A Principled Approach to Feature Selection in Models of Sentence Processing
Among theories of human language comprehension, cue‐based memory retrieval has proven to be a useful framework for understanding when and how processing difficulty arises in the resolution of long‐distance dependencies. Most previous work in this area has assumed that very general retrieval cues lik...
Saved in:
Published in | Cognitive science Vol. 44; no. 12; pp. e12918 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley
01.12.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Among theories of human language comprehension, cue‐based memory retrieval has proven to be a useful framework for understanding when and how processing difficulty arises in the resolution of long‐distance dependencies. Most previous work in this area has assumed that very general retrieval cues like [+subject] or [+singular] do the work of identifying (and sometimes misidentifying) a retrieval target in order to establish a dependency between words. However, recent work suggests that general, handpicked retrieval cues like these may not be enough to explain illusions of plausibility (Cunnings & Sturt, 2018), which can arise in sentences like The letter next to the porcelain plate shattered. Capturing such retrieval interference effects requires lexically specific features and retrieval cues, but handpicking the features is hard to do in a principled way and greatly increases modeler degrees of freedom. To remedy this, we use well‐established word embedding methods for creating distributed lexical feature representations that encode information relevant for retrieval using distributed retrieval cue vectors. We show that the similarity between the feature and cue vectors (a measure of plausibility) predicts total reading times in Cunnings and Sturt’s eye‐tracking data. The features can easily be plugged into existing parsing models (including cue‐based retrieval and self‐organized parsing), putting very different models on more equal footing and facilitating future quantitative comparisons. |
---|---|
AbstractList | Among theories of human language comprehension, cue‐based memory retrieval has proven to be a useful framework for understanding when and how processing difficulty arises in the resolution of long‐distance dependencies. Most previous work in this area has assumed that very general retrieval cues like [+subject] or [+singular] do the work of identifying (and sometimes misidentifying) a retrieval target in order to establish a dependency between words. However, recent work suggests that general, handpicked retrieval cues like these may not be enough to explain illusions of plausibility (Cunnings & Sturt, 2018), which can arise in sentences like
The letter next to the porcelain plate shattered
. Capturing such retrieval interference effects requires lexically specific features and retrieval cues, but handpicking the features is hard to do in a principled way and greatly increases modeler degrees of freedom. To remedy this, we use well‐established word embedding methods for creating distributed lexical feature representations that encode information relevant for retrieval using distributed retrieval cue vectors. We show that the similarity between the feature and cue vectors (a measure of plausibility) predicts total reading times in Cunnings and Sturt’s eye‐tracking data. The features can easily be plugged into existing parsing models (including cue‐based retrieval and self‐organized parsing), putting very different models on more equal footing and facilitating future quantitative comparisons. Among theories of human language comprehension, cue-based memory retrieval has proven to be a useful framework for understanding when and how processing difficulty arises in the resolution of long-distance dependencies. Most previous work in this area has assumed that very general retrieval cues like [+subject] or [+singular] do the work of identifying (and sometimes misidentifying) a retrieval target in order to establish a dependency between words. However, recent work suggests that general, handpicked retrieval cues like these may not be enough to explain illusions of plausibility (Cunnings & Sturt, 2018), which can arise in sentences like The letter next to the porcelain plate shattered. Capturing such retrieval interference effects requires lexically specific features and retrieval cues, but handpicking the features is hard to do in a principled way and greatly increases modeler degrees of freedom. To remedy this, we use well-established word embedding methods for creating distributed lexical feature representations that encode information relevant for retrieval using distributed retrieval cue vectors. We show that the similarity between the feature and cue vectors (a measure of plausibility) predicts total reading times in Cunnings and Sturt's eye-tracking data. The features can easily be plugged into existing parsing models (including cue-based retrieval and self-organized parsing), putting very different models on more equal footing and facilitating future quantitative comparisons. Among theories of human language comprehension, cue-based memory retrieval has proven to be a useful framework for understanding when and how processing difficulty arises in the resolution of long-distance dependencies. Most previous work in this area has assumed that very general retrieval cues like [+subject] or [+singular] do the work of identifying (and sometimes misidentifying) a retrieval target in order to establish a dependency between words. However, recent work suggests that general, handpicked retrieval cues like these may not be enough to explain illusions of plausibility (Cunnings & Sturt, 2018), which can arise in sentences like The letter next to the porcelain plate shattered. Capturing such retrieval interference effects requires lexically specific features and retrieval cues, but handpicking the features is hard to do in a principled way and greatly increases modeler degrees of freedom. To remedy this, we use well-established word embedding methods for creating distributed lexical feature representations that encode information relevant for retrieval using distributed retrieval cue vectors. We show that the similarity between the feature and cue vectors (a measure of plausibility) predicts total reading times in Cunnings and Sturt's eye-tracking data. The features can easily be plugged into existing parsing models (including cue-based retrieval and self-organized parsing), putting very different models on more equal footing and facilitating future quantitative comparisons.Among theories of human language comprehension, cue-based memory retrieval has proven to be a useful framework for understanding when and how processing difficulty arises in the resolution of long-distance dependencies. Most previous work in this area has assumed that very general retrieval cues like [+subject] or [+singular] do the work of identifying (and sometimes misidentifying) a retrieval target in order to establish a dependency between words. However, recent work suggests that general, handpicked retrieval cues like these may not be enough to explain illusions of plausibility (Cunnings & Sturt, 2018), which can arise in sentences like The letter next to the porcelain plate shattered. Capturing such retrieval interference effects requires lexically specific features and retrieval cues, but handpicking the features is hard to do in a principled way and greatly increases modeler degrees of freedom. To remedy this, we use well-established word embedding methods for creating distributed lexical feature representations that encode information relevant for retrieval using distributed retrieval cue vectors. We show that the similarity between the feature and cue vectors (a measure of plausibility) predicts total reading times in Cunnings and Sturt's eye-tracking data. The features can easily be plugged into existing parsing models (including cue-based retrieval and self-organized parsing), putting very different models on more equal footing and facilitating future quantitative comparisons. |
Author | Smith, Garrett Vasishth, Shravan |
Author_xml | – sequence: 1 givenname: Garrett surname: Smith fullname: Smith, Garrett email: gasmith@uni-potsdam.de organization: University of Potsdam – sequence: 2 givenname: Shravan surname: Vasishth fullname: Vasishth, Shravan organization: University of Potsdam |
BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1278539$$DView record in ERIC https://www.ncbi.nlm.nih.gov/pubmed/33306205$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1r3DAQxUVJaDZpL70nGHoJAacayZat47Lkq01JIe1ZyNpRouCVtpJNyX9fuU56CCFzGZj5vccwb5_s-OCRkE9ATyHXFxPu0ikwCe07soC6hlI0VO6QBeWiKikDvkf2U3qglArB5XuyxzmngtF6Qb4tix_ReeO2Pa6L5XYbgzb3xRCKc9TDGLG4xR7N4IIvnC--hzX2qQg2j_2A3mCWB4MpOX_3gexa3Sf8-NQPyK_zs5-ry_L65uJqtbwuTQV1W3Z1B6CZbBopWGe5la3mUnAtKlY3jHeWGdlipwF5ZqvOmsqazliN0oAGfkCOZ9987O8R06A2Lhnse-0xjEmxqqGUV42UGf38An0IY_T5uokCyRohJuroiRq7Da7VNrqNjo_q-U0ZOJwBjM78X599Bda0NZ8M6Lw3MaQU0SrjBj09bYja9QqompJSU1LqX1JZcvJC8mz7Kgwz_Mf1-PgGqVY3F7ez5i_BdqEp |
CitedBy_id | crossref_primary_10_1016_j_cognition_2021_104943 crossref_primary_10_1111_cogs_13020 crossref_primary_10_1111_cogs_13086 crossref_primary_10_1080_23273798_2023_2235033 crossref_primary_10_3389_fpsyg_2021_657705 crossref_primary_10_1080_23273798_2022_2159989 crossref_primary_10_2166_hydro_2024_494 crossref_primary_10_1017_S0142716423000498 crossref_primary_10_1016_j_jml_2023_104445 crossref_primary_10_1016_j_jml_2024_104599 |
Cites_doi | 10.1016/j.jml.2019.104038 10.1016/S0010-0277(00)00063-9 10.1016/j.jml.2006.03.003 10.3758/BF03193020 10.18653/v1/W18-0103 10.1037/0278-7393.27.6.1411 10.1037/0033-295X.112.3.531 10.1080/016909697386880 10.1109/IALP.2014.6973490 10.1080/01690965.2010.492228 10.3115/v1/W14-1608 10.1007/s11222-016-9696-4 10.1016/B978-008043642-5/50029-2 10.1016/j.tics.2019.09.003 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 10.1016/j.cognition.2008.07.008 10.20982/tqmp.12.3.p175 10.1162/153244303322533223 10.18653/v1/W16-1622 10.16910/jemr.2.1.1 10.1016/j.jml.2017.08.004 10.3758/s13423-019-01620-x 10.1006/cogp.2001.0753 10.3389/fpsyg.2014.01237 10.3115/1073336.1073357 10.1207/s15516709cog0000_25 10.3758/s13421-018-0808-6 10.1016/j.jml.2018.05.001 10.1162/tacl_a_00134 10.1016/j.jml.2019.104063 10.1037/0278-7393.30.2.431 10.1037/0033-295X.107.2.358 10.1016/j.jml.2017.01.004 10.18637/jss.v080.i01 10.1080/09540098908915642 10.1007/BF02145044 10.1016/j.jml.2004.01.001 10.1016/j.jml.2011.05.002 10.3115/1620754.1620758 10.18653/v1/E17-1065 10.1037/met0000275 10.1007/s42113-019-00029-y 10.1111/cogs.12800 10.1111/j.2164-0947.1962.tb01433.x 10.1037/0278-7393.19.3.528 10.18637/jss.v076.i01 10.3115/991886.991938 10.1007/s11571-009-9094-0 10.1016/j.jml.2013.04.003 10.3115/1620754.1620851 10.1006/jmps.1994.1002 10.1006/jmla.1997.2543 10.1037/xlm0000390 10.3765/bls.v35i1.3594 10.1515/lingvan-2016-0105 10.1162/coli.2007.33.2.161 10.1016/j.jml.2006.03.007 10.32614/RJ-2018-017 10.1111/cogs.12589 10.1007/s10579-016-9357-4 10.1037/0033-295X.104.2.211 10.1016/j.jml.2012.11.001 10.3115/v1/P14-2050 10.1007/s42113-019-00038-x 10.3115/v1/D14-1162 10.1006/jmla.1994.1014 10.1016/j.cogpsych.2019.01.001 10.18653/v1/K18-2016 10.1016/j.cognition.2007.05.006 10.1162/COLI_a_00237 10.1111/cogs.12591 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS). 2020 The Authors. Cognitive Science published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS). 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS). – notice: 2020 The Authors. Cognitive Science published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS). – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN NPM 7TK AHOVV 7X8 |
DOI | 10.1111/cogs.12918 |
DatabaseName | Wiley Online Library Open Access CrossRef ERIC ERIC (Ovid) ERIC ERIC ERIC (Legacy Platform) ERIC( SilverPlatter ) ERIC ERIC PlusText (Legacy Platform) Education Resources Information Center (ERIC) ERIC PubMed Neurosciences Abstracts Education Research Index MEDLINE - Academic |
DatabaseTitle | CrossRef ERIC PubMed Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Neurosciences Abstracts MEDLINE - Academic ERIC |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: ERI name: ERIC url: https://eric.ed.gov/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Languages & Literatures Psychology |
EISSN | 1551-6709 |
ERIC | EJ1278539 |
EndPage | n/a |
ExternalDocumentID | 33306205 EJ1278539 10_1111_cogs_12918 COGS12918 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Universität Potsdam |
GroupedDBID | --- --K --Z -DZ -W8 -~X .3N .DC .GA .GO .Y3 05W 0R~ 10A 1B1 1OC 1RT 1~5 24P 29F 31~ 33P 3EH 3R3 3WU 4.4 4G. 50Y 50Z 51W 51Y 52M 52O 52Q 52S 52T 52U 52W 53G 5GY 5HH 5LA 5VS 66C 6J9 6TJ 7-5 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 9M8 A04 AABNI AACTN AAEDT AAESR AAHHS AAHQN AAHSB AALRI AAMNL AAONW AAOUF AAQFI AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIVO ABLJU ABMAC ABPVW ABSOO ABWVN ABZLS ACAHQ ACBKW ACCFJ ACCZN ACFBH ACGFO ACGFS ACHQT ACIUM ACNCT ACPOU ACPRK ACRPL ACSCC ACXQS ADBBV ADEMA ADEOM ADIYS ADIZJ ADJOM ADKYN ADMGS ADMHG ADMUD ADNMO ADVLN ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKFF AFPWT AFWVQ AFYRF AHBTC AHHHB AIAGR AIFKG AITUG AIURR AIWBW AJBDE AJWEG ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASTYK AZBYB AZVAB BAFTC BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BY8 C1A CAG COF CS3 D-C D-D DCZOG DPXWK DR2 DRFUL DRSSH DU5 EBD EBS EDJ EJD EMOBN F00 F01 F5P FDB FEDTE FGOYB FIRID FRP G-2 G-S G.N G50 GODZA HF~ HGLYW HHY HLZ HMQ HMW HVGLF HZ~ H~9 IHE IX1 J0M LATKE LC2 LC4 LEEKS LG9 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2V M3V M41 MEWTI MK4 MRFUL MRSSH MSFUL MSSSH MS~ MVM MXFUL MXSSH N04 N06 N9A NF~ NQ- O66 O9- OIG OK1 OVD P2P P2W P2Y P4C PQQKQ Q.N Q11 QB0 QRW R.K R2- RIG ROL RPZ RWI RWL RX1 RXW SBC SEW SNS SPS SSZ SUPJJ SV3 TAE TAF TEORI TN5 TWZ U5U UB1 UQL VAE W8V W99 WBKPD WH7 WHDPE WHG WIH WII WIN WOHZO WQZ WRC WSUWO WUQ WXSBR XG1 XJT XPP XV2 YYP ZCG ZMT ZZTAW ~IA ~WP AAFWJ AAYWO AAYXX ACVFH ADCNI ADXHL AETEA AEUPX AEYWJ AFPUW AGHNM AGQPQ AIGII CITATION 7SW AAMMB AEFGJ AGXDD AIDQK AIDYY BJH BNH BNI BNJ BNO ERI PET REK WWN NPM PKN 7TK AHOVV 7X8 |
ID | FETCH-LOGICAL-c4158-b5b11a2977962bf3f98a3963a6425723bf2c98eba1e3b5b4bfc4fcbcfae9c1a13 |
IEDL.DBID | DR2 |
ISSN | 0364-0213 1551-6709 |
IngestDate | Thu Jul 10 22:43:32 EDT 2025 Thu Aug 14 00:04:02 EDT 2025 Wed Feb 19 02:28:44 EST 2025 Tue Sep 02 18:15:11 EDT 2025 Tue Jul 01 04:19:46 EDT 2025 Thu Apr 24 23:12:44 EDT 2025 Wed Jan 22 16:31:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Cue-based retrieval Linguistic features Plausibility Word embeddings |
Language | English |
License | Attribution 2020 The Authors. Cognitive Science published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4158-b5b11a2977962bf3f98a3963a6425723bf2c98eba1e3b5b4bfc4fcbcfae9c1a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcogs.12918 |
PMID | 33306205 |
PQID | 2471927669 |
PQPubID | 30149 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_2470034799 proquest_journals_2471927669 pubmed_primary_33306205 eric_primary_EJ1278539 crossref_citationtrail_10_1111_cogs_12918 crossref_primary_10_1111_cogs_12918 wiley_primary_10_1111_cogs_12918_COGS12918 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Cognitive science |
PublicationTitleAlternate | Cogn Sci |
PublicationYear | 2020 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2007; 39 2017; 42 2017; 80 2013; 69 2017; 3 1990; 16 2013; 68 2017; 43 2008; 109 1994; 23 2008; 106 1970 2008; 2 2007; 33 2005; 29 2018; 42 2001; 43 2018; 46 1990; 41 1997; 104 2004; 30 2018; 9 2014; 5 2001 2000 2015; 40 2017; 76 2015; 41 2019; 23 2019; 26 1997; 12 2003; 3 1994; 33 2011; 65 1994; 38 2011; 26 2019; 110 2001; 72 1989; 1 2015; 3 2005; 112 2019; 2 2006; 55 2017; 27 2018; 102 2009 2007 1994 2002 2016; 12 2017; 51 1998; 38 2017; 94 2004; 50 1993; 19 2019; 43 2020 2000; 107 2000; 75 2019 2018 2017 2016 2020; 111 1962; 24 2014 2014b 2014a 2013 2009; 3 2018; 99 2018; 10 e_1_2_7_3_1 Finkelstein L. (e_1_2_7_30_1) 2002 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_81_1 Speer R. (e_1_2_7_73_1) 2017 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 Villata S. (e_1_2_7_87_1) 2019 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_68_1 e_1_2_7_47_1 Parker D. (e_1_2_7_58_1) 2019; 43 e_1_2_7_89_1 Church K. W. (e_1_2_7_21_1) 1990; 16 e_1_2_7_26_1 e_1_2_7_28_1 Villata S. (e_1_2_7_88_1) 2018; 9 e_1_2_7_90_1 e_1_2_7_50_1 e_1_2_7_92_1 Bever T. G. (e_1_2_7_5_1) 1970 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_39_1 Mikolov T. (e_1_2_7_53_1) 2013 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 Marneffe M.‐C. (e_1_2_7_24_1) 2014 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 Logačev P. (e_1_2_7_49_1) 2015; 40 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Smith G. (e_1_2_7_71_1) 2018 Levy O. (e_1_2_7_45_1) 2014 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_76_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 Rasmussen N. E. (e_1_2_7_62_1) 2017; 42 Cho P. W. (e_1_2_7_20_1) 2016 Mikolov T. (e_1_2_7_52_1) 2013 |
References_xml | – volume: 41 start-page: 665 issue: 4 year: 2015 end-page: 695 article-title: Simlex‐999: Evaluating semantic models with (genuine) similarity estimation publication-title: Computational Linguistics – volume: 112 start-page: 531 issue: 3 year: 2005 end-page: 559 article-title: Making syntax of sense: Number agreement in sentence production publication-title: Psychological Review – year: 2020 article-title: Toward a principled Bayesian workflow in cognitive science publication-title: Psychological Methods – start-page: 19 year: 2009 end-page: 27 – start-page: 1487 year: 2016 end-page: 1492 – volume: 27 start-page: 1413 year: 2017 end-page: 1432 article-title: Practical Bayesian model evaluation using leave‐one‐out cross‐validation and WAIC publication-title: Statistical Computing – volume: 3 start-page: 20160105 issue: 1 year: 2017 article-title: Incremental parsing in a continuous dynamical system: Sentence processing in Gradient Symbolic Computation publication-title: Linguistics Vanguard – volume: 50 start-page: 355 issue: 4 year: 2004 end-page: 370 article-title: Effects of merely local syntactic coherence on sentence processing publication-title: Journal of Memory and Language – start-page: 1178 year: 2019 end-page: 1184 – volume: 2 start-page: 1 issue: 1 year: 2008 end-page: 12 article-title: Parsing costs as predictors of reading difficulty: An evaluation using the Potsdam sentence corpus publication-title: Journal of Eye Movement Research – start-page: 4444 year: 2017 end-page: 4451 – year: 2001 – volume: 99 start-page: 1 year: 2018 end-page: 34 article-title: Models of retrieval in sentence comprehension: A computational evaluation using Bayesian hierarchical modeling publication-title: Journal of Memory and Language – volume: 55 start-page: 157 year: 2006 end-page: 166 article-title: Retrieval interference in sentence comprehension publication-title: Journal of Memory and Language – volume: 3 start-page: 211 year: 2015 end-page: 225 article-title: Improving distributional similarity with lessons learned from word embeddings publication-title: Transactions of the Association for Computational Linguistics – start-page: 13 year: 2009 end-page: 24 – volume: 72 start-page: 1411 issue: 6 year: 2001 end-page: 1423 article-title: Memory interference during language processing publication-title: Journal of Experimental Psychology: Learning, Memory, and Cognition – start-page: 68 year: 2014 end-page: 77 – volume: 29 start-page: 375 year: 2005 end-page: 419 article-title: An activation‐based model of sentence processing as skilled memory retrieval publication-title: Cognitive Science – year: 2018 – volume: 26 start-page: 1675 issue: 5 year: 2019 end-page: 1682 article-title: Slow naming of pictures facilitates memory for their names publication-title: Psychonomic Bulletin & Review – volume: 10 start-page: 395 issue: 1 year: 2018 end-page: 411 article-title: Advanced Bayesian multilevel modeling with the R package brms publication-title: The R Journal – start-page: 304 year: 1994 end-page: 309 – start-page: 2177 year: 2014b end-page: 2185 – volume: 39 start-page: 510 issue: 3 year: 2007 end-page: 526 article-title: Extracting semantic representations from word co‐occurrence statistics: A computational study publication-title: Behavior Research Methods – volume: 102 start-page: 16 year: 2018 end-page: 27 article-title: Retrieval interference and semantic interpretation publication-title: Journal of Memory and Language – volume: 111 start-page: 104063 year: 2020 article-title: Interference patterns in subject‐verb agreement and reflexives revisited: A large‐sample study publication-title: Journal of Memory and Language – volume: 2 start-page: 141 year: 2019 end-page: 153 article-title: Robust modeling in cognitive science publication-title: Computational Brain & Behavior – volume: 1 start-page: 273 issue: 3 year: 1989 end-page: 290 article-title: Incremental syntactic tree formation in human sentence processing: A cognitive architecture based on activation decay and simulated annealing publication-title: Connection Science – start-page: 406 year: 2002 end-page: 414 – start-page: 123 year: 2014 end-page: 127 – volume: 5 start-page: 1237 year: 2014 article-title: Distinctiveness and encoding effects in online sentence comprehension publication-title: Frontiers in Psychology – volume: 33 start-page: 285 year: 1994 end-page: 318 article-title: Semantic influences on parsing: Use of thematic role information in syntactic ambiguity resolution publication-title: Journal of Memory and Language – volume: 3 start-page: 1137 year: 2003 end-page: 1155 article-title: A neural probabilistic language model publication-title: Journal of Machine Learning Research – volume: 94 start-page: 316 year: 2017 end-page: 339 article-title: Similarity‐based interference in sentence comprehension: Literature review and Bayesian meta‐analysis publication-title: Journal of Memory and Language – year: 2019 – volume: 9 start-page: 1 issue: 2 year: 2018 end-page: 16 article-title: Encoding and retrieval interference in sentence comprehension: Evidence from agreement publication-title: Frontiers in Psychology – volume: 3 start-page: 331 issue: 4 year: 2009 end-page: 346 article-title: The Unification Space implemented as a localist neural net: Predictions and error‐tolerance in a constraint‐based parser publication-title: Cognitive Neurodynamics – volume: 42 start-page: 1043 issue: S4 year: 2018 end-page: 1074 article-title: A self‐organizing approach to subject‐verb number agreement publication-title: Cognitive Science – volume: 65 start-page: 247 year: 2011 end-page: 263 article-title: Cue‐dependent interference in comprehension publication-title: Journal of Memory and Language – volume: 19 start-page: 528 issue: 3 year: 1993 end-page: 553 article-title: Verb‐specific constraints in sentence processing: Separating effects of lexical preference from garden‐paths publication-title: Journal of Experimental Psychology: Learning, Memory, and Cognition – volume: 68 start-page: 255 issue: 3 year: 2013 end-page: 278 article-title: Random effects structure for confirmatory hypothesis testing: Keep it maximal publication-title: Journal of Memory and Language – start-page: 279 year: 1970 end-page: 362 – volume: 43 issue: 12 year: 2019 article-title: The effect of prominence and cue association in retrieval processes: A computational account publication-title: Cognitive Science – volume: 43 start-page: 83 issue: 2 year: 2001 end-page: 128 article-title: Some attractions of verb agreement publication-title: Cognitive Psychology – volume: 30 start-page: 431 issue: 2 year: 2004 end-page: 450 article-title: Evidence for self‐organized sentence processing: Digging‐in effects publication-title: Journal of Experimental Psychology: Learning, Memory, and Cognition – volume: 41 start-page: 391 issue: 6 year: 1990 end-page: 407 article-title: Indexing by latent semantic analysis publication-title: Journal of the American Society for Information Science – volume: 43 start-page: 1537 issue: 10 year: 2017 article-title: Distinguishing discrete and gradient category structure in language: Insights from verb‐particle constructions publication-title: Journal of Experimental Psychology: Learning, Memory, and Cognition – volume: 43 start-page: 1 issue: e13715 year: 2019 end-page: 30 article-title: Cue combinatorics in memory retrieval for anaphora publication-title: Cognitive Science – start-page: 19 year: 2018 end-page: 28 – volume: 55 start-page: 1 year: 2006 end-page: 17 article-title: Absence of real evidence against competition during syntactic ambiguity resolution publication-title: Journal of Memory and Language – volume: 12 start-page: 175 issue: 3 year: 2016 end-page: 200 article-title: Bayesian linear mixed models using Stan: A tutorial for psychologists, linguists, and cognitive scientists publication-title: Quantitative Methods for Psychology – year: 2007 – volume: 2 start-page: 179 year: 2019 end-page: 182 article-title: Preregistration of modeling exercises may not be useful publication-title: Computational Brain & Behavior – volume: 23 start-page: 295 issue: 4 year: 1994 end-page: 322 article-title: Competition and recency in a hybrid network model of syntactic disambiguation publication-title: Journal of Psycholinguistic Research – volume: 107 start-page: 358 issue: 2 year: 2000 end-page: 367 article-title: How persuasive is a good fit? A comment on theory testing publication-title: Psychological Review – start-page: 1532 year: 2014 end-page: 1543 – volume: 42 start-page: 1009 issue: S4 year: 2017 end-page: 1042 article-title: Left‐corner parsing with distributed associative memory produces surprisal and locality effects publication-title: Cognitive Science – start-page: 4585 year: 2014 end-page: 4592 – start-page: 688 year: 2017 end-page: 698 – volume: 110 start-page: 70 year: 2019 end-page: 104 article-title: The grammaticality asymmetry in agreement attraction reflects response bias: Experimental and modeling evidence publication-title: Cognitive Psychology – volume: 69 start-page: 85 year: 2013 end-page: 103 article-title: Contrasting intrusion profiles for agreement and anaphora: Experimental and modeling evidence publication-title: Journal of Memory and Language – start-page: 160 year: 2018 end-page: 170 – volume: 16 start-page: 22 issue: 1 year: 1990 end-page: 29 article-title: Word association norms, mutual information, and lexicography publication-title: Computational Linguistics – start-page: 621 year: 2000 end-page: 648 – volume: 51 start-page: 727 year: 2017 end-page: 743 article-title: Comparing explicity and predictive distributional semantic models endowed with syntactic contexts publication-title: Language Resources and Evaluation – volume: 46 start-page: 864 issue: 6 year: 2018 end-page: 877 article-title: A failure to replicate rapid syntactic adaptation in comprehension publication-title: Memory & Cognition – volume: 106 start-page: 1126 issue: 3 year: 2008 end-page: 1177 article-title: Expectation‐based syntactic comprehension publication-title: Cognition – volume: 26 start-page: 301 issue: 3 year: 2011 end-page: 349 article-title: Parallel processing and sentence comprehension difficulty publication-title: Language and Cognitive Processes – volume: 76 start-page: 1 issue: 1 year: 2017 end-page: 32 article-title: Stan: A probabilistic programming language publication-title: Journal of Statistical Software, Articles – volume: 38 start-page: 283 year: 1998 end-page: 312 article-title: Modeling the influence of thematic fit (and other constraints) in on‐line sentence comprehension publication-title: Journal of Memory and Language – volume: 24 start-page: 574 issue: 5 year: 1962 end-page: 590 article-title: Statistical facilitation of simple reaction times publication-title: Transactions of the New York Academy of Sciences – volume: 110 start-page: 104038 year: 2019 article-title: How to capitalize on a priori contrasts in linear (mixed) models: A tutorial publication-title: Journal of Memory and Language – start-page: 138 year: 2018 end-page: 143 – start-page: 665 year: 2009 end-page: 673 – volume: 40 start-page: 1 issue: 2 year: 2015 end-page: 33 article-title: A multiple‐channel model of task‐dependent ambiguity resolution in sentence comprehension publication-title: Cognitive Science – volume: 33 start-page: 161 issue: 2 year: 2007 end-page: 199 article-title: Dependency‐based construction of semantic space models publication-title: Computational Linguistics – start-page: 193 year: 2016 end-page: 200 – volume: 42 start-page: 1075 issue: S4 year: 2018 end-page: 1100 article-title: Exploratory and confirmatory analyses in sentence processing: A case study of number interference in German publication-title: Cognitive Science – volume: 23 start-page: P968 issue: 11 year: 2019 end-page: 982 article-title: Computational models of retrieval processes in sentence processing publication-title: Trends in Cognitive Sciences – volume: 80 start-page: 1 issue: 1 year: 2017 end-page: 28 article-title: brms: An R package for Bayesian multilevel models using Stan publication-title: Journal of Statistical Software – volume: 12 start-page: 349 issue: 2–3 year: 1997 end-page: 399 article-title: Lexical structure and parsing complexity publication-title: Language and Cognitive Processes – volume: 104 start-page: 211 issue: 2 year: 1997 end-page: 240 article-title: A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge publication-title: Psychological Review – volume: 38 start-page: 35 issue: 1 year: 1994 end-page: 58 article-title: Distribution inequalities for parallel models with unlimited capacity publication-title: Journal of Mathematical Psychology – start-page: 302 year: 2014a end-page: 308 – volume: 109 start-page: 193 year: 2008 end-page: 210 article-title: Data from eye‐tracking corpora as evidence for theories of syntactic processing complexity publication-title: Cognition – year: 2013 – volume: 75 start-page: 105 year: 2000 end-page: 143 article-title: Syntactic structure assembly in human parsing: A computational model based on competitive inhibition and a lexicalist grammar publication-title: Cognition – ident: e_1_2_7_67_1 doi: 10.1016/j.jml.2019.104038 – ident: e_1_2_7_89_1 doi: 10.1016/S0010-0277(00)00063-9 – ident: e_1_2_7_34_1 doi: 10.1016/j.jml.2006.03.003 – ident: e_1_2_7_13_1 doi: 10.3758/BF03193020 – ident: e_1_2_7_18_1 doi: 10.18653/v1/W18-0103 – ident: e_1_2_7_33_1 doi: 10.1037/0278-7393.27.6.1411 – ident: e_1_2_7_28_1 doi: 10.1037/0033-295X.112.3.531 – volume-title: Advances in Neural Information Processing Systems 26 (NIPS 2013) year: 2013 ident: e_1_2_7_53_1 – ident: e_1_2_7_76_1 doi: 10.1080/016909697386880 – ident: e_1_2_7_91_1 doi: 10.1109/IALP.2014.6973490 – ident: e_1_2_7_10_1 doi: 10.1080/01690965.2010.492228 – ident: e_1_2_7_64_1 doi: 10.3115/v1/W14-1608 – ident: e_1_2_7_86_1 doi: 10.1007/s11222-016-9696-4 – ident: e_1_2_7_83_1 doi: 10.1016/B978-008043642-5/50029-2 – ident: e_1_2_7_84_1 doi: 10.1016/j.tics.2019.09.003 – ident: e_1_2_7_25_1 doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 – ident: e_1_2_7_26_1 doi: 10.1016/j.cognition.2008.07.008 – ident: e_1_2_7_72_1 doi: 10.20982/tqmp.12.3.p175 – ident: e_1_2_7_4_1 doi: 10.1162/153244303322533223 – ident: e_1_2_7_63_1 doi: 10.18653/v1/W16-1622 – ident: e_1_2_7_9_1 doi: 10.16910/jemr.2.1.1 – ident: e_1_2_7_54_1 doi: 10.1016/j.jml.2017.08.004 – ident: e_1_2_7_16_1 – ident: e_1_2_7_92_1 doi: 10.3758/s13423-019-01620-x – ident: e_1_2_7_8_1 doi: 10.1006/cogp.2001.0753 – ident: e_1_2_7_38_1 doi: 10.3389/fpsyg.2014.01237 – ident: e_1_2_7_35_1 doi: 10.3115/1073336.1073357 – ident: e_1_2_7_48_1 doi: 10.1207/s15516709cog0000_25 – ident: e_1_2_7_74_1 doi: 10.3758/s13421-018-0808-6 – volume-title: Proceedings of the International Conference on Learning Representations year: 2013 ident: e_1_2_7_52_1 – ident: e_1_2_7_23_1 doi: 10.1016/j.jml.2018.05.001 – ident: e_1_2_7_46_1 doi: 10.1162/tacl_a_00134 – ident: e_1_2_7_40_1 doi: 10.1016/j.jml.2019.104063 – ident: e_1_2_7_78_1 doi: 10.1037/0278-7393.30.2.431 – ident: e_1_2_7_65_1 doi: 10.1037/0033-295X.107.2.358 – ident: e_1_2_7_39_1 doi: 10.1016/j.jml.2017.01.004 – ident: e_1_2_7_14_1 doi: 10.18637/jss.v080.i01 – ident: e_1_2_7_41_1 doi: 10.1080/09540098908915642 – ident: e_1_2_7_75_1 doi: 10.1007/BF02145044 – ident: e_1_2_7_77_1 doi: 10.1016/j.jml.2004.01.001 – ident: e_1_2_7_82_1 doi: 10.1016/j.jml.2011.05.002 – ident: e_1_2_7_2_1 doi: 10.3115/1620754.1620758 – volume: 42 start-page: 1009 issue: 4 year: 2017 ident: e_1_2_7_62_1 article-title: Left‐corner parsing with distributed associative memory produces surprisal and locality effects publication-title: Cognitive Science – ident: e_1_2_7_31_1 doi: 10.18653/v1/E17-1065 – ident: e_1_2_7_66_1 doi: 10.1037/met0000275 – ident: e_1_2_7_43_1 doi: 10.1007/s42113-019-00029-y – ident: e_1_2_7_29_1 doi: 10.1111/cogs.12800 – ident: e_1_2_7_61_1 doi: 10.1111/j.2164-0947.1962.tb01433.x – ident: e_1_2_7_68_1 – ident: e_1_2_7_80_1 doi: 10.1037/0278-7393.19.3.528 – ident: e_1_2_7_17_1 doi: 10.18637/jss.v076.i01 – ident: e_1_2_7_56_1 doi: 10.3115/991886.991938 – ident: e_1_2_7_90_1 doi: 10.1007/s11571-009-9094-0 – ident: e_1_2_7_27_1 doi: 10.1016/j.jml.2013.04.003 – start-page: 4444 volume-title: Proceedings of the thirty‐first AAAI conference on artificial intelligence year: 2017 ident: e_1_2_7_73_1 – volume: 40 start-page: 1 issue: 2 year: 2015 ident: e_1_2_7_49_1 article-title: A multiple‐channel model of task‐dependent ambiguity resolution in sentence comprehension publication-title: Cognitive Science – ident: e_1_2_7_6_1 doi: 10.3115/1620754.1620851 – ident: e_1_2_7_22_1 doi: 10.1006/jmps.1994.1002 – ident: e_1_2_7_51_1 doi: 10.1006/jmla.1997.2543 – ident: e_1_2_7_11_1 doi: 10.1037/xlm0000390 – ident: e_1_2_7_7_1 doi: 10.3765/bls.v35i1.3594 – ident: e_1_2_7_85_1 – volume: 9 start-page: 1 issue: 2 year: 2018 ident: e_1_2_7_88_1 article-title: Encoding and retrieval interference in sentence comprehension: Evidence from agreement publication-title: Frontiers in Psychology – start-page: 4585 volume-title: International Conference on Language Resources and Evaluation year: 2014 ident: e_1_2_7_24_1 – ident: e_1_2_7_19_1 doi: 10.1515/lingvan-2016-0105 – start-page: 1178 volume-title: Proceedings of the 41st Annual Meeting of the Cognitive Science Society year: 2019 ident: e_1_2_7_87_1 – ident: e_1_2_7_57_1 doi: 10.1162/coli.2007.33.2.161 – ident: e_1_2_7_81_1 doi: 10.1016/j.jml.2006.03.007 – ident: e_1_2_7_15_1 doi: 10.32614/RJ-2018-017 – start-page: 1487 volume-title: Proceedings of the 38th Annual Conference of the Cognitive Science Society year: 2016 ident: e_1_2_7_20_1 – ident: e_1_2_7_55_1 doi: 10.1111/cogs.12589 – ident: e_1_2_7_32_1 doi: 10.1007/s10579-016-9357-4 – volume: 43 start-page: 1 issue: 13715 year: 2019 ident: e_1_2_7_58_1 article-title: Cue combinatorics in memory retrieval for anaphora publication-title: Cognitive Science – ident: e_1_2_7_42_1 doi: 10.1037/0033-295X.104.2.211 – start-page: 138 volume-title: Proceedings of the 16th International Conference on Cognitive Modeling year: 2018 ident: e_1_2_7_71_1 – ident: e_1_2_7_3_1 doi: 10.1016/j.jml.2012.11.001 – ident: e_1_2_7_44_1 doi: 10.3115/v1/P14-2050 – start-page: 2177 volume-title: Advances in neural information processing systems year: 2014 ident: e_1_2_7_45_1 – ident: e_1_2_7_50_1 doi: 10.1007/s42113-019-00038-x – ident: e_1_2_7_59_1 doi: 10.3115/v1/D14-1162 – start-page: 279 volume-title: Cognition and language development year: 1970 ident: e_1_2_7_5_1 – ident: e_1_2_7_69_1 – ident: e_1_2_7_79_1 doi: 10.1006/jmla.1994.1014 – ident: e_1_2_7_36_1 doi: 10.1016/j.cogpsych.2019.01.001 – ident: e_1_2_7_60_1 doi: 10.18653/v1/K18-2016 – ident: e_1_2_7_47_1 doi: 10.1016/j.cognition.2007.05.006 – volume: 16 start-page: 22 issue: 1 year: 1990 ident: e_1_2_7_21_1 article-title: Word association norms, mutual information, and lexicography publication-title: Computational Linguistics – start-page: 406 volume-title: Proceedings of the 10th international conference on world wide web year: 2002 ident: e_1_2_7_30_1 – ident: e_1_2_7_12_1 – ident: e_1_2_7_37_1 doi: 10.1162/COLI_a_00237 – ident: e_1_2_7_70_1 doi: 10.1111/cogs.12591 |
SSID | ssj0006639 |
Score | 2.3803408 |
Snippet | Among theories of human language comprehension, cue‐based memory retrieval has proven to be a useful framework for understanding when and how processing... Among theories of human language comprehension, cue-based memory retrieval has proven to be a useful framework for understanding when and how processing... |
SourceID | proquest pubmed eric crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e12918 |
SubjectTerms | Cues Cue‐based retrieval Embedding Eye Movements Information processing Language Processing Linguistic features Memory Plausibility Reading Rate Recall (Psychology) Semantics Sentences Word embeddings |
Title | A Principled Approach to Feature Selection in Models of Sentence Processing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcogs.12918 http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1278539 https://www.ncbi.nlm.nih.gov/pubmed/33306205 https://www.proquest.com/docview/2471927669 https://www.proquest.com/docview/2470034799 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB-sT760aqueH0dKS6GFPczHZTfgyyFasdJKreCLLEk2KcVjV9y7B_3rnWQ_9EoptE-7bGaXbJLJ_GYy-QXgvfFSF15mCRfomwjnaNA5kxTUF4VIC3TmYrbFV3lyKU6vxldLcNDthWn4IfqAW9CMOF8HBdemfqbktvpZj9Ba0bDTNyRrBUT0_Yk7Ck2pahYqRYKGjLfcpCGN5-nVBWu0mPD8DGkuAtdoeY5fwXVX5ybh5GY0n5mRffiNzvF_f2oVXraQlEyaMbQGS65ch82zNpBZkw_krOdertdhpZ8z71_Dlwk578L1BZm0BOVkVpGALfEFchEP2sHeJ79KEk5em9ak8vi4jGidtDsV0IK-gcvjox-HJ0l7PkNi0exniRkbSjVDBKkkM557lWmOCq1lmAgYN55ZlTmjqeMoK4y3wltjvXbKUk35BiyXVem2gDC2b7i3zKjMCiOVYWmqqZV4cUyzYgAfu37KbUteHs7QmOadExNaLo8tN4B3vextQ9nxR6mN0N29xNEpZSliFzWA3W4A5K0-1zlDG65YKiUWv-2LURPD8oouXTWPMoHtJ1Uos9kMnP7rnKNrxvbHA_gUu_8vFcsPv32-iHfb_yK8AysshAJips0uLM_u5m4P8dLMDOEFE-fDqB3DGB94BD4sEX0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9t7GG8wMYGlDHmiWnSJqXCdurEjxWCdVDYNEDiLbIdGyFQgkj7AH_9zo4b6IQmbU-J4nOU2He-D59_B_BJO6FKJ_KEp-ibpNZSL3M6KakryzQr0ZkL2RbHYnSWHpwPzmNujj8L0-JDdAE3LxlhvfYC7gPSj6Tc1BdNH9UVzZ_DC1_SO3hUvx7Qo1CZynarMk1QlfGITuoTeR76zumj-ZTnR7bmvOkadM_-cltgtQmQhT7l5Ko_nei-uf8D0PG_f-sVLEWrlAxbNnoNz2y1AmvjGMtsyGcy7uCXmxVY7JbNuzdwOCQ_ZxH7kgwjRjmZ1MSbl9iBnIRaO8gA5LIivvjadUNqh4-rYLCTeFgBlehbONvfO90dJbFEQ2JQ8-eJHmhKFUMjUgqmHXcyVxxlWgm_FjCuHTMyt1pRy5E21c6kzmjjlJWGKspXYaGqK7sOhLEdzZ1hWuYm1UJqlmWKGoEXyxQre_BlNlGFifjlvozGdTHzY_zIFWHkerDd0d60qB1PUq36-e4o9g4oy9B8kT3YnHFAEUW6KRiqcckyIbD5Y9eMwuh3WFRl62mg8YA_mUSatZZzurdzjt4Z2xn04GuY_798WLH749tJuNv4F-IP8HJ0ejQuxt-PD9_BIvORgZB4swkLk9upfY_m00RvBSH5DWYwE8A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qBelL1Wrr1aoRRVDY4_Jx2Q34crQ9a3vUYi30RZYkmxSx7Jbu3YP-9U6yH-2JCPq0y2Z2yWZmMh-Z_ALw2nipCy-zhAuMTYRzNOicSQrqi0KkBQZzsdriWB6cicPz8fkKvO_2wjT4EH3CLWhGnK-Dgl8V_paS2-qiHqK1otkduCvkKAsyvff5BjwKbalqVipFgpaMt-CkoY7n5t0lc7Rc8XzL1Vz2XKPpmd6Hr12nm4qT78PF3Aztz9_wHP_3rx7AeuuTkkkjRA9hxZUbsDVrM5k1eUNmPfhyvQFr_aT54xEcTchJl68vyKRFKCfzigTnEl8gp_GkHWQ_-VaScPTaZU0qj4_L6K6TdqsCmtDHcDbd_7J7kLQHNCQW7X6WmLGhVDN0IZVkxnOvMs1Ro7UMMwHjxjOrMmc0dRxphfFWeGus105ZqinfhNWyKt0TIIyNDPeWGZVZYaQyLE01tRIvjmlWDOBtx6fctujl4RCNy7yLYsLI5XHkBvCqp71qMDv-SLUZ2N1T7B9SlqLzogaw0wlA3ip0nTM04oqlUmLzy74ZVTGsr-jSVYtIE-B-UoU0W43g9F_nHGMzNhoP4F1k_186lu9--nAa77b_hfgF3DvZm-azj8dHT2GNhbRArLrZgdX59cI9Q99pbp5HFfkFOTQSeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Principled+Approach+to+Feature+Selection+in+Models+of+Sentence+Processing&rft.jtitle=Cognitive+science&rft.au=Smith%2C+Garrett&rft.au=Vasishth%2C+Shravan&rft.date=2020-12-01&rft.issn=0364-0213&rft.eissn=1551-6709&rft.volume=44&rft.issue=12&rft_id=info:doi/10.1111%2Fcogs.12918&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cogs_12918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-0213&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-0213&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-0213&client=summon |