Angiotensin‐converting enzyme inhibitor works as a scar formation inhibitor by down‐regulating Smad and TGF‐β‐activated kinase 1 (TAK1) pathways in mice

Background and Purpose Angiotensin‐converting enzyme (ACE), an important part of the renin‐angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung, liver and kidney, while an ACE inhibitor (ACEI) promotes physiological tissue repair in these organs. The mechanism i...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of pharmacology Vol. 175; no. 22; pp. 4239 - 4252
Main Authors Tan, Wei‐Qiang, Fang, Qing‐Qing, Shen, Xiao Z, Giani, Jorge F, Zhao, Tuantuan V, Shi, Peng, Zhang, Li‐Yun, Khan, Zakir, Li, You, Li, Liang, Xu, Ji‐Hua, Bernstein, Ellen A, Bernstein, Kenneth E
Format Journal Article
LanguageEnglish
Published England John Wiley and Sons Inc 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background and Purpose Angiotensin‐converting enzyme (ACE), an important part of the renin‐angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung, liver and kidney, while an ACE inhibitor (ACEI) promotes physiological tissue repair in these organs. The mechanism is closely related to TGF‐β1 pathways. However, the reported effects of applying ACEIs during scar formation are unclear. Hence, we explored the anti‐fibrotic effects of an ACEI and the molecular mechanisms involved in a mouse scar model. Experimental Approach After a full‐thickness skin wound operation, ACE wild‐type mice were randomly assigned to receive either ramipril, losartan or hydralazine p.o. ACE knockout (KO) mice and negative control mice only received vehicle (water). Wound/scar widths during wound healing and histological examinations were recorded at the final day. The ability of ACEI to reduce fibrosis via TGF‐β1 signalling was evaluated in vitro and in vivo. Key Results ACE KO mice and mice that received ramipril showed narrower wound/scar width, reduced fibroblast proliferation, decreased collagen and TGF‐β1 expression. ACEI attenuated the phosphorylation of small mothers against decapentaplegic (Smad2/3) and TGF‐β‐activated kinase 1 (TAK1) both in vitro and in vivo. The expression of ACE‐related peptides varied in murine models with different drug treatments. Conclusions and Implications ACEI showed anti‐fibrotic properties in scar formation by mediating downstream peptides to suppress TGF‐β1/Smad and TGF‐β1/TAK1 pathways. These findings suggest that dual inhibition of Smad and TAK1 signalling by ACEI is a useful strategy for the development of new anti‐fibrotic agents.
AbstractList Background and Purpose Angiotensin‐converting enzyme (ACE), an important part of the renin‐angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung, liver and kidney, while an ACE inhibitor (ACEI) promotes physiological tissue repair in these organs. The mechanism is closely related to TGF‐β1 pathways. However, the reported effects of applying ACEIs during scar formation are unclear. Hence, we explored the anti‐fibrotic effects of an ACEI and the molecular mechanisms involved in a mouse scar model. Experimental Approach After a full‐thickness skin wound operation, ACE wild‐type mice were randomly assigned to receive either ramipril, losartan or hydralazine p.o. ACE knockout (KO) mice and negative control mice only received vehicle (water). Wound/scar widths during wound healing and histological examinations were recorded at the final day. The ability of ACEI to reduce fibrosis via TGF‐β1 signalling was evaluated in vitro and in vivo. Key Results ACE KO mice and mice that received ramipril showed narrower wound/scar width, reduced fibroblast proliferation, decreased collagen and TGF‐β1 expression. ACEI attenuated the phosphorylation of small mothers against decapentaplegic (Smad2/3) and TGF‐β‐activated kinase 1 (TAK1) both in vitro and in vivo. The expression of ACE‐related peptides varied in murine models with different drug treatments. Conclusions and Implications ACEI showed anti‐fibrotic properties in scar formation by mediating downstream peptides to suppress TGF‐β1/Smad and TGF‐β1/TAK1 pathways. These findings suggest that dual inhibition of Smad and TAK1 signalling by ACEI is a useful strategy for the development of new anti‐fibrotic agents.
Angiotensin-converting enzyme (ACE), an important part of the renin-angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung, liver and kidney, while an ACE inhibitor (ACEI) promotes physiological tissue repair in these organs. The mechanism is closely related to TGF-β1 pathways. However, the reported effects of applying ACEIs during scar formation are unclear. Hence, we explored the anti-fibrotic effects of an ACEI and the molecular mechanisms involved in a mouse scar model. After a full-thickness skin wound operation, ACE wild-type mice were randomly assigned to receive either ramipril, losartan or hydralazine p.o. ACE knockout (KO) mice and negative control mice only received vehicle (water). Wound/scar widths during wound healing and histological examinations were recorded at the final day. The ability of ACEI to reduce fibrosis via TGF-β1 signalling was evaluated in vitro and in vivo. ACE KO mice and mice that received ramipril showed narrower wound/scar width, reduced fibroblast proliferation, decreased collagen and TGF-β1 expression. ACEI attenuated the phosphorylation of small mothers against decapentaplegic (Smad2/3) and TGF-β-activated kinase 1 (TAK1) both in vitro and in vivo. The expression of ACE-related peptides varied in murine models with different drug treatments. ACEI showed anti-fibrotic properties in scar formation by mediating downstream peptides to suppress TGF-β1/Smad and TGF-β1/TAK1 pathways. These findings suggest that dual inhibition of Smad and TAK1 signalling by ACEI is a useful strategy for the development of new anti-fibrotic agents.
Angiotensin-converting enzyme (ACE), an important part of the renin-angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung, liver and kidney, while an ACE inhibitor (ACEI) promotes physiological tissue repair in these organs. The mechanism is closely related to TGF-β1 pathways. However, the reported effects of applying ACEIs during scar formation are unclear. Hence, we explored the anti-fibrotic effects of an ACEI and the molecular mechanisms involved in a mouse scar model.BACKGROUND AND PURPOSEAngiotensin-converting enzyme (ACE), an important part of the renin-angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung, liver and kidney, while an ACE inhibitor (ACEI) promotes physiological tissue repair in these organs. The mechanism is closely related to TGF-β1 pathways. However, the reported effects of applying ACEIs during scar formation are unclear. Hence, we explored the anti-fibrotic effects of an ACEI and the molecular mechanisms involved in a mouse scar model.After a full-thickness skin wound operation, ACE wild-type mice were randomly assigned to receive either ramipril, losartan or hydralazine p.o. ACE knockout (KO) mice and negative control mice only received vehicle (water). Wound/scar widths during wound healing and histological examinations were recorded at the final day. The ability of ACEI to reduce fibrosis via TGF-β1 signalling was evaluated in vitro and in vivo.EXPERIMENTAL APPROACHAfter a full-thickness skin wound operation, ACE wild-type mice were randomly assigned to receive either ramipril, losartan or hydralazine p.o. ACE knockout (KO) mice and negative control mice only received vehicle (water). Wound/scar widths during wound healing and histological examinations were recorded at the final day. The ability of ACEI to reduce fibrosis via TGF-β1 signalling was evaluated in vitro and in vivo.ACE KO mice and mice that received ramipril showed narrower wound/scar width, reduced fibroblast proliferation, decreased collagen and TGF-β1 expression. ACEI attenuated the phosphorylation of small mothers against decapentaplegic (Smad2/3) and TGF-β-activated kinase 1 (TAK1) both in vitro and in vivo. The expression of ACE-related peptides varied in murine models with different drug treatments.KEY RESULTSACE KO mice and mice that received ramipril showed narrower wound/scar width, reduced fibroblast proliferation, decreased collagen and TGF-β1 expression. ACEI attenuated the phosphorylation of small mothers against decapentaplegic (Smad2/3) and TGF-β-activated kinase 1 (TAK1) both in vitro and in vivo. The expression of ACE-related peptides varied in murine models with different drug treatments.ACEI showed anti-fibrotic properties in scar formation by mediating downstream peptides to suppress TGF-β1/Smad and TGF-β1/TAK1 pathways. These findings suggest that dual inhibition of Smad and TAK1 signalling by ACEI is a useful strategy for the development of new anti-fibrotic agents.CONCLUSIONS AND IMPLICATIONSACEI showed anti-fibrotic properties in scar formation by mediating downstream peptides to suppress TGF-β1/Smad and TGF-β1/TAK1 pathways. These findings suggest that dual inhibition of Smad and TAK1 signalling by ACEI is a useful strategy for the development of new anti-fibrotic agents.
Author Shi, Peng
Bernstein, Ellen A
Giani, Jorge F
Li, You
Zhao, Tuantuan V
Bernstein, Kenneth E
Tan, Wei‐Qiang
Li, Liang
Shen, Xiao Z
Xu, Ji‐Hua
Khan, Zakir
Zhang, Li‐Yun
Fang, Qing‐Qing
AuthorAffiliation 4 Department of Pathology and Laboratory Medicine Cedars‐Sinai Medical Center Los Angeles CA USA
1 Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province China
2 Department of Plastic Surgery, The Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu Zhejiang Province China
3 Department of Biomedical Sciences Cedars‐Sinai Medical Center Los Angeles CA USA
5 Department of Physiology Zhejiang University School of Medicine Hangzhou Zhejiang Province China
6 Institute of Translational Medicine Zhejiang University School of Medicine Hangzhou Zhejiang Province China
AuthorAffiliation_xml – name: 1 Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province China
– name: 2 Department of Plastic Surgery, The Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu Zhejiang Province China
– name: 6 Institute of Translational Medicine Zhejiang University School of Medicine Hangzhou Zhejiang Province China
– name: 3 Department of Biomedical Sciences Cedars‐Sinai Medical Center Los Angeles CA USA
– name: 4 Department of Pathology and Laboratory Medicine Cedars‐Sinai Medical Center Los Angeles CA USA
– name: 5 Department of Physiology Zhejiang University School of Medicine Hangzhou Zhejiang Province China
Author_xml – sequence: 1
  givenname: Wei‐Qiang
  orcidid: 0000-0003-4951-0960
  surname: Tan
  fullname: Tan, Wei‐Qiang
  email: tanweixxxx@zju.edu.cn
  organization: Cedars‐Sinai Medical Center
– sequence: 2
  givenname: Qing‐Qing
  surname: Fang
  fullname: Fang, Qing‐Qing
  organization: Zhejiang University School of Medicine
– sequence: 3
  givenname: Xiao Z
  surname: Shen
  fullname: Shen, Xiao Z
  organization: Zhejiang University School of Medicine
– sequence: 4
  givenname: Jorge F
  surname: Giani
  fullname: Giani, Jorge F
  organization: Cedars‐Sinai Medical Center
– sequence: 5
  givenname: Tuantuan V
  surname: Zhao
  fullname: Zhao, Tuantuan V
  organization: Cedars‐Sinai Medical Center
– sequence: 6
  givenname: Peng
  surname: Shi
  fullname: Shi, Peng
  organization: Zhejiang University School of Medicine
– sequence: 7
  givenname: Li‐Yun
  surname: Zhang
  fullname: Zhang, Li‐Yun
  organization: Zhejiang University School of Medicine
– sequence: 8
  givenname: Zakir
  surname: Khan
  fullname: Khan, Zakir
  organization: Cedars‐Sinai Medical Center
– sequence: 9
  givenname: You
  surname: Li
  fullname: Li, You
  organization: Cedars‐Sinai Medical Center
– sequence: 10
  givenname: Liang
  surname: Li
  fullname: Li, Liang
  organization: Cedars‐Sinai Medical Center
– sequence: 11
  givenname: Ji‐Hua
  surname: Xu
  fullname: Xu, Ji‐Hua
  organization: Zhejiang University School of Medicine
– sequence: 12
  givenname: Ellen A
  surname: Bernstein
  fullname: Bernstein, Ellen A
  organization: Cedars‐Sinai Medical Center
– sequence: 13
  givenname: Kenneth E
  surname: Bernstein
  fullname: Bernstein, Kenneth E
  email: kenneth.bernstein@cshs.org
  organization: Cedars‐Sinai Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30153328$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFuEzEYhS1URNPCggsgL9vFtHbsGXs2SGlFW0SlIjV76x-PJzGdsYM9STSsOAJX4AochENwEtwkrQoCy_K_eO__nuR3gPacdwah15Sc0HROq8X8hHIuy2doRLkospxJuodGhBCRUSrlPjqI8RMhSRT5C7TPCM0ZG8sR-j5xM-t746J1v75-096tTOitm2HjvgydwdbNbWV7H_Dah7uIIV0cNQTc-NBBb7174qkGXPv1PSmY2bKFDem2gxqDq_H08iIpP3-kB3RvV9CbGt9ZB9Fgio-mkw_0GC-gn69hiImKO6vNS_S8gTaaV7t5iG4v3k3Pr7Lrm8v355PrTHOal5koScNYyWQDBdOcj4WGMW8EB52XRVMZqYkuteamqgsJpK5yAMEIE6aSjB2it1vqYll1ptbG9QFatQi2gzAoD1b9qTg7VzO_UgVNmUImwNEOEPznpYm96mzUpm3BGb-MakzKIs9FXvJkffM06zHkoZVkON0adPAxBtMobfvNV6do2ypK1H3vKvWuNr2njeO_Nh6g__Lu6GvbmuH_RnX28Wq78Ru078Ts
CitedBy_id crossref_primary_10_1016_j_biopha_2019_109394
crossref_primary_10_1177_20595131221095348
crossref_primary_10_2147_JIR_S493828
crossref_primary_10_1111_bcpt_13458
crossref_primary_10_3389_fcvm_2020_00115
crossref_primary_10_1016_j_ejphar_2025_177445
crossref_primary_10_1016_j_lfs_2019_117174
crossref_primary_10_1039_D2BM01631A
crossref_primary_10_1007_s13346_022_01153_2
crossref_primary_10_1080_17512433_2022_2045950
crossref_primary_10_1016_j_matbio_2020_04_005
crossref_primary_10_1016_j_biopha_2020_110287
crossref_primary_10_1186_s12967_023_04554_0
crossref_primary_10_1016_j_asmr_2023_05_005
crossref_primary_10_1016_j_jid_2025_02_134
crossref_primary_10_1016_j_intimp_2020_106686
crossref_primary_10_1038_s41598_022_17686_y
crossref_primary_10_60118_001c_89993
crossref_primary_10_1007_s00266_022_02935_2
crossref_primary_10_1016_j_bcp_2023_115839
crossref_primary_10_1016_j_xjidi_2023_100231
crossref_primary_10_1111_ddg_15088
crossref_primary_10_1111_exd_14154
crossref_primary_10_1007_s11255_020_02668_8
crossref_primary_10_1007_s00266_024_04385_4
crossref_primary_10_3390_ijms231911487
crossref_primary_10_1007_s12015_021_10252_5
crossref_primary_10_1101_cshperspect_a041231
crossref_primary_10_3390_diagnostics13223398
crossref_primary_10_1111_exd_14159
crossref_primary_10_1016_j_jseint_2023_06_008
crossref_primary_10_3389_fphar_2022_968104
crossref_primary_10_1111_jcmm_14750
crossref_primary_10_1016_j_bioactmat_2024_11_028
crossref_primary_10_1038_s41598_020_57703_6
crossref_primary_10_1007_s00403_022_02509_x
crossref_primary_10_1016_j_intimp_2022_109628
crossref_primary_10_1139_cjpp_2021_0242
crossref_primary_10_1016_j_matbio_2023_05_001
crossref_primary_10_1111_ddg_15088_g
crossref_primary_10_3389_fimmu_2023_1266315
crossref_primary_10_1097_PRS_0000000000006173
crossref_primary_10_3390_ijms241814019
crossref_primary_10_3390_biomedicines11071976
Cites_doi 10.3109/08977194.2011.614236
10.1038/jid.2013.328
10.1038/hr.2011.196
10.1056/NEJM199909023411006
10.1001/archfaci.2012.223
10.1038/nrc1877
10.1111/j.1600-0625.2010.01186.x
10.1007/s00109-014-1190-x
10.1023/A:1006985329240
10.1111/bjd.13954
10.1038/sj.emboj.7600809
10.1016/j.bbadis.2009.06.004
10.1038/jid.2015.86
10.1016/j.semnephrol.2012.04.003
10.1042/CS20110086
10.1155/2011/969618
10.1111/1523-1747.ep12343658
10.1126/science.270.5244.2008
10.1097/BOR.0b013e32830e48e8
10.2106/JBJS.O.00545
10.1177/1470320318759358
10.2353/ajpath.2010.081127
10.2174/138920111798808419
10.1111/bph.12856
10.1038/jid.2009.302
10.1038/sj.jid.5700811
10.1074/jbc.M509771200
10.1016/S0092-8674(03)00432-X
10.1111/j.1524-475X.2007.00226.x
10.1007/s00403-014-1532-0
10.1016/j.jid.2017.09.030
10.1097/MJT.0b013e3181df8df5
10.1136/bmj.326.7380.88
10.1002/art.24223
10.1016/S0021-9258(17)35666-1
10.1124/pr.112.006809
10.1097/PRS.0b013e31829acf0a
10.1038/sj.jid.5700200
10.3109/08977194.2011.595714
10.1097/DSS.0000000000000496
10.1007/PL00007448
10.1111/j.0906-6705.2004.0139.x
10.1016/j.cca.2005.12.012
10.1093/nar/gkx1121
10.1038/jid.2008.90
10.1159/000452538
10.1111/j.1476-5381.2010.00872.x
10.1074/jbc.M109.007146
10.1016/j.jaad.2005.09.027
10.1038/ni.2107
10.1007/978-94-007-4719-7_9
10.1016/j.bbadis.2008.01.006
10.1517/13543770903397400
10.1111/bph.14153
10.1111/bph.13878
10.1182/blood-2008-07-166702
10.1016/j.bbrc.2009.05.081
10.1111/bph.13877
10.1007/s00059-003-2524-6
10.1111/ijd.12436
10.1038/jid.2012.443
10.2353/ajpath.2010.100314
10.1111/j.1524-475X.2008.00361.x
ContentType Journal Article
Copyright 2018 The British Pharmacological Society
2018 The British Pharmacological Society.
Copyright_xml – notice: 2018 The British Pharmacological Society
– notice: 2018 The British Pharmacological Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1111/bph.14489
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate ACEI for scar formation
EISSN 1476-5381
EndPage 4252
ExternalDocumentID PMC6193878
30153328
10_1111_bph_14489
BPH14489
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Zhejiang Provincial Science and Technology Project of China
  funderid: 2016C33134
– fundername: National Key Research Program of China
  funderid: 2016YFC1101004
– fundername: National Natural Science Foundation of China
  funderid: 81372072; 81671918
– fundername: NHLBI NIH HHS
  grantid: P01 HL129941
– fundername: NHLBI NIH HHS
  grantid: R01 HL142672
– fundername: National Key Research Program of China
  grantid: 2016YFC1101004
– fundername: Zhejiang Provincial Science and Technology Project of China
  grantid: 2016C33134
– fundername: National Natural Science Foundation of China
  grantid: 81372072; 81671918
GroupedDBID ---
.3N
.55
.GJ
05W
0R~
1OC
23N
24P
2WC
31~
33P
36B
3O-
3SF
3V.
4.4
52U
52V
53G
5GY
6J9
7RV
7X7
8-0
8-1
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
B0M
BAFTC
BAWUL
BBNVY
BENPR
BFHJK
BHBCM
BHPHI
BKEYQ
BMXJE
BPHCQ
BRXPI
BVXVI
C45
CAG
CCPQU
COF
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
ECV
EJD
EMB
EMK
EMOBN
ENC
ESX
EX3
F5P
FUBAC
FYUFA
G-S
GODZA
GX1
H.X
HCIFZ
HGLYW
HMCUK
HYE
HZ~
J5H
KBYEO
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LSO
LUTES
LW6
LYRES
M1P
M7P
MEWTI
MK0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
N9A
NAPCQ
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
PROAC
PSQYO
Q.N
Q2X
QB0
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
TUS
UKHRP
UPT
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WVDHM
WXSBR
X7M
XV2
Y6R
YHG
ZGI
ZXP
ZZTAW
~8M
~S-
AAFWJ
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
5PM
ID FETCH-LOGICAL-c4159-790f33938fa63c4427ca24f74ac596fbe8c0c9cc4ebd68a0db5aa73037eb833
ISSN 0007-1188
1476-5381
IngestDate Thu Aug 21 17:51:56 EDT 2025
Fri Jul 11 06:11:41 EDT 2025
Thu Apr 03 06:58:45 EDT 2025
Tue Jul 01 03:00:37 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Wed Jan 22 16:32:24 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License 2018 The British Pharmacological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4159-790f33938fa63c4427ca24f74ac596fbe8c0c9cc4ebd68a0db5aa73037eb833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4951-0960
OpenAccessLink https://bpspubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bph.14489
PMID 30153328
PQID 2096557594
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6193878
proquest_miscellaneous_2096557594
pubmed_primary_30153328
crossref_citationtrail_10_1111_bph_14489
crossref_primary_10_1111_bph_14489
wiley_primary_10_1111_bph_14489_BPH14489
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2018
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hoboken
PublicationTitle British journal of pharmacology
PublicationTitleAlternate Br J Pharmacol
PublicationYear 2018
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2013; 65
1996; 74
2009; 113
2015; 307
2011; 12
2012; 14
2003; 113
2011; 18
2017a; 174
1996; 106
2005; 24
2014; 134
2018; 46
2018; 175
1998; 290
2015; 173
2015; 172
2003; 326
2010; 68
2018; 138
1999; 19
2015; 135
2015; 41
1986; 261
2011; 20
2016; 40
2009; 284
2008; 20
2006; 281
2009; 19
2006; 126
2011; 29
2009; 1792
2006; 367
2011; 121
2014; 53
2014; 92
2007; 127
2006; 54
2009; 60
2008; 16
2013; 986
2016; 98
2006; 8
1999; 341
2008; 128
2006; 6
2010; 160
2012; 35
2012; 32
1995; 270
2007; 15
2008; 1782
2018; 19
2011; 2011
2017b; 174
2004; 13
2009; 385
2010; 177
2013; 133
2010; 130
2003; 28
2013; 132
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Esther CR (e_1_2_10_19_1) 1996; 74
Iannello S (e_1_2_10_27_1) 2006; 8
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Kolesnyk I (e_1_2_10_39_1) 2010; 68
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 19
  start-page: 1759
  year: 2009
  end-page: 1769
  article-title: Strategies for TGF‐beta modulation: a review of recent patents
  publication-title: Expert Opin Ther Pat
– volume: 173
  start-page: 370
  year: 2015
  end-page: 378
  article-title: Cellular and molecular mechanisms of repair in acute and chronic wound healing
  publication-title: Br J Dermatol
– volume: 35
  start-page: 393
  year: 2012
  end-page: 398
  article-title: Angiotensin II‐induced cardiomyocyte hypertrophy is TAK1‐dependent and Smad2/3‐independent
  publication-title: Hypertens Res
– volume: 18
  start-page: e202
  year: 2011
  end-page: e208
  article-title: Hepatic fibrosis and the renin‐angiotensin system
  publication-title: Am J Ther
– volume: 29
  start-page: 196
  year: 2011
  end-page: 202
  article-title: TGF‐beta signaling in fibrosis
  publication-title: Growth Factors
– volume: 8
  start-page: 60
  year: 2006
  article-title: Low‐dose enalapril in the treatment of surgical cutaneous hypertrophic scar and keloid – two case reports and literature review
  publication-title: MedGenMed
– volume: 174
  start-page: S17
  year: 2017a
  end-page: S129
  article-title: The Concise Guide To PHARMACOLOGY 2017/18: G protein‐coupled receptors
  publication-title: Br J Pharmacol
– volume: 53
  start-page: 922
  year: 2014
  end-page: 936
  article-title: Scar prevention and remodeling: a review of the medical, surgical, topical and light treatment approaches
  publication-title: Int J Dermatol
– volume: 1782
  start-page: 197
  year: 2008
  end-page: 228
  article-title: Role of transforming growth factor‐beta superfamily signaling pathways in human disease
  publication-title: Biochim Biophys Acta
– volume: 2011
  start-page: 969618
  year: 2011
  article-title: Surgical approaches to create murine models of human wound healing
  publication-title: J Biomed Biotechnol
– volume: 281
  start-page: 13209
  year: 2006
  end-page: 13216
  article-title: A novel function of angiotensin II in skin wound healing – induction of fibroblast and keratinocyte migration by angiotensin II via heparin‐binding epidermal growth factor (EGF)‐like growth factor‐mediated egf receptor transactivation
  publication-title: J Biol Chem
– volume: 14
  start-page: 162
  year: 2012
  end-page: 174
  article-title: Scar revision review
  publication-title: Arch Facial Plast Surg
– volume: 20
  start-page: 119
  year: 2011
  end-page: 124
  article-title: Inhibiting scar formation and by adenovirus‐mediated mutant Smad4: a preliminary report
  publication-title: Exp Dermatol
– volume: 113
  start-page: 5266
  year: 2009
  end-page: 5276
  article-title: Wound healing defect of Vav3−/− mice due to impaired {beta}2‐integrin‐dependent macrophage phagocytosis of apoptotic neutrophils
  publication-title: Blood
– volume: 6
  start-page: 392
  year: 2006
  end-page: 401
  article-title: Fibroblasts in cancer
  publication-title: Nat Rev Cancer
– volume: 24
  start-page: 3400
  year: 2005
  end-page: 3410
  article-title: Wound‐healing defect of CD18(−/−) mice due to a decrease in TGF‐beta1 and myofibroblast differentiation
  publication-title: EMBO J
– volume: 40
  start-page: 207
  year: 2016
  end-page: 218
  article-title: Growth differentiation factor‐9 promotes fibroblast proliferation and migration in keloids through the Smad2/3 pathway
  publication-title: Cell Physiol Biochem
– volume: 121
  start-page: 233
  year: 2011
  end-page: 251
  article-title: TGF‐beta/TGF‐beta receptor system and its role in physiological and pathological conditions
  publication-title: Clin Sci (London, England: 1979)
– volume: 127
  start-page: 1009
  year: 2007
  end-page: 1017
  article-title: The inflammation‐fibrosis link? A Jekyll and Hyde role for blood cells during wound repair
  publication-title: J Invest Dermatol
– volume: 98
  start-page: 48
  year: 2016
  end-page: 55
  article-title: Angiotensin‐(1‐7) attenuates skeletal muscle fibrosis and stiffening in a mouse model of extremity sarcoma radiation therapy
  publication-title: J Bone Joint Surg Am
– volume: 986
  start-page: 171
  year: 2013
  end-page: 187
  article-title: TGF beta signaling and its role in glioma pathogenesis
  publication-title: Adv Exp Med Biol
– volume: 19
  year: 2018
  article-title: Connective tissue growth factor expression after angiotensin II exposure is dependent on transforming growth factor‐β signaling via the canonical Smad‐dependent pathway in hypertensive induced myocardial fibrosis
  publication-title: J Renin Angiotensin Aldosterone Syst
– volume: 172
  start-page: 3461
  year: 2015
  end-page: 3471
  article-title: Experimental design and analysis and their reporting: new guidance for publication in BJP
  publication-title: Br J Pharmacol
– volume: 367
  start-page: 170
  year: 2006
  end-page: 174
  article-title: Lisinopril ameliorates paraquat‐induced lung fibrosis
  publication-title: Clin Chim Acta
– volume: 175
  start-page: 987
  year: 2018
  end-page: 993
  article-title: Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers
  publication-title: Br J Pharmacol
– volume: 46
  start-page: D1091
  issue: D1
  year: 2018
  end-page: D1106
  article-title: The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY
  publication-title: Nucleic Acids Res
– volume: 60
  start-page: 234
  year: 2009
  end-page: 241
  article-title: Requirement of transforming growth factor beta‐activated kinase 1 for transforming growth factor beta‐induced alpha‐smooth muscle actin expression and extracellular matrix contraction in fibroblasts
  publication-title: Arthritis Rheum
– volume: 19
  start-page: 277
  year: 1999
  end-page: 288
  article-title: Characterization of AT2 receptor expression in NIH 3T3 fibroblasts
  publication-title: Cell Mol Neurobiol
– volume: 132
  start-page: 361e
  year: 2013
  end-page: 371e
  article-title: Angiotensin‐converting enzyme inhibitor enalapril reduces formation of hypertrophic scars in a rabbit ear wounding model
  publication-title: Plastic Reconstr Surg
– volume: 28
  start-page: 744
  year: 2003
  end-page: 753
  article-title: Effects of ACE inhibition versus non‐ACE inhibitor antihypertensive treatment on myocardial fibrosis in patients with arterial hypertension. Retrospective analysis of 120 patients with left ventricular endomyocardial biopsies
  publication-title: Herz
– volume: 174
  start-page: S272
  year: 2017b
  end-page: S359
  article-title: The Concise Guide to PHARMACOLOGY 2017/18: Enzymes
  publication-title: Br J Pharmacol
– volume: 326
  start-page: 88
  year: 2003
  end-page: 92
  article-title: Skin scarring
  publication-title: Bmj Clin Res
– volume: 177
  start-page: 2300
  year: 2010
  end-page: 2309
  article-title: Substance P modulates colitis‐associated fibrosis
  publication-title: Am J Pathol
– volume: 177
  start-page: 1113
  year: 2010
  end-page: 1121
  article-title: Angiotensin‐converting enzyme N‐terminal inactivation alleviates bleomycin‐induced lung injury
  publication-title: Am J Pathol
– volume: 54
  start-page: 251
  year: 2006
  end-page: 257
  article-title: Cutaneous tissue angiotensin‐converting enzyme may participate in pathologic scar formation in human skin
  publication-title: J Am Acad Dermatol
– volume: 41
  start-page: S265
  issue: Suppl. 10
  year: 2015
  end-page: S275
  article-title: Best reconstructive techniques: improving the final scar
  publication-title: Dermatol Surg
– volume: 130
  start-page: 706
  year: 2010
  end-page: 715
  article-title: IL‐18 downregulates collagen production in human dermal fibroblasts via the ERK pathway
  publication-title: J Invest Dermatol
– volume: 15
  start-page: S54
  issue: Suppl. 1
  year: 2007
  end-page: S60
  article-title: TGF‐beta‐induced fibrosis and SMAD signaling: oligo decoys as natural therapeutics for inhibition of tissue fibrosis and scarring
  publication-title: Wound Repair Regen
– volume: 20
  start-page: 720
  year: 2008
  end-page: 728
  article-title: Antitransforming growth factor‐beta therapy in fibrosis: recent progress and implications for systemic sclerosis
  publication-title: Curr Opin Rheumatol
– volume: 134
  start-page: 526
  year: 2014
  end-page: 537
  article-title: TSG‐6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full‐thickness skin wounds
  publication-title: J Invest Dermatol
– volume: 12
  start-page: 2099
  year: 2011
  end-page: 2107
  article-title: Biology of transforming growth factor‐β signaling
  publication-title: Curr Pharm Biotechnol
– volume: 106
  start-page: 476
  year: 1996
  end-page: 481
  article-title: Collagenase production is lower in post‐burn hypertrophic scar fibroblasts than in normal fibroblasts and is reduced by insulin‐like growth factor‐1
  publication-title: J Investig Dermatol
– volume: 68
  start-page: 15
  year: 2010
  end-page: 23
  article-title: Effects of angiotensin‐converting enzyme inhibitors and angiotensin II receptor blockers in patients with chronic kidney disease
  publication-title: Neth J Med
– volume: 133
  start-page: 1080
  year: 2013
  end-page: 1087
  article-title: A dualAP‐1 and SMAD decoy ODN suppresses tissue fibrosis and scarring in mice
  publication-title: J Invest Dermatol
– volume: 261
  start-page: 4337
  year: 1986
  end-page: 4345
  article-title: Transforming growth factor‐beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix
  publication-title: J Biol Chem
– volume: 290
  start-page: S1
  year: 1998
  end-page: S11
  article-title: Animal models for wound repair
  publication-title: Arch Dermatol Res
– volume: 13
  start-page: 148
  year: 2004
  end-page: 154
  article-title: Human skin: source of and target organ for angiotensin II
  publication-title: Exp Dermatol
– volume: 12
  start-page: 1078
  year: 2011
  end-page: U1083
  article-title: The carboxypeptidase ACE shapes the MHC class I peptide repertoire
  publication-title: Nat Immunol
– volume: 270
  start-page: 2008
  year: 1995
  end-page: 2011
  article-title: Identification of a member of the MAPKKK family as a potential mediator of TGF‐beta signal transduction
  publication-title: Science (New York, NY)
– volume: 1792
  start-page: 746
  year: 2009
  end-page: 756
  article-title: TGF‐beta and fibrosis in different organs – molecular pathway imprints
  publication-title: Biochim Biophys Acta
– volume: 65
  start-page: 1
  year: 2013
  end-page: 46
  article-title: A modern understanding of the traditional and nontraditional biological functions of Angiotensin‐converting enzyme
  publication-title: Pharmacol Rev
– volume: 341
  start-page: 738
  year: 1999
  end-page: 746
  article-title: Cutaneous wound healing
  publication-title: N Engl J Med
– volume: 138
  start-page: 434
  year: 2018
  end-page: 443
  article-title: Topical reformulation of valsartan for treatment of chronic diabetic wounds
  publication-title: J Invest Dermatol
– volume: 126
  start-page: 1168
  year: 2006
  end-page: 1176
  article-title: Upregulation of TGF‐beta1 expression may be necessary but is not sufficient for excessive scarring
  publication-title: J Invest Dermatol
– volume: 74
  start-page: 953
  year: 1996
  end-page: 965
  article-title: Mice lacking angiotensin‐converting enzyme have low blood pressure, renal pathology, and reduced male fertility
  publication-title: Lab Invest
– volume: 16
  start-page: 208
  year: 2008
  end-page: 217
  article-title: Polydeoxyribonucleotide stimulates angiogenesis and wound healing in the genetically diabetic mouse
  publication-title: Wound Repair Regen
– volume: 307
  start-page: 135
  year: 2015
  end-page: 142
  article-title: Attenuation of fibrosis with selective inhibition of c‐Abl by siRNA in systemic sclerosis dermal fibroblasts
  publication-title: Arch Dermatol Res
– volume: 29
  start-page: 163
  year: 2011
  end-page: 173
  article-title: Inhibitory machinery for the TGF‐beta family signaling pathway
  publication-title: Growth Factors
– volume: 160
  start-page: 1577
  year: 2010
  end-page: 1579
  article-title: Animal research: reporting experiments: the ARRIVE guidelines
  publication-title: Br J Pharmacol
– volume: 385
  start-page: 418
  year: 2009
  end-page: 423
  article-title: Angiotensin II induces type I collagen gene expression in human dermal fibroblasts through an AP‐1/TGF‐beta 1‐dependent pathway
  publication-title: Biochem Biophys Res Commun
– volume: 284
  start-page: 22285
  year: 2009
  end-page: 22296
  article-title: Transforming growth factor‐β (TGF‐β1) activates TAK1 via TAB1‐mediated autophosphorylation, independent of TGF‐β receptor kinase activity in mesangial cells
  publication-title: J Biol Chem
– volume: 32
  start-page: 244
  year: 2012
  end-page: 252
  article-title: TGF‐β signaling via TAK1 pathway: role in kidney fibrosis
  publication-title: Semin Nephrol
– volume: 92
  start-page: 913
  year: 2014
  end-page: 924
  article-title: Molecular and cellular basis of scleroderma
  publication-title: J Mol Med
– volume: 128
  start-page: 2518
  year: 2008
  end-page: 2525
  article-title: Hic‐5 promotes the hypertrophic scar myofibroblast phenotype by regulating the TGF‐beta1 autocrine loop
  publication-title: J Investig Dermatol
– volume: 135
  start-page: 1893
  year: 2015
  end-page: 1902
  article-title: Controlling the balance of fibroblast proliferation and differentiation: impact of Thy‐1
  publication-title: J Invest Dermatol
– volume: 113
  start-page: 685
  year: 2003
  end-page: 700
  article-title: Mechanisms of TGF‐beta signaling from cell membrane to the nucleus
  publication-title: Cell
– ident: e_1_2_10_30_1
  doi: 10.3109/08977194.2011.614236
– ident: e_1_2_10_47_1
  doi: 10.1038/jid.2013.328
– ident: e_1_2_10_61_1
  doi: 10.1038/hr.2011.196
– ident: e_1_2_10_54_1
  doi: 10.1056/NEJM199909023411006
– ident: e_1_2_10_59_1
  doi: 10.1001/archfaci.2012.223
– ident: e_1_2_10_32_1
  doi: 10.1038/nrc1877
– ident: e_1_2_10_57_1
  doi: 10.1111/j.1600-0625.2010.01186.x
– ident: e_1_2_10_18_1
  doi: 10.1007/s00109-014-1190-x
– ident: e_1_2_10_26_1
  doi: 10.1023/A:1006985329240
– ident: e_1_2_10_42_1
  doi: 10.1111/bjd.13954
– ident: e_1_2_10_45_1
  doi: 10.1038/sj.emboj.7600809
– ident: e_1_2_10_46_1
  doi: 10.1016/j.bbadis.2009.06.004
– ident: e_1_2_10_49_1
  doi: 10.1038/jid.2015.86
– ident: e_1_2_10_12_1
  doi: 10.1016/j.semnephrol.2012.04.003
– ident: e_1_2_10_48_1
  doi: 10.1042/CS20110086
– volume: 74
  start-page: 953
  year: 1996
  ident: e_1_2_10_19_1
  article-title: Mice lacking angiotensin‐converting enzyme have low blood pressure, renal pathology, and reduced male fertility
  publication-title: Lab Invest
– ident: e_1_2_10_64_1
  doi: 10.1155/2011/969618
– ident: e_1_2_10_21_1
  doi: 10.1111/1523-1747.ep12343658
– volume: 8
  start-page: 60
  year: 2006
  ident: e_1_2_10_27_1
  article-title: Low‐dose enalapril in the treatment of surgical cutaneous hypertrophic scar and keloid – two case reports and literature review
  publication-title: MedGenMed
– ident: e_1_2_10_66_1
  doi: 10.1126/science.270.5244.2008
– ident: e_1_2_10_60_1
  doi: 10.1097/BOR.0b013e32830e48e8
– ident: e_1_2_10_62_1
  doi: 10.2106/JBJS.O.00545
– ident: e_1_2_10_63_1
  doi: 10.1177/1470320318759358
– ident: e_1_2_10_41_1
  doi: 10.2353/ajpath.2010.081127
– ident: e_1_2_10_29_1
  doi: 10.2174/138920111798808419
– ident: e_1_2_10_14_1
  doi: 10.1111/bph.12856
– ident: e_1_2_10_37_1
  doi: 10.1038/jid.2009.302
– ident: e_1_2_10_56_1
  doi: 10.1038/sj.jid.5700811
– ident: e_1_2_10_65_1
  doi: 10.1074/jbc.M509771200
– ident: e_1_2_10_52_1
  doi: 10.1016/S0092-8674(03)00432-X
– ident: e_1_2_10_15_1
  doi: 10.1111/j.1524-475X.2007.00226.x
– ident: e_1_2_10_34_1
  doi: 10.1007/s00403-014-1532-0
– ident: e_1_2_10_2_1
  doi: 10.1016/j.jid.2017.09.030
– ident: e_1_2_10_22_1
  doi: 10.1097/MJT.0b013e3181df8df5
– ident: e_1_2_10_6_1
  doi: 10.1136/bmj.326.7380.88
– ident: e_1_2_10_51_1
  doi: 10.1002/art.24223
– ident: e_1_2_10_28_1
  doi: 10.1016/S0021-9258(17)35666-1
– ident: e_1_2_10_7_1
  doi: 10.1124/pr.112.006809
– ident: e_1_2_10_24_1
  doi: 10.1097/PRS.0b013e31829acf0a
– ident: e_1_2_10_11_1
  doi: 10.1038/sj.jid.5700200
– ident: e_1_2_10_8_1
  doi: 10.3109/08977194.2011.595714
– ident: e_1_2_10_5_1
  doi: 10.1097/DSS.0000000000000496
– ident: e_1_2_10_17_1
  doi: 10.1007/PL00007448
– ident: e_1_2_10_55_1
  doi: 10.1111/j.0906-6705.2004.0139.x
– ident: e_1_2_10_43_1
  doi: 10.1016/j.cca.2005.12.012
– ident: e_1_2_10_25_1
  doi: 10.1093/nar/gkx1121
– ident: e_1_2_10_16_1
  doi: 10.1038/jid.2008.90
– ident: e_1_2_10_31_1
  doi: 10.1159/000452538
– ident: e_1_2_10_36_1
  doi: 10.1111/j.1476-5381.2010.00872.x
– ident: e_1_2_10_38_1
  doi: 10.1074/jbc.M109.007146
– ident: e_1_2_10_44_1
  doi: 10.1016/j.jaad.2005.09.027
– ident: e_1_2_10_50_1
  doi: 10.1038/ni.2107
– ident: e_1_2_10_33_1
  doi: 10.1007/978-94-007-4719-7_9
– ident: e_1_2_10_23_1
  doi: 10.1016/j.bbadis.2008.01.006
– ident: e_1_2_10_9_1
  doi: 10.1517/13543770903397400
– ident: e_1_2_10_13_1
  doi: 10.1111/bph.14153
– ident: e_1_2_10_3_1
  doi: 10.1111/bph.13878
– ident: e_1_2_10_53_1
  doi: 10.1182/blood-2008-07-166702
– ident: e_1_2_10_58_1
  doi: 10.1016/j.bbrc.2009.05.081
– ident: e_1_2_10_4_1
  doi: 10.1111/bph.13877
– ident: e_1_2_10_10_1
  doi: 10.1007/s00059-003-2524-6
– ident: e_1_2_10_35_1
  doi: 10.1111/ijd.12436
– ident: e_1_2_10_67_1
  doi: 10.1038/jid.2012.443
– ident: e_1_2_10_40_1
  doi: 10.2353/ajpath.2010.100314
– ident: e_1_2_10_20_1
  doi: 10.1111/j.1524-475X.2008.00361.x
– volume: 68
  start-page: 15
  year: 2010
  ident: e_1_2_10_39_1
  article-title: Effects of angiotensin‐converting enzyme inhibitors and angiotensin II receptor blockers in patients with chronic kidney disease
  publication-title: Neth J Med
SSID ssj0014775
Score 2.4732249
Snippet Background and Purpose Angiotensin‐converting enzyme (ACE), an important part of the renin‐angiotensin system, is implicated in stimulating the fibrotic...
Angiotensin-converting enzyme (ACE), an important part of the renin-angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4239
SubjectTerms Angiotensin-Converting Enzyme Inhibitors - pharmacology
Animals
Disease Models, Animal
Male
MAP Kinase Kinase Kinases - antagonists & inhibitors
MAP Kinase Kinase Kinases - deficiency
MAP Kinase Kinase Kinases - metabolism
Mice
Mice, Knockout
Research Paper
Research Papers
Signal Transduction - drug effects
Smad Proteins - antagonists & inhibitors
Smad Proteins - metabolism
Title Angiotensin‐converting enzyme inhibitor works as a scar formation inhibitor by down‐regulating Smad and TGF‐β‐activated kinase 1 (TAK1) pathways in mice
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.14489
https://www.ncbi.nlm.nih.gov/pubmed/30153328
https://www.proquest.com/docview/2096557594
https://pubmed.ncbi.nlm.nih.gov/PMC6193878
Volume 175
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9sIL4k65ySA2FXWemnvy2I510xij0zLRt8h2nDWCplO7grp_wis_gR_Cb-L40qTdChpIVRQ5rmXp-3w59jnfQeiNxyM_jTybwGgAAwVMZsJSLyUpcMFmYSosKuOdPxz5-6fuQd_r12o_FryWphdsm1-ujCv5H1ShDHCVUbL_gGzZKBTAO-ALT0AYnjfCuF2c5SPlgl4Q5T4-Vk7MoricDaUYyCBnMGDHKh_MRGaUoc0Jp-MqYnGhDmxDU7DIyVgnp1dC3UOqhFyb8V6XbOzsbnRsIuMgvlK5Tf2cF7ACNi25R43b7y15viDzG3-jM-VjOzRedVflkxa0Ks4r3ezyZD_WJ7KfRE6OgbpnJcHMwfYx9Iwc59WHExNf0s_pqLpn2ct1sqrmgTzzN_7L5nTDCk2YXzUhu4FPYFLWRWJF2XwW1wlYDF11rLOZlKXG4V9WC3Y-kFfcOpPRsiL30ceke3p4mMS7_fgWWrfBFIG5dL3dedfplndVbqDknMteGf0q6S9WNr2867lmylz3yF20lNRWJ76L7hgbBbc14e6hmijuo82eBmu2heMqZm-yhTdxbwHGB-j7alZizUpcMg4rVmIKPyxZiUtWLtRhM3yFlViyEgMrsWTlr58VI7FmJLZwQ_LxLZ6zEdrDko0P0Ul3N97ZJyYBCOGwr4xIELUyx4mcMKO-w13XDji13SxwKfciP2Mi5C0ece4KlvohbaXMoxSWLCcQLHScR2itGBXiCcKUZa5tp1ngBS2AKQutgNk08jLPFdwTaR015vAk3GjjyxQtX5K5jQxIJgrJOnpdVj3XgjCrKr2aY5zAdC3v4GghRtNJYku1JZkU162jxxrzshlYa8H4ssM6CpbYUFaQUvDLX4p8oCThfbDDwgD-2VC8-XPPkk5vX708vUEXn6Hb1Zh8jtYuxlPxAvbgF-ylGQS_AZAr46o
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Angiotensin-converting+enzyme+inhibitor+works+as+a+scar+formation+inhibitor+by+down-regulating+Smad+and+TGF-%CE%B2-activated+kinase+1+%28TAK1%29+pathways+in+mice&rft.jtitle=British+journal+of+pharmacology&rft.au=Tan%2C+Wei-Qiang&rft.au=Fang%2C+Qing-Qing&rft.au=Shen%2C+Xiao+Z&rft.au=Giani%2C+Jorge+F&rft.date=2018-11-01&rft.issn=1476-5381&rft.eissn=1476-5381&rft.volume=175&rft.issue=22&rft.spage=4239&rft_id=info:doi/10.1111%2Fbph.14489&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon