Fungal community responses to precipitation
Understanding how fungal communities are affected by precipitation is an essential aspect of predicting soil functional responses to future climate change and the consequences of those responses for the soil carbon cycle. We tracked fungal abundance, fungal community composition, and soil carbon acr...
Saved in:
Published in | Global change biology Vol. 17; no. 4; pp. 1637 - 1645 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.04.2011
Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding how fungal communities are affected by precipitation is an essential aspect of predicting soil functional responses to future climate change and the consequences of those responses for the soil carbon cycle. We tracked fungal abundance, fungal community composition, and soil carbon across 4 years in long-term field manipulations of rainfall in northern California. Fungi responded directly to rainfall levels, with more abundant, diverse, and consistent communities predominating under drought conditions, and less abundant, less diverse, and more variable communities emerging during wetter periods and in rain-addition treatments. Soil carbon storage itself did not vary with rainfall amendments, but increased decomposition rates foreshadow longer-term losses of soil carbon under conditions of extended seasonal rainfall. The repeated recovery of fungal diversity and abundance during periodic drought events suggests that species with a wide range of environmental tolerances coexist in this community, consistent with a storage effect in soil fungi. Increased diversity during dry periods further suggests that drought stress moderates competition among fungal taxa. Based on the responses observed here, we suggest that there may be a relationship between the timescale at which soil microbial communities experience natural environmental fluctuations and their ability to respond to future environmental change. |
---|---|
AbstractList | Understanding how fungal communities are affected by precipitation is an essential aspect of predicting soil functional responses to future climate change and the consequences of those responses for the soil carbon cycle. We tracked fungal abundance, fungal community composition, and soil carbon across 4 years in long‐term field manipulations of rainfall in northern California. Fungi responded directly to rainfall levels, with more abundant, diverse, and consistent communities predominating under drought conditions, and less abundant, less diverse, and more variable communities emerging during wetter periods and in rain‐addition treatments. Soil carbon storage itself did not vary with rainfall amendments, but increased decomposition rates foreshadow longer‐term losses of soil carbon under conditions of extended seasonal rainfall. The repeated recovery of fungal diversity and abundance during periodic drought events suggests that species with a wide range of environmental tolerances coexist in this community, consistent with a storage effect in soil fungi. Increased diversity during dry periods further suggests that drought stress moderates competition among fungal taxa. Based on the responses observed here, we suggest that there may be a relationship between the timescale at which soil microbial communities experience natural environmental fluctuations and their ability to respond to future environmental change. Understanding how fungal communities are affected by precipitation is an essential aspect of predicting soil functional responses to future climate change and the consequences of those responses for the soil carbon cycle. We tracked fungal abundance, fungal community composition, and soil carbon across 4 years in long-term field manipulations of rainfall in northern California. Fungi responded directly to rainfall levels, with more abundant, diverse, and consistent communities predominating under drought conditions, and less abundant, less diverse, and more variable communities emerging during wetter periods and in rain-addition treatments. Soil carbon storage itself did not vary with rainfall amendments, but increased decomposition rates foreshadow longer-term losses of soil carbon under conditions of extended seasonal rainfall. The repeated recovery of fungal diversity and abundance during periodic drought events suggests that species with a wide range of environmental tolerances coexist in this community, consistent with a storage effect in soil fungi. Increased diversity during dry periods further suggests that drought stress moderates competition among fungal taxa. Based on the responses observed here, we suggest that there may be a relationship between the timescale at which soil microbial communities experience natural environmental fluctuations and their ability to respond to future environmental change. [PUBLICATION ABSTRACT] |
Author | SUTTLE, KENWYN BLAKE THOMSEN, MEREDITH A. HUGUET, VALERIE HAWKES, CHRISTINE V. KIVLIN, STEPHANIE N. ROCCA, JENNIFER D. |
Author_xml | – sequence: 1 fullname: HAWKES, CHRISTINE V – sequence: 2 fullname: KIVLIN, STEPHANIE N – sequence: 3 fullname: ROCCA, JENNIFER D – sequence: 4 fullname: HUGUET, VALERIE – sequence: 5 fullname: THOMSEN, MEREDITH A – sequence: 6 fullname: SUTTLE, KENWYN BLAKE |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23944823$$DView record in Pascal Francis |
BookMark | eNpdkE9vEzEQxS1UJNrAZ2CFhDigDf7vzYEDjUgKVCBRKhCX0cR4K4eNvdi7Ivn29ZIqB3zxaObN05vfBTkLMThCKkbnrLw32zkTWtVcNnrOaelSLriZ7x-R89PgbKqVrBll4gm5yHlLKRWc6nPyejWGO-wqG3e7MfjhUCWX-xiyy9UQqz4563s_4OBjeEoet9hl9-zhn5Hb1ftvy6v6-sv6w_LddW0lU6Y2DRrDHVOiRao3wjqjtWJM6taKX8jtxi64YhwZUy3alqLblLZrmbTacBQz8uro26f4Z3R5gJ3P1nUdBhfHDI2mwmhWDp2RF_8pt3FMoYSDRkluJJeqiF4-iDBb7NqEwfoMffI7TAfgYiFlw0XRvT3q_vrOHU5zRmECDVuYeMLEEybQ8A807GG9vJyqsl8f930e3P60j-k3aCOMgu-f13Dz8dPXHyv5E6Zcz4_6FiPgXSqZbm-Ks6BsUfAUx3sSNIww |
CitedBy_id | crossref_primary_10_1002_mbo3_1201 crossref_primary_10_1016_j_scitotenv_2024_170111 crossref_primary_10_1016_j_agwat_2021_106749 crossref_primary_10_1111_nph_14990 crossref_primary_10_1093_femsec_fix069 crossref_primary_10_1007_s11104_012_1534_7 crossref_primary_10_1016_j_apsoil_2022_104712 crossref_primary_10_1016_j_soilbio_2021_108538 crossref_primary_10_1038_s41396_020_0655_x crossref_primary_10_1016_j_bjm_2017_04_005 crossref_primary_10_1029_2023JG007826 crossref_primary_10_3389_fmicb_2019_01220 crossref_primary_10_1525_elementa_2020_00144 crossref_primary_10_3389_fmicb_2023_1036905 crossref_primary_10_1016_j_pedobi_2015_01_001 crossref_primary_10_1007_s42832_020_0026_6 crossref_primary_10_1007_s11104_021_04842_y crossref_primary_10_1016_j_catena_2023_107018 crossref_primary_10_1016_j_soilbio_2017_11_004 crossref_primary_10_1111_gcb_13790 crossref_primary_10_1525_elementa_2021_00110 crossref_primary_10_1016_j_soilbio_2020_107717 crossref_primary_10_1111_1574_6941_12197 crossref_primary_10_1111_1758_2229_13251 crossref_primary_10_1111_gcb_14754 crossref_primary_10_1002_ecy_2922 crossref_primary_10_1016_j_geoderma_2019_02_016 crossref_primary_10_1016_j_envpol_2017_01_045 crossref_primary_10_1016_j_funeco_2016_08_008 crossref_primary_10_1093_jpe_rtae011 crossref_primary_10_1038_s41598_023_29498_9 crossref_primary_10_1111_1365_2745_12360 crossref_primary_10_1007_s11104_013_1855_1 crossref_primary_10_1016_j_geoderma_2021_115536 crossref_primary_10_1007_s00248_014_0443_0 crossref_primary_10_3724_SP_J_1011_2012_01586 crossref_primary_10_1007_s00374_016_1165_x crossref_primary_10_1016_j_apsoil_2012_03_003 crossref_primary_10_1002_mbo3_874 crossref_primary_10_1111_1758_2229_13223 crossref_primary_10_1371_journal_pone_0241794 crossref_primary_10_1002_ecm_1529 crossref_primary_10_1038_srep31066 crossref_primary_10_1007_s00572_018_0859_3 crossref_primary_10_1016_j_isci_2022_103893 crossref_primary_10_1016_j_geoderma_2015_03_018 crossref_primary_10_1007_s10021_019_00439_w crossref_primary_10_1111_1365_2435_12467 crossref_primary_10_3390_ijms21041513 crossref_primary_10_3390_environments9040052 crossref_primary_10_1016_j_funeco_2014_04_004 crossref_primary_10_1016_j_scitotenv_2022_161306 crossref_primary_10_1093_femsec_fix156 crossref_primary_10_3389_fmicb_2019_00117 crossref_primary_10_1007_s00374_021_01615_8 crossref_primary_10_1007_s00442_014_3176_3 crossref_primary_10_1007_s10533_011_9636_5 crossref_primary_10_1016_j_ecoleng_2021_106467 crossref_primary_10_1016_j_apsoil_2021_104218 crossref_primary_10_1016_j_ejop_2013_12_005 crossref_primary_10_1371_journal_pone_0206441 crossref_primary_10_31548_agr_13_2__2022_14_26 crossref_primary_10_3390_agronomy13051417 crossref_primary_10_1016_j_soilbio_2018_04_007 crossref_primary_10_1111_j_1365_2745_2011_01894_x crossref_primary_10_1111_1462_2920_13112 crossref_primary_10_1111_nph_15088 crossref_primary_10_1093_aobpla_plaa040 crossref_primary_10_3390_jof8040384 crossref_primary_10_1111_ejss_13133 crossref_primary_10_1038_s41396_020_0614_6 crossref_primary_10_1038_srep24317 crossref_primary_10_1016_j_soilbio_2015_06_022 crossref_primary_10_1111_1365_2745_13267 crossref_primary_10_1016_j_catena_2022_106120 crossref_primary_10_1016_j_pedobi_2022_150820 crossref_primary_10_1007_s11368_022_03283_z crossref_primary_10_1016_j_geoderma_2020_114812 crossref_primary_10_1111_nph_12376 crossref_primary_10_1111_mec_12160 crossref_primary_10_1007_s00248_022_02092_8 crossref_primary_10_1371_journal_pone_0240037 crossref_primary_10_3389_fmicb_2016_01032 crossref_primary_10_1111_1758_2229_13211 crossref_primary_10_1111_nph_14661 crossref_primary_10_1016_j_funbio_2024_05_001 crossref_primary_10_1007_s11104_012_1156_0 crossref_primary_10_1007_s00572_015_0638_3 crossref_primary_10_1111_mec_14694 crossref_primary_10_1007_s11104_018_3796_1 crossref_primary_10_1002_ece3_2025 crossref_primary_10_1111_gcb_12418 crossref_primary_10_1111_mec_15423 crossref_primary_10_3389_fpls_2018_01842 crossref_primary_10_1007_s11104_024_06625_7 crossref_primary_10_3389_fpls_2018_01605 crossref_primary_10_3389_fmicb_2023_1106888 crossref_primary_10_1016_j_scitotenv_2021_150428 crossref_primary_10_1128_AEM_02050_12 crossref_primary_10_1007_s42832_023_0225_z crossref_primary_10_1007_s10533_019_00569_2 crossref_primary_10_1016_j_jaridenv_2019_104020 crossref_primary_10_1007_s11258_018_0893_4 crossref_primary_10_1016_j_apsoil_2020_103719 crossref_primary_10_3390_jof9080829 crossref_primary_10_1016_j_scitotenv_2021_146748 crossref_primary_10_1007_s00248_011_9973_x crossref_primary_10_1016_j_plantsci_2023_111898 crossref_primary_10_1007_s10533_019_00606_0 crossref_primary_10_1007_s42832_022_0147_1 crossref_primary_10_1007_s00248_016_0795_8 crossref_primary_10_1128_AEM_02523_18 crossref_primary_10_1111_1462_2920_13342 crossref_primary_10_1093_aob_mcab067 crossref_primary_10_1111_ecog_01226 crossref_primary_10_1016_j_apsoil_2018_06_014 crossref_primary_10_1007_s10533_011_9638_3 crossref_primary_10_3390_w14020142 crossref_primary_10_1111_1365_2745_12064 crossref_primary_10_1111_ejss_12488 crossref_primary_10_1016_j_scitotenv_2024_170017 crossref_primary_10_1088_2976_601X_ad382e crossref_primary_10_3389_fmicb_2018_00294 crossref_primary_10_1007_s00572_022_01093_2 crossref_primary_10_1016_j_soilbio_2019_107693 crossref_primary_10_1016_j_soilbio_2011_07_012 crossref_primary_10_3390_f12030353 crossref_primary_10_1093_jpe_rtaa038 crossref_primary_10_1111_nyas_14325 crossref_primary_10_1002_ecs2_1879 crossref_primary_10_1016_j_gecco_2020_e01003 crossref_primary_10_2134_agronj2016_10_0626 crossref_primary_10_1016_j_agee_2017_07_031 crossref_primary_10_1590_18069657rbcs20180031 crossref_primary_10_1111_1365_2745_13505 crossref_primary_10_1590_0001_3765202220210554 crossref_primary_10_1016_j_apsoil_2023_104958 crossref_primary_10_1007_s11368_020_02629_9 crossref_primary_10_1007_s11368_016_1591_2 crossref_primary_10_1007_s00248_017_1047_2 crossref_primary_10_1007_s10725_023_01062_5 crossref_primary_10_1186_s41610_017_0032_5 crossref_primary_10_1016_j_soilbio_2013_09_031 crossref_primary_10_1016_j_soilbio_2013_01_018 crossref_primary_10_1111_j_1365_2486_2012_02667_x crossref_primary_10_1007_s10533_011_9633_8 crossref_primary_10_1890_13_0500_1 crossref_primary_10_1111_1365_2745_13292 crossref_primary_10_1007_s11869_019_00689_6 crossref_primary_10_3390_f13010037 crossref_primary_10_1007_s11869_018_0624_y crossref_primary_10_1016_j_scitotenv_2020_142273 crossref_primary_10_1038_srep23488 crossref_primary_10_1093_femsec_fiz080 crossref_primary_10_1016_j_soilbio_2017_09_023 crossref_primary_10_1016_j_rhisph_2022_100605 crossref_primary_10_1016_j_soilbio_2017_01_024 crossref_primary_10_1016_j_scitotenv_2021_146148 crossref_primary_10_1007_s13595_019_0897_9 crossref_primary_10_1016_j_soilbio_2019_107529 crossref_primary_10_1007_s11368_019_02512_2 crossref_primary_10_1038_s41598_017_09973_w crossref_primary_10_1016_j_apsoil_2021_103995 crossref_primary_10_1007_s12010_022_03965_x crossref_primary_10_1016_j_apsoil_2021_104044 crossref_primary_10_1016_j_soilbio_2013_09_014 crossref_primary_10_1007_s00248_014_0436_z crossref_primary_10_1890_11_1745_1 crossref_primary_10_1016_j_jhazmat_2022_129578 crossref_primary_10_1139_cjfr_2023_0061 crossref_primary_10_1111_ppa_13799 crossref_primary_10_3389_fmicb_2016_01377 crossref_primary_10_1016_j_ejsobi_2023_103537 crossref_primary_10_1002_ecy_2985 crossref_primary_10_3390_soilsystems5020024 crossref_primary_10_1007_s11629_015_3599_2 crossref_primary_10_1093_aob_mcw172 crossref_primary_10_1111_1462_2920_15688 crossref_primary_10_1080_02827581_2021_1890206 crossref_primary_10_1016_j_soilbio_2013_04_014 crossref_primary_10_1007_s11434_013_5961_5 crossref_primary_10_1111_ejss_12441 crossref_primary_10_1016_j_jprot_2018_11_011 crossref_primary_10_1080_15659801_2017_1281201 crossref_primary_10_1002_ece3_5247 crossref_primary_10_1016_j_soilbio_2018_04_015 crossref_primary_10_7717_peerj_7463 crossref_primary_10_1007_s11104_016_3163_z crossref_primary_10_1111_j_1526_100X_2011_00850_x crossref_primary_10_1186_s12866_021_02216_z crossref_primary_10_1186_s13223_019_0323_8 crossref_primary_10_1007_s10658_012_9936_1 crossref_primary_10_1007_s13225_013_0270_5 crossref_primary_10_1016_j_scitotenv_2017_01_049 crossref_primary_10_1016_j_catena_2020_104607 crossref_primary_10_1111_gcb_13105 crossref_primary_10_3390_f10121096 crossref_primary_10_1080_00275514_2021_1965852 crossref_primary_10_1038_s41598_020_57622_6 crossref_primary_10_1016_j_funeco_2013_11_003 crossref_primary_10_1139_cjb_2020_0181 crossref_primary_10_1002_hyp_14919 crossref_primary_10_1007_s10533_011_9635_6 crossref_primary_10_1111_jbi_13802 crossref_primary_10_1038_s41396_021_01109_3 crossref_primary_10_1016_j_soilbio_2016_10_024 crossref_primary_10_1002_ece3_4606 crossref_primary_10_3390_microorganisms10010079 crossref_primary_10_1016_j_foreco_2018_09_025 crossref_primary_10_1038_s41467_019_13913_9 crossref_primary_10_3390_f13122100 crossref_primary_10_1111_gcb_15087 crossref_primary_10_1111_1758_2229_13267 crossref_primary_10_1016_j_soilbio_2018_08_017 crossref_primary_10_1016_j_chemosphere_2021_129718 crossref_primary_10_1111_ele_12206 crossref_primary_10_1016_j_catena_2022_106180 crossref_primary_10_1093_femsec_fiz145 crossref_primary_10_1093_femsec_fiu015 crossref_primary_10_1111_aec_12930 crossref_primary_10_3390_f14081662 crossref_primary_10_1016_j_gecco_2018_e00511 crossref_primary_10_1038_s41598_017_03539_6 crossref_primary_10_1007_s00248_018_1277_y crossref_primary_10_1016_j_funeco_2021_101062 crossref_primary_10_1093_jpe_rtr046 crossref_primary_10_3390_agronomy12020528 crossref_primary_10_1890_13_1454_1 crossref_primary_10_1016_j_apsoil_2022_104662 crossref_primary_10_3389_fmicb_2020_562546 crossref_primary_10_1007_s00248_019_01444_1 crossref_primary_10_3390_f12121719 crossref_primary_10_1016_j_agrformet_2016_03_015 crossref_primary_10_1111_ele_12451 crossref_primary_10_1016_j_geoderma_2016_06_025 crossref_primary_10_1016_j_geoderma_2014_02_001 crossref_primary_10_1111_geb_13282 crossref_primary_10_1111_jbi_13594 crossref_primary_10_1111_rec_13156 crossref_primary_10_1111_plb_12379 crossref_primary_10_3389_fmicb_2022_1002198 crossref_primary_10_1007_s42832_021_0113_3 crossref_primary_10_1016_j_funeco_2013_01_009 crossref_primary_10_1111_oik_08451 crossref_primary_10_1016_j_soilbio_2024_109397 |
ContentType | Journal Article |
Copyright | 2010 Blackwell Publishing Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS |
DBID | FBQ BSCLL IQODW 7SN 7UA C1K F1W H97 L.G 7QH 7ST M7N SOI |
DOI | 10.1111/j.1365-2486.2010.02327.x |
DatabaseName | AGRIS Istex Pascal-Francis Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Aqualine Environment Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environment Abstracts |
DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Aqualine Environment Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitleList | Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 1645 |
ExternalDocumentID | 2279362691 23944823 GCB2327 ark_67375_WNG_SJKRXF4Z_5 US201301951227 |
Genre | article Feature |
GeographicLocations | USA, California |
GeographicLocations_xml | – name: USA, California |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAPBV IQODW 7SN 7UA C1K F1W H97 L.G 7QH 7ST M7N SOI |
ID | FETCH-LOGICAL-c4157-78a772e153fa06b3ce76651146fc3da2cbc92512a115facf0aebda2ef14c672a3 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 |
IngestDate | Fri Aug 16 21:04:05 EDT 2024 Thu Oct 10 14:36:00 EDT 2024 Sun Oct 22 16:07:18 EDT 2023 Sat Aug 24 00:57:50 EDT 2024 Wed Oct 30 09:56:51 EDT 2024 Wed Dec 27 19:17:03 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Dynamical climatology Fungi Grassland Climate change Rain Precipitation rainfall Seasonal variation Northern California seasonality |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4157-78a772e153fa06b3ce76651146fc3da2cbc92512a115facf0aebda2ef14c672a3 |
Notes | http://dx.doi.org/10.1111/j.1365-2486.2010.02327.x istex:C8B7084A57DD8C9E0AAD220194BEDF60A1F9EDFA ark:/67375/WNG-SJKRXF4Z-5 ArticleID:GCB2327 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 854274245 |
PQPubID | 30327 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_860376102 proquest_journals_854274245 pascalfrancis_primary_23944823 wiley_primary_10_1111_j_1365_2486_2010_02327_x_GCB2327 istex_primary_ark_67375_WNG_SJKRXF4Z_5 fao_agris_US201301951227 |
PublicationCentury | 2000 |
PublicationDate | April 2011 |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: April 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Global change biology |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Wiley-Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
References | Frey SD, Six J, Elliott ET (2003) Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil-litter interface. Soil Biology and Biochemistry, 35, 1001-1004. Wardle DA, Nicholson KS (1996) Synergistic effects of grassland plant species on soil microbial biomass and activity: implications for ecosystem-level effects of enriched plant diversity. Functional Ecology, 10, 410-416. Martin-Neto L, Rosell R, Sposito G (1998) Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence. Geoderma, 81, 305-311. Lindberg N, Engtsson JB, Persson T (2002) Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. Journal of Applied Ecology, 39, 924-936. Anderson IC, Campbell CD, Prosser JI (2003) Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environmental Microbiology, 5, 36-47. Ripa J, Ives AR (2003) Food web dynamics in correlated and autocorrelated environments. Theoretical Population Biology, 64, 369-384. McGonigle TP, Miller MH, Evans DG, Fairchid GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 115, 495-501. Staddon PL, Thompson K, Jakobsen I, Grime JP, Askew AP, Fitter AH (2003) Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Global Change Biology, 9, 186-194. Mielke PW Jr, Berry KJ (2007) Permutation Methods: A Distance Function Approach. Springer-Verlag, New York. Xu L, Baldocchi DD (2004) Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agricultural and Forest Meteorology, 123, 79-96. Rosier CL, Hoye AT, Rillig MC (2006) Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biology & Biochemistry, 38, 2205-2211. Lauenroth WK, Sala OE (1992) Long-term forage production of North American shortgrass steppe. Ecological Applications, 2, 397-403. Waldrop M, Firestone M (2006) Response of microbial community composition and function to soil climate change. Microbial Ecology, 52, 716-724. Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3-42. Ives AR, Gross K, Klug JL (1999) Stability and variability in competitive communities. Science, 286, 542-544. Long ZT, Petchey OL, Holt RD (2007) The effects of immigration and environmental variability on the persistence of an inferior competitor. Ecology Letters, 10, 574-585. Pett-Ridge J, Firestone MK (2005) Redox fluctuation structures microbial communities in a wet tropical soil. Applied and Environmental Microbiology, 71, 6998-7007. Frey SD, Elliott ET, Paustian K (1999) Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biology and Biochemistry, 31, 573-585. Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil, 233, 167-177. Sala OE, Parton WJ, Joyce LA, Lauenroth WK (1988) Primary production of the central grassland region of the United States. Ecology, 69, 40-45. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences, 105, 11512-11519. Chesson P (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-366. Allen MF (1991) The Ecology of Mycorrhizae. Cambridge University Press, Cambridge, UK. Clark NM, Rillig MC, Nowak RS (2009) Arbuscular mycorrhizal fungal abundance in the Mojave Desert: seasonal dynamics and impacts of elevated CO2. Journal of Arid Environments, 73, 834-843. Zhu Y-G, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends in Plant Science, 8, 407-409. Liu K, Raghavan S, Nelesen S, Linder CR, Warnow T (2009) Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science, 324, 1561-1564. Trent JD, Svejcar TJ, Blank RR (1994) Mycorrhizal colonization, hyphal lengths, and soil moisture associated with two Artemisia tridentata subspecies. Great Basin Naturalist, 54, 291-300. Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Science, 161, 575-586. Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology, 12, 3085-3095. Chou WW, Silver WL, Jackson RD, Thompson AW, Allen-Diaz B (2008) The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Global Change Biology, 14, 1382-1394. Solomon S, Qin D, Manning M et al (eds) (2007) Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK. Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters, 12, 452-461. Bell CW, Acosta-Martinez V, McIntyre NE, Cox S, Tissue DT, Zak JC (2009) Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland. Microbial Ecology, 58, 827-842. Raich JW, Potter CS (1995) Global patterns of Carbon Dioxide emissions from soils. Global Biogeochemical Cycles, 9, 23-36. Wright SF, FrankeSnyder M, Morton JB, Upadhyaya A (1996) Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil, 181, 193-203. Fitzjohn RG, Dickie IA (2007) TRAMPR: an R package for analysis and matching of terminal-restriction fragment length polymorphism (TRFLP) profiles. Molecular Ecology Notes, 7, 583-587. Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Molecular Ecology, 11, 2669-2678. Skopp J, Jawson MD, Doran JW (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Sci Soc Am J, 54, 1619-1625. Suttle KB, Thomsen M, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science, 315, 640-642. Cruz-Martinez K, Suttle KB, Brodie EL, Power ME, Andersen GL, Banfield JF (2009) Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. Isme Journal, 3, 738-744. Johnson D, Leake JR, Read DJ (2002) Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of C-14. Soil Biology & Biochemistry, 34, 1521-1524. Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Applied and Environmental Microbiology, 66, 5488-5491. Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35, 7188-7196. Nylund JE, Wallander H (1992) Ergosterol analysis as a means of quantifying mycorrhizal biomass. Methods in Microbiology, 24, 77-88. Hausmann NT, Hawkes CV (2009) Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytologist, 183, 1188-1200. Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia, 103, 17-23. Chase JM, Leibold MA (2003) Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago. Hiltunen T, Laakso J, Kaitala V, Suomalainen L-R, Pekkonen M (2008) Temporal variability in detritus resource maintains diversity of bacterial communities. Acta Oecologica, 33, 291-299. Querejeta JI, Egerton-Warburton LM, Allen MF (2009) Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology, 90, 649-662. Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science, 84, 355-363. Zhao XR, Lin Q, Brookes PC (2005) Does soil ergosterol concentration provide a reliable estimate of soil fungal biomass? Soil Biology and Biochemistry, 37, 311-317. Curiel-Yuste J, Baldocchi DD, Gershenson A, Goldstein A, Misson L, Wong S (2007) Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology, 13, 2018-2035. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113-118. Ruokolainen L, Lindén A, Kaitala V, Fowler MS (2009) Ecological and evolutionary dynamics under coloured environmental variation. Trends in Ecology & Evolution, 24, 555-563. Bååth E, Söderström B (1982) Seasonal and spatial variation in fungal biomass in a forest soil. Soil Biology and Biochemistry, 14, 353-358. Matthews DP, Gonzalez A (2007) The inflationary effects of environmental fluctuations ensure the persistence of sink metapopulations. Ecology, 88, 2848-2856. Hawkes CV, Wren IF, Herman DJ, Firestone MK (2005) Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecology Letters, 8, 976-985. McCune B, Grace JB (2002) Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, OR. Heron G, Barcelona MJ, Andersen ML, Christensen TH (1997) Determination of nonvol 2004; 123 1982; 14 1990; 54 2006; 38 2002; 11 1999; 286 2010; 185 1996; 181 2008; 105 1998; 81 2008; 33 1993; 2 2007; 35 2003; 12 2009; 12 2009; 58 1990 2002; 83 2009; 90 2003; 8 2003; 9 2003; 5 2007; 7 2005; 71 2006; 281 2001; 11 2005; 37 1992; 2 2009; 324 2002; 39 1995; 9 2009; 24 2006; 52 2004; 84 2002; 34 1997; 25 2000; 66 2002; 298 2006; 9 2008; 14 2009 2003; 35 1997 1996; 161 2005; 86 2007 2006 1994 2003 1991 2002 2007; 10 2003; 257 2007; 13 1996; 10 2001; 233 2009; 73 1990; 115 2007; 315 2000; 147 1988; 69 2005; 8 1997; 79 1997; 35 2000; 31 1999; 31 2009; 183 1992; 24 1995; 103 2009; 3 2010; 91 2007; 88 2003; 64 1994; 54 |
References_xml | – volume: 257 start-page: 71 year: 2003 end-page: 83 article-title: Seasonality of arbuscular mycorrhizal hyphae and glomalin in a western Montana grassland publication-title: Plant and Soil – start-page: 63 year: 1997 end-page: 127 – volume: 13 start-page: 2018 year: 2007 end-page: 2035 article-title: Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture publication-title: Global Change Biology – year: 2009 – volume: 181 start-page: 193 year: 1996 end-page: 203 article-title: Time‐course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots publication-title: Plant and Soil – volume: 105 start-page: 11512 year: 2008 end-page: 11519 article-title: Resistance, resilience, and redundancy in microbial communities publication-title: Proceedings of the National Academy of Sciences – volume: 33 start-page: 291 year: 2008 end-page: 299 article-title: Temporal variability in detritus resource maintains diversity of bacterial communities publication-title: Acta Oecologica – volume: 2 start-page: 397 year: 1992 end-page: 403 article-title: Long‐term forage production of North American shortgrass steppe publication-title: Ecological Applications – volume: 64 start-page: 369 year: 2003 end-page: 384 article-title: Food web dynamics in correlated and autocorrelated environments publication-title: Theoretical Population Biology – volume: 13 start-page: 1786 year: 2007 end-page: 1797 article-title: Forest soil CO flux: uncovering the contribution and environmental responses of ectomycorrhizas publication-title: Global Change Biology – volume: 315 start-page: 640 year: 2007 end-page: 642 article-title: Species interactions reverse grassland responses to changing climate publication-title: Science – volume: 54 start-page: 291 year: 1994 end-page: 300 article-title: Mycorrhizal colonization, hyphal lengths, and soil moisture associated with two subspecies publication-title: Great Basin Naturalist – volume: 11 start-page: 3 year: 2001 end-page: 42 article-title: Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis publication-title: Mycorrhiza – volume: 79 start-page: 439 year: 1997 end-page: 449 article-title: Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems publication-title: Oikos – volume: 7 start-page: 583 year: 2007 end-page: 587 article-title: TRAMPR publication-title: Molecular Ecology Notes – volume: 90 start-page: 649 year: 2009 end-page: 662 article-title: Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability publication-title: Ecology – year: 1994 – volume: 233 start-page: 167 year: 2001 end-page: 177 article-title: Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils publication-title: Plant and Soil – volume: 73 start-page: 834 year: 2009 end-page: 843 article-title: Arbuscular mycorrhizal fungal abundance in the Mojave Desert publication-title: Journal of Arid Environments – volume: 35 start-page: 1001 year: 2003 end-page: 1004 article-title: Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil‐litter interface publication-title: Soil Biology and Biochemistry – volume: 115 start-page: 495 year: 1990 end-page: 501 article-title: A new method which gives an objective measure of colonization of roots by vesicular‐arbuscular mycorrhizal fungi publication-title: New Phytologist – volume: 31 start-page: 573 year: 1999 end-page: 585 article-title: Bacterial and fungal abundance and biomass in conventional and no‐tillage agroecosystems along two climatic gradients publication-title: Soil Biology and Biochemistry – volume: 286 start-page: 542 year: 1999 end-page: 544 article-title: Stability and variability in competitive communities publication-title: Science – volume: 298 start-page: 2202 year: 2002 end-page: 2205 article-title: Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland publication-title: Science – volume: 10 start-page: 574 year: 2007 end-page: 585 article-title: The effects of immigration and environmental variability on the persistence of an inferior competitor publication-title: Ecology Letters – volume: 54 start-page: 1619 year: 1990 end-page: 1625 article-title: Steady‐state aerobic microbial activity as a function of soil water content publication-title: Soil Sci Soc Am J – volume: 9 start-page: 23 year: 1995 end-page: 36 article-title: Global patterns of Carbon Dioxide emissions from soils publication-title: Global Biogeochemical Cycles – volume: 147 start-page: 179 year: 2000 end-page: 187 article-title: The impact of elevated CO2 and global climate change on arbuscular mycorrhizas publication-title: New Phytologist – volume: 35 start-page: 6 year: 1997 end-page: 11 article-title: Determination of nonvolatile organic carbon in aquifer solids after carbonate removal by sulfurous acid publication-title: Groundwater – volume: 37 start-page: 311 year: 2005 end-page: 317 article-title: Does soil ergosterol concentration provide a reliable estimate of soil fungal biomass? publication-title: Soil Biology and Biochemistry – volume: 183 start-page: 1188 year: 2009 end-page: 1200 article-title: Plant neighborhood control of arbuscular mycorrhizal community composition publication-title: New Phytologist – volume: 24 start-page: 77 year: 1992 end-page: 88 article-title: Ergosterol analysis as a means of quantifying mycorrhizal biomass publication-title: Methods in Microbiology – volume: 324 start-page: 1561 year: 2009 end-page: 1564 article-title: Rapid and accurate large‐scale coestimation of sequence alignments and phylogenetic trees publication-title: Science – volume: 185 start-page: 226 year: 2010 end-page: 236 article-title: Ecosystem CO fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature publication-title: New Phytologist – volume: 52 start-page: 716 year: 2006 end-page: 724 article-title: Response of microbial community composition and function to soil climate change publication-title: Microbial Ecology – volume: 161 start-page: 575 year: 1996 end-page: 586 article-title: Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi publication-title: Soil Science – volume: 84 start-page: 355 year: 2004 end-page: 363 article-title: Arbuscular mycorrhizae, glomalin, and soil aggregation publication-title: Canadian Journal of Soil Science – volume: 24 start-page: 555 year: 2009 end-page: 563 article-title: Ecological and evolutionary dynamics under coloured environmental variation publication-title: Trends in Ecology & Evolution – volume: 3 start-page: 738 year: 2009 end-page: 744 article-title: Despite strong seasonal responses, soil microbial consortia are more resilient to long‐term changes in rainfall than overlying grassland publication-title: Isme Journal – volume: 25 start-page: 3389 year: 1997 end-page: 3402 article-title: Gapped BLAST and PSI‐BLAST publication-title: Nucleic Acids Research – volume: 31 start-page: 343 year: 2000 end-page: 366 article-title: Mechanisms of maintenance of species diversity publication-title: Annual Review of Ecology and Systematics – start-page: 315 year: 1990 end-page: 322 – volume: 2 start-page: 113 year: 1993 end-page: 118 article-title: ITS primers with enhanced specificity for Basidiomycetes – application to the identification of mycorrhizae and rusts publication-title: Molecular Ecology – volume: 88 start-page: 2848 year: 2007 end-page: 2856 article-title: The inflationary effects of environmental fluctuations ensure the persistence of sink metapopulations publication-title: Ecology – year: 2007 – year: 2003 – volume: 11 start-page: 2669 year: 2002 end-page: 2678 article-title: Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest publication-title: Molecular Ecology – volume: 71 start-page: 6998 year: 2005 end-page: 7007 article-title: Redox fluctuation structures microbial communities in a wet tropical soil publication-title: Applied and Environmental Microbiology – volume: 8 start-page: 976 year: 2005 end-page: 985 article-title: Plant invasion alters nitrogen cycling by modifying the soil nitrifying community publication-title: Ecology Letters – volume: 8 start-page: 407 year: 2003 end-page: 409 article-title: Carbon cycling by arbuscular mycorrhizal fungi in soil‐plant systems publication-title: Trends in Plant Science – volume: 35 start-page: 191 year: 2003 end-page: 194 article-title: Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin publication-title: Soil Biology & Biochemistry – volume: 14 start-page: 2636 year: 2008 end-page: 2660 article-title: Simple three‐pool model accurately describes patterns of long‐term litter decomposition in diverse climates publication-title: Global Change Biology – volume: 12 start-page: 3085 year: 2003 end-page: 3095 article-title: Co‐existing grass species have distinctive arbuscular mycorrhizal communities publication-title: Molecular Ecology – volume: 9 start-page: 186 year: 2003 end-page: 194 article-title: Mycorrhizal fungal abundance is affected by long‐term climatic manipulations in the field publication-title: Global Change Biology – volume: 66 start-page: 5488 year: 2000 end-page: 5491 article-title: Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA‐ and rRNA‐based microbial community composition publication-title: Applied and Environmental Microbiology – volume: 69 start-page: 40 year: 1988 end-page: 45 article-title: Primary production of the central grassland region of the United States publication-title: Ecology – volume: 14 start-page: 353 year: 1982 end-page: 358 article-title: Seasonal and spatial variation in fungal biomass in a forest soil publication-title: Soil Biology and Biochemistry – volume: 123 start-page: 79 year: 2004 end-page: 96 article-title: Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California publication-title: Agricultural and Forest Meteorology – volume: 5 start-page: 36 year: 2003 end-page: 47 article-title: Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil publication-title: Environmental Microbiology – volume: 281 start-page: 15 year: 2006 end-page: 24 article-title: Mycorrhizal Hyphal Turnover as a Dominant Process for Carbon Input into Soil Organic Matter publication-title: Plant and Soil – volume: 35 start-page: 7188 year: 2007 end-page: 7196 article-title: SILVA publication-title: Nucleic Acids Research – year: 2002 – volume: 147 start-page: 189 year: 2000 end-page: 200 article-title: Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO and nitrogen deposition publication-title: New Phytologist – year: 2006 – volume: 10 start-page: 410 year: 1996 end-page: 416 article-title: Synergistic effects of grassland plant species on soil microbial biomass and activity publication-title: Functional Ecology – volume: 9 start-page: 1127 year: 2006 end-page: 1135 article-title: Resource availability controls fungal diversity across a plant diversity gradient publication-title: Ecology Letters – volume: 86 start-page: 2815 year: 2005 end-page: 2824 article-title: Stable coexistence in a fluctuating environment publication-title: Ecology – volume: 83 start-page: 320 year: 2002 end-page: 327 article-title: Regional patterns of decomposition and primary production rates in the U.S. great plains publication-title: Ecology – volume: 81 start-page: 305 year: 1998 end-page: 311 article-title: Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence publication-title: Geoderma – volume: 58 start-page: 827 year: 2009 end-page: 842 article-title: Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland publication-title: Microbial Ecology – volume: 91 start-page: 2333 year: 2010 end-page: 2343 article-title: Order of plant host establishment alters the composition of arbuscular mycorrhizal communities publication-title: Ecology – volume: 34 start-page: 1521 year: 2002 end-page: 1524 article-title: Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland publication-title: Soil Biology & Biochemistry – volume: 12 start-page: 452 year: 2009 end-page: 461 article-title: Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi publication-title: Ecology Letters – year: 1991 – volume: 38 start-page: 2205 year: 2006 end-page: 2211 article-title: Glomalin‐related soil protein publication-title: Soil Biology & Biochemistry – volume: 103 start-page: 17 year: 1995 end-page: 23 article-title: External hyphal production of vesicular–arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities publication-title: Oecologia – volume: 14 start-page: 1382 year: 2008 end-page: 1394 article-title: The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall publication-title: Global Change Biology – volume: 39 start-page: 924 year: 2002 end-page: 936 article-title: Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand publication-title: Journal of Applied Ecology |
SSID | ssj0003206 |
Score | 2.541066 |
Snippet | Understanding how fungal communities are affected by precipitation is an essential aspect of predicting soil functional responses to future climate change and... |
SourceID | proquest pascalfrancis wiley istex fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1637 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Biological and medical sciences Carbon cycle Climate change Climatology. Bioclimatology. Climate change Earth, ocean, space Exact sciences and technology External geophysics Fundamental and applied biological sciences. Psychology Fungi General aspects grassland Meteorology northern California Precipitation rainfall seasonality Soil microorganisms Terrestrial ecosystems |
Title | Fungal community responses to precipitation |
URI | https://api.istex.fr/ark:/67375/WNG-SJKRXF4Z-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2010.02327.x https://www.proquest.com/docview/854274245 https://search.proquest.com/docview/860376102 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hSkhc-FioGgpVDqgXlFUSO7FzhKXbqqg9tKxYcbFsx0Zo0Wa1yUotv54ZJ912ESfELR92pPhlxs_xmxmAd1qik9OySCqDMHBWVmhztUzqlDldeeZrRgHOF5fl2Yyfz4v5oH-iWJg-P8T2hxtZRvDXZODatLtGHhRaXJaDQgvJgRgTn8yYIHXXp6v7TFIsD2U2M1Zw9DwZ2xX1_PVBONt43SBppfG-IdGkbnHcfF_wYoeRPuS1YWKaPoPF3Sv1epTFeNOZsf31R7bH__POz-HpwF_jD_0H9wIeueUIHvcVLW9HsH9yHziHzQbP0Y4gukB23qxDs_g4nvz8gVQ5nL2E91P0ONja9sEq3W287pW7ro27Jl5RAo7VkEv8FcymJ18mZ8lQxCGxyA1EIqRGAu_QsXqdloZZJ8qyoFhob1mtc2tsRRxLIzX12vpUO4OXnc-4LUWu2T7sLZulO4DYOSmd4HXlK1yWeq6zVAtnhCxSm5o8j-AAAVP6O7pHNbvOaVM2QwaZ5yKC44CiWvU5PJReL0jSJgr19fJUXZ9_vppP-TdVRHC0A_O2A5WQ5zJnERze4a4Gc2-VLDhteXPsHm_vop3S5oteumaDTcoUfTnSuQjKAPH2yQ-WYQiuInAVgasCuOpGnU4-0tHrf-14CE_6P-GkN3oDe916494ilerMUTCS39DsDmg |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH9CmxBc-ChMC4ORA9oFpUpjJ3aOUNaVbe1hW0XFxXIce0KbmqpNpW1_Pe85WbciTohbPp4j2b-855_t9wHwSUs0clqmUV4gDJxlOepcKaMyZlbnjrmSUYDzaJwNJ_x4mk7bckAUC9Pkh1hvuJFmeHtNCk4b0pta7l20uMxaFy1kB6KLhHIbtZ9RHYdvZw-5pFjiC232WMrR9vTYplvPX7-E843TFdJWGvEbcpvUSxw515S82OCkj5mtn5oGL-H6vlONR8pVd1UXXXP3R77H_9TrV_CipbDhl-afew1P7KwDT5uilrcd2Dl8iJ1DsdZ4LDsQjJCgVwsvFh6E_etfyJb93Rv4PECjg9KmiVepb8NF47xrl2FdhXPKwTFv04m_hcng8KI_jNo6DpFBeiAiITVyeIu21ek4K5ixIstSCod2hpU6MYXJiWZpZKdOGxdrW-Bj63rcZCLRbAe2ZtXM7kJorZRW8DJ3Oa5MHde9WAtbCJnGJi6SJIBdREzpS7SQanKe0LlsD0lkkogADjyMat6k8VB6cUVebSJVP8ZH6vz45Gw64D9VGsD-Bs7rBlRFnsuEBbB3D7xqNX6pZMrp1Jtj83D9FlWVzl_0zFYrFMliNOfI6ALIPMbrLz9aiSG4isBVBK7y4KobddT_Slfv_rXhR3g2vBidqtPv45M9eN5sjJP70XvYqhcr-wGZVV3se435DbnaEoA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH6amDbtsh_dEAEGOUxcplRJ7NjOcSsEBqOaYNWqXSzHsdFU1FRtKsH--j07odCJ07RbftiR4i_v-XP8vfcAPiiBTk6JLMpLhIESlqPNVSKqYmJUbomtiAtwPh-ykxE9HWfjTv_kYmHa_BCrH27OMry_dgY-q-y6kXuFFhWsU2ghOeB95JNPKUMi7AjSxX0qKZL6OpsJySi6noSsq3oefRJON1bVyFrdgN841aRa4MDZtuLFGiV9SGz9zFS8gsndO7WClEl_2ZR9_fuvdI__56Vfw8uOwIaf2i_uDTwx0x48a0ta3vZg8-g-cg6bda5j0YPgHOl5PffNwoNwcP0LubI_ewsfC3Q52Fq30SrNbThvpbtmETZ1OHMZOGZdMvF3MCqOvg9Ooq6KQ6SRHPCIC4UM3qBntSpmJdGGM5a5YGirSaVSXerckSyF3NQqbWNlSrxsbEI146kim7AxradmC0JjhDCcVrnNcV1qqUpixU3JRRbruEzTALYQMKmu0D_K0WXqdmUTpJBpygM48CjKWZvEQ6r5xGnaeCZ_DI_l5enZxbigP2UWwN4azKsOroY8FSkJYOcOd9nZ-0KKjLo9b4rdw9VdNFS3-6Kmpl5iExajM0c-FwDzEK-e_GAdhuBKB6504EoPrryRx4PP7mj7Xzvuw_Nvh4X8-mV4tgMv2r_iTnu0CxvNfGneI61qyj1vL38AYdgRLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fungal+community+responses+to+precipitation&rft.jtitle=Global+change+biology&rft.au=Hawkes%2C+Christine+V&rft.au=Kivlin%2C+Stephanie+N&rft.au=Rocca%2C+Jennifer+D&rft.au=Huguet%2C+Valerie&rft.date=2011-04-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=17&rft.issue=4&rft.spage=1637&rft.epage=1645&rft_id=info:doi/10.1111%2Fj.1365-2486.2010.02327.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |