Angiotensin‐converting enzyme inhibitor works as a scar formation inhibitor by down‐regulating Smad and TGF‐β‐activated kinase 1 (TAK1) pathways in mice
Background and Purpose Angiotensin‐converting enzyme (ACE), an important part of the renin‐angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung, liver and kidney, while an ACE inhibitor (ACEI) promotes physiological tissue repair in these organs. The mechanism i...
Saved in:
Published in | British journal of pharmacology Vol. 175; no. 22; pp. 4239 - 4252 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley and Sons Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background and Purpose
Angiotensin‐converting enzyme (ACE), an important part of the renin‐angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung, liver and kidney, while an ACE inhibitor (ACEI) promotes physiological tissue repair in these organs. The mechanism is closely related to TGF‐β1 pathways. However, the reported effects of applying ACEIs during scar formation are unclear. Hence, we explored the anti‐fibrotic effects of an ACEI and the molecular mechanisms involved in a mouse scar model.
Experimental Approach
After a full‐thickness skin wound operation, ACE wild‐type mice were randomly assigned to receive either ramipril, losartan or hydralazine p.o. ACE knockout (KO) mice and negative control mice only received vehicle (water). Wound/scar widths during wound healing and histological examinations were recorded at the final day. The ability of ACEI to reduce fibrosis via TGF‐β1 signalling was evaluated in vitro and in vivo.
Key Results
ACE KO mice and mice that received ramipril showed narrower wound/scar width, reduced fibroblast proliferation, decreased collagen and TGF‐β1 expression. ACEI attenuated the phosphorylation of small mothers against decapentaplegic (Smad2/3) and TGF‐β‐activated kinase 1 (TAK1) both in vitro and in vivo. The expression of ACE‐related peptides varied in murine models with different drug treatments.
Conclusions and Implications
ACEI showed anti‐fibrotic properties in scar formation by mediating downstream peptides to suppress TGF‐β1/Smad and TGF‐β1/TAK1 pathways. These findings suggest that dual inhibition of Smad and TAK1 signalling by ACEI is a useful strategy for the development of new anti‐fibrotic agents. |
---|---|
AbstractList | Background and Purpose
Angiotensin‐converting enzyme (ACE), an important part of the renin‐angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung, liver and kidney, while an ACE inhibitor (ACEI) promotes physiological tissue repair in these organs. The mechanism is closely related to TGF‐β1 pathways. However, the reported effects of applying ACEIs during scar formation are unclear. Hence, we explored the anti‐fibrotic effects of an ACEI and the molecular mechanisms involved in a mouse scar model.
Experimental Approach
After a full‐thickness skin wound operation, ACE wild‐type mice were randomly assigned to receive either ramipril, losartan or hydralazine p.o. ACE knockout (KO) mice and negative control mice only received vehicle (water). Wound/scar widths during wound healing and histological examinations were recorded at the final day. The ability of ACEI to reduce fibrosis via TGF‐β1 signalling was evaluated in vitro and in vivo.
Key Results
ACE KO mice and mice that received ramipril showed narrower wound/scar width, reduced fibroblast proliferation, decreased collagen and TGF‐β1 expression. ACEI attenuated the phosphorylation of small mothers against decapentaplegic (Smad2/3) and TGF‐β‐activated kinase 1 (TAK1) both in vitro and in vivo. The expression of ACE‐related peptides varied in murine models with different drug treatments.
Conclusions and Implications
ACEI showed anti‐fibrotic properties in scar formation by mediating downstream peptides to suppress TGF‐β1/Smad and TGF‐β1/TAK1 pathways. These findings suggest that dual inhibition of Smad and TAK1 signalling by ACEI is a useful strategy for the development of new anti‐fibrotic agents. Angiotensin-converting enzyme (ACE), an important part of the renin-angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung, liver and kidney, while an ACE inhibitor (ACEI) promotes physiological tissue repair in these organs. The mechanism is closely related to TGF-β1 pathways. However, the reported effects of applying ACEIs during scar formation are unclear. Hence, we explored the anti-fibrotic effects of an ACEI and the molecular mechanisms involved in a mouse scar model. After a full-thickness skin wound operation, ACE wild-type mice were randomly assigned to receive either ramipril, losartan or hydralazine p.o. ACE knockout (KO) mice and negative control mice only received vehicle (water). Wound/scar widths during wound healing and histological examinations were recorded at the final day. The ability of ACEI to reduce fibrosis via TGF-β1 signalling was evaluated in vitro and in vivo. ACE KO mice and mice that received ramipril showed narrower wound/scar width, reduced fibroblast proliferation, decreased collagen and TGF-β1 expression. ACEI attenuated the phosphorylation of small mothers against decapentaplegic (Smad2/3) and TGF-β-activated kinase 1 (TAK1) both in vitro and in vivo. The expression of ACE-related peptides varied in murine models with different drug treatments. ACEI showed anti-fibrotic properties in scar formation by mediating downstream peptides to suppress TGF-β1/Smad and TGF-β1/TAK1 pathways. These findings suggest that dual inhibition of Smad and TAK1 signalling by ACEI is a useful strategy for the development of new anti-fibrotic agents. Angiotensin-converting enzyme (ACE), an important part of the renin-angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung, liver and kidney, while an ACE inhibitor (ACEI) promotes physiological tissue repair in these organs. The mechanism is closely related to TGF-β1 pathways. However, the reported effects of applying ACEIs during scar formation are unclear. Hence, we explored the anti-fibrotic effects of an ACEI and the molecular mechanisms involved in a mouse scar model.BACKGROUND AND PURPOSEAngiotensin-converting enzyme (ACE), an important part of the renin-angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung, liver and kidney, while an ACE inhibitor (ACEI) promotes physiological tissue repair in these organs. The mechanism is closely related to TGF-β1 pathways. However, the reported effects of applying ACEIs during scar formation are unclear. Hence, we explored the anti-fibrotic effects of an ACEI and the molecular mechanisms involved in a mouse scar model.After a full-thickness skin wound operation, ACE wild-type mice were randomly assigned to receive either ramipril, losartan or hydralazine p.o. ACE knockout (KO) mice and negative control mice only received vehicle (water). Wound/scar widths during wound healing and histological examinations were recorded at the final day. The ability of ACEI to reduce fibrosis via TGF-β1 signalling was evaluated in vitro and in vivo.EXPERIMENTAL APPROACHAfter a full-thickness skin wound operation, ACE wild-type mice were randomly assigned to receive either ramipril, losartan or hydralazine p.o. ACE knockout (KO) mice and negative control mice only received vehicle (water). Wound/scar widths during wound healing and histological examinations were recorded at the final day. The ability of ACEI to reduce fibrosis via TGF-β1 signalling was evaluated in vitro and in vivo.ACE KO mice and mice that received ramipril showed narrower wound/scar width, reduced fibroblast proliferation, decreased collagen and TGF-β1 expression. ACEI attenuated the phosphorylation of small mothers against decapentaplegic (Smad2/3) and TGF-β-activated kinase 1 (TAK1) both in vitro and in vivo. The expression of ACE-related peptides varied in murine models with different drug treatments.KEY RESULTSACE KO mice and mice that received ramipril showed narrower wound/scar width, reduced fibroblast proliferation, decreased collagen and TGF-β1 expression. ACEI attenuated the phosphorylation of small mothers against decapentaplegic (Smad2/3) and TGF-β-activated kinase 1 (TAK1) both in vitro and in vivo. The expression of ACE-related peptides varied in murine models with different drug treatments.ACEI showed anti-fibrotic properties in scar formation by mediating downstream peptides to suppress TGF-β1/Smad and TGF-β1/TAK1 pathways. These findings suggest that dual inhibition of Smad and TAK1 signalling by ACEI is a useful strategy for the development of new anti-fibrotic agents.CONCLUSIONS AND IMPLICATIONSACEI showed anti-fibrotic properties in scar formation by mediating downstream peptides to suppress TGF-β1/Smad and TGF-β1/TAK1 pathways. These findings suggest that dual inhibition of Smad and TAK1 signalling by ACEI is a useful strategy for the development of new anti-fibrotic agents. |
Author | Shi, Peng Bernstein, Ellen A Giani, Jorge F Li, You Zhao, Tuantuan V Bernstein, Kenneth E Tan, Wei‐Qiang Li, Liang Shen, Xiao Z Xu, Ji‐Hua Khan, Zakir Zhang, Li‐Yun Fang, Qing‐Qing |
AuthorAffiliation | 4 Department of Pathology and Laboratory Medicine Cedars‐Sinai Medical Center Los Angeles CA USA 1 Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province China 2 Department of Plastic Surgery, The Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu Zhejiang Province China 3 Department of Biomedical Sciences Cedars‐Sinai Medical Center Los Angeles CA USA 5 Department of Physiology Zhejiang University School of Medicine Hangzhou Zhejiang Province China 6 Institute of Translational Medicine Zhejiang University School of Medicine Hangzhou Zhejiang Province China |
AuthorAffiliation_xml | – name: 1 Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province China – name: 2 Department of Plastic Surgery, The Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu Zhejiang Province China – name: 6 Institute of Translational Medicine Zhejiang University School of Medicine Hangzhou Zhejiang Province China – name: 3 Department of Biomedical Sciences Cedars‐Sinai Medical Center Los Angeles CA USA – name: 4 Department of Pathology and Laboratory Medicine Cedars‐Sinai Medical Center Los Angeles CA USA – name: 5 Department of Physiology Zhejiang University School of Medicine Hangzhou Zhejiang Province China |
Author_xml | – sequence: 1 givenname: Wei‐Qiang orcidid: 0000-0003-4951-0960 surname: Tan fullname: Tan, Wei‐Qiang email: tanweixxxx@zju.edu.cn organization: Cedars‐Sinai Medical Center – sequence: 2 givenname: Qing‐Qing surname: Fang fullname: Fang, Qing‐Qing organization: Zhejiang University School of Medicine – sequence: 3 givenname: Xiao Z surname: Shen fullname: Shen, Xiao Z organization: Zhejiang University School of Medicine – sequence: 4 givenname: Jorge F surname: Giani fullname: Giani, Jorge F organization: Cedars‐Sinai Medical Center – sequence: 5 givenname: Tuantuan V surname: Zhao fullname: Zhao, Tuantuan V organization: Cedars‐Sinai Medical Center – sequence: 6 givenname: Peng surname: Shi fullname: Shi, Peng organization: Zhejiang University School of Medicine – sequence: 7 givenname: Li‐Yun surname: Zhang fullname: Zhang, Li‐Yun organization: Zhejiang University School of Medicine – sequence: 8 givenname: Zakir surname: Khan fullname: Khan, Zakir organization: Cedars‐Sinai Medical Center – sequence: 9 givenname: You surname: Li fullname: Li, You organization: Cedars‐Sinai Medical Center – sequence: 10 givenname: Liang surname: Li fullname: Li, Liang organization: Cedars‐Sinai Medical Center – sequence: 11 givenname: Ji‐Hua surname: Xu fullname: Xu, Ji‐Hua organization: Zhejiang University School of Medicine – sequence: 12 givenname: Ellen A surname: Bernstein fullname: Bernstein, Ellen A organization: Cedars‐Sinai Medical Center – sequence: 13 givenname: Kenneth E surname: Bernstein fullname: Bernstein, Kenneth E email: kenneth.bernstein@cshs.org organization: Cedars‐Sinai Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30153328$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFuEzEYhS1URNPCggsgL9vFtHbsGXs2SGlFW0SlIjV76x-PJzGdsYM9STSsOAJX4AochENwEtwkrQoCy_K_eO__nuR3gPacdwah15Sc0HROq8X8hHIuy2doRLkospxJuodGhBCRUSrlPjqI8RMhSRT5C7TPCM0ZG8sR-j5xM-t746J1v75-096tTOitm2HjvgydwdbNbWV7H_Dah7uIIV0cNQTc-NBBb7174qkGXPv1PSmY2bKFDem2gxqDq_H08iIpP3-kB3RvV9CbGt9ZB9Fgio-mkw_0GC-gn69hiImKO6vNS_S8gTaaV7t5iG4v3k3Pr7Lrm8v355PrTHOal5koScNYyWQDBdOcj4WGMW8EB52XRVMZqYkuteamqgsJpK5yAMEIE6aSjB2it1vqYll1ptbG9QFatQi2gzAoD1b9qTg7VzO_UgVNmUImwNEOEPznpYm96mzUpm3BGb-MakzKIs9FXvJkffM06zHkoZVkON0adPAxBtMobfvNV6do2ypK1H3vKvWuNr2njeO_Nh6g__Lu6GvbmuH_RnX28Wq78Ru078Ts |
CitedBy_id | crossref_primary_10_1016_j_biopha_2019_109394 crossref_primary_10_1177_20595131221095348 crossref_primary_10_2147_JIR_S493828 crossref_primary_10_1111_bcpt_13458 crossref_primary_10_3389_fcvm_2020_00115 crossref_primary_10_1016_j_ejphar_2025_177445 crossref_primary_10_1016_j_lfs_2019_117174 crossref_primary_10_1039_D2BM01631A crossref_primary_10_1007_s13346_022_01153_2 crossref_primary_10_1080_17512433_2022_2045950 crossref_primary_10_1016_j_matbio_2020_04_005 crossref_primary_10_1016_j_biopha_2020_110287 crossref_primary_10_1186_s12967_023_04554_0 crossref_primary_10_1016_j_asmr_2023_05_005 crossref_primary_10_1016_j_jid_2025_02_134 crossref_primary_10_1016_j_intimp_2020_106686 crossref_primary_10_1038_s41598_022_17686_y crossref_primary_10_60118_001c_89993 crossref_primary_10_1007_s00266_022_02935_2 crossref_primary_10_1016_j_bcp_2023_115839 crossref_primary_10_1016_j_xjidi_2023_100231 crossref_primary_10_1111_ddg_15088 crossref_primary_10_1111_exd_14154 crossref_primary_10_1007_s11255_020_02668_8 crossref_primary_10_1007_s00266_024_04385_4 crossref_primary_10_3390_ijms231911487 crossref_primary_10_1007_s12015_021_10252_5 crossref_primary_10_1101_cshperspect_a041231 crossref_primary_10_3390_diagnostics13223398 crossref_primary_10_1111_exd_14159 crossref_primary_10_1016_j_jseint_2023_06_008 crossref_primary_10_3389_fphar_2022_968104 crossref_primary_10_1111_jcmm_14750 crossref_primary_10_1016_j_bioactmat_2024_11_028 crossref_primary_10_1038_s41598_020_57703_6 crossref_primary_10_1007_s00403_022_02509_x crossref_primary_10_1016_j_intimp_2022_109628 crossref_primary_10_1139_cjpp_2021_0242 crossref_primary_10_1016_j_matbio_2023_05_001 crossref_primary_10_1111_ddg_15088_g crossref_primary_10_3389_fimmu_2023_1266315 crossref_primary_10_1097_PRS_0000000000006173 crossref_primary_10_3390_ijms241814019 crossref_primary_10_3390_biomedicines11071976 |
Cites_doi | 10.3109/08977194.2011.614236 10.1038/jid.2013.328 10.1038/hr.2011.196 10.1056/NEJM199909023411006 10.1001/archfaci.2012.223 10.1038/nrc1877 10.1111/j.1600-0625.2010.01186.x 10.1007/s00109-014-1190-x 10.1023/A:1006985329240 10.1111/bjd.13954 10.1038/sj.emboj.7600809 10.1016/j.bbadis.2009.06.004 10.1038/jid.2015.86 10.1016/j.semnephrol.2012.04.003 10.1042/CS20110086 10.1155/2011/969618 10.1111/1523-1747.ep12343658 10.1126/science.270.5244.2008 10.1097/BOR.0b013e32830e48e8 10.2106/JBJS.O.00545 10.1177/1470320318759358 10.2353/ajpath.2010.081127 10.2174/138920111798808419 10.1111/bph.12856 10.1038/jid.2009.302 10.1038/sj.jid.5700811 10.1074/jbc.M509771200 10.1016/S0092-8674(03)00432-X 10.1111/j.1524-475X.2007.00226.x 10.1007/s00403-014-1532-0 10.1016/j.jid.2017.09.030 10.1097/MJT.0b013e3181df8df5 10.1136/bmj.326.7380.88 10.1002/art.24223 10.1016/S0021-9258(17)35666-1 10.1124/pr.112.006809 10.1097/PRS.0b013e31829acf0a 10.1038/sj.jid.5700200 10.3109/08977194.2011.595714 10.1097/DSS.0000000000000496 10.1007/PL00007448 10.1111/j.0906-6705.2004.0139.x 10.1016/j.cca.2005.12.012 10.1093/nar/gkx1121 10.1038/jid.2008.90 10.1159/000452538 10.1111/j.1476-5381.2010.00872.x 10.1074/jbc.M109.007146 10.1016/j.jaad.2005.09.027 10.1038/ni.2107 10.1007/978-94-007-4719-7_9 10.1016/j.bbadis.2008.01.006 10.1517/13543770903397400 10.1111/bph.14153 10.1111/bph.13878 10.1182/blood-2008-07-166702 10.1016/j.bbrc.2009.05.081 10.1111/bph.13877 10.1007/s00059-003-2524-6 10.1111/ijd.12436 10.1038/jid.2012.443 10.2353/ajpath.2010.100314 10.1111/j.1524-475X.2008.00361.x |
ContentType | Journal Article |
Copyright | 2018 The British Pharmacological Society 2018 The British Pharmacological Society. |
Copyright_xml | – notice: 2018 The British Pharmacological Society – notice: 2018 The British Pharmacological Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1111/bph.14489 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
DocumentTitleAlternate | ACEI for scar formation |
EISSN | 1476-5381 |
EndPage | 4252 |
ExternalDocumentID | PMC6193878 30153328 10_1111_bph_14489 BPH14489 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Zhejiang Provincial Science and Technology Project of China funderid: 2016C33134 – fundername: National Key Research Program of China funderid: 2016YFC1101004 – fundername: National Natural Science Foundation of China funderid: 81372072; 81671918 – fundername: NHLBI NIH HHS grantid: P01 HL129941 – fundername: NHLBI NIH HHS grantid: R01 HL142672 – fundername: National Key Research Program of China grantid: 2016YFC1101004 – fundername: Zhejiang Provincial Science and Technology Project of China grantid: 2016C33134 – fundername: National Natural Science Foundation of China grantid: 81372072; 81671918 |
GroupedDBID | --- .3N .55 .GJ 05W 0R~ 1OC 23N 24P 2WC 31~ 33P 36B 3O- 3SF 3V. 4.4 52U 52V 53G 5GY 6J9 7RV 7X7 8-0 8-1 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 8UM A00 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABPVW ABQWH ABUWG ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB B0M BAFTC BAWUL BBNVY BENPR BFHJK BHBCM BHPHI BKEYQ BMXJE BPHCQ BRXPI BVXVI C45 CAG CCPQU COF CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBC EBD EBS ECV EJD EMB EMK EMOBN ENC ESX EX3 F5P FUBAC FYUFA G-S GODZA GX1 H.X HCIFZ HGLYW HMCUK HYE HZ~ J5H KBYEO LATKE LEEKS LH4 LITHE LK8 LOXES LSO LUTES LW6 LYRES M1P M7P MEWTI MK0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ N9A NAPCQ NF~ O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ PROAC PSQYO Q.N Q2X QB0 RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 TUS UKHRP UPT WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WVDHM WXSBR X7M XV2 Y6R YHG ZGI ZXP ZZTAW ~8M ~S- AAFWJ AAYXX AEYWJ AGHNM AGYGG CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 5PM |
ID | FETCH-LOGICAL-c4159-790f33938fa63c4427ca24f74ac596fbe8c0c9cc4ebd68a0db5aa73037eb833 |
ISSN | 0007-1188 1476-5381 |
IngestDate | Thu Aug 21 17:51:56 EDT 2025 Fri Jul 11 06:11:41 EDT 2025 Thu Apr 03 06:58:45 EDT 2025 Tue Jul 01 03:00:37 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Wed Jan 22 16:32:24 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | 2018 The British Pharmacological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4159-790f33938fa63c4427ca24f74ac596fbe8c0c9cc4ebd68a0db5aa73037eb833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4951-0960 |
OpenAccessLink | https://bpspubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bph.14489 |
PMID | 30153328 |
PQID | 2096557594 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6193878 proquest_miscellaneous_2096557594 pubmed_primary_30153328 crossref_citationtrail_10_1111_bph_14489 crossref_primary_10_1111_bph_14489 wiley_primary_10_1111_bph_14489_BPH14489 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2018 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Hoboken |
PublicationTitle | British journal of pharmacology |
PublicationTitleAlternate | Br J Pharmacol |
PublicationYear | 2018 |
Publisher | John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley and Sons Inc |
References | 2013; 65 1996; 74 2009; 113 2015; 307 2011; 12 2012; 14 2003; 113 2011; 18 2017a; 174 1996; 106 2005; 24 2014; 134 2018; 46 2018; 175 1998; 290 2015; 173 2015; 172 2003; 326 2010; 68 2018; 138 1999; 19 2015; 135 2015; 41 1986; 261 2011; 20 2016; 40 2009; 284 2008; 20 2006; 281 2009; 19 2006; 126 2011; 29 2009; 1792 2006; 367 2011; 121 2014; 53 2014; 92 2007; 127 2006; 54 2009; 60 2008; 16 2013; 986 2016; 98 2006; 8 1999; 341 2008; 128 2006; 6 2010; 160 2012; 35 2012; 32 1995; 270 2007; 15 2008; 1782 2018; 19 2011; 2011 2017b; 174 2004; 13 2009; 385 2010; 177 2013; 133 2010; 130 2003; 28 2013; 132 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Esther CR (e_1_2_10_19_1) 1996; 74 Iannello S (e_1_2_10_27_1) 2006; 8 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Kolesnyk I (e_1_2_10_39_1) 2010; 68 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 19 start-page: 1759 year: 2009 end-page: 1769 article-title: Strategies for TGF‐beta modulation: a review of recent patents publication-title: Expert Opin Ther Pat – volume: 173 start-page: 370 year: 2015 end-page: 378 article-title: Cellular and molecular mechanisms of repair in acute and chronic wound healing publication-title: Br J Dermatol – volume: 35 start-page: 393 year: 2012 end-page: 398 article-title: Angiotensin II‐induced cardiomyocyte hypertrophy is TAK1‐dependent and Smad2/3‐independent publication-title: Hypertens Res – volume: 18 start-page: e202 year: 2011 end-page: e208 article-title: Hepatic fibrosis and the renin‐angiotensin system publication-title: Am J Ther – volume: 29 start-page: 196 year: 2011 end-page: 202 article-title: TGF‐beta signaling in fibrosis publication-title: Growth Factors – volume: 8 start-page: 60 year: 2006 article-title: Low‐dose enalapril in the treatment of surgical cutaneous hypertrophic scar and keloid – two case reports and literature review publication-title: MedGenMed – volume: 174 start-page: S17 year: 2017a end-page: S129 article-title: The Concise Guide To PHARMACOLOGY 2017/18: G protein‐coupled receptors publication-title: Br J Pharmacol – volume: 53 start-page: 922 year: 2014 end-page: 936 article-title: Scar prevention and remodeling: a review of the medical, surgical, topical and light treatment approaches publication-title: Int J Dermatol – volume: 1782 start-page: 197 year: 2008 end-page: 228 article-title: Role of transforming growth factor‐beta superfamily signaling pathways in human disease publication-title: Biochim Biophys Acta – volume: 2011 start-page: 969618 year: 2011 article-title: Surgical approaches to create murine models of human wound healing publication-title: J Biomed Biotechnol – volume: 281 start-page: 13209 year: 2006 end-page: 13216 article-title: A novel function of angiotensin II in skin wound healing – induction of fibroblast and keratinocyte migration by angiotensin II via heparin‐binding epidermal growth factor (EGF)‐like growth factor‐mediated egf receptor transactivation publication-title: J Biol Chem – volume: 14 start-page: 162 year: 2012 end-page: 174 article-title: Scar revision review publication-title: Arch Facial Plast Surg – volume: 20 start-page: 119 year: 2011 end-page: 124 article-title: Inhibiting scar formation and by adenovirus‐mediated mutant Smad4: a preliminary report publication-title: Exp Dermatol – volume: 113 start-page: 5266 year: 2009 end-page: 5276 article-title: Wound healing defect of Vav3−/− mice due to impaired {beta}2‐integrin‐dependent macrophage phagocytosis of apoptotic neutrophils publication-title: Blood – volume: 6 start-page: 392 year: 2006 end-page: 401 article-title: Fibroblasts in cancer publication-title: Nat Rev Cancer – volume: 24 start-page: 3400 year: 2005 end-page: 3410 article-title: Wound‐healing defect of CD18(−/−) mice due to a decrease in TGF‐beta1 and myofibroblast differentiation publication-title: EMBO J – volume: 40 start-page: 207 year: 2016 end-page: 218 article-title: Growth differentiation factor‐9 promotes fibroblast proliferation and migration in keloids through the Smad2/3 pathway publication-title: Cell Physiol Biochem – volume: 121 start-page: 233 year: 2011 end-page: 251 article-title: TGF‐beta/TGF‐beta receptor system and its role in physiological and pathological conditions publication-title: Clin Sci (London, England: 1979) – volume: 127 start-page: 1009 year: 2007 end-page: 1017 article-title: The inflammation‐fibrosis link? A Jekyll and Hyde role for blood cells during wound repair publication-title: J Invest Dermatol – volume: 98 start-page: 48 year: 2016 end-page: 55 article-title: Angiotensin‐(1‐7) attenuates skeletal muscle fibrosis and stiffening in a mouse model of extremity sarcoma radiation therapy publication-title: J Bone Joint Surg Am – volume: 986 start-page: 171 year: 2013 end-page: 187 article-title: TGF beta signaling and its role in glioma pathogenesis publication-title: Adv Exp Med Biol – volume: 19 year: 2018 article-title: Connective tissue growth factor expression after angiotensin II exposure is dependent on transforming growth factor‐β signaling via the canonical Smad‐dependent pathway in hypertensive induced myocardial fibrosis publication-title: J Renin Angiotensin Aldosterone Syst – volume: 172 start-page: 3461 year: 2015 end-page: 3471 article-title: Experimental design and analysis and their reporting: new guidance for publication in BJP publication-title: Br J Pharmacol – volume: 367 start-page: 170 year: 2006 end-page: 174 article-title: Lisinopril ameliorates paraquat‐induced lung fibrosis publication-title: Clin Chim Acta – volume: 175 start-page: 987 year: 2018 end-page: 993 article-title: Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers publication-title: Br J Pharmacol – volume: 46 start-page: D1091 issue: D1 year: 2018 end-page: D1106 article-title: The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY publication-title: Nucleic Acids Res – volume: 60 start-page: 234 year: 2009 end-page: 241 article-title: Requirement of transforming growth factor beta‐activated kinase 1 for transforming growth factor beta‐induced alpha‐smooth muscle actin expression and extracellular matrix contraction in fibroblasts publication-title: Arthritis Rheum – volume: 19 start-page: 277 year: 1999 end-page: 288 article-title: Characterization of AT2 receptor expression in NIH 3T3 fibroblasts publication-title: Cell Mol Neurobiol – volume: 132 start-page: 361e year: 2013 end-page: 371e article-title: Angiotensin‐converting enzyme inhibitor enalapril reduces formation of hypertrophic scars in a rabbit ear wounding model publication-title: Plastic Reconstr Surg – volume: 28 start-page: 744 year: 2003 end-page: 753 article-title: Effects of ACE inhibition versus non‐ACE inhibitor antihypertensive treatment on myocardial fibrosis in patients with arterial hypertension. Retrospective analysis of 120 patients with left ventricular endomyocardial biopsies publication-title: Herz – volume: 174 start-page: S272 year: 2017b end-page: S359 article-title: The Concise Guide to PHARMACOLOGY 2017/18: Enzymes publication-title: Br J Pharmacol – volume: 326 start-page: 88 year: 2003 end-page: 92 article-title: Skin scarring publication-title: Bmj Clin Res – volume: 177 start-page: 2300 year: 2010 end-page: 2309 article-title: Substance P modulates colitis‐associated fibrosis publication-title: Am J Pathol – volume: 177 start-page: 1113 year: 2010 end-page: 1121 article-title: Angiotensin‐converting enzyme N‐terminal inactivation alleviates bleomycin‐induced lung injury publication-title: Am J Pathol – volume: 54 start-page: 251 year: 2006 end-page: 257 article-title: Cutaneous tissue angiotensin‐converting enzyme may participate in pathologic scar formation in human skin publication-title: J Am Acad Dermatol – volume: 41 start-page: S265 issue: Suppl. 10 year: 2015 end-page: S275 article-title: Best reconstructive techniques: improving the final scar publication-title: Dermatol Surg – volume: 130 start-page: 706 year: 2010 end-page: 715 article-title: IL‐18 downregulates collagen production in human dermal fibroblasts via the ERK pathway publication-title: J Invest Dermatol – volume: 15 start-page: S54 issue: Suppl. 1 year: 2007 end-page: S60 article-title: TGF‐beta‐induced fibrosis and SMAD signaling: oligo decoys as natural therapeutics for inhibition of tissue fibrosis and scarring publication-title: Wound Repair Regen – volume: 20 start-page: 720 year: 2008 end-page: 728 article-title: Antitransforming growth factor‐beta therapy in fibrosis: recent progress and implications for systemic sclerosis publication-title: Curr Opin Rheumatol – volume: 134 start-page: 526 year: 2014 end-page: 537 article-title: TSG‐6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full‐thickness skin wounds publication-title: J Invest Dermatol – volume: 12 start-page: 2099 year: 2011 end-page: 2107 article-title: Biology of transforming growth factor‐β signaling publication-title: Curr Pharm Biotechnol – volume: 106 start-page: 476 year: 1996 end-page: 481 article-title: Collagenase production is lower in post‐burn hypertrophic scar fibroblasts than in normal fibroblasts and is reduced by insulin‐like growth factor‐1 publication-title: J Investig Dermatol – volume: 68 start-page: 15 year: 2010 end-page: 23 article-title: Effects of angiotensin‐converting enzyme inhibitors and angiotensin II receptor blockers in patients with chronic kidney disease publication-title: Neth J Med – volume: 133 start-page: 1080 year: 2013 end-page: 1087 article-title: A dualAP‐1 and SMAD decoy ODN suppresses tissue fibrosis and scarring in mice publication-title: J Invest Dermatol – volume: 261 start-page: 4337 year: 1986 end-page: 4345 article-title: Transforming growth factor‐beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix publication-title: J Biol Chem – volume: 290 start-page: S1 year: 1998 end-page: S11 article-title: Animal models for wound repair publication-title: Arch Dermatol Res – volume: 13 start-page: 148 year: 2004 end-page: 154 article-title: Human skin: source of and target organ for angiotensin II publication-title: Exp Dermatol – volume: 12 start-page: 1078 year: 2011 end-page: U1083 article-title: The carboxypeptidase ACE shapes the MHC class I peptide repertoire publication-title: Nat Immunol – volume: 270 start-page: 2008 year: 1995 end-page: 2011 article-title: Identification of a member of the MAPKKK family as a potential mediator of TGF‐beta signal transduction publication-title: Science (New York, NY) – volume: 1792 start-page: 746 year: 2009 end-page: 756 article-title: TGF‐beta and fibrosis in different organs – molecular pathway imprints publication-title: Biochim Biophys Acta – volume: 65 start-page: 1 year: 2013 end-page: 46 article-title: A modern understanding of the traditional and nontraditional biological functions of Angiotensin‐converting enzyme publication-title: Pharmacol Rev – volume: 341 start-page: 738 year: 1999 end-page: 746 article-title: Cutaneous wound healing publication-title: N Engl J Med – volume: 138 start-page: 434 year: 2018 end-page: 443 article-title: Topical reformulation of valsartan for treatment of chronic diabetic wounds publication-title: J Invest Dermatol – volume: 126 start-page: 1168 year: 2006 end-page: 1176 article-title: Upregulation of TGF‐beta1 expression may be necessary but is not sufficient for excessive scarring publication-title: J Invest Dermatol – volume: 74 start-page: 953 year: 1996 end-page: 965 article-title: Mice lacking angiotensin‐converting enzyme have low blood pressure, renal pathology, and reduced male fertility publication-title: Lab Invest – volume: 16 start-page: 208 year: 2008 end-page: 217 article-title: Polydeoxyribonucleotide stimulates angiogenesis and wound healing in the genetically diabetic mouse publication-title: Wound Repair Regen – volume: 307 start-page: 135 year: 2015 end-page: 142 article-title: Attenuation of fibrosis with selective inhibition of c‐Abl by siRNA in systemic sclerosis dermal fibroblasts publication-title: Arch Dermatol Res – volume: 29 start-page: 163 year: 2011 end-page: 173 article-title: Inhibitory machinery for the TGF‐beta family signaling pathway publication-title: Growth Factors – volume: 160 start-page: 1577 year: 2010 end-page: 1579 article-title: Animal research: reporting experiments: the ARRIVE guidelines publication-title: Br J Pharmacol – volume: 385 start-page: 418 year: 2009 end-page: 423 article-title: Angiotensin II induces type I collagen gene expression in human dermal fibroblasts through an AP‐1/TGF‐beta 1‐dependent pathway publication-title: Biochem Biophys Res Commun – volume: 284 start-page: 22285 year: 2009 end-page: 22296 article-title: Transforming growth factor‐β (TGF‐β1) activates TAK1 via TAB1‐mediated autophosphorylation, independent of TGF‐β receptor kinase activity in mesangial cells publication-title: J Biol Chem – volume: 32 start-page: 244 year: 2012 end-page: 252 article-title: TGF‐β signaling via TAK1 pathway: role in kidney fibrosis publication-title: Semin Nephrol – volume: 92 start-page: 913 year: 2014 end-page: 924 article-title: Molecular and cellular basis of scleroderma publication-title: J Mol Med – volume: 128 start-page: 2518 year: 2008 end-page: 2525 article-title: Hic‐5 promotes the hypertrophic scar myofibroblast phenotype by regulating the TGF‐beta1 autocrine loop publication-title: J Investig Dermatol – volume: 135 start-page: 1893 year: 2015 end-page: 1902 article-title: Controlling the balance of fibroblast proliferation and differentiation: impact of Thy‐1 publication-title: J Invest Dermatol – volume: 113 start-page: 685 year: 2003 end-page: 700 article-title: Mechanisms of TGF‐beta signaling from cell membrane to the nucleus publication-title: Cell – ident: e_1_2_10_30_1 doi: 10.3109/08977194.2011.614236 – ident: e_1_2_10_47_1 doi: 10.1038/jid.2013.328 – ident: e_1_2_10_61_1 doi: 10.1038/hr.2011.196 – ident: e_1_2_10_54_1 doi: 10.1056/NEJM199909023411006 – ident: e_1_2_10_59_1 doi: 10.1001/archfaci.2012.223 – ident: e_1_2_10_32_1 doi: 10.1038/nrc1877 – ident: e_1_2_10_57_1 doi: 10.1111/j.1600-0625.2010.01186.x – ident: e_1_2_10_18_1 doi: 10.1007/s00109-014-1190-x – ident: e_1_2_10_26_1 doi: 10.1023/A:1006985329240 – ident: e_1_2_10_42_1 doi: 10.1111/bjd.13954 – ident: e_1_2_10_45_1 doi: 10.1038/sj.emboj.7600809 – ident: e_1_2_10_46_1 doi: 10.1016/j.bbadis.2009.06.004 – ident: e_1_2_10_49_1 doi: 10.1038/jid.2015.86 – ident: e_1_2_10_12_1 doi: 10.1016/j.semnephrol.2012.04.003 – ident: e_1_2_10_48_1 doi: 10.1042/CS20110086 – volume: 74 start-page: 953 year: 1996 ident: e_1_2_10_19_1 article-title: Mice lacking angiotensin‐converting enzyme have low blood pressure, renal pathology, and reduced male fertility publication-title: Lab Invest – ident: e_1_2_10_64_1 doi: 10.1155/2011/969618 – ident: e_1_2_10_21_1 doi: 10.1111/1523-1747.ep12343658 – volume: 8 start-page: 60 year: 2006 ident: e_1_2_10_27_1 article-title: Low‐dose enalapril in the treatment of surgical cutaneous hypertrophic scar and keloid – two case reports and literature review publication-title: MedGenMed – ident: e_1_2_10_66_1 doi: 10.1126/science.270.5244.2008 – ident: e_1_2_10_60_1 doi: 10.1097/BOR.0b013e32830e48e8 – ident: e_1_2_10_62_1 doi: 10.2106/JBJS.O.00545 – ident: e_1_2_10_63_1 doi: 10.1177/1470320318759358 – ident: e_1_2_10_41_1 doi: 10.2353/ajpath.2010.081127 – ident: e_1_2_10_29_1 doi: 10.2174/138920111798808419 – ident: e_1_2_10_14_1 doi: 10.1111/bph.12856 – ident: e_1_2_10_37_1 doi: 10.1038/jid.2009.302 – ident: e_1_2_10_56_1 doi: 10.1038/sj.jid.5700811 – ident: e_1_2_10_65_1 doi: 10.1074/jbc.M509771200 – ident: e_1_2_10_52_1 doi: 10.1016/S0092-8674(03)00432-X – ident: e_1_2_10_15_1 doi: 10.1111/j.1524-475X.2007.00226.x – ident: e_1_2_10_34_1 doi: 10.1007/s00403-014-1532-0 – ident: e_1_2_10_2_1 doi: 10.1016/j.jid.2017.09.030 – ident: e_1_2_10_22_1 doi: 10.1097/MJT.0b013e3181df8df5 – ident: e_1_2_10_6_1 doi: 10.1136/bmj.326.7380.88 – ident: e_1_2_10_51_1 doi: 10.1002/art.24223 – ident: e_1_2_10_28_1 doi: 10.1016/S0021-9258(17)35666-1 – ident: e_1_2_10_7_1 doi: 10.1124/pr.112.006809 – ident: e_1_2_10_24_1 doi: 10.1097/PRS.0b013e31829acf0a – ident: e_1_2_10_11_1 doi: 10.1038/sj.jid.5700200 – ident: e_1_2_10_8_1 doi: 10.3109/08977194.2011.595714 – ident: e_1_2_10_5_1 doi: 10.1097/DSS.0000000000000496 – ident: e_1_2_10_17_1 doi: 10.1007/PL00007448 – ident: e_1_2_10_55_1 doi: 10.1111/j.0906-6705.2004.0139.x – ident: e_1_2_10_43_1 doi: 10.1016/j.cca.2005.12.012 – ident: e_1_2_10_25_1 doi: 10.1093/nar/gkx1121 – ident: e_1_2_10_16_1 doi: 10.1038/jid.2008.90 – ident: e_1_2_10_31_1 doi: 10.1159/000452538 – ident: e_1_2_10_36_1 doi: 10.1111/j.1476-5381.2010.00872.x – ident: e_1_2_10_38_1 doi: 10.1074/jbc.M109.007146 – ident: e_1_2_10_44_1 doi: 10.1016/j.jaad.2005.09.027 – ident: e_1_2_10_50_1 doi: 10.1038/ni.2107 – ident: e_1_2_10_33_1 doi: 10.1007/978-94-007-4719-7_9 – ident: e_1_2_10_23_1 doi: 10.1016/j.bbadis.2008.01.006 – ident: e_1_2_10_9_1 doi: 10.1517/13543770903397400 – ident: e_1_2_10_13_1 doi: 10.1111/bph.14153 – ident: e_1_2_10_3_1 doi: 10.1111/bph.13878 – ident: e_1_2_10_53_1 doi: 10.1182/blood-2008-07-166702 – ident: e_1_2_10_58_1 doi: 10.1016/j.bbrc.2009.05.081 – ident: e_1_2_10_4_1 doi: 10.1111/bph.13877 – ident: e_1_2_10_10_1 doi: 10.1007/s00059-003-2524-6 – ident: e_1_2_10_35_1 doi: 10.1111/ijd.12436 – ident: e_1_2_10_67_1 doi: 10.1038/jid.2012.443 – ident: e_1_2_10_40_1 doi: 10.2353/ajpath.2010.100314 – ident: e_1_2_10_20_1 doi: 10.1111/j.1524-475X.2008.00361.x – volume: 68 start-page: 15 year: 2010 ident: e_1_2_10_39_1 article-title: Effects of angiotensin‐converting enzyme inhibitors and angiotensin II receptor blockers in patients with chronic kidney disease publication-title: Neth J Med |
SSID | ssj0014775 |
Score | 2.4732249 |
Snippet | Background and Purpose
Angiotensin‐converting enzyme (ACE), an important part of the renin‐angiotensin system, is implicated in stimulating the fibrotic... Angiotensin-converting enzyme (ACE), an important part of the renin-angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung,... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4239 |
SubjectTerms | Angiotensin-Converting Enzyme Inhibitors - pharmacology Animals Disease Models, Animal Male MAP Kinase Kinase Kinases - antagonists & inhibitors MAP Kinase Kinase Kinases - deficiency MAP Kinase Kinase Kinases - metabolism Mice Mice, Knockout Research Paper Research Papers Signal Transduction - drug effects Smad Proteins - antagonists & inhibitors Smad Proteins - metabolism |
Title | Angiotensin‐converting enzyme inhibitor works as a scar formation inhibitor by down‐regulating Smad and TGF‐β‐activated kinase 1 (TAK1) pathways in mice |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.14489 https://www.ncbi.nlm.nih.gov/pubmed/30153328 https://www.proquest.com/docview/2096557594 https://pubmed.ncbi.nlm.nih.gov/PMC6193878 |
Volume | 175 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9sIL4k65ySA2FXWemnvy2I510xij0zLRt8h2nDWCplO7grp_wis_gR_Cb-L40qTdChpIVRQ5rmXp-3w59jnfQeiNxyM_jTybwGgAAwVMZsJSLyUpcMFmYSosKuOdPxz5-6fuQd_r12o_FryWphdsm1-ujCv5H1ShDHCVUbL_gGzZKBTAO-ALT0AYnjfCuF2c5SPlgl4Q5T4-Vk7MoricDaUYyCBnMGDHKh_MRGaUoc0Jp-MqYnGhDmxDU7DIyVgnp1dC3UOqhFyb8V6XbOzsbnRsIuMgvlK5Tf2cF7ACNi25R43b7y15viDzG3-jM-VjOzRedVflkxa0Ks4r3ezyZD_WJ7KfRE6OgbpnJcHMwfYx9Iwc59WHExNf0s_pqLpn2ct1sqrmgTzzN_7L5nTDCk2YXzUhu4FPYFLWRWJF2XwW1wlYDF11rLOZlKXG4V9WC3Y-kFfcOpPRsiL30ceke3p4mMS7_fgWWrfBFIG5dL3dedfplndVbqDknMteGf0q6S9WNr2867lmylz3yF20lNRWJ76L7hgbBbc14e6hmijuo82eBmu2heMqZm-yhTdxbwHGB-j7alZizUpcMg4rVmIKPyxZiUtWLtRhM3yFlViyEgMrsWTlr58VI7FmJLZwQ_LxLZ6zEdrDko0P0Ul3N97ZJyYBCOGwr4xIELUyx4mcMKO-w13XDji13SxwKfciP2Mi5C0ece4KlvohbaXMoxSWLCcQLHScR2itGBXiCcKUZa5tp1ngBS2AKQutgNk08jLPFdwTaR015vAk3GjjyxQtX5K5jQxIJgrJOnpdVj3XgjCrKr2aY5zAdC3v4GghRtNJYku1JZkU162jxxrzshlYa8H4ssM6CpbYUFaQUvDLX4p8oCThfbDDwgD-2VC8-XPPkk5vX708vUEXn6Hb1Zh8jtYuxlPxAvbgF-ylGQS_AZAr46o |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Angiotensin-converting+enzyme+inhibitor+works+as+a+scar+formation+inhibitor+by+down-regulating+Smad+and+TGF-%CE%B2-activated+kinase+1+%28TAK1%29+pathways+in+mice&rft.jtitle=British+journal+of+pharmacology&rft.au=Tan%2C+Wei-Qiang&rft.au=Fang%2C+Qing-Qing&rft.au=Shen%2C+Xiao+Z&rft.au=Giani%2C+Jorge+F&rft.date=2018-11-01&rft.issn=1476-5381&rft.eissn=1476-5381&rft.volume=175&rft.issue=22&rft.spage=4239&rft_id=info:doi/10.1111%2Fbph.14489&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon |