Fungal community responses to precipitation

Understanding how fungal communities are affected by precipitation is an essential aspect of predicting soil functional responses to future climate change and the consequences of those responses for the soil carbon cycle. We tracked fungal abundance, fungal community composition, and soil carbon acr...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 17; no. 4; pp. 1637 - 1645
Main Authors HAWKES, CHRISTINE V, KIVLIN, STEPHANIE N, ROCCA, JENNIFER D, HUGUET, VALERIE, THOMSEN, MEREDITH A, SUTTLE, KENWYN BLAKE
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2011
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding how fungal communities are affected by precipitation is an essential aspect of predicting soil functional responses to future climate change and the consequences of those responses for the soil carbon cycle. We tracked fungal abundance, fungal community composition, and soil carbon across 4 years in long-term field manipulations of rainfall in northern California. Fungi responded directly to rainfall levels, with more abundant, diverse, and consistent communities predominating under drought conditions, and less abundant, less diverse, and more variable communities emerging during wetter periods and in rain-addition treatments. Soil carbon storage itself did not vary with rainfall amendments, but increased decomposition rates foreshadow longer-term losses of soil carbon under conditions of extended seasonal rainfall. The repeated recovery of fungal diversity and abundance during periodic drought events suggests that species with a wide range of environmental tolerances coexist in this community, consistent with a storage effect in soil fungi. Increased diversity during dry periods further suggests that drought stress moderates competition among fungal taxa. Based on the responses observed here, we suggest that there may be a relationship between the timescale at which soil microbial communities experience natural environmental fluctuations and their ability to respond to future environmental change.
AbstractList Understanding how fungal communities are affected by precipitation is an essential aspect of predicting soil functional responses to future climate change and the consequences of those responses for the soil carbon cycle. We tracked fungal abundance, fungal community composition, and soil carbon across 4 years in long‐term field manipulations of rainfall in northern California. Fungi responded directly to rainfall levels, with more abundant, diverse, and consistent communities predominating under drought conditions, and less abundant, less diverse, and more variable communities emerging during wetter periods and in rain‐addition treatments. Soil carbon storage itself did not vary with rainfall amendments, but increased decomposition rates foreshadow longer‐term losses of soil carbon under conditions of extended seasonal rainfall. The repeated recovery of fungal diversity and abundance during periodic drought events suggests that species with a wide range of environmental tolerances coexist in this community, consistent with a storage effect in soil fungi. Increased diversity during dry periods further suggests that drought stress moderates competition among fungal taxa. Based on the responses observed here, we suggest that there may be a relationship between the timescale at which soil microbial communities experience natural environmental fluctuations and their ability to respond to future environmental change.
Understanding how fungal communities are affected by precipitation is an essential aspect of predicting soil functional responses to future climate change and the consequences of those responses for the soil carbon cycle. We tracked fungal abundance, fungal community composition, and soil carbon across 4 years in long-term field manipulations of rainfall in northern California. Fungi responded directly to rainfall levels, with more abundant, diverse, and consistent communities predominating under drought conditions, and less abundant, less diverse, and more variable communities emerging during wetter periods and in rain-addition treatments. Soil carbon storage itself did not vary with rainfall amendments, but increased decomposition rates foreshadow longer-term losses of soil carbon under conditions of extended seasonal rainfall. The repeated recovery of fungal diversity and abundance during periodic drought events suggests that species with a wide range of environmental tolerances coexist in this community, consistent with a storage effect in soil fungi. Increased diversity during dry periods further suggests that drought stress moderates competition among fungal taxa. Based on the responses observed here, we suggest that there may be a relationship between the timescale at which soil microbial communities experience natural environmental fluctuations and their ability to respond to future environmental change. [PUBLICATION ABSTRACT]
Author SUTTLE, KENWYN BLAKE
THOMSEN, MEREDITH A.
HUGUET, VALERIE
HAWKES, CHRISTINE V.
KIVLIN, STEPHANIE N.
ROCCA, JENNIFER D.
Author_xml – sequence: 1
  fullname: HAWKES, CHRISTINE V
– sequence: 2
  fullname: KIVLIN, STEPHANIE N
– sequence: 3
  fullname: ROCCA, JENNIFER D
– sequence: 4
  fullname: HUGUET, VALERIE
– sequence: 5
  fullname: THOMSEN, MEREDITH A
– sequence: 6
  fullname: SUTTLE, KENWYN BLAKE
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23944823$$DView record in Pascal Francis
BookMark eNpdkE9vEzEQxS1UJNrAZ2CFhDigDf7vzYEDjUgKVCBRKhCX0cR4K4eNvdi7Ivn29ZIqB3zxaObN05vfBTkLMThCKkbnrLw32zkTWtVcNnrOaelSLriZ7x-R89PgbKqVrBll4gm5yHlLKRWc6nPyejWGO-wqG3e7MfjhUCWX-xiyy9UQqz4563s_4OBjeEoet9hl9-zhn5Hb1ftvy6v6-sv6w_LddW0lU6Y2DRrDHVOiRao3wjqjtWJM6taKX8jtxi64YhwZUy3alqLblLZrmbTacBQz8uro26f4Z3R5gJ3P1nUdBhfHDI2mwmhWDp2RF_8pt3FMoYSDRkluJJeqiF4-iDBb7NqEwfoMffI7TAfgYiFlw0XRvT3q_vrOHU5zRmECDVuYeMLEEybQ8A807GG9vJyqsl8f930e3P60j-k3aCOMgu-f13Dz8dPXHyv5E6Zcz4_6FiPgXSqZbm-Ks6BsUfAUx3sSNIww
CitedBy_id crossref_primary_10_1002_mbo3_1201
crossref_primary_10_1016_j_scitotenv_2024_170111
crossref_primary_10_1016_j_agwat_2021_106749
crossref_primary_10_1111_nph_14990
crossref_primary_10_1093_femsec_fix069
crossref_primary_10_1007_s11104_012_1534_7
crossref_primary_10_1016_j_apsoil_2022_104712
crossref_primary_10_1016_j_soilbio_2021_108538
crossref_primary_10_1038_s41396_020_0655_x
crossref_primary_10_1016_j_bjm_2017_04_005
crossref_primary_10_1029_2023JG007826
crossref_primary_10_3389_fmicb_2019_01220
crossref_primary_10_1525_elementa_2020_00144
crossref_primary_10_3389_fmicb_2023_1036905
crossref_primary_10_1016_j_pedobi_2015_01_001
crossref_primary_10_1007_s42832_020_0026_6
crossref_primary_10_1007_s11104_021_04842_y
crossref_primary_10_1016_j_catena_2023_107018
crossref_primary_10_1016_j_soilbio_2017_11_004
crossref_primary_10_1111_gcb_13790
crossref_primary_10_1525_elementa_2021_00110
crossref_primary_10_1016_j_soilbio_2020_107717
crossref_primary_10_1111_1574_6941_12197
crossref_primary_10_1111_1758_2229_13251
crossref_primary_10_1111_gcb_14754
crossref_primary_10_1002_ecy_2922
crossref_primary_10_1016_j_geoderma_2019_02_016
crossref_primary_10_1016_j_envpol_2017_01_045
crossref_primary_10_1016_j_funeco_2016_08_008
crossref_primary_10_1093_jpe_rtae011
crossref_primary_10_1038_s41598_023_29498_9
crossref_primary_10_1111_1365_2745_12360
crossref_primary_10_1007_s11104_013_1855_1
crossref_primary_10_1016_j_geoderma_2021_115536
crossref_primary_10_1007_s00248_014_0443_0
crossref_primary_10_3724_SP_J_1011_2012_01586
crossref_primary_10_1007_s00374_016_1165_x
crossref_primary_10_1016_j_apsoil_2012_03_003
crossref_primary_10_1002_mbo3_874
crossref_primary_10_1111_1758_2229_13223
crossref_primary_10_1371_journal_pone_0241794
crossref_primary_10_1002_ecm_1529
crossref_primary_10_1038_srep31066
crossref_primary_10_1007_s00572_018_0859_3
crossref_primary_10_1016_j_isci_2022_103893
crossref_primary_10_1016_j_geoderma_2015_03_018
crossref_primary_10_1007_s10021_019_00439_w
crossref_primary_10_1111_1365_2435_12467
crossref_primary_10_3390_ijms21041513
crossref_primary_10_3390_environments9040052
crossref_primary_10_1016_j_funeco_2014_04_004
crossref_primary_10_1016_j_scitotenv_2022_161306
crossref_primary_10_1093_femsec_fix156
crossref_primary_10_3389_fmicb_2019_00117
crossref_primary_10_1007_s00374_021_01615_8
crossref_primary_10_1007_s00442_014_3176_3
crossref_primary_10_1007_s10533_011_9636_5
crossref_primary_10_1016_j_ecoleng_2021_106467
crossref_primary_10_1016_j_apsoil_2021_104218
crossref_primary_10_1016_j_ejop_2013_12_005
crossref_primary_10_1371_journal_pone_0206441
crossref_primary_10_31548_agr_13_2__2022_14_26
crossref_primary_10_3390_agronomy13051417
crossref_primary_10_1016_j_soilbio_2018_04_007
crossref_primary_10_1111_j_1365_2745_2011_01894_x
crossref_primary_10_1111_1462_2920_13112
crossref_primary_10_1111_nph_15088
crossref_primary_10_1093_aobpla_plaa040
crossref_primary_10_3390_jof8040384
crossref_primary_10_1111_ejss_13133
crossref_primary_10_1038_s41396_020_0614_6
crossref_primary_10_1038_srep24317
crossref_primary_10_1016_j_soilbio_2015_06_022
crossref_primary_10_1111_1365_2745_13267
crossref_primary_10_1016_j_catena_2022_106120
crossref_primary_10_1016_j_pedobi_2022_150820
crossref_primary_10_1007_s11368_022_03283_z
crossref_primary_10_1016_j_geoderma_2020_114812
crossref_primary_10_1111_nph_12376
crossref_primary_10_1111_mec_12160
crossref_primary_10_1007_s00248_022_02092_8
crossref_primary_10_1371_journal_pone_0240037
crossref_primary_10_3389_fmicb_2016_01032
crossref_primary_10_1111_1758_2229_13211
crossref_primary_10_1111_nph_14661
crossref_primary_10_1016_j_funbio_2024_05_001
crossref_primary_10_1007_s11104_012_1156_0
crossref_primary_10_1007_s00572_015_0638_3
crossref_primary_10_1111_mec_14694
crossref_primary_10_1007_s11104_018_3796_1
crossref_primary_10_1002_ece3_2025
crossref_primary_10_1111_gcb_12418
crossref_primary_10_1111_mec_15423
crossref_primary_10_3389_fpls_2018_01842
crossref_primary_10_1007_s11104_024_06625_7
crossref_primary_10_3389_fpls_2018_01605
crossref_primary_10_3389_fmicb_2023_1106888
crossref_primary_10_1016_j_scitotenv_2021_150428
crossref_primary_10_1128_AEM_02050_12
crossref_primary_10_1007_s42832_023_0225_z
crossref_primary_10_1007_s10533_019_00569_2
crossref_primary_10_1016_j_jaridenv_2019_104020
crossref_primary_10_1007_s11258_018_0893_4
crossref_primary_10_1016_j_apsoil_2020_103719
crossref_primary_10_3390_jof9080829
crossref_primary_10_1016_j_scitotenv_2021_146748
crossref_primary_10_1007_s00248_011_9973_x
crossref_primary_10_1016_j_plantsci_2023_111898
crossref_primary_10_1007_s10533_019_00606_0
crossref_primary_10_1007_s42832_022_0147_1
crossref_primary_10_1007_s00248_016_0795_8
crossref_primary_10_1128_AEM_02523_18
crossref_primary_10_1111_1462_2920_13342
crossref_primary_10_1093_aob_mcab067
crossref_primary_10_1111_ecog_01226
crossref_primary_10_1016_j_apsoil_2018_06_014
crossref_primary_10_1007_s10533_011_9638_3
crossref_primary_10_3390_w14020142
crossref_primary_10_1111_1365_2745_12064
crossref_primary_10_1111_ejss_12488
crossref_primary_10_1016_j_scitotenv_2024_170017
crossref_primary_10_1088_2976_601X_ad382e
crossref_primary_10_3389_fmicb_2018_00294
crossref_primary_10_1007_s00572_022_01093_2
crossref_primary_10_1016_j_soilbio_2019_107693
crossref_primary_10_1016_j_soilbio_2011_07_012
crossref_primary_10_3390_f12030353
crossref_primary_10_1093_jpe_rtaa038
crossref_primary_10_1111_nyas_14325
crossref_primary_10_1002_ecs2_1879
crossref_primary_10_1016_j_gecco_2020_e01003
crossref_primary_10_2134_agronj2016_10_0626
crossref_primary_10_1016_j_agee_2017_07_031
crossref_primary_10_1590_18069657rbcs20180031
crossref_primary_10_1111_1365_2745_13505
crossref_primary_10_1590_0001_3765202220210554
crossref_primary_10_1016_j_apsoil_2023_104958
crossref_primary_10_1007_s11368_020_02629_9
crossref_primary_10_1007_s11368_016_1591_2
crossref_primary_10_1007_s00248_017_1047_2
crossref_primary_10_1007_s10725_023_01062_5
crossref_primary_10_1186_s41610_017_0032_5
crossref_primary_10_1016_j_soilbio_2013_09_031
crossref_primary_10_1016_j_soilbio_2013_01_018
crossref_primary_10_1111_j_1365_2486_2012_02667_x
crossref_primary_10_1007_s10533_011_9633_8
crossref_primary_10_1890_13_0500_1
crossref_primary_10_1111_1365_2745_13292
crossref_primary_10_1007_s11869_019_00689_6
crossref_primary_10_3390_f13010037
crossref_primary_10_1007_s11869_018_0624_y
crossref_primary_10_1016_j_scitotenv_2020_142273
crossref_primary_10_1038_srep23488
crossref_primary_10_1093_femsec_fiz080
crossref_primary_10_1016_j_soilbio_2017_09_023
crossref_primary_10_1016_j_rhisph_2022_100605
crossref_primary_10_1016_j_soilbio_2017_01_024
crossref_primary_10_1016_j_scitotenv_2021_146148
crossref_primary_10_1007_s13595_019_0897_9
crossref_primary_10_1016_j_soilbio_2019_107529
crossref_primary_10_1007_s11368_019_02512_2
crossref_primary_10_1038_s41598_017_09973_w
crossref_primary_10_1016_j_apsoil_2021_103995
crossref_primary_10_1007_s12010_022_03965_x
crossref_primary_10_1016_j_apsoil_2021_104044
crossref_primary_10_1016_j_soilbio_2013_09_014
crossref_primary_10_1007_s00248_014_0436_z
crossref_primary_10_1890_11_1745_1
crossref_primary_10_1016_j_jhazmat_2022_129578
crossref_primary_10_1139_cjfr_2023_0061
crossref_primary_10_1111_ppa_13799
crossref_primary_10_3389_fmicb_2016_01377
crossref_primary_10_1016_j_ejsobi_2023_103537
crossref_primary_10_1002_ecy_2985
crossref_primary_10_3390_soilsystems5020024
crossref_primary_10_1007_s11629_015_3599_2
crossref_primary_10_1093_aob_mcw172
crossref_primary_10_1111_1462_2920_15688
crossref_primary_10_1080_02827581_2021_1890206
crossref_primary_10_1016_j_soilbio_2013_04_014
crossref_primary_10_1007_s11434_013_5961_5
crossref_primary_10_1111_ejss_12441
crossref_primary_10_1016_j_jprot_2018_11_011
crossref_primary_10_1080_15659801_2017_1281201
crossref_primary_10_1002_ece3_5247
crossref_primary_10_1016_j_soilbio_2018_04_015
crossref_primary_10_7717_peerj_7463
crossref_primary_10_1007_s11104_016_3163_z
crossref_primary_10_1111_j_1526_100X_2011_00850_x
crossref_primary_10_1186_s12866_021_02216_z
crossref_primary_10_1186_s13223_019_0323_8
crossref_primary_10_1007_s10658_012_9936_1
crossref_primary_10_1007_s13225_013_0270_5
crossref_primary_10_1016_j_scitotenv_2017_01_049
crossref_primary_10_1016_j_catena_2020_104607
crossref_primary_10_1111_gcb_13105
crossref_primary_10_3390_f10121096
crossref_primary_10_1080_00275514_2021_1965852
crossref_primary_10_1038_s41598_020_57622_6
crossref_primary_10_1016_j_funeco_2013_11_003
crossref_primary_10_1139_cjb_2020_0181
crossref_primary_10_1002_hyp_14919
crossref_primary_10_1007_s10533_011_9635_6
crossref_primary_10_1111_jbi_13802
crossref_primary_10_1038_s41396_021_01109_3
crossref_primary_10_1016_j_soilbio_2016_10_024
crossref_primary_10_1002_ece3_4606
crossref_primary_10_3390_microorganisms10010079
crossref_primary_10_1016_j_foreco_2018_09_025
crossref_primary_10_1038_s41467_019_13913_9
crossref_primary_10_3390_f13122100
crossref_primary_10_1111_gcb_15087
crossref_primary_10_1111_1758_2229_13267
crossref_primary_10_1016_j_soilbio_2018_08_017
crossref_primary_10_1016_j_chemosphere_2021_129718
crossref_primary_10_1111_ele_12206
crossref_primary_10_1016_j_catena_2022_106180
crossref_primary_10_1093_femsec_fiz145
crossref_primary_10_1093_femsec_fiu015
crossref_primary_10_1111_aec_12930
crossref_primary_10_3390_f14081662
crossref_primary_10_1016_j_gecco_2018_e00511
crossref_primary_10_1038_s41598_017_03539_6
crossref_primary_10_1007_s00248_018_1277_y
crossref_primary_10_1016_j_funeco_2021_101062
crossref_primary_10_1093_jpe_rtr046
crossref_primary_10_3390_agronomy12020528
crossref_primary_10_1890_13_1454_1
crossref_primary_10_1016_j_apsoil_2022_104662
crossref_primary_10_3389_fmicb_2020_562546
crossref_primary_10_1007_s00248_019_01444_1
crossref_primary_10_3390_f12121719
crossref_primary_10_1016_j_agrformet_2016_03_015
crossref_primary_10_1111_ele_12451
crossref_primary_10_1016_j_geoderma_2016_06_025
crossref_primary_10_1016_j_geoderma_2014_02_001
crossref_primary_10_1111_geb_13282
crossref_primary_10_1111_jbi_13594
crossref_primary_10_1111_rec_13156
crossref_primary_10_1111_plb_12379
crossref_primary_10_3389_fmicb_2022_1002198
crossref_primary_10_1007_s42832_021_0113_3
crossref_primary_10_1016_j_funeco_2013_01_009
crossref_primary_10_1111_oik_08451
crossref_primary_10_1016_j_soilbio_2024_109397
ContentType Journal Article
Copyright 2010 Blackwell Publishing Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
BSCLL
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7QH
7ST
M7N
SOI
DOI 10.1111/j.1365-2486.2010.02327.x
DatabaseName AGRIS
Istex
Pascal-Francis
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aqualine
Environment Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environment Abstracts
DatabaseTitle Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aqualine
Environment Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitleList

Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 1645
ExternalDocumentID 2279362691
23944823
GCB2327
ark_67375_WNG_SJKRXF4Z_5
US201301951227
Genre article
Feature
GeographicLocations USA, California
GeographicLocations_xml – name: USA, California
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAPBV
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7QH
7ST
M7N
SOI
ID FETCH-LOGICAL-c4157-78a772e153fa06b3ce76651146fc3da2cbc92512a115facf0aebda2ef14c672a3
IEDL.DBID DR2
ISSN 1354-1013
IngestDate Fri Aug 16 21:04:05 EDT 2024
Thu Oct 10 14:36:00 EDT 2024
Sun Oct 22 16:07:18 EDT 2023
Sat Aug 24 00:57:50 EDT 2024
Wed Oct 30 09:56:51 EDT 2024
Wed Dec 27 19:17:03 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Dynamical climatology
Fungi
Grassland
Climate change
Rain
Precipitation
rainfall
Seasonal variation
Northern California
seasonality
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4157-78a772e153fa06b3ce76651146fc3da2cbc92512a115facf0aebda2ef14c672a3
Notes http://dx.doi.org/10.1111/j.1365-2486.2010.02327.x
istex:C8B7084A57DD8C9E0AAD220194BEDF60A1F9EDFA
ark:/67375/WNG-SJKRXF4Z-5
ArticleID:GCB2327
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 854274245
PQPubID 30327
PageCount 9
ParticipantIDs proquest_miscellaneous_860376102
proquest_journals_854274245
pascalfrancis_primary_23944823
wiley_primary_10_1111_j_1365_2486_2010_02327_x_GCB2327
istex_primary_ark_67375_WNG_SJKRXF4Z_5
fao_agris_US201301951227
PublicationCentury 2000
PublicationDate April 2011
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: April 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Global change biology
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Frey SD, Six J, Elliott ET (2003) Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil-litter interface. Soil Biology and Biochemistry, 35, 1001-1004.
Wardle DA, Nicholson KS (1996) Synergistic effects of grassland plant species on soil microbial biomass and activity: implications for ecosystem-level effects of enriched plant diversity. Functional Ecology, 10, 410-416.
Martin-Neto L, Rosell R, Sposito G (1998) Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence. Geoderma, 81, 305-311.
Lindberg N, Engtsson JB, Persson T (2002) Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. Journal of Applied Ecology, 39, 924-936.
Anderson IC, Campbell CD, Prosser JI (2003) Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environmental Microbiology, 5, 36-47.
Ripa J, Ives AR (2003) Food web dynamics in correlated and autocorrelated environments. Theoretical Population Biology, 64, 369-384.
McGonigle TP, Miller MH, Evans DG, Fairchid GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 115, 495-501.
Staddon PL, Thompson K, Jakobsen I, Grime JP, Askew AP, Fitter AH (2003) Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Global Change Biology, 9, 186-194.
Mielke PW Jr, Berry KJ (2007) Permutation Methods: A Distance Function Approach. Springer-Verlag, New York.
Xu L, Baldocchi DD (2004) Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agricultural and Forest Meteorology, 123, 79-96.
Rosier CL, Hoye AT, Rillig MC (2006) Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biology & Biochemistry, 38, 2205-2211.
Lauenroth WK, Sala OE (1992) Long-term forage production of North American shortgrass steppe. Ecological Applications, 2, 397-403.
Waldrop M, Firestone M (2006) Response of microbial community composition and function to soil climate change. Microbial Ecology, 52, 716-724.
Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3-42.
Ives AR, Gross K, Klug JL (1999) Stability and variability in competitive communities. Science, 286, 542-544.
Long ZT, Petchey OL, Holt RD (2007) The effects of immigration and environmental variability on the persistence of an inferior competitor. Ecology Letters, 10, 574-585.
Pett-Ridge J, Firestone MK (2005) Redox fluctuation structures microbial communities in a wet tropical soil. Applied and Environmental Microbiology, 71, 6998-7007.
Frey SD, Elliott ET, Paustian K (1999) Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biology and Biochemistry, 31, 573-585.
Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil, 233, 167-177.
Sala OE, Parton WJ, Joyce LA, Lauenroth WK (1988) Primary production of the central grassland region of the United States. Ecology, 69, 40-45.
Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences, 105, 11512-11519.
Chesson P (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-366.
Allen MF (1991) The Ecology of Mycorrhizae. Cambridge University Press, Cambridge, UK.
Clark NM, Rillig MC, Nowak RS (2009) Arbuscular mycorrhizal fungal abundance in the Mojave Desert: seasonal dynamics and impacts of elevated CO2. Journal of Arid Environments, 73, 834-843.
Zhu Y-G, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends in Plant Science, 8, 407-409.
Liu K, Raghavan S, Nelesen S, Linder CR, Warnow T (2009) Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science, 324, 1561-1564.
Trent JD, Svejcar TJ, Blank RR (1994) Mycorrhizal colonization, hyphal lengths, and soil moisture associated with two Artemisia tridentata subspecies. Great Basin Naturalist, 54, 291-300.
Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Science, 161, 575-586.
Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology, 12, 3085-3095.
Chou WW, Silver WL, Jackson RD, Thompson AW, Allen-Diaz B (2008) The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Global Change Biology, 14, 1382-1394.
Solomon S, Qin D, Manning M et al (eds) (2007) Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK.
Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters, 12, 452-461.
Bell CW, Acosta-Martinez V, McIntyre NE, Cox S, Tissue DT, Zak JC (2009) Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland. Microbial Ecology, 58, 827-842.
Raich JW, Potter CS (1995) Global patterns of Carbon Dioxide emissions from soils. Global Biogeochemical Cycles, 9, 23-36.
Wright SF, FrankeSnyder M, Morton JB, Upadhyaya A (1996) Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil, 181, 193-203.
Fitzjohn RG, Dickie IA (2007) TRAMPR: an R package for analysis and matching of terminal-restriction fragment length polymorphism (TRFLP) profiles. Molecular Ecology Notes, 7, 583-587.
Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Molecular Ecology, 11, 2669-2678.
Skopp J, Jawson MD, Doran JW (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Sci Soc Am J, 54, 1619-1625.
Suttle KB, Thomsen M, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science, 315, 640-642.
Cruz-Martinez K, Suttle KB, Brodie EL, Power ME, Andersen GL, Banfield JF (2009) Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. Isme Journal, 3, 738-744.
Johnson D, Leake JR, Read DJ (2002) Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of C-14. Soil Biology & Biochemistry, 34, 1521-1524.
Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Applied and Environmental Microbiology, 66, 5488-5491.
Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35, 7188-7196.
Nylund JE, Wallander H (1992) Ergosterol analysis as a means of quantifying mycorrhizal biomass. Methods in Microbiology, 24, 77-88.
Hausmann NT, Hawkes CV (2009) Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytologist, 183, 1188-1200.
Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia, 103, 17-23.
Chase JM, Leibold MA (2003) Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago.
Hiltunen T, Laakso J, Kaitala V, Suomalainen L-R, Pekkonen M (2008) Temporal variability in detritus resource maintains diversity of bacterial communities. Acta Oecologica, 33, 291-299.
Querejeta JI, Egerton-Warburton LM, Allen MF (2009) Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology, 90, 649-662.
Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science, 84, 355-363.
Zhao XR, Lin Q, Brookes PC (2005) Does soil ergosterol concentration provide a reliable estimate of soil fungal biomass? Soil Biology and Biochemistry, 37, 311-317.
Curiel-Yuste J, Baldocchi DD, Gershenson A, Goldstein A, Misson L, Wong S (2007) Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology, 13, 2018-2035.
Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113-118.
Ruokolainen L, Lindén A, Kaitala V, Fowler MS (2009) Ecological and evolutionary dynamics under coloured environmental variation. Trends in Ecology & Evolution, 24, 555-563.
Bååth E, Söderström B (1982) Seasonal and spatial variation in fungal biomass in a forest soil. Soil Biology and Biochemistry, 14, 353-358.
Matthews DP, Gonzalez A (2007) The inflationary effects of environmental fluctuations ensure the persistence of sink metapopulations. Ecology, 88, 2848-2856.
Hawkes CV, Wren IF, Herman DJ, Firestone MK (2005) Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecology Letters, 8, 976-985.
McCune B, Grace JB (2002) Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, OR.
Heron G, Barcelona MJ, Andersen ML, Christensen TH (1997) Determination of nonvol
2004; 123
1982; 14
1990; 54
2006; 38
2002; 11
1999; 286
2010; 185
1996; 181
2008; 105
1998; 81
2008; 33
1993; 2
2007; 35
2003; 12
2009; 12
2009; 58
1990
2002; 83
2009; 90
2003; 8
2003; 9
2003; 5
2007; 7
2005; 71
2006; 281
2001; 11
2005; 37
1992; 2
2009; 324
2002; 39
1995; 9
2009; 24
2006; 52
2004; 84
2002; 34
1997; 25
2000; 66
2002; 298
2006; 9
2008; 14
2009
2003; 35
1997
1996; 161
2005; 86
2007
2006
1994
2003
1991
2002
2007; 10
2003; 257
2007; 13
1996; 10
2001; 233
2009; 73
1990; 115
2007; 315
2000; 147
1988; 69
2005; 8
1997; 79
1997; 35
2000; 31
1999; 31
2009; 183
1992; 24
1995; 103
2009; 3
2010; 91
2007; 88
2003; 64
1994; 54
References_xml – volume: 257
  start-page: 71
  year: 2003
  end-page: 83
  article-title: Seasonality of arbuscular mycorrhizal hyphae and glomalin in a western Montana grassland
  publication-title: Plant and Soil
– start-page: 63
  year: 1997
  end-page: 127
– volume: 13
  start-page: 2018
  year: 2007
  end-page: 2035
  article-title: Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture
  publication-title: Global Change Biology
– year: 2009
– volume: 181
  start-page: 193
  year: 1996
  end-page: 203
  article-title: Time‐course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots
  publication-title: Plant and Soil
– volume: 105
  start-page: 11512
  year: 2008
  end-page: 11519
  article-title: Resistance, resilience, and redundancy in microbial communities
  publication-title: Proceedings of the National Academy of Sciences
– volume: 33
  start-page: 291
  year: 2008
  end-page: 299
  article-title: Temporal variability in detritus resource maintains diversity of bacterial communities
  publication-title: Acta Oecologica
– volume: 2
  start-page: 397
  year: 1992
  end-page: 403
  article-title: Long‐term forage production of North American shortgrass steppe
  publication-title: Ecological Applications
– volume: 64
  start-page: 369
  year: 2003
  end-page: 384
  article-title: Food web dynamics in correlated and autocorrelated environments
  publication-title: Theoretical Population Biology
– volume: 13
  start-page: 1786
  year: 2007
  end-page: 1797
  article-title: Forest soil CO flux: uncovering the contribution and environmental responses of ectomycorrhizas
  publication-title: Global Change Biology
– volume: 315
  start-page: 640
  year: 2007
  end-page: 642
  article-title: Species interactions reverse grassland responses to changing climate
  publication-title: Science
– volume: 54
  start-page: 291
  year: 1994
  end-page: 300
  article-title: Mycorrhizal colonization, hyphal lengths, and soil moisture associated with two subspecies
  publication-title: Great Basin Naturalist
– volume: 11
  start-page: 3
  year: 2001
  end-page: 42
  article-title: Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis
  publication-title: Mycorrhiza
– volume: 79
  start-page: 439
  year: 1997
  end-page: 449
  article-title: Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems
  publication-title: Oikos
– volume: 7
  start-page: 583
  year: 2007
  end-page: 587
  article-title: TRAMPR
  publication-title: Molecular Ecology Notes
– volume: 90
  start-page: 649
  year: 2009
  end-page: 662
  article-title: Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability
  publication-title: Ecology
– year: 1994
– volume: 233
  start-page: 167
  year: 2001
  end-page: 177
  article-title: Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils
  publication-title: Plant and Soil
– volume: 73
  start-page: 834
  year: 2009
  end-page: 843
  article-title: Arbuscular mycorrhizal fungal abundance in the Mojave Desert
  publication-title: Journal of Arid Environments
– volume: 35
  start-page: 1001
  year: 2003
  end-page: 1004
  article-title: Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil‐litter interface
  publication-title: Soil Biology and Biochemistry
– volume: 115
  start-page: 495
  year: 1990
  end-page: 501
  article-title: A new method which gives an objective measure of colonization of roots by vesicular‐arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 31
  start-page: 573
  year: 1999
  end-page: 585
  article-title: Bacterial and fungal abundance and biomass in conventional and no‐tillage agroecosystems along two climatic gradients
  publication-title: Soil Biology and Biochemistry
– volume: 286
  start-page: 542
  year: 1999
  end-page: 544
  article-title: Stability and variability in competitive communities
  publication-title: Science
– volume: 298
  start-page: 2202
  year: 2002
  end-page: 2205
  article-title: Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland
  publication-title: Science
– volume: 10
  start-page: 574
  year: 2007
  end-page: 585
  article-title: The effects of immigration and environmental variability on the persistence of an inferior competitor
  publication-title: Ecology Letters
– volume: 54
  start-page: 1619
  year: 1990
  end-page: 1625
  article-title: Steady‐state aerobic microbial activity as a function of soil water content
  publication-title: Soil Sci Soc Am J
– volume: 9
  start-page: 23
  year: 1995
  end-page: 36
  article-title: Global patterns of Carbon Dioxide emissions from soils
  publication-title: Global Biogeochemical Cycles
– volume: 147
  start-page: 179
  year: 2000
  end-page: 187
  article-title: The impact of elevated CO2 and global climate change on arbuscular mycorrhizas
  publication-title: New Phytologist
– volume: 35
  start-page: 6
  year: 1997
  end-page: 11
  article-title: Determination of nonvolatile organic carbon in aquifer solids after carbonate removal by sulfurous acid
  publication-title: Groundwater
– volume: 37
  start-page: 311
  year: 2005
  end-page: 317
  article-title: Does soil ergosterol concentration provide a reliable estimate of soil fungal biomass?
  publication-title: Soil Biology and Biochemistry
– volume: 183
  start-page: 1188
  year: 2009
  end-page: 1200
  article-title: Plant neighborhood control of arbuscular mycorrhizal community composition
  publication-title: New Phytologist
– volume: 24
  start-page: 77
  year: 1992
  end-page: 88
  article-title: Ergosterol analysis as a means of quantifying mycorrhizal biomass
  publication-title: Methods in Microbiology
– volume: 324
  start-page: 1561
  year: 2009
  end-page: 1564
  article-title: Rapid and accurate large‐scale coestimation of sequence alignments and phylogenetic trees
  publication-title: Science
– volume: 185
  start-page: 226
  year: 2010
  end-page: 236
  article-title: Ecosystem CO fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature
  publication-title: New Phytologist
– volume: 52
  start-page: 716
  year: 2006
  end-page: 724
  article-title: Response of microbial community composition and function to soil climate change
  publication-title: Microbial Ecology
– volume: 161
  start-page: 575
  year: 1996
  end-page: 586
  article-title: Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi
  publication-title: Soil Science
– volume: 84
  start-page: 355
  year: 2004
  end-page: 363
  article-title: Arbuscular mycorrhizae, glomalin, and soil aggregation
  publication-title: Canadian Journal of Soil Science
– volume: 24
  start-page: 555
  year: 2009
  end-page: 563
  article-title: Ecological and evolutionary dynamics under coloured environmental variation
  publication-title: Trends in Ecology & Evolution
– volume: 3
  start-page: 738
  year: 2009
  end-page: 744
  article-title: Despite strong seasonal responses, soil microbial consortia are more resilient to long‐term changes in rainfall than overlying grassland
  publication-title: Isme Journal
– volume: 25
  start-page: 3389
  year: 1997
  end-page: 3402
  article-title: Gapped BLAST and PSI‐BLAST
  publication-title: Nucleic Acids Research
– volume: 31
  start-page: 343
  year: 2000
  end-page: 366
  article-title: Mechanisms of maintenance of species diversity
  publication-title: Annual Review of Ecology and Systematics
– start-page: 315
  year: 1990
  end-page: 322
– volume: 2
  start-page: 113
  year: 1993
  end-page: 118
  article-title: ITS primers with enhanced specificity for Basidiomycetes – application to the identification of mycorrhizae and rusts
  publication-title: Molecular Ecology
– volume: 88
  start-page: 2848
  year: 2007
  end-page: 2856
  article-title: The inflationary effects of environmental fluctuations ensure the persistence of sink metapopulations
  publication-title: Ecology
– year: 2007
– year: 2003
– volume: 11
  start-page: 2669
  year: 2002
  end-page: 2678
  article-title: Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest
  publication-title: Molecular Ecology
– volume: 71
  start-page: 6998
  year: 2005
  end-page: 7007
  article-title: Redox fluctuation structures microbial communities in a wet tropical soil
  publication-title: Applied and Environmental Microbiology
– volume: 8
  start-page: 976
  year: 2005
  end-page: 985
  article-title: Plant invasion alters nitrogen cycling by modifying the soil nitrifying community
  publication-title: Ecology Letters
– volume: 8
  start-page: 407
  year: 2003
  end-page: 409
  article-title: Carbon cycling by arbuscular mycorrhizal fungi in soil‐plant systems
  publication-title: Trends in Plant Science
– volume: 35
  start-page: 191
  year: 2003
  end-page: 194
  article-title: Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin
  publication-title: Soil Biology & Biochemistry
– volume: 14
  start-page: 2636
  year: 2008
  end-page: 2660
  article-title: Simple three‐pool model accurately describes patterns of long‐term litter decomposition in diverse climates
  publication-title: Global Change Biology
– volume: 12
  start-page: 3085
  year: 2003
  end-page: 3095
  article-title: Co‐existing grass species have distinctive arbuscular mycorrhizal communities
  publication-title: Molecular Ecology
– volume: 9
  start-page: 186
  year: 2003
  end-page: 194
  article-title: Mycorrhizal fungal abundance is affected by long‐term climatic manipulations in the field
  publication-title: Global Change Biology
– volume: 66
  start-page: 5488
  year: 2000
  end-page: 5491
  article-title: Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA‐ and rRNA‐based microbial community composition
  publication-title: Applied and Environmental Microbiology
– volume: 69
  start-page: 40
  year: 1988
  end-page: 45
  article-title: Primary production of the central grassland region of the United States
  publication-title: Ecology
– volume: 14
  start-page: 353
  year: 1982
  end-page: 358
  article-title: Seasonal and spatial variation in fungal biomass in a forest soil
  publication-title: Soil Biology and Biochemistry
– volume: 123
  start-page: 79
  year: 2004
  end-page: 96
  article-title: Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California
  publication-title: Agricultural and Forest Meteorology
– volume: 5
  start-page: 36
  year: 2003
  end-page: 47
  article-title: Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil
  publication-title: Environmental Microbiology
– volume: 281
  start-page: 15
  year: 2006
  end-page: 24
  article-title: Mycorrhizal Hyphal Turnover as a Dominant Process for Carbon Input into Soil Organic Matter
  publication-title: Plant and Soil
– volume: 35
  start-page: 7188
  year: 2007
  end-page: 7196
  article-title: SILVA
  publication-title: Nucleic Acids Research
– year: 2002
– volume: 147
  start-page: 189
  year: 2000
  end-page: 200
  article-title: Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO and nitrogen deposition
  publication-title: New Phytologist
– year: 2006
– volume: 10
  start-page: 410
  year: 1996
  end-page: 416
  article-title: Synergistic effects of grassland plant species on soil microbial biomass and activity
  publication-title: Functional Ecology
– volume: 9
  start-page: 1127
  year: 2006
  end-page: 1135
  article-title: Resource availability controls fungal diversity across a plant diversity gradient
  publication-title: Ecology Letters
– volume: 86
  start-page: 2815
  year: 2005
  end-page: 2824
  article-title: Stable coexistence in a fluctuating environment
  publication-title: Ecology
– volume: 83
  start-page: 320
  year: 2002
  end-page: 327
  article-title: Regional patterns of decomposition and primary production rates in the U.S. great plains
  publication-title: Ecology
– volume: 81
  start-page: 305
  year: 1998
  end-page: 311
  article-title: Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence
  publication-title: Geoderma
– volume: 58
  start-page: 827
  year: 2009
  end-page: 842
  article-title: Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland
  publication-title: Microbial Ecology
– volume: 91
  start-page: 2333
  year: 2010
  end-page: 2343
  article-title: Order of plant host establishment alters the composition of arbuscular mycorrhizal communities
  publication-title: Ecology
– volume: 34
  start-page: 1521
  year: 2002
  end-page: 1524
  article-title: Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland
  publication-title: Soil Biology & Biochemistry
– volume: 12
  start-page: 452
  year: 2009
  end-page: 461
  article-title: Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi
  publication-title: Ecology Letters
– year: 1991
– volume: 38
  start-page: 2205
  year: 2006
  end-page: 2211
  article-title: Glomalin‐related soil protein
  publication-title: Soil Biology & Biochemistry
– volume: 103
  start-page: 17
  year: 1995
  end-page: 23
  article-title: External hyphal production of vesicular–arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities
  publication-title: Oecologia
– volume: 14
  start-page: 1382
  year: 2008
  end-page: 1394
  article-title: The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall
  publication-title: Global Change Biology
– volume: 39
  start-page: 924
  year: 2002
  end-page: 936
  article-title: Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand
  publication-title: Journal of Applied Ecology
SSID ssj0003206
Score 2.541066
Snippet Understanding how fungal communities are affected by precipitation is an essential aspect of predicting soil functional responses to future climate change and...
SourceID proquest
pascalfrancis
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 1637
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
Carbon cycle
Climate change
Climatology. Bioclimatology. Climate change
Earth, ocean, space
Exact sciences and technology
External geophysics
Fundamental and applied biological sciences. Psychology
Fungi
General aspects
grassland
Meteorology
northern California
Precipitation
rainfall
seasonality
Soil microorganisms
Terrestrial ecosystems
Title Fungal community responses to precipitation
URI https://api.istex.fr/ark:/67375/WNG-SJKRXF4Z-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2010.02327.x
https://www.proquest.com/docview/854274245
https://search.proquest.com/docview/860376102
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hSkhc-FioGgpVDqgXlFUSO7FzhKXbqqg9tKxYcbFsx0Zo0Wa1yUotv54ZJ912ESfELR92pPhlxs_xmxmAd1qik9OySCqDMHBWVmhztUzqlDldeeZrRgHOF5fl2Yyfz4v5oH-iWJg-P8T2hxtZRvDXZODatLtGHhRaXJaDQgvJgRgTn8yYIHXXp6v7TFIsD2U2M1Zw9DwZ2xX1_PVBONt43SBppfG-IdGkbnHcfF_wYoeRPuS1YWKaPoPF3Sv1epTFeNOZsf31R7bH__POz-HpwF_jD_0H9wIeueUIHvcVLW9HsH9yHziHzQbP0Y4gukB23qxDs_g4nvz8gVQ5nL2E91P0ONja9sEq3W287pW7ro27Jl5RAo7VkEv8FcymJ18mZ8lQxCGxyA1EIqRGAu_QsXqdloZZJ8qyoFhob1mtc2tsRRxLIzX12vpUO4OXnc-4LUWu2T7sLZulO4DYOSmd4HXlK1yWeq6zVAtnhCxSm5o8j-AAAVP6O7pHNbvOaVM2QwaZ5yKC44CiWvU5PJReL0jSJgr19fJUXZ9_vppP-TdVRHC0A_O2A5WQ5zJnERze4a4Gc2-VLDhteXPsHm_vop3S5oteumaDTcoUfTnSuQjKAPH2yQ-WYQiuInAVgasCuOpGnU4-0tHrf-14CE_6P-GkN3oDe916494ilerMUTCS39DsDmg
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH9CmxBc-ChMC4ORA9oFpUpjJ3aOUNaVbe1hW0XFxXIce0KbmqpNpW1_Pe85WbciTohbPp4j2b-855_t9wHwSUs0clqmUV4gDJxlOepcKaMyZlbnjrmSUYDzaJwNJ_x4mk7bckAUC9Pkh1hvuJFmeHtNCk4b0pta7l20uMxaFy1kB6KLhHIbtZ9RHYdvZw-5pFjiC232WMrR9vTYplvPX7-E843TFdJWGvEbcpvUSxw515S82OCkj5mtn5oGL-H6vlONR8pVd1UXXXP3R77H_9TrV_CipbDhl-afew1P7KwDT5uilrcd2Dl8iJ1DsdZ4LDsQjJCgVwsvFh6E_etfyJb93Rv4PECjg9KmiVepb8NF47xrl2FdhXPKwTFv04m_hcng8KI_jNo6DpFBeiAiITVyeIu21ek4K5ixIstSCod2hpU6MYXJiWZpZKdOGxdrW-Bj63rcZCLRbAe2ZtXM7kJorZRW8DJ3Oa5MHde9WAtbCJnGJi6SJIBdREzpS7SQanKe0LlsD0lkkogADjyMat6k8VB6cUVebSJVP8ZH6vz45Gw64D9VGsD-Bs7rBlRFnsuEBbB3D7xqNX6pZMrp1Jtj83D9FlWVzl_0zFYrFMliNOfI6ALIPMbrLz9aiSG4isBVBK7y4KobddT_Slfv_rXhR3g2vBidqtPv45M9eN5sjJP70XvYqhcr-wGZVV3se435DbnaEoA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH6amDbtsh_dEAEGOUxcplRJ7NjOcSsEBqOaYNWqXSzHsdFU1FRtKsH--j07odCJ07RbftiR4i_v-XP8vfcAPiiBTk6JLMpLhIESlqPNVSKqYmJUbomtiAtwPh-ykxE9HWfjTv_kYmHa_BCrH27OMry_dgY-q-y6kXuFFhWsU2ghOeB95JNPKUMi7AjSxX0qKZL6OpsJySi6noSsq3oefRJON1bVyFrdgN841aRa4MDZtuLFGiV9SGz9zFS8gsndO7WClEl_2ZR9_fuvdI__56Vfw8uOwIaf2i_uDTwx0x48a0ta3vZg8-g-cg6bda5j0YPgHOl5PffNwoNwcP0LubI_ewsfC3Q52Fq30SrNbThvpbtmETZ1OHMZOGZdMvF3MCqOvg9Ooq6KQ6SRHPCIC4UM3qBntSpmJdGGM5a5YGirSaVSXerckSyF3NQqbWNlSrxsbEI146kim7AxradmC0JjhDCcVrnNcV1qqUpixU3JRRbruEzTALYQMKmu0D_K0WXqdmUTpJBpygM48CjKWZvEQ6r5xGnaeCZ_DI_l5enZxbigP2UWwN4azKsOroY8FSkJYOcOd9nZ-0KKjLo9b4rdw9VdNFS3-6Kmpl5iExajM0c-FwDzEK-e_GAdhuBKB6504EoPrryRx4PP7mj7Xzvuw_Nvh4X8-mV4tgMv2r_iTnu0CxvNfGneI61qyj1vL38AYdgRLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fungal+community+responses+to+precipitation&rft.jtitle=Global+change+biology&rft.au=Hawkes%2C+Christine+V&rft.au=Kivlin%2C+Stephanie+N&rft.au=Rocca%2C+Jennifer+D&rft.au=Huguet%2C+Valerie&rft.date=2011-04-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=17&rft.issue=4&rft.spage=1637&rft.epage=1645&rft_id=info:doi/10.1111%2Fj.1365-2486.2010.02327.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon