKTsjZow1DvImTFRgotf5FJscnK3_XNKHdmt2Ex7LgPN_ky2W3txF39Vszxf3_pDtxKCig76SnmAPbC6i4cpCO-YS9THepXhzA97Vv8LChi5i07YTFZ99va4_LZENPFUOlln_oopCsUgyx6BVhaurkHF7PT5XSep54LuUNRvs05p8xYX_DOlVZRMTPVdcpUna2sCVy41lSm076V3KhOOhEsaQkerba6RCYu7sP-ar0KD4H51lV13WndlkZaVbRdKGqnlUe-UtqKZ1AMUG9cKkhOfTG-NtEwKUxDOGsIZ03CWQavxyXf-2oc_5p8SPAeJyZQZ3A0oLZJ53XTkKFLvEuYDJ6Pj_GkkfukXYX1DucUlRbCIHgyeNCTxPjugZIe_fmbz-DGfLk4a87en398DDdxl6aPYzuC_e2PXXiCis3WPo30_BOK3e5T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EmotionMeter%3A+A+Multimodal+Framework+for+Recognizing+Human+Emotions&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wei-Long%2C+Zheng&rft.au=Liu%2C+Wei&rft.au=Lu%2C+Yifei&rft.au=Bao-Liang%2C+Lu&rft.date=2019-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=49&rft.issue=3&rft.spage=1110&rft_id=info:doi/10.1109%2FTCYB.2018.2797176&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |