A within-subject comparison of 6-[18F]fluoro-m-tyrosine and 6-[18F]fluoro-L-dopa in Parkinson's disease

Progression of Parkinson's disease symptoms is imperfectly correlated with positron emission tomography biomarkers for dopamine biosynthetic pathways. The radiopharmaceutical 6‐[18F]fluoro‐m‐tyrosine is not a substrate for catechol‐O‐methyltransferase and therefore has a more favorable uptake‐t...

Full description

Saved in:
Bibliographic Details
Published inMovement disorders Vol. 26; no. 11; pp. 2032 - 2038
Main Authors Gallagher, Catherine L., Christian, Bradley T., Holden, James E., Dejesus, Onofre T., Nickles, Robert J., Buyan-Dent, Laura, Bendlin, Barbara B., Harding, Sandra J., Stone, Charles K., Mueller, Barb, Johnson, Sterling C.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.09.2011
Wiley
Subjects
Online AccessGet full text
ISSN0885-3185
1531-8257
DOI10.1002/mds.23778

Cover

Loading…
Abstract Progression of Parkinson's disease symptoms is imperfectly correlated with positron emission tomography biomarkers for dopamine biosynthetic pathways. The radiopharmaceutical 6‐[18F]fluoro‐m‐tyrosine is not a substrate for catechol‐O‐methyltransferase and therefore has a more favorable uptake‐to‐background ratio than 6‐[18F]fluoro‐L‐dopa. The objective of this study was to evaluate 6‐[18F]fluoro‐m‐tyrosine relative to 6‐[18F]fluoro‐L‐dopa with partial catechol‐O‐methyltransferase inhibition as a biomarker for clinical status in Parkinson's disease. Twelve patients with early‐stage Parkinson's disease, off medication, underwent Unified Parkinson Disease Rating Scale scoring, brain magnetic resonance imaging, and 3‐dimensional dynamic positron emission tomography using equivalent doses of 6‐[18F]fluoro‐m‐tyrosine and 6‐[18F]fluoro‐L‐dopa with tolcapone, a catechol‐O‐methyltransferase inhibitor. Images were realigned within subject, after which the tissue‐derived uptake rate constant was generated for volumes of interest encompassing the caudate nucleus, putamen, and subregions of the putamen. We computed both bivariate (Pearson) and partial (covariate of age) correlations between clinical subscores and tissue‐derived uptake rate constant. Tissue‐derived uptake rate constant values were correlated between the radiopharmaceuticals (r = 0.8). Motor subscores were inversely correlated with the contralateral putamen 6‐[18F]fluoro‐m‐tyrosine tissue‐derived uptake rate constant (|r| > 0.72, P < .005) but not significantly with the 6‐[18F]fluoro‐L‐dopa tissue‐derived uptake rate constant. The uptake rate constants for both radiopharmaceuticals were also inversely correlated with activities of daily living subscores, but the magnitude of correlation coefficients was greater for 6‐[18F]fluoro‐m‐tyrosine. In this design, 6‐[18F]fluoro‐m‐tyrosine uptake better reflected clinical status than did 6‐[18F]fluoro‐L‐dopa uptake. We attribute this finding to 6‐[18F]fluoro‐m‐tyrosine's higher affinity for the target, L‐aromatic amino acid decarboxylase, and the absence of other major determinants of the uptake rate constant. These results also imply that L‐aromatic amino acid decarboxylase activity is a major determinant of clinical status. © 2011 Movement Disorder Society
AbstractList Progression of Parkinson's disease symptoms is imperfectly correlated with positron emission tomography biomarkers for dopamine biosynthetic pathways. The radiopharmaceutical 6‐[18F]fluoro‐m‐tyrosine is not a substrate for catechol‐O‐methyltransferase and therefore has a more favorable uptake‐to‐background ratio than 6‐[18F]fluoro‐L‐dopa. The objective of this study was to evaluate 6‐[18F]fluoro‐m‐tyrosine relative to 6‐[18F]fluoro‐L‐dopa with partial catechol‐O‐methyltransferase inhibition as a biomarker for clinical status in Parkinson's disease. Twelve patients with early‐stage Parkinson's disease, off medication, underwent Unified Parkinson Disease Rating Scale scoring, brain magnetic resonance imaging, and 3‐dimensional dynamic positron emission tomography using equivalent doses of 6‐[18F]fluoro‐m‐tyrosine and 6‐[18F]fluoro‐L‐dopa with tolcapone, a catechol‐O‐methyltransferase inhibitor. Images were realigned within subject, after which the tissue‐derived uptake rate constant was generated for volumes of interest encompassing the caudate nucleus, putamen, and subregions of the putamen. We computed both bivariate (Pearson) and partial (covariate of age) correlations between clinical subscores and tissue‐derived uptake rate constant. Tissue‐derived uptake rate constant values were correlated between the radiopharmaceuticals (r = 0.8). Motor subscores were inversely correlated with the contralateral putamen 6‐[18F]fluoro‐m‐tyrosine tissue‐derived uptake rate constant (|r| > 0.72, P < .005) but not significantly with the 6‐[18F]fluoro‐L‐dopa tissue‐derived uptake rate constant. The uptake rate constants for both radiopharmaceuticals were also inversely correlated with activities of daily living subscores, but the magnitude of correlation coefficients was greater for 6‐[18F]fluoro‐m‐tyrosine. In this design, 6‐[18F]fluoro‐m‐tyrosine uptake better reflected clinical status than did 6‐[18F]fluoro‐L‐dopa uptake. We attribute this finding to 6‐[18F]fluoro‐m‐tyrosine's higher affinity for the target, L‐aromatic amino acid decarboxylase, and the absence of other major determinants of the uptake rate constant. These results also imply that L‐aromatic amino acid decarboxylase activity is a major determinant of clinical status. © 2011 Movement Disorder Society
Progression of Parkinson’s disease symptoms is imperfectly correlated with positron emission tomography biomarkers for dopamine biosynthetic pathways. The radiopharmaceutical 6-[ 18 F]fluoro-m-tyrosine is not a substrate for catechol-O-methyltransferase and therefore has a more favorable uptake-to-background ratio than 6-[ 18 F]fluoro- l -dopa. The objective of this study was to evaluate 6-[ 18 F]fluoro-m-tyrosine relative to 6-[ 18 F]fluoro- l -dopa with partial catechol- O -methyltransferase inhibition as a biomarker for clinical status in Parkinson’s disease. Twelve patients with early-stage Parkinson’s disease, off medication, underwent Unified Parkinson Disease Rating Scale scoring, brain magnetic resonance imaging, and 3-dimensional dynamic positron emission tomography using equivalent doses of 6-[ 18 F]fluoro-m-tyrosine and 6-[ 18 F]fluoro- l -dopa with tolcapone, a catechol- O -methyltransferase inhibitor. Images were realigned within subject, after which the tissue-derived uptake rate constant was generated for volumes of interest encompassing the caudate nucleus, putamen, and subregions of the putamen. We computed both bivariate (Pearson) and partial (covariate of age) correlations between clinical subscores and tissue-derived uptake rate constant. Tissue-derived uptake rate constant values were correlated between the radiopharmaceuticals ( r = 0.8). Motor subscores were inversely correlated with the contralateral putamen 6-[ 18 F]fluoro-m-tyrosine tissue-derived uptake rate constant (|r| > 0.72, P < .005) but not significantly with the 6-[ 18 F]fluoro- l -dopa tissue- derived uptake rate constant. The uptake rate constants for both radiopharmaceuticals were also inversely correlated with activities of daily living subscores, but the magnitude of correlation coefficients was greater for 6-[ 18 F]fluoro-m-tyrosine. In this design, 6-[ 18 F]fluoro-m-tyrosine uptake better reflected clinical status than did 6-[ 18 F]fluoro- l -dopa uptake. We attribute this finding to 6-[ 18 F]fluoro-m-tyrosine’s higher affinity for the target, l -aromatic amino acid decarboxylase, and the absence of other major determinants of the uptake rate constant. These results also imply that l -aromatic amino acid decarboxylase activity is a major determinant of clinical status.
Progression of Parkinson's disease symptoms is imperfectly correlated with positron emission tomography biomarkers for dopamine biosynthetic pathways. The radiopharmaceutical 6‐[ 18 F]fluoro‐m‐tyrosine is not a substrate for catechol‐ O ‐methyltransferase and therefore has a more favorable uptake‐to‐background ratio than 6‐[ 18 F]fluoro‐ L ‐dopa. The objective of this study was to evaluate 6‐[ 18 F]fluoro‐m‐tyrosine relative to 6‐[ 18 F]fluoro‐ L ‐dopa with partial catechol‐ O ‐methyltransferase inhibition as a biomarker for clinical status in Parkinson's disease. Twelve patients with early‐stage Parkinson's disease, off medication, underwent Unified Parkinson Disease Rating Scale scoring, brain magnetic resonance imaging, and 3‐dimensional dynamic positron emission tomography using equivalent doses of 6‐[ 18 F]fluoro‐m‐tyrosine and 6‐[ 18 F]fluoro‐ L ‐dopa with tolcapone, a catechol‐ O ‐methyltransferase inhibitor. Images were realigned within subject, after which the tissue‐derived uptake rate constant was generated for volumes of interest encompassing the caudate nucleus, putamen, and subregions of the putamen. We computed both bivariate (Pearson) and partial (covariate of age) correlations between clinical subscores and tissue‐derived uptake rate constant. Tissue‐derived uptake rate constant values were correlated between the radiopharmaceuticals ( r = 0.8). Motor subscores were inversely correlated with the contralateral putamen 6‐[ 18 F]fluoro‐m‐tyrosine tissue‐derived uptake rate constant (|r| > 0.72, P < .005) but not significantly with the 6‐[ 18 F]fluoro‐ L ‐dopa tissue‐derived uptake rate constant. The uptake rate constants for both radiopharmaceuticals were also inversely correlated with activities of daily living subscores, but the magnitude of correlation coefficients was greater for 6‐[ 18 F]fluoro‐m‐tyrosine. In this design, 6‐[ 18 F]fluoro‐m‐tyrosine uptake better reflected clinical status than did 6‐[ 18 F]fluoro‐ L ‐dopa uptake. We attribute this finding to 6‐[ 18 F]fluoro‐m‐tyrosine's higher affinity for the target, L ‐aromatic amino acid decarboxylase, and the absence of other major determinants of the uptake rate constant. These results also imply that L ‐aromatic amino acid decarboxylase activity is a major determinant of clinical status. © 2011 Movement Disorder Society
Progression of Parkinson's disease symptoms is imperfectly correlated with positron emission tomography biomarkers for dopamine biosynthetic pathways. The radiopharmaceutical 6-[(18) F]fluoro-m-tyrosine is not a substrate for catechol-O-methyltransferase and therefore has a more favorable uptake-to-background ratio than 6-[(18) F]fluoro-L-dopa. The objective of this study was to evaluate 6-[(18) F]fluoro-m-tyrosine relative to 6-[(18) F]fluoro-L-dopa with partial catechol-O-methyltransferase inhibition as a biomarker for clinical status in Parkinson's disease. Twelve patients with early-stage Parkinson's disease, off medication, underwent Unified Parkinson Disease Rating Scale scoring, brain magnetic resonance imaging, and 3-dimensional dynamic positron emission tomography using equivalent doses of 6-[(18) F]fluoro-m-tyrosine and 6-[(18) F]fluoro-L-dopa with tolcapone, a catechol-O-methyltransferase inhibitor. Images were realigned within subject, after which the tissue-derived uptake rate constant was generated for volumes of interest encompassing the caudate nucleus, putamen, and subregions of the putamen. We computed both bivariate (Pearson) and partial (covariate of age) correlations between clinical subscores and tissue-derived uptake rate constant. Tissue-derived uptake rate constant values were correlated between the radiopharmaceuticals (r = 0.8). Motor subscores were inversely correlated with the contralateral putamen 6-[(18) F]fluoro-m-tyrosine tissue-derived uptake rate constant (|r| > 0.72, P < .005) but not significantly with the 6-[(18) F]fluoro-L-dopa tissue-derived uptake rate constant. The uptake rate constants for both radiopharmaceuticals were also inversely correlated with activities of daily living subscores, but the magnitude of correlation coefficients was greater for 6-[(18) F]fluoro-m-tyrosine. In this design, 6-[(18) F]fluoro-m-tyrosine uptake better reflected clinical status than did 6-[(18) F]fluoro-L-dopa uptake. We attribute this finding to 6-[(18) F]fluoro-m-tyrosine's higher affinity for the target, L-aromatic amino acid decarboxylase, and the absence of other major determinants of the uptake rate constant. These results also imply that L-aromatic amino acid decarboxylase activity is a major determinant of clinical status.
Author Bendlin, Barbara B.
Stone, Charles K.
Buyan-Dent, Laura
Johnson, Sterling C.
Dejesus, Onofre T.
Harding, Sandra J.
Holden, James E.
Nickles, Robert J.
Christian, Bradley T.
Gallagher, Catherine L.
Mueller, Barb
AuthorAffiliation 2 Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
5 William S. Middleton Veterans Hospital G.R.E.C.C., Madison, Wisconsin, USA
1 William S. Middleton Veterans Hospital, Madison, Wisconsin, USA
3 University of Wisconsin, Department of Medical Physics, Madison, Wisconsin, USA
4 Waisman Laboratory for Brain Imaging and Behavior, Madison, Wisconsin, USA
6 Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
AuthorAffiliation_xml – name: 1 William S. Middleton Veterans Hospital, Madison, Wisconsin, USA
– name: 3 University of Wisconsin, Department of Medical Physics, Madison, Wisconsin, USA
– name: 5 William S. Middleton Veterans Hospital G.R.E.C.C., Madison, Wisconsin, USA
– name: 2 Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
– name: 4 Waisman Laboratory for Brain Imaging and Behavior, Madison, Wisconsin, USA
– name: 6 Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
Author_xml – sequence: 1
  givenname: Catherine L.
  surname: Gallagher
  fullname: Gallagher, Catherine L.
  email: gallagher@neurology.wisc.edu
  organization: William S. Middleton Veterans Hospital, Madison, Wisconsin, USA
– sequence: 2
  givenname: Bradley T.
  surname: Christian
  fullname: Christian, Bradley T.
  organization: University of Wisconsin, Department of Medical Physics, Madison, Wisconsin, USA
– sequence: 3
  givenname: James E.
  surname: Holden
  fullname: Holden, James E.
  organization: University of Wisconsin, Department of Medical Physics, Madison, Wisconsin, USA
– sequence: 4
  givenname: Onofre T.
  surname: Dejesus
  fullname: Dejesus, Onofre T.
  organization: University of Wisconsin, Department of Medical Physics, Madison, Wisconsin, USA
– sequence: 5
  givenname: Robert J.
  surname: Nickles
  fullname: Nickles, Robert J.
  organization: University of Wisconsin, Department of Medical Physics, Madison, Wisconsin, USA
– sequence: 6
  givenname: Laura
  surname: Buyan-Dent
  fullname: Buyan-Dent, Laura
  organization: Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
– sequence: 7
  givenname: Barbara B.
  surname: Bendlin
  fullname: Bendlin, Barbara B.
  organization: William S. Middleton Veterans Hospital G.R.E.C.C., Madison, Wisconsin, USA
– sequence: 8
  givenname: Sandra J.
  surname: Harding
  fullname: Harding, Sandra J.
  organization: William S. Middleton Veterans Hospital G.R.E.C.C., Madison, Wisconsin, USA
– sequence: 9
  givenname: Charles K.
  surname: Stone
  fullname: Stone, Charles K.
  organization: Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
– sequence: 10
  givenname: Barb
  surname: Mueller
  fullname: Mueller, Barb
  organization: Waisman Laboratory for Brain Imaging and Behavior, Madison, Wisconsin, USA
– sequence: 11
  givenname: Sterling C.
  surname: Johnson
  fullname: Johnson, Sterling C.
  organization: William S. Middleton Veterans Hospital G.R.E.C.C., Madison, Wisconsin, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24570303$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21638324$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1PFDEUhhuDkQW98A-YuTGGi0JPO_2YGxNEFiUrGj_ihTFNt-1AcabdtLPi_nsHF1Yl0asm5zzPm-a8O2grpugRegxkHwihB70r-5RJqe6hCXAGWFEut9CEKMUxA8W30U4pl4QAcBAP0DYFwRSj9QSdH1ZXYbgIEZfl_NLbobKpX5gcSopVaiuBv4Cafm27ZcoJ93hY5VRC9JWJ7s5yhl1amCrE6p3J30IcE56VyoXiTfEP0f3WdMU_unl30afp8cejV3j29uT10eEM2xq4wmwuHfCGNI0X0lprWsGk9VxR2gB1YOYAjWeubagEU9eicUAsZ6QxYMcp20XP17mL5bz3zvo4ZNPpRQ69ySudTNB_b2K40Ofpu2ZUKhBkDHjyZ8DGvD3ZCDy9AUyxpmuziTaU31zNJWGEjdzemrPjxUr27QYBoq9r02Nt-ldtI3twh7VhMENI138M3f-Mq9D51b-j9ZuXH24NvDZCGfyPjTFWpYVkkuvPZydaKPX-dPriVJ-xn5REt9M
CitedBy_id crossref_primary_10_1002_syn_21745
crossref_primary_10_1007_s11682_014_9338_4
crossref_primary_10_1021_acs_orglett_6b02911
crossref_primary_10_3390_molecules22122231
crossref_primary_10_3390_molecules26185550
crossref_primary_10_1016_j_neurobiolaging_2021_07_012
crossref_primary_10_1002_mds_25065
crossref_primary_10_1111_jnc_15516
crossref_primary_10_1038_s41467_022_32679_1
crossref_primary_10_1016_j_biopsych_2018_02_1172
crossref_primary_10_1111_jnc_14016
Cites_doi 10.1007/978-1-4757-9670-4_26
10.1002/ana.410410111
10.1136/jnnp.51.6.745
10.1097/00004647-199903000-00006
10.1016/j.ymthe.2006.05.005
10.1212/WNL.51.2.520
10.1002/mds.1139
10.1093/brain/119.2.585
10.1038/jcbfm.1985.87
10.1016/0020-708X(84)90194-7
10.1002/mds.20855
10.1017/S0317167100037884
10.1002/ana.410280412
10.1002/ana.10609
10.1523/JNEUROSCI.3729-08.2008
10.1016/0006-8993(92)91518-J
10.1016/0969-8043(93)90165-7
10.1111/j.1600-0404.2007.00818.x
10.1002/syn.20016
10.1212/WNL.44.7.1292
10.1016/S0024-3205(97)00300-7
10.1097/00004647-200202000-00011
10.1007/BF01250085
10.1002/mds.10579
10.1097/00004647-200104000-00015
10.2165/00023210-200519020-00006
10.1002/ddr.10223
10.1212/01.wnl.0000312381.29287.ff
10.1001/archneur.62.3.467
10.1073/pnas.89.22.10993
10.1006/exnr.2000.7470
10.1212/WNL.0b013e3181c29356
10.1155/2010/909348
ContentType Journal Article
Copyright Copyright © 2011 Movement Disorder Society
2015 INIST-CNRS
Copyright © 2011 Movement Disorder Society.
2011 Disorder Society 2011
Copyright_xml – notice: Copyright © 2011 Movement Disorder Society
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Movement Disorder Society.
– notice: 2011 Disorder Society 2011
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
5PM
DOI 10.1002/mds.23778
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8257
EndPage 2038
ExternalDocumentID PMC3278160
21638324
24570303
10_1002_mds_23778
MDS23778
ark_67375_WNG_688RJFBJ_N
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: P30 HD003352
– fundername: NCRR NIH HHS
  grantid: UL1 RR025011
– fundername: NCRR NIH HHS
  grantid: 1UL1RR025011
– fundername: National Center for Research Resources : NCRR
  grantid: UL1 RR025011-04 || RR
– fundername: National Center for Research Resources : NCRR
  grantid: UL1 RR025011-03 || RR
– fundername: National Center for Research Resources : NCRR
  grantid: UL1 RR025011-05 || RR
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1CY
1L6
1OB
1OC
1ZS
31~
33P
3PY
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
YCJ
ZGI
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
5PM
ID FETCH-LOGICAL-c4158-3b7d159099e67cccaf637ce5822912d1ab119e3df9271a4469d10c5309a1cdf93
IEDL.DBID DR2
ISSN 0885-3185
IngestDate Thu Aug 21 18:06:01 EDT 2025
Mon Jul 21 06:06:49 EDT 2025
Mon Jul 21 09:18:12 EDT 2025
Tue Jul 01 01:44:11 EDT 2025
Thu Apr 24 22:56:03 EDT 2025
Wed Jan 22 16:47:06 EST 2025
Wed Oct 30 09:51:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Human
Tyrosine
Nervous system diseases
Dopamine
Parkinson disease
Catecholamine
Fluorodopa (18F)
Metabolism
Parkinson's disease/radionuclide imaging
Cerebral disorder
dopamine/metabolism
Central nervous system disease
Neurotransmitter
Degenerative disease
Levodopa
Positron emission tomography
Comparative study
Extrapyramidal syndrome
Emission tomography
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2011 Movement Disorder Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4158-3b7d159099e67cccaf637ce5822912d1ab119e3df9271a4469d10c5309a1cdf93
Notes Funding agencies: This work was supported by the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Clinical Science Research and Development Service and University of Wisconsin Institute for Clinical and Translational Research, funded through a National Institutes of Health Clinical and Translational Science Award (grant number 1UL1RR025011). This work was supported with the use of facilities at the William S. Middleton Memorial Veterans Hospital Geriatric Research Education and Clinical Center and the Waisman Laboratory for Brain Imaging and Behavior, Madison, Wisconsin.
Full financial disclosures and author roles may be found in the online version of this article.
ark:/67375/WNG-688RJFBJ-N
Relevant conflicts of interest/financial disclosures: Nothing to report.
ArticleID:MDS23778
istex:522EE64365D119496B962B5766EE5C0A818FA428
Nothing to report.
This work was supported by the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Clinical Science Research and Development Service and University of Wisconsin Institute for Clinical and Translational Research, funded through a National Institutes of Health Clinical and Translational Science Award (grant number 1UL1RR025011). This work was supported with the use of facilities at the William S. Middleton Memorial Veterans Hospital Geriatric Research Education and Clinical Center and the Waisman Laboratory for Brain Imaging and Behavior, Madison, Wisconsin.
Relevant conflicts of interest/financial disclosures
Funding agencies
PMID 21638324
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3278160
pubmed_primary_21638324
pascalfrancis_primary_24570303
crossref_primary_10_1002_mds_23778
crossref_citationtrail_10_1002_mds_23778
wiley_primary_10_1002_mds_23778_MDS23778
istex_primary_ark_67375_WNG_688RJFBJ_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2011
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: September 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
PublicationTitle Movement disorders
PublicationTitleAlternate Mov. Disord
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
References Mamo D, Remington G, Nobrega J, et al. Effect of acute antipsychotic administration on dopamine synthesis in rodents and human subjects using 6-[F-18]-L-m-tyrosine. Synapse 2004; 52: 153-162.
Nickles R, Daube M, Ruth T. An oxygen-18 gas target for the production of [F-18] F2. Int J Appl Rad Isotopes 1984; 35: 117-123.
DeJesus OT. Positron-labeled DOPA analogs to image dopamine terminals. Drug Dev Res 2003; 59: 249-260.
Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry 1988; 51: 745-752.
Sossi V, de La Fuente-Fernandez R, Holden JE, et al. Increase in dopamine turnover occurs early in Parkinson's disease: evidence from a new modeling approach to PET 18 F-fluorodopa data. J Cereb Blood Flow Metab 2002; 22: 232-239.
Keating GM, Lyseng-Williamson KA. Tolcapone: a review of its use in the management of Parkinson's disease. CNS Drugs 2005; 19: 165-184.
Sossi V, Doudet DJ, Holden JE. A reversible tracer analysis approach to the study of effective dopamine turnover. J Cereb Blood Flow Metab 2001; 21: 469-476.
Adolfsson R, Gottfries CG, Roos BE, Winblad B. Post-mortem distribution of dopamine and homovanillic acid in human brain, variations related to age, and a review of the literature. J Neural Transm 1979; 45: 81-105.
Levy G, Louis ED, Cote L, et al. Contribution of aging to the severity of different motor signs in Parkinson disease. Arch Neurol 2005; 62: 467-472.
Bankiewicz KS, Forsayeth J, Eberling JL, et al. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 2006; 14: 564-570.
Nurmi E, Ruottinen HM, Bergman J, et al. Rate of progression in Parkinson's disease: a 6-[18F]fluoro-L-dopa PET study. Mov Disord 2001; 16: 608-615.
Thomas SR, Stabin MG, Chen CT, Samaratunga RC. MIRD Pamphlet No. 14 revised: A dynamic urinary bladder model for radiation dose calculations. Task Group of the MIRD Committee, Society of Nuclear Medicine. J Nucl Med 1999; 40: 102S-123S.
Brooks DJ, Ibanez V, Sawle GV, et al. Differing patterns of striatal 18F-dopa uptake in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 1990; 28: 547-555.
Christine CW, Starr PA, Larson PS, et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 2009; 73: 1662-1669.
Doudet DJ, Chan GLY, Jivan S, et al. Evaluation of dopaminergic presynaptic integrity: 6-[F-18]fluoro-L-dopa versus 6-[F-18]fluoro-L-m-tyrosine. J Cereb Blood Flow Metab 1999; 19: 278-287.
Braskie MN, Wilcox CE, Landau SM, et al. Relationship of striatal dopamine synthesis capacity to age and cognition. J Neurosci 2008; 28: 14320-14328.
Dejesus OT, Murali D, Nickles RJ. Synthesis of brominated and fluorinated ortho-tyrosine analogs as potential DOPA decarboxylase tracers. J Label Comp Radiopharm 1995; 37: 147-149.
Brown WD, Oakes TR, DeJesus OT, et al. Fluorine-18-fluoro-L-DOPA dosimetry with carbidopa pretreatment. J Nucl Med 1998; 39: 1884-1891.
Whone AL, Watts RL, Stoessl AJ, et al. Slower progression of Parkinson's disease with ropinirole versus levodopa: the REAL-PET study. Ann Neurol 2003; 54: 93-101.
Pirker W. Correlation of dopamine transporter imaging with parkinsonian motor handicap: how close is it? Mov Disord 2003; 18( Suppl 7): S43-S51.
Palhagen S, Heinonen EH, Hagglund J, et al. Selegiline delays the onset of disability in de novo parkinsonian patients. Swedish Parkinson Study Group. Neurology 1998; 51: 520-525.
Endres CJ, Swaminathan S, DeJesus OT, et al. Affinities of dopamine analogs for monoamine granular and plasma membrane transporters: implications for PET dopamine studies. Life Sci 1997; 60: 2399-2406.
Namavari M, Satyamurthy N, Phelps ME, Barrio JR. Synthesis of 6-[18F] and 4-[18F]fluoro-L-m-tyrosines via regioselective radiofluorodestannylation. Appl Radiat Isot 1993; 44: 527-536.
Eberling JL, Jagust WJ, Christine CW, et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 2008; 70: 1980-1983.
Garnett ES, Lang AE, Chirakal R, Firnau G, Nahmias C. A rostrocaudal gradient for aromatic acid decarboxylase in the human striatum. Can J Neurol Sci 1987; 14( 3 Suppl): 444-447.
Firnau G, Sood S, Chirakal R, Nahmias C, Garnett ES. Metabolites of 6-[18F]fluoro-L-dopa in human blood. J Nucl Med 1988; 29: 363-369.
DeJesus OT, Holden JE, Endres C, et al. Visualization of dopamine nerve terminals by positron tomography using [18F]fluoro-beta-fluoromethylene-m-tyrosine. Brain Res 1992; 597: 151-154.
Doudet DJ, Chan GL, Jivan S, et al. Evaluation of dopaminergic presynaptic integrity: 6-[18F]fluoro-L-dopa versus 6-[18F]fluoro-L-m-tyrosine. J Cereb Blood Flow Metab 1999; 19: 278-287.
Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 1985; 5: 584-590.
Erickson JD, Eiden LE, Hoffman BJ. Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci U S A 1992; 89: 10993-10997.
Sawle GV, Burn DJ, Morrish PK, et al. The effect of entacapone (OR-611) on brain [18F]-6-L-fluorodopa metabolism: implications for levodopa therapy of Parkinson's disease. Neurology 1994; 44: 1292-1297.
Wilcox CE, Braskie MN, Kluth JT, Jagust WJ. Overeating behavior and striatal dopamine with 6-[F]-Fluoro-L-m-Tyrosine PET. J Obes 2010 [Epub ahead of print].
Bruck A, Aalto S, Nurmi E, Vahlberg T, Bergman J, Rinne JO. Striatal subregional 6-[18F]fluoro-L-dopa uptake in early Parkinson's disease: a two-year follow-up study. Mov Disord 2006; 21: 958-963.
Morrish PK, Sawle GV, Brooks DJ. An [18F]dopa-PET and clinical study of the rate of progression in Parkinson's disease. Brain 1996; 119: 585-591.
Vingerhoets FJ, Schulzer M, Calne DB, Snow BJ. Which clinical sign of Parkinson's disease best reflects the nigrostriatal lesion? Ann Neurol 1997; 41: 58-64.
Eberling JL, Pivirotto P, Bringas J, Bankiewicz KS. Tremor is associated with PET measures of nigrostriatal dopamine function in MPTP-lesioned monkeys. Exp Neurol 2000; 165: 342-346.
1987; 14
1997; 60
1985; 5
2010
1995; 37
1997; 41
1993; 44
2006; 14
2005; 62
1994; 44
2003; 59
1995
2003; 18
1988; 51
1999; 40
2002
2008; 70
2003; 54
2001; 21
2004; 52
1998; 39
2005; 19
1979; 45
2009; 73
1988; 29
1999; 19
2006; 21
1990; 28
1992; 597
1984; 35
2002; 22
2008; 28
1987
2001; 16
2000; 165
1998; 51
1992; 89
1996; 119
e_1_2_6_31_2
e_1_2_6_30_2
Asselin R (e_1_2_6_9_2) 2002
e_1_2_6_18_2
e_1_2_6_19_2
Thomas SR (e_1_2_6_21_2) 1999; 40
Firnau G (e_1_2_6_27_2) 1988; 29
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
Brown WD (e_1_2_6_22_2) 1998; 39
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
Garnett ES (e_1_2_6_24_2) 1987; 14
Dejesus OT (e_1_2_6_29_2) 1995; 37
e_1_2_6_20_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_28_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: Namavari M, Satyamurthy N, Phelps ME, Barrio JR. Synthesis of 6-[18F] and 4-[18F]fluoro-L-m-tyrosines via regioselective radiofluorodestannylation. Appl Radiat Isot 1993; 44: 527-536.
– reference: Garnett ES, Lang AE, Chirakal R, Firnau G, Nahmias C. A rostrocaudal gradient for aromatic acid decarboxylase in the human striatum. Can J Neurol Sci 1987; 14( 3 Suppl): 444-447.
– reference: Nurmi E, Ruottinen HM, Bergman J, et al. Rate of progression in Parkinson's disease: a 6-[18F]fluoro-L-dopa PET study. Mov Disord 2001; 16: 608-615.
– reference: Thomas SR, Stabin MG, Chen CT, Samaratunga RC. MIRD Pamphlet No. 14 revised: A dynamic urinary bladder model for radiation dose calculations. Task Group of the MIRD Committee, Society of Nuclear Medicine. J Nucl Med 1999; 40: 102S-123S.
– reference: Bruck A, Aalto S, Nurmi E, Vahlberg T, Bergman J, Rinne JO. Striatal subregional 6-[18F]fluoro-L-dopa uptake in early Parkinson's disease: a two-year follow-up study. Mov Disord 2006; 21: 958-963.
– reference: Brown WD, Oakes TR, DeJesus OT, et al. Fluorine-18-fluoro-L-DOPA dosimetry with carbidopa pretreatment. J Nucl Med 1998; 39: 1884-1891.
– reference: Morrish PK, Sawle GV, Brooks DJ. An [18F]dopa-PET and clinical study of the rate of progression in Parkinson's disease. Brain 1996; 119: 585-591.
– reference: DeJesus OT, Holden JE, Endres C, et al. Visualization of dopamine nerve terminals by positron tomography using [18F]fluoro-beta-fluoromethylene-m-tyrosine. Brain Res 1992; 597: 151-154.
– reference: Brooks DJ, Ibanez V, Sawle GV, et al. Differing patterns of striatal 18F-dopa uptake in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 1990; 28: 547-555.
– reference: Sossi V, Doudet DJ, Holden JE. A reversible tracer analysis approach to the study of effective dopamine turnover. J Cereb Blood Flow Metab 2001; 21: 469-476.
– reference: Adolfsson R, Gottfries CG, Roos BE, Winblad B. Post-mortem distribution of dopamine and homovanillic acid in human brain, variations related to age, and a review of the literature. J Neural Transm 1979; 45: 81-105.
– reference: DeJesus OT. Positron-labeled DOPA analogs to image dopamine terminals. Drug Dev Res 2003; 59: 249-260.
– reference: Sossi V, de La Fuente-Fernandez R, Holden JE, et al. Increase in dopamine turnover occurs early in Parkinson's disease: evidence from a new modeling approach to PET 18 F-fluorodopa data. J Cereb Blood Flow Metab 2002; 22: 232-239.
– reference: Sawle GV, Burn DJ, Morrish PK, et al. The effect of entacapone (OR-611) on brain [18F]-6-L-fluorodopa metabolism: implications for levodopa therapy of Parkinson's disease. Neurology 1994; 44: 1292-1297.
– reference: Bankiewicz KS, Forsayeth J, Eberling JL, et al. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 2006; 14: 564-570.
– reference: Wilcox CE, Braskie MN, Kluth JT, Jagust WJ. Overeating behavior and striatal dopamine with 6-[F]-Fluoro-L-m-Tyrosine PET. J Obes 2010 [Epub ahead of print].
– reference: Palhagen S, Heinonen EH, Hagglund J, et al. Selegiline delays the onset of disability in de novo parkinsonian patients. Swedish Parkinson Study Group. Neurology 1998; 51: 520-525.
– reference: Vingerhoets FJ, Schulzer M, Calne DB, Snow BJ. Which clinical sign of Parkinson's disease best reflects the nigrostriatal lesion? Ann Neurol 1997; 41: 58-64.
– reference: Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 1985; 5: 584-590.
– reference: Braskie MN, Wilcox CE, Landau SM, et al. Relationship of striatal dopamine synthesis capacity to age and cognition. J Neurosci 2008; 28: 14320-14328.
– reference: Firnau G, Sood S, Chirakal R, Nahmias C, Garnett ES. Metabolites of 6-[18F]fluoro-L-dopa in human blood. J Nucl Med 1988; 29: 363-369.
– reference: Dejesus OT, Murali D, Nickles RJ. Synthesis of brominated and fluorinated ortho-tyrosine analogs as potential DOPA decarboxylase tracers. J Label Comp Radiopharm 1995; 37: 147-149.
– reference: Pirker W. Correlation of dopamine transporter imaging with parkinsonian motor handicap: how close is it? Mov Disord 2003; 18( Suppl 7): S43-S51.
– reference: Doudet DJ, Chan GLY, Jivan S, et al. Evaluation of dopaminergic presynaptic integrity: 6-[F-18]fluoro-L-dopa versus 6-[F-18]fluoro-L-m-tyrosine. J Cereb Blood Flow Metab 1999; 19: 278-287.
– reference: Levy G, Louis ED, Cote L, et al. Contribution of aging to the severity of different motor signs in Parkinson disease. Arch Neurol 2005; 62: 467-472.
– reference: Keating GM, Lyseng-Williamson KA. Tolcapone: a review of its use in the management of Parkinson's disease. CNS Drugs 2005; 19: 165-184.
– reference: Christine CW, Starr PA, Larson PS, et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 2009; 73: 1662-1669.
– reference: Nickles R, Daube M, Ruth T. An oxygen-18 gas target for the production of [F-18] F2. Int J Appl Rad Isotopes 1984; 35: 117-123.
– reference: Eberling JL, Jagust WJ, Christine CW, et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 2008; 70: 1980-1983.
– reference: Doudet DJ, Chan GL, Jivan S, et al. Evaluation of dopaminergic presynaptic integrity: 6-[18F]fluoro-L-dopa versus 6-[18F]fluoro-L-m-tyrosine. J Cereb Blood Flow Metab 1999; 19: 278-287.
– reference: Erickson JD, Eiden LE, Hoffman BJ. Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci U S A 1992; 89: 10993-10997.
– reference: Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry 1988; 51: 745-752.
– reference: Whone AL, Watts RL, Stoessl AJ, et al. Slower progression of Parkinson's disease with ropinirole versus levodopa: the REAL-PET study. Ann Neurol 2003; 54: 93-101.
– reference: Endres CJ, Swaminathan S, DeJesus OT, et al. Affinities of dopamine analogs for monoamine granular and plasma membrane transporters: implications for PET dopamine studies. Life Sci 1997; 60: 2399-2406.
– reference: Eberling JL, Pivirotto P, Bringas J, Bankiewicz KS. Tremor is associated with PET measures of nigrostriatal dopamine function in MPTP-lesioned monkeys. Exp Neurol 2000; 165: 342-346.
– reference: Mamo D, Remington G, Nobrega J, et al. Effect of acute antipsychotic administration on dopamine synthesis in rodents and human subjects using 6-[F-18]-L-m-tyrosine. Synapse 2004; 52: 153-162.
– volume: 597
  start-page: 151
  year: 1992
  end-page: 154
  article-title: Visualization of dopamine nerve terminals by positron tomography using [18F]fluoro‐beta‐fluoromethylene‐m‐tyrosine
  publication-title: Brain Res
– volume: 19
  start-page: 278
  year: 1999
  end-page: 287
  article-title: Evaluation of dopaminergic presynaptic integrity: 6‐[18F]fluoro‐L‐dopa versus 6‐[18F]fluoro‐L‐m‐tyrosine
  publication-title: J Cereb Blood Flow Metab
– volume: 119
  start-page: 585
  year: 1996
  end-page: 591
  article-title: An [18F]dopa‐PET and clinical study of the rate of progression in Parkinson's disease
  publication-title: Brain
– volume: 16
  start-page: 608
  year: 2001
  end-page: 615
  article-title: Rate of progression in Parkinson's disease: a 6‐[18F]fluoro‐L‐dopa PET study
  publication-title: Mov Disord
– volume: 39
  start-page: 1884
  year: 1998
  end-page: 1891
  article-title: Fluorine‐18‐fluoro‐L‐DOPA dosimetry with carbidopa pretreatment
  publication-title: J Nucl Med
– start-page: 237
  year: 1995
  end-page: 247
– volume: 59
  start-page: 249
  year: 2003
  end-page: 260
  article-title: Positron‐labeled DOPA analogs to image dopamine terminals
  publication-title: Drug Dev Res
– volume: 44
  start-page: 1292
  year: 1994
  end-page: 1297
  article-title: The effect of entacapone (OR‐611) on brain [18F]‐6‐L‐fluorodopa metabolism: implications for levodopa therapy of Parkinson's disease
  publication-title: Neurology
– start-page: 153
  year: 1987
  end-page: 163
– volume: 62
  start-page: 467
  year: 2005
  end-page: 472
  article-title: Contribution of aging to the severity of different motor signs in Parkinson disease
  publication-title: Arch Neurol
– volume: 21
  start-page: 958
  year: 2006
  end-page: 963
  article-title: Striatal subregional 6‐[18F]fluoro‐L‐dopa uptake in early Parkinson's disease: a two‐year follow‐up study
  publication-title: Mov Disord
– volume: 28
  start-page: 547
  year: 1990
  end-page: 555
  article-title: Differing patterns of striatal 18F‐dopa uptake in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy
  publication-title: Ann Neurol
– volume: 21
  start-page: 469
  year: 2001
  end-page: 476
  article-title: A reversible tracer analysis approach to the study of effective dopamine turnover
  publication-title: J Cereb Blood Flow Metab
– volume: 51
  start-page: 745
  year: 1988
  end-page: 752
  article-title: The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 60
  start-page: 2399
  year: 1997
  end-page: 2406
  article-title: Affinities of dopamine analogs for monoamine granular and plasma membrane transporters: implications for PET dopamine studies
  publication-title: Life Sci
– volume: 18
  start-page: S43
  issue: Suppl 7
  year: 2003
  end-page: S51
  article-title: Correlation of dopamine transporter imaging with parkinsonian motor handicap: how close is it?
  publication-title: Mov Disord
– volume: 40
  start-page: 102S
  year: 1999
  end-page: 123S
  article-title: MIRD Pamphlet No. 14 revised: A dynamic urinary bladder model for radiation dose calculations. Task Group of the MIRD Committee, Society of Nuclear Medicine
  publication-title: J Nucl Med
– volume: 73
  start-page: 1662
  year: 2009
  end-page: 1669
  article-title: Safety and tolerability of putaminal AADC gene therapy for Parkinson disease
  publication-title: Neurology
– volume: 5
  start-page: 584
  year: 1985
  end-page: 590
  article-title: Graphical evaluation of blood‐to‐brain transfer constants from multiple‐time uptake data. Generalizations
  publication-title: J Cereb Blood Flow Metab
– volume: 19
  start-page: 278
  year: 1999
  end-page: 287
  article-title: Evaluation of dopaminergic presynaptic integrity: 6‐[F‐18]fluoro‐L‐dopa versus 6‐[F‐18]fluoro‐L‐m‐tyrosine
  publication-title: J Cereb Blood Flow Metab
– volume: 37
  start-page: 147
  year: 1995
  end-page: 149
  article-title: Synthesis of brominated and fluorinated ortho‐tyrosine analogs as potential DOPA decarboxylase tracers
  publication-title: J Label Comp Radiopharm
– volume: 51
  start-page: 520
  year: 1998
  end-page: 525
  article-title: Selegiline delays the onset of disability in de novo parkinsonian patients. Swedish Parkinson Study Group
  publication-title: Neurology
– volume: 45
  start-page: 81
  year: 1979
  end-page: 105
  article-title: Post‐mortem distribution of dopamine and homovanillic acid in human brain, variations related to age, and a review of the literature
  publication-title: J Neural Transm
– volume: 44
  start-page: 527
  year: 1993
  end-page: 536
  article-title: Synthesis of 6‐[18F] and 4‐[18F]fluoro‐L‐m‐tyrosines via regioselective radiofluorodestannylation
  publication-title: Appl Radiat Isot
– volume: 41
  start-page: 58
  year: 1997
  end-page: 64
  article-title: Which clinical sign of Parkinson's disease best reflects the nigrostriatal lesion?
  publication-title: Ann Neurol
– volume: 54
  start-page: 93
  year: 2003
  end-page: 101
  article-title: Slower progression of Parkinson's disease with ropinirole versus levodopa: the REAL‐PET study
  publication-title: Ann Neurol
– volume: 19
  start-page: 165
  year: 2005
  end-page: 184
  article-title: Tolcapone: a review of its use in the management of Parkinson's disease
  publication-title: CNS Drugs
– year: 2002
– volume: 70
  start-page: 1980
  year: 2008
  end-page: 1983
  article-title: Results from a phase I safety trial of hAADC gene therapy for Parkinson disease
  publication-title: Neurology
– year: 2010
  article-title: Overeating behavior and striatal dopamine with 6‐[F]‐Fluoro‐L‐m‐Tyrosine PET
  publication-title: J Obes
– volume: 28
  start-page: 14320
  year: 2008
  end-page: 14328
  article-title: Relationship of striatal dopamine synthesis capacity to age and cognition
  publication-title: J Neurosci
– volume: 89
  start-page: 10993
  year: 1992
  end-page: 10997
  article-title: Expression cloning of a reserpine‐sensitive vesicular monoamine transporter
  publication-title: Proc Natl Acad Sci U S A
– volume: 29
  start-page: 363
  year: 1988
  end-page: 369
  article-title: Metabolites of 6‐[18F]fluoro‐L‐dopa in human blood
  publication-title: J Nucl Med
– volume: 14
  start-page: 564
  year: 2006
  end-page: 570
  article-title: Long‐term clinical improvement in MPTP‐lesioned primates after gene therapy with AAV‐hAADC
  publication-title: Mol Ther
– volume: 14
  start-page: 444
  issue: 3 Suppl
  year: 1987
  end-page: 447
  article-title: A rostrocaudal gradient for aromatic acid decarboxylase in the human striatum
  publication-title: Can J Neurol Sci
– volume: 22
  start-page: 232
  year: 2002
  end-page: 239
  article-title: Increase in dopamine turnover occurs early in Parkinson's disease: evidence from a new modeling approach to PET 18 F‐fluorodopa data
  publication-title: J Cereb Blood Flow Metab
– volume: 165
  start-page: 342
  year: 2000
  end-page: 346
  article-title: Tremor is associated with PET measures of nigrostriatal dopamine function in MPTP‐lesioned monkeys
  publication-title: Exp Neurol
– volume: 52
  start-page: 153
  year: 2004
  end-page: 162
  article-title: Effect of acute antipsychotic administration on dopamine synthesis in rodents and human subjects using 6‐[F‐18]‐L‐m‐tyrosine
  publication-title: Synapse
– volume: 35
  start-page: 117
  year: 1984
  end-page: 123
  article-title: An oxygen‐18 gas target for the production of [F‐18] F2
  publication-title: Int J Appl Rad Isotopes
– ident: e_1_2_6_8_2
  doi: 10.1007/978-1-4757-9670-4_26
– ident: e_1_2_6_36_2
  doi: 10.1002/ana.410410111
– ident: e_1_2_6_13_2
  doi: 10.1136/jnnp.51.6.745
– ident: e_1_2_6_34_2
  doi: 10.1097/00004647-199903000-00006
– ident: e_1_2_6_39_2
  doi: 10.1016/j.ymthe.2006.05.005
– ident: e_1_2_6_40_2
  doi: 10.1212/WNL.51.2.520
– ident: e_1_2_6_6_2
  doi: 10.1097/00004647-199903000-00006
– ident: e_1_2_6_20_2
  doi: 10.1002/mds.1139
– ident: e_1_2_6_4_2
  doi: 10.1093/brain/119.2.585
– ident: e_1_2_6_18_2
  doi: 10.1038/jcbfm.1985.87
– volume: 40
  start-page: 102S
  year: 1999
  ident: e_1_2_6_21_2
  article-title: MIRD Pamphlet No. 14 revised: A dynamic urinary bladder model for radiation dose calculations. Task Group of the MIRD Committee, Society of Nuclear Medicine
  publication-title: J Nucl Med
– volume: 29
  start-page: 363
  year: 1988
  ident: e_1_2_6_27_2
  article-title: Metabolites of 6‐[18F]fluoro‐L‐dopa in human blood
  publication-title: J Nucl Med
– volume-title: Brain Imaging Using PET
  year: 2002
  ident: e_1_2_6_9_2
– ident: e_1_2_6_16_2
  doi: 10.1016/0020-708X(84)90194-7
– ident: e_1_2_6_23_2
  doi: 10.1002/mds.20855
– volume: 37
  start-page: 147
  year: 1995
  ident: e_1_2_6_29_2
  article-title: Synthesis of brominated and fluorinated ortho‐tyrosine analogs as potential DOPA decarboxylase tracers
  publication-title: J Label Comp Radiopharm
– volume: 14
  start-page: 444
  issue: 3
  year: 1987
  ident: e_1_2_6_24_2
  article-title: A rostrocaudal gradient for aromatic acid decarboxylase in the human striatum
  publication-title: Can J Neurol Sci
  doi: 10.1017/S0317167100037884
– ident: e_1_2_6_32_2
  doi: 10.1002/ana.410280412
– ident: e_1_2_6_2_2
  doi: 10.1002/ana.10609
– volume: 39
  start-page: 1884
  year: 1998
  ident: e_1_2_6_22_2
  article-title: Fluorine‐18‐fluoro‐L‐DOPA dosimetry with carbidopa pretreatment
  publication-title: J Nucl Med
– ident: e_1_2_6_33_2
  doi: 10.1523/JNEUROSCI.3729-08.2008
– ident: e_1_2_6_7_2
  doi: 10.1016/0006-8993(92)91518-J
– ident: e_1_2_6_17_2
  doi: 10.1016/0969-8043(93)90165-7
– ident: e_1_2_6_14_2
  doi: 10.1111/j.1600-0404.2007.00818.x
– ident: e_1_2_6_10_2
  doi: 10.1002/syn.20016
– ident: e_1_2_6_35_2
  doi: 10.1212/WNL.44.7.1292
– ident: e_1_2_6_26_2
  doi: 10.1016/S0024-3205(97)00300-7
– ident: e_1_2_6_30_2
  doi: 10.1097/00004647-200202000-00011
– ident: e_1_2_6_31_2
  doi: 10.1007/BF01250085
– ident: e_1_2_6_3_2
  doi: 10.1002/mds.10579
– ident: e_1_2_6_5_2
  doi: 10.1097/00004647-200104000-00015
– ident: e_1_2_6_15_2
  doi: 10.2165/00023210-200519020-00006
– ident: e_1_2_6_28_2
  doi: 10.1002/ddr.10223
– ident: e_1_2_6_11_2
  doi: 10.1212/01.wnl.0000312381.29287.ff
– ident: e_1_2_6_19_2
  doi: 10.1001/archneur.62.3.467
– ident: e_1_2_6_25_2
  doi: 10.1073/pnas.89.22.10993
– ident: e_1_2_6_37_2
  doi: 10.1006/exnr.2000.7470
– ident: e_1_2_6_38_2
  doi: 10.1212/WNL.0b013e3181c29356
– ident: e_1_2_6_12_2
  doi: 10.1155/2010/909348
SSID ssj0011516
Score 2.0862854
Snippet Progression of Parkinson's disease symptoms is imperfectly correlated with positron emission tomography biomarkers for dopamine biosynthetic pathways. The...
Progression of Parkinson’s disease symptoms is imperfectly correlated with positron emission tomography biomarkers for dopamine biosynthetic pathways. The...
SourceID pubmedcentral
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 2032
SubjectTerms Aged
Biological and medical sciences
Brain - diagnostic imaging
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Dihydroxyphenylalanine - analogs & derivatives
Dihydroxyphenylalanine - pharmacokinetics
dopamine/metabolism
Female
Fluorine Radioisotopes
Humans
Male
Medical sciences
Middle Aged
Neurology
Parkinson Disease - diagnostic imaging
Parkinson Disease - pathology
Parkinson's disease/radionuclide imaging
positron emission tomography
Severity of Illness Index
Tomography, Emission-Computed
Tyrosine - analogs & derivatives
Tyrosine - pharmacokinetics
Title A within-subject comparison of 6-[18F]fluoro-m-tyrosine and 6-[18F]fluoro-L-dopa in Parkinson's disease
URI https://api.istex.fr/ark:/67375/WNG-688RJFBJ-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.23778
https://www.ncbi.nlm.nih.gov/pubmed/21638324
https://pubmed.ncbi.nlm.nih.gov/PMC3278160
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIiEuQPkN0MpCCLhkG9sbOxGntrBUK3YPhYpKgKL4T6xos6jZSMCJR-AZeRJmnGzarYqEOFhK4nEUT8bxZ2fmG0KemNKlznETa1PKeOh8HuuM-Zh7p0Tqc52lGOA8mcr9w-H4KD1aIy-WsTAtP0S_4YYjI3yvcYCXut4-Iw09sfWAC6Uw0Bd9tRAQHfTUUQB0QtpTGERpiBBesgolfLtvuTIXXUG1fkPfyLIG9fg2r8W5iemi0-R5MBtmo9EN8nHZj9YJ5cugWeiB-XGB4vE_O3qTXO9QKt1pzWqDrLnqFrk66f7D3ybNDsUN3Fn1--evutG4l0NNn9GQzj2VUPOBZaNP_riZn87h7ATK4jsoAu5Ay8peIvIGioVVPJ1VFMOxQ2Tas5p2f5HukMPRq3d7-3GXwCE2gAuyWGhlAS4BCHVSGbAVL4UyLkWSecYtKzVjuRPW51yxEhamuWWJSUWSl8zAVXGXrFfzyt0n1PoEX6U1vjRDZZVOnJReJk7r3IvMR-T58lUWpmM3xyQbx0XLy8wLUGMR1BiRx73o15bS4zKhp8EeegnoNPrAqbR4P31dyCw7GI92x8U0IlsrBtM34EMkN0tERO61hnNWgxgYgGxE1IpJ9QJI-b1aU80-B-pvwVXGZAK9DRbz9-cvJi_fhoMH_y76kFxrd8zRg-4RWV-cNm4TINdCb4Wx9QdspjDc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVgIuvFvMo6wQAi5Ovd5415a4lEcIIcmhtKISqizvS0S0DmpiifbET-A38kuYXTtuUxUJcbBke8eWdzzr_XY88w3AM1WYxJhYhVIVPOwam4UypTaMrREssZlME5fgPBrz_l53sJ_sr8CrRS5MzQ_ROtzcyPDfazfAnUN664w19EjPOjETIr0Ca66it19Q7bTkUQh1fOFTHEaJzxFe8ApF8VZ76dJstOYU-8NFRxYzVJCtK1ucm5ouhk2eh7N-PurdhINFT-owlG-dai476vQCyeP_dvUW3GiAKtmuLes2rJjyDlwdNb_i70K1TZwPd1L-_vlrVknnziGqLWpIppZwbPlC096BPaymx1M8OsJtfoKawDuQotSXiAxx07iQJ5OSuIxsn5z2YkaaH0n3YK_3bvdNP2xqOIQKoUEaMik0IibEoYYLheZiORPKJI5nnsaaFpLSzDBts1jQAtemmaaRSliUFVThWbYOq-W0NPeBaBu5d6mVLVRXaCEjw7nlkZEysyy1AbxcvMtcNQTnrs7GYV5TM8c5qjH3agzgaSv6vWb1uEzouTeIVgI77cLgRJJ_Hr_PeZruDHqvB_k4gM0li2kviLuO3yxiAWzUlnPW4mAwYtkAxJJNtQKO9Xu5pZx89ezfLBYp5RH21pvM358_H7395Hce_LvoE7jW3x0N8-GH8ceHcL12oLuAukewOj-uzGNEYHO56QfaHzbaNPc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VVqp44X4JlxIhBLxkG8eJ7YinwrKUpbtChYpKgKL4Jla02aq7kYAnPoFv5EsYO9m0WxUJ8WApicdRPBnHx87MGYBHqjSZMYmKpCpZlBqbR1IQGyXWcJrZXIrMBTiPxmx7Lx3uZ_sr8GwRC9PwQ3Qbbm5k-O-1G-BH2m6ekIYe6lkvoZyLC7CWslg4k-7vdtxRiHR83lMcRZkPEV7QCsXJZtd0aTJac3r95pwjyxnqxzaJLU7NTGe9Jk-jWT8dDS7Dp0VHGi-Ur716LnvqxxmOx__s6RW41MLUcKuxq6uwYqprsD5qf8Rfh3ordDu4k-r3z1-zWrrNnFB1KQ3DqQ0Z1nwkYvDZHtTT4ymeHWKZf0dF4B3CstLniOxg0biMDydV6OKxfWjak1nY_ka6AXuDl-9fbEdtBodIITAQEZVcI15CFGoYV2gsllGuTOZY5kmiSSkJyQ3VNk84KXFlmmsSq4zGeUkUXqU3YbWaVuY2hNrG7lVqZUuVcs1lbBizLDZS5pYKG8DTxassVEtv7rJsHBQNMXNSoBoLr8YAHnaiRw2nx3lCj709dBLYaecEx7Piw_hVwYTYHQ6eD4txABtLBtM1SFLHbhbTAG41hnNS40AwItkA-JJJdQKO83u5ppp88dzfNOGCsBh76y3m789fjPrv_MGdfxd9AOtv-4Ni5_X4zV242OyeO2-6e7A6P67NfYRfc7nhh9kfrAQzrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+within-subject+comparison+of+6-%5B18F%5Dfluoro-m-tyrosine+and+6-%5B18F%5Dfluoro-L-dopa+in+Parkinson%27s+disease&rft.jtitle=Movement+disorders&rft.au=Gallagher%2C+Catherine+L.&rft.au=Christian%2C+Bradley+T.&rft.au=Holden%2C+James+E.&rft.au=Dejesus%2C+Onofre+T.&rft.date=2011-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0885-3185&rft.eissn=1531-8257&rft.volume=26&rft.issue=11&rft.spage=2032&rft.epage=2038&rft_id=info:doi/10.1002%2Fmds.23778&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_688RJFBJ_N
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3185&client=summon