Location and analysis of acoustic infrasound pulses in lightning

Acoustic, VHF, and electrostatic measurements throw new light onto the origin and production mechanism of the thunder infrasound signature (<10 Hz) from lightning. This signature, composed of an initial compression followed by a rarefaction pulse, has been the subject of several unconfirmed theor...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 41; no. 13; pp. 4735 - 4744
Main Authors Arechiga, R., Stock, M., Thomas, R., Erives, H., Rison, W., Edens, H., Lapierre, J.
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 16.07.2014
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Acoustic, VHF, and electrostatic measurements throw new light onto the origin and production mechanism of the thunder infrasound signature (<10 Hz) from lightning. This signature, composed of an initial compression followed by a rarefaction pulse, has been the subject of several unconfirmed theories and models. The observations of two intracloud flashes which each produced multiple infrasound pulses were analyzed for this work. Once the variation of the speed of sound with temperature is taken into account, both the compression and rarefaction portions of the infrasound pulses are found to originate very near lightning channels mapped by the Lightning Mapping Array. We found that none of the currently proposed models can explain infrasound generation by lightning, and thus propose an alternate theory: The infrasound compression pulse is produced by electrostatic interaction of the charge deposited on the channel and in the streamer zone of the lightning channel. Key Points Recent theories on infrasound pulse generation are tested against observations A mechanism is proposed which may explain infrasound pulse generation Correction for the speed of sound variation is developed for acoustic location
AbstractList Acoustic, VHF, and electrostatic measurements throw new light onto the origin and production mechanism of the thunder infrasound signature (<10 Hz) from lightning. This signature, composed of an initial compression followed by a rarefaction pulse, has been the subject of several unconfirmed theories and models. The observations of two intracloud flashes which each produced multiple infrasound pulses were analyzed for this work. Once the variation of the speed of sound with temperature is taken into account, both the compression and rarefaction portions of the infrasound pulses are found to originate very near lightning channels mapped by the Lightning Mapping Array. We found that none of the currently proposed models can explain infrasound generation by lightning, and thus propose an alternate theory: The infrasound compression pulse is produced by electrostatic interaction of the charge deposited on the channel and in the streamer zone of the lightning channel.
Acoustic, VHF, and electrostatic measurements throw new light onto the origin and production mechanism of the thunder infrasound signature (<10 Hz) from lightning. This signature, composed of an initial compression followed by a rarefaction pulse, has been the subject of several unconfirmed theories and models. The observations of two intracloud flashes which each produced multiple infrasound pulses were analyzed for this work. Once the variation of the speed of sound with temperature is taken into account, both the compression and rarefaction portions of the infrasound pulses are found to originate very near lightning channels mapped by the Lightning Mapping Array. We found that none of the currently proposed models can explain infrasound generation by lightning, and thus propose an alternate theory: The infrasound compression pulse is produced by electrostatic interaction of the charge deposited on the channel and in the streamer zone of the lightning channel. Key Points Recent theories on infrasound pulse generation are tested against observations A mechanism is proposed which may explain infrasound pulse generation Correction for the speed of sound variation is developed for acoustic location
Acoustic, VHF, and electrostatic measurements throw new light onto the origin and production mechanism of the thunder infrasound signature (<10 Hz) from lightning. This signature, composed of an initial compression followed by a rarefaction pulse, has been the subject of several unconfirmed theories and models. The observations of two intracloud flashes which each produced multiple infrasound pulses were analyzed for this work. Once the variation of the speed of sound with temperature is taken into account, both the compression and rarefaction portions of the infrasound pulses are found to originate very near lightning channels mapped by the Lightning Mapping Array. We found that none of the currently proposed models can explain infrasound generation by lightning, and thus propose an alternate theory: The infrasound compression pulse is produced by electrostatic interaction of the charge deposited on the channel and in the streamer zone of the lightning channel. Key Points * Recent theories on infrasound pulse generation are tested against observations * A mechanism is proposed which may explain infrasound pulse generation * Correction for the speed of sound variation is developed for acoustic location
Acoustic, VHF, and electrostatic measurements throw new light onto the origin and production mechanism of the thunder infrasound signature (<10 Hz) from lightning. This signature, composed of an initial compression followed by a rarefaction pulse, has been the subject of several unconfirmed theories and models. The observations of two intracloud flashes which each produced multiple infrasound pulses were analyzed for this work. Once the variation of the speed of sound with temperature is taken into account, both the compression and rarefaction portions of the infrasound pulses are found to originate very near lightning channels mapped by the Lightning Mapping Array. We found that none of the currently proposed models can explain infrasound generation by lightning, and thus propose an alternate theory: The infrasound compression pulse is produced by electrostatic interaction of the charge deposited on the channel and in the streamer zone of the lightning channel. Recent theories on infrasound pulse generation are tested against observations A mechanism is proposed which may explain infrasound pulse generation Correction for the speed of sound variation is developed for acoustic location
Author Arechiga, R.
Erives, H.
Rison, W.
Lapierre, J.
Thomas, R.
Stock, M.
Edens, H.
Author_xml – sequence: 1
  givenname: R.
  surname: Arechiga
  fullname: Arechiga, R.
  email: rene@ee.nmt.edu
  organization: Electrical Engineering Department, New Mexico Institute of Mining and Technology, New Mexico, Socorro, USA
– sequence: 2
  givenname: M.
  surname: Stock
  fullname: Stock, M.
  organization: Department of Physics, New Mexico Institute of Mining and Technology, New Mexico, Socorro, USA
– sequence: 3
  givenname: R.
  surname: Thomas
  fullname: Thomas, R.
  organization: Electrical Engineering Department, New Mexico Institute of Mining and Technology, New Mexico, Socorro, USA
– sequence: 4
  givenname: H.
  surname: Erives
  fullname: Erives, H.
  organization: Electrical Engineering Department, New Mexico Institute of Mining and Technology, New Mexico, Socorro, USA
– sequence: 5
  givenname: W.
  surname: Rison
  fullname: Rison, W.
  organization: Electrical Engineering Department, New Mexico Institute of Mining and Technology, New Mexico, Socorro, USA
– sequence: 6
  givenname: H.
  surname: Edens
  fullname: Edens, H.
  organization: Department of Physics, New Mexico Institute of Mining and Technology, New Mexico, Socorro, USA
– sequence: 7
  givenname: J.
  surname: Lapierre
  fullname: Lapierre, J.
  organization: Department of Physics, New Mexico Institute of Mining and Technology, New Mexico, Socorro, USA
BookMark eNp9kEGP0zAQhS1UJNqyN35AJC4cCIztxF7fQBXNQgNIK9g9WlPHWVzSuNiJ2P77dWmFUCX2MLL1_L2Z8ZuRSe97S8gLCm8oAHvLgBZVDQK4LJ-QKVVFkV8CyAmZAqh0Z1I8I7MYNwDAgdMpeVd7g4PzfYZ9kwq7fXQx822Gxo9xcCZzfRsw-jG978Yu2piUrHN3P4be9XfPydMWk3pxOufk-_LDt8VVXn-tPi7e17kpaClzKhuGVDUNLxHN-nLdCiOklVLQFhUvlDJScjBWwlogV2xtBQpQqrGmKbHlc_Lq2HcX_K_RxkFvXTS267C3aVFNSwEUClHKhL48Qzd-DOlriRIFg5JJfqDYkTLBxxhsq40b_kQxBHSdpqAPoep_Q02m12emXXBbDPv_4acZv11n94-yurquSyrVYbH8aHJxsPd_TRh-aiEP5O2XKhVbfVrdLPVn_gBGbJZV
CitedBy_id crossref_primary_10_1049_hve_2019_0030
crossref_primary_10_1007_s00445_019_1349_y
crossref_primary_10_3389_feart_2021_614820
crossref_primary_10_1016_j_atmosres_2017_04_031
crossref_primary_10_1063_5_0110866
crossref_primary_10_1002_2015JD023745
crossref_primary_10_1007_s10712_022_09713_4
crossref_primary_10_1007_s10712_017_9444_0
crossref_primary_10_1029_2018GL078401
crossref_primary_10_1029_2021GL096326
crossref_primary_10_1029_2018JD028814
Cites_doi 10.1002/2013GL059164
10.1029/2004JD004549
10.1002/2013GL059180
10.1029/2008JD011145
10.1029/JZ065i004p01189
10.1029/2004GL021802
10.1029/JZ072i024p06149
10.1098/rsta.1921.0003
10.1029/2008GL034193
10.1175/JTECH-D-11-00101.1
10.1029/1999GL010856
10.1029/2011JD015998
10.1029/2011GL049162
10.1029/JC088iC06p03879
10.1029/JC084iC04p01735
10.1029/JD090iD04p06175
10.1002/jgrd.50805
10.1029/JC078i012p01889
10.1029/JC074i028p06926
10.1029/2012JD018542
10.1029/GL004i001p00049
ContentType Journal Article
Copyright 2014. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2014. American Geophysical Union. All Rights Reserved.
DBID BSCLL
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1002/2014GL060375
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 4744
ExternalDocumentID 3545554021
10_1002_2014GL060375
GRL51797
ark_67375_WNG_WN2KJKVF_M
Genre article
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BDRZF
BENPR
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AANHP
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
ACTHY
AGQPQ
CITATION
7TG
7TN
8FD
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c4157-17d2a19dd35aacb8bf6c67e7761fa93499c7730ce70b6a392be6a6099decd5af3
ISSN 0094-8276
IngestDate Tue Aug 05 10:28:52 EDT 2025
Fri Jul 25 10:41:12 EDT 2025
Tue Jul 01 01:05:29 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Wed Jan 22 17:10:40 EST 2025
Wed Oct 30 09:54:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4157-17d2a19dd35aacb8bf6c67e7761fa93499c7730ce70b6a392be6a6099decd5af3
Notes ark:/67375/WNG-WN2KJKVF-M
istex:41B3B7371756FD74BB91959E944EB330ED450364
ArticleID:GRL51797
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2014GL060375
PQID 1642052737
PQPubID 54723
PageCount 10
ParticipantIDs proquest_miscellaneous_1560104657
proquest_journals_1642052737
crossref_citationtrail_10_1002_2014GL060375
crossref_primary_10_1002_2014GL060375
wiley_primary_10_1002_2014GL060375_GRL51797
istex_primary_ark_67375_WNG_WN2KJKVF_M
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 16 July 2014
PublicationDateYYYYMMDD 2014-07-16
PublicationDate_xml – month: 07
  year: 2014
  text: 16 July 2014
  day: 16
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationTitleAlternate Geophys. Res. Lett
PublicationYear 2014
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Balachandran, N. K. (1979), Infrasonic signals from thunder, J. Geophys. Res., 84(C4), 1735-1745.
Edens, H., K. Eack, W. Rison, and S. Hunyady (2014), Photographic observations of streamers and steps in a cloud-to-air negative leader, Geophys. Res. Lett., 41(4), 1336-1342, doi:10.1002/2013GL059180.
Marcillo, O., J. B. Johnson, and D. E. Hart (2012), Implementation, characterization, and evaluation of an inexpensive low-power low-noise infrasound sensor based on a micromachined differential pressure transducer and a mechanical filter, J. Atmos. Oceanic Technol., 29(9), 1275-1284.
Pasko, V. P. (2009), Mechanism of lightning-associated infrasonic pulses from thunderclouds, J. Geophys. Res., 114, D08205, doi:10.1029/2008JD011145.
Few, A., A. Dessler, D. J. Latham, and M. Brook (1967), A dominant 200-hertz peak in the acoustic spectrum of thunder, J. Geophys. Res., 72(24), 6149-6154.
Johnson, J., R. Arechiga, R. Thomas, H. Edens, J. Anderson, and R. Johnson (2011), Imaging thunder, Geophys. Res. Lett., 38(19), L19807, doi:10.1029/2011GL049162.
Qiu, S., B.-H. Zhou, and L.-H. Shi (2012), Synchronized observations of cloud-to-ground lightning using VHF broadband interferometer and acoustic arrays, J. Geophys. Res., 117, D19204, doi:10.1029/2012JD018542.
Tipler, P. A., and G. Mosca (2004), Physics for Scientists and Engineers, 5th ed., W. H. Freeman and Company, New York.
Bazelyan, E. M., and Y. P. Raizer (1997), Spark Discharge, CRC Press, Boca Raton, Fla.
Bohannon, J., A. Few, and A. Dessler (1977), Detection of infrasonic pulses from thunderclouds, Geophys. Res. Lett., 4(1), 49-52.
Balachandran, N. K. (1983), Acoustic and electric signals from lightning, J. Geophys. Res., 88(C6), 3879-3884.
Few, A. (1985), The production of lightning-associated infrasonic acoustic sources in thunderclouds, J. Geophys. Res., 90(D4), 6175-6180.
Assink, J., L. Evers, I. Holleman, and H. Paulssen (2008), Characterization of infrasound from lightning, Geophys. Res. Lett., 35(15), L15802, doi:10.1029/2008GL034193.
Dessler, A. (1973), Infrasonic thunder, J. Geophys. Res., 78(12), 1889-1896.
Chum, J., G. Diendorfer, T. Šindelářovaá, J. Baše, and F. Hruška (2013), Infrasound pulses from lightning and electrostatic field changes: Observation and discussion, J. Geophys. Res. Atmos., 118, 10,653-10,664.
Few, A. (1969), Power spectrum of thunder, J. Geophys. Res., 74(28), 6926-6934, doi:10.1029/JC074i028p06926.
Marshall, T., M. Stolzenburg, C. Maggio, L. Coleman, P. Krehbiel, T. Hamlin, R. Thomas, and W. Rison (2005), Observed electric fields associated with lightning initiation, Geophys. Res. Lett., 32(3), L03813, doi:10.1029/2004GL021802.
Thomas, R., P. Krehbiel, W. Rison, S. Hunyady, W. Winn, T. Hamlin, and J. Harlin (2004), Accuracy of the lightning mapping array, J. Geophys. Res., 109, D14207, doi:10.1029/2004JD004549.
Kitagawa, N., and M. Brook (1960), A comparison of intracloud and cloud-to-ground lightning discharges, J. Geophys. Res., 65(4), 1189-1201.
Wilson, C. (1920), Investigations on lightning discharges and on the electric field of thunderstorms, Philos. Trans. R. Soc. London, Ser. A, 221, 73-115.
Rison, W., R. Thomas, P. Krehbiel, T. Hamlin, and J. Harlin (1999), A GPS-based three-dimensional lightning mapping, Geophys. Res. Lett., 26(23), 3573-3576.
Arechiga, R., J. Johnson, H. Edens, W. Rison, R. Thomas, K. Eack, and E. Eastvedt (2009), Infrasonic observations from triggered lightning, Eos Trans. AGU, 90(5), Fall Meeting Abstracts AE21A-0295.
Winn, W., G. Aulich, S. Hunyady, K. Eack, H. Edens, P. Krehbiel, W. Rison, and R. Sonnenfeld (2011), Lightning leader stepping, K changes, and other observations near an intracloud flash, J. Geophys. Res., 116, D23115, doi:10.1029/2011JD015998.
da Silva, C. L., and V. P. Pasko (2014), Infrasonic acoustic waves generated by fast air heating in sprite cores, Geophys. Res. Lett., 41(5), 1789-1795, doi:10.1002/2013GL059164.
2011; 116
1973; 78
1969; 74
1920; 221
1999; 26
2009
1997
2008; 35
2004
2014; 41
2004; 109
2011; 38
2009; 114
1978
1960; 65
1967; 72
2009; 90
2013; 118
1977; 4
1985; 90
2005; 32
2012; 29
2013
1980
2012; 117
1969
1979; 84
1983; 88
Arechiga R. (e_1_2_6_2_1) 2009; 90
e_1_2_6_10_1
e_1_2_6_30_1
Bazelyan E. M. (e_1_2_6_7_1) 1997
Few A. (e_1_2_6_17_1) 1969
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
Tipler P. A. (e_1_2_6_28_1) 2004
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Balachandran, N. K. (1983), Acoustic and electric signals from lightning, J. Geophys. Res., 88(C6), 3879-3884.
– reference: Wilson, C. (1920), Investigations on lightning discharges and on the electric field of thunderstorms, Philos. Trans. R. Soc. London, Ser. A, 221, 73-115.
– reference: Few, A. (1969), Power spectrum of thunder, J. Geophys. Res., 74(28), 6926-6934, doi:10.1029/JC074i028p06926.
– reference: Arechiga, R., J. Johnson, H. Edens, W. Rison, R. Thomas, K. Eack, and E. Eastvedt (2009), Infrasonic observations from triggered lightning, Eos Trans. AGU, 90(5), Fall Meeting Abstracts AE21A-0295.
– reference: Kitagawa, N., and M. Brook (1960), A comparison of intracloud and cloud-to-ground lightning discharges, J. Geophys. Res., 65(4), 1189-1201.
– reference: Bohannon, J., A. Few, and A. Dessler (1977), Detection of infrasonic pulses from thunderclouds, Geophys. Res. Lett., 4(1), 49-52.
– reference: Balachandran, N. K. (1979), Infrasonic signals from thunder, J. Geophys. Res., 84(C4), 1735-1745.
– reference: Rison, W., R. Thomas, P. Krehbiel, T. Hamlin, and J. Harlin (1999), A GPS-based three-dimensional lightning mapping, Geophys. Res. Lett., 26(23), 3573-3576.
– reference: Thomas, R., P. Krehbiel, W. Rison, S. Hunyady, W. Winn, T. Hamlin, and J. Harlin (2004), Accuracy of the lightning mapping array, J. Geophys. Res., 109, D14207, doi:10.1029/2004JD004549.
– reference: Johnson, J., R. Arechiga, R. Thomas, H. Edens, J. Anderson, and R. Johnson (2011), Imaging thunder, Geophys. Res. Lett., 38(19), L19807, doi:10.1029/2011GL049162.
– reference: Few, A., A. Dessler, D. J. Latham, and M. Brook (1967), A dominant 200-hertz peak in the acoustic spectrum of thunder, J. Geophys. Res., 72(24), 6149-6154.
– reference: Marshall, T., M. Stolzenburg, C. Maggio, L. Coleman, P. Krehbiel, T. Hamlin, R. Thomas, and W. Rison (2005), Observed electric fields associated with lightning initiation, Geophys. Res. Lett., 32(3), L03813, doi:10.1029/2004GL021802.
– reference: Bazelyan, E. M., and Y. P. Raizer (1997), Spark Discharge, CRC Press, Boca Raton, Fla.
– reference: Tipler, P. A., and G. Mosca (2004), Physics for Scientists and Engineers, 5th ed., W. H. Freeman and Company, New York.
– reference: Chum, J., G. Diendorfer, T. Šindelářovaá, J. Baše, and F. Hruška (2013), Infrasound pulses from lightning and electrostatic field changes: Observation and discussion, J. Geophys. Res. Atmos., 118, 10,653-10,664.
– reference: Few, A. (1985), The production of lightning-associated infrasonic acoustic sources in thunderclouds, J. Geophys. Res., 90(D4), 6175-6180.
– reference: Qiu, S., B.-H. Zhou, and L.-H. Shi (2012), Synchronized observations of cloud-to-ground lightning using VHF broadband interferometer and acoustic arrays, J. Geophys. Res., 117, D19204, doi:10.1029/2012JD018542.
– reference: Dessler, A. (1973), Infrasonic thunder, J. Geophys. Res., 78(12), 1889-1896.
– reference: Marcillo, O., J. B. Johnson, and D. E. Hart (2012), Implementation, characterization, and evaluation of an inexpensive low-power low-noise infrasound sensor based on a micromachined differential pressure transducer and a mechanical filter, J. Atmos. Oceanic Technol., 29(9), 1275-1284.
– reference: Edens, H., K. Eack, W. Rison, and S. Hunyady (2014), Photographic observations of streamers and steps in a cloud-to-air negative leader, Geophys. Res. Lett., 41(4), 1336-1342, doi:10.1002/2013GL059180.
– reference: Assink, J., L. Evers, I. Holleman, and H. Paulssen (2008), Characterization of infrasound from lightning, Geophys. Res. Lett., 35(15), L15802, doi:10.1029/2008GL034193.
– reference: Pasko, V. P. (2009), Mechanism of lightning-associated infrasonic pulses from thunderclouds, J. Geophys. Res., 114, D08205, doi:10.1029/2008JD011145.
– reference: Winn, W., G. Aulich, S. Hunyady, K. Eack, H. Edens, P. Krehbiel, W. Rison, and R. Sonnenfeld (2011), Lightning leader stepping, K changes, and other observations near an intracloud flash, J. Geophys. Res., 116, D23115, doi:10.1029/2011JD015998.
– reference: da Silva, C. L., and V. P. Pasko (2014), Infrasonic acoustic waves generated by fast air heating in sprite cores, Geophys. Res. Lett., 41(5), 1789-1795, doi:10.1002/2013GL059164.
– year: 2009
– volume: 41
  start-page: 1789
  issue: 5
  year: 2014
  end-page: 1795
  article-title: Infrasonic acoustic waves generated by fast air heating in sprite cores
  publication-title: Geophys. Res. Lett.
– volume: 116
  year: 2011
  article-title: Lightning leader stepping, K changes, and other observations near an intracloud flash
  publication-title: J. Geophys. Res.
– volume: 84
  start-page: 1735
  issue: C4
  year: 1979
  end-page: 1745
  article-title: Infrasonic signals from thunder
  publication-title: J. Geophys. Res.
– volume: 109
  start-page: D14207
  year: 2004
  article-title: Accuracy of the lightning mapping array
  publication-title: J. Geophys. Res.
– volume: 221
  start-page: 73
  year: 1920
  end-page: 115
  article-title: Investigations on lightning discharges and on the electric field of thunderstorms
  publication-title: Philos. Trans. R. Soc. London, Ser. A
– volume: 118
  start-page: 10,653
  year: 2013
  end-page: 10,664
  article-title: Infrasound pulses from lightning and electrostatic field changes: Observation and discussion
  publication-title: J. Geophys. Res. Atmos.
– volume: 26
  start-page: 3573
  issue: 23
  year: 1999
  end-page: 3576
  article-title: A GPS‐based three‐dimensional lightning mapping
  publication-title: Geophys. Res. Lett.
– volume: 114
  year: 2009
  article-title: Mechanism of lightning‐associated infrasonic pulses from thunderclouds
  publication-title: J. Geophys. Res.
– volume: 35
  issue: 15
  year: 2008
  article-title: Characterization of infrasound from lightning
  publication-title: Geophys. Res. Lett.
– volume: 90
  start-page: 6175
  issue: D4
  year: 1985
  end-page: 6180
  article-title: The production of lightning‐associated infrasonic acoustic sources in thunderclouds
  publication-title: J. Geophys. Res.
– volume: 65
  start-page: 1189
  issue: 4
  year: 1960
  end-page: 1201
  article-title: A comparison of intracloud and cloud‐to‐ground lightning discharges
  publication-title: J. Geophys. Res.
– volume: 38
  issue: 19
  year: 2011
  article-title: Imaging thunder
  publication-title: Geophys. Res. Lett.
– start-page: 573
  year: 1969
– volume: 72
  start-page: 6149
  issue: 24
  year: 1967
  end-page: 6154
  article-title: A dominant 200‐hertz peak in the acoustic spectrum of thunder
  publication-title: J. Geophys. Res.
– volume: 74
  start-page: 6926
  issue: 28
  year: 1969
  end-page: 6934
  article-title: Power spectrum of thunder
  publication-title: J. Geophys. Res.
– volume: 117
  year: 2012
  article-title: Synchronized observations of cloud‐to‐ground lightning using VHF broadband interferometer and acoustic arrays
  publication-title: J. Geophys. Res.
– year: 1980
– volume: 90
  start-page: Fall Meeting Abstracts AE21A
  issue: 5
  year: 2009
  end-page: 0295
  article-title: Infrasonic observations from triggered lightning
  publication-title: Eos Trans. AGU
– volume: 29
  start-page: 1275
  issue: 9
  year: 2012
  end-page: 1284
  article-title: Implementation, characterization, and evaluation of an inexpensive low‐power low‐noise infrasound sensor based on a micromachined differential pressure transducer and a mechanical filter
  publication-title: J. Atmos. Oceanic Technol.
– year: 2004
– year: 1997
– volume: 78
  start-page: 1889
  issue: 12
  year: 1973
  end-page: 1896
  article-title: Infrasonic thunder
  publication-title: J. Geophys. Res.
– year: 1978
– volume: 32
  issue: 3
  year: 2005
  article-title: Observed electric fields associated with lightning initiation
  publication-title: Geophys. Res. Lett.
– volume: 41
  start-page: 1336
  issue: 4
  year: 2014
  end-page: 1342
  article-title: Photographic observations of streamers and steps in a cloud‐to‐air negative leader
  publication-title: Geophys. Res. Lett.
– volume: 4
  start-page: 49
  issue: 1
  year: 1977
  end-page: 52
  article-title: Detection of infrasonic pulses from thunderclouds
  publication-title: Geophys. Res. Lett.
– volume: 88
  start-page: 3879
  issue: C6
  year: 1983
  end-page: 3884
  article-title: Acoustic and electric signals from lightning
  publication-title: J. Geophys. Res.
– year: 2013
– ident: e_1_2_6_12_1
  doi: 10.1002/2013GL059164
– ident: e_1_2_6_27_1
  doi: 10.1029/2004JD004549
– ident: e_1_2_6_14_1
  doi: 10.1002/2013GL059180
– ident: e_1_2_6_24_1
  doi: 10.1029/2008JD011145
– ident: e_1_2_6_20_1
  doi: 10.1029/JZ065i004p01189
– ident: e_1_2_6_23_1
  doi: 10.1029/2004GL021802
– ident: e_1_2_6_18_1
  doi: 10.1029/JZ072i024p06149
– ident: e_1_2_6_29_1
  doi: 10.1098/rsta.1921.0003
– ident: e_1_2_6_3_1
  doi: 10.1029/2008GL034193
– ident: e_1_2_6_22_1
  doi: 10.1175/JTECH-D-11-00101.1
– ident: e_1_2_6_26_1
  doi: 10.1029/1999GL010856
– ident: e_1_2_6_30_1
  doi: 10.1029/2011JD015998
– ident: e_1_2_6_4_1
– ident: e_1_2_6_19_1
  doi: 10.1029/2011GL049162
– volume-title: Physics for Scientists and Engineers
  year: 2004
  ident: e_1_2_6_28_1
– volume-title: Spark Discharge
  year: 1997
  ident: e_1_2_6_7_1
– ident: e_1_2_6_10_1
– ident: e_1_2_6_6_1
  doi: 10.1029/JC088iC06p03879
– volume: 90
  start-page: Fall Meeting Ab
  issue: 5
  year: 2009
  ident: e_1_2_6_2_1
  article-title: Infrasonic observations from triggered lightning
  publication-title: Eos Trans. AGU
– ident: e_1_2_6_21_1
– ident: e_1_2_6_5_1
  doi: 10.1029/JC084iC04p01735
– ident: e_1_2_6_16_1
  doi: 10.1029/JD090iD04p06175
– ident: e_1_2_6_9_1
– start-page: 573
  volume-title: Planetary Electrodynamics, Proceedings of the 4th International Conference on the Universal Aspects of Atmospheric Electricity, Held in Tokyo
  year: 1969
  ident: e_1_2_6_17_1
– ident: e_1_2_6_11_1
  doi: 10.1002/jgrd.50805
– ident: e_1_2_6_13_1
  doi: 10.1029/JC078i012p01889
– ident: e_1_2_6_15_1
  doi: 10.1029/JC074i028p06926
– ident: e_1_2_6_25_1
  doi: 10.1029/2012JD018542
– ident: e_1_2_6_8_1
  doi: 10.1029/GL004i001p00049
SSID ssj0003031
Score 2.2138934
Snippet Acoustic, VHF, and electrostatic measurements throw new light onto the origin and production mechanism of the thunder infrasound signature (<10 Hz) from...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4735
SubjectTerms Acoustics
atmospheric electricity
Channels
Compressing
electrostatic interaction
Electrostatics
Infrasound
infrasound pulses
Lightning
Rarefaction
Signatures
thunder
Title Location and analysis of acoustic infrasound pulses in lightning
URI https://api.istex.fr/ark:/67375/WNG-WN2KJKVF-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2014GL060375
https://www.proquest.com/docview/1642052737
https://www.proquest.com/docview/1560104657
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdQKyReEONDdGwoSMBLFUic2G7eqICmrF2F2DomXizHsTVElVZth4C_nnPsfFQbE_DQKHKsOvGd78O--x1Cz4XOB7lW1M8TKXyQktpPiA58rGOCZRaIJDcnusczOp7HR-fkvHViarJLttkr-evavJL_oSq0AV1Nluw_ULb-U2iAe6AvXIHCcP0rGk-XdsPNIa428CIg5soqXSbWai02pnRSf3UJWrCMfl0Yh7yodJazTFO1XFU0cwhAF_1FmeyzabhCyYuvdiu2PiE62TqRWu_h2KCjnU4gbr9bgTRu7zOEsdnAtGmQVgdcDeS5Eq1pwhT9AWYO29pK1CSGtsCWtq1ErsW6qlgraglQUwn5WslukWLNi6XTgJrKvY0Gq07tx8MT_vHdiE8_zCa7T63CBmsRrKfA4A50MbgVuIO6w7P5l3mtu0Gh2xqL7kNcqgQM_ro99I4R0zXr8ceOh9L2c0pD5fQeuus8DG9o2WUP3VLFfXQ7LSs4_4S7MuZXbh6gNxX7eMA-XsU-3lJ7Fft4Dft4ln2gxavZ5yGaj96fvh37rqCGL8FOM2CgORZhkucREUJmg0xTSZlijIZaJBE4v5KBxJeKBRkVYDlnigoKPkSuZE6Ejh6hTrEs1GPkxSpMFGFyQIiItYYuSZwMQJ7rKKEa4x7qVzPEpUObN0VPFtziZGPens8eelH3XlmUlT_0e1lOdt1JrL-ZyERG-OdZCj88OZqcjfhxDx1U1OBuwW54CL52YAAHWQ89qx-DODVnZKJQMLU8tDsUlECffknFG1-Ip5-mBuSO7d884BN0p1lTB6izXV-qQ7Bmt9lTx4K_ATSymk8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB5am9JeQp_ESdqq0PQSRKS1dld7ayi13Vj2ocRp6GVZ7ePSIAc7geTfZ0ZSFOfQQA4CIY2EmN157ur7AL6a4HIXvIidsiZGLxlixUMSs5BxZsvEKEcrurO5mCyy4zN-1vKc0r8wDT5E13Ajy6j9NRk4NaQP71FDMXRl4yIRxOL6HPqU2OQ96B-dLv4uOmeMHrohzVNZnDMp2r3v-IbDzecfRKU-Kfj6Qcq5mbjWkWf0GrbalDE6asb4DTzz1Vt4Ma4peW_wrN7Eadfv4HuxbBpwkakcHg3cSLQMEbq9mrUrwvm0MmuiUoourjAqrvFKdE4FOvVH3sNi9PPkxyRuGRJii4GX0B0dM6lybsiNsWVeBmGF9FKKNBg1xGrGSjRh62VSCoOpUOmFEZgUOm8dN2H4AXrVsvLbEGU-VZ5Lm3NushBQRGUqRwMNQyUCYwM4uNOQti18OLFYnOsG-JjpTX0OYL-TvmhgM_4j961WdidkVv9oq5nk-s98jAebHk9PR3o2gL270dCtla01lnosIQQ5OYAv3W20D1r0MJVH1eq0KTkFR5mDehQf_SA9_l0QapnceZL0Z3g5OZkVuvg1n-7CK5KhBnAq9qB3ubryHzFzuSw_tbPzFlNp4qg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB61RK16QX2ASKHUlVouyMLeeHe9N1BLQkmIKkQAcVmt93EhcqIEpPbfM2MbNxyo1IMly_5sWbM7z11_A_DVBJe74EXslDUxWskQKx6SmIWMM1skRjla0T0bi5NJdnrNr5uCG_0LU_NDtAU30ozKXpOCz104-Esaip4rG4wSQU1cX0KHiPJwVneOLic3k9YWo4Gue-apLM6ZFM3Wd3zDwerzT5xSh-T7-0nEuRq3Vo6n_xbWm4gxOqqH-B288OV7eDWoOvL-wbNqD6ddfoDD0ayuv0WmdHjUbCPRLERo9aqmXRFOp4VZUielaH6PTnGJV6Ip5edUHtmASf_44vtJ3DRIiC36XSJ3dMykyrkeN8YWeRGEFdJLKdJgVA-TGStRg62XSSEMRkKFFwbFpJy3jpvQ24S1clb6LYgynyrPpc05N1kICFGZylE_Q0-JwFgX9h8lpG3DHk5NLKa65j1melWeXfjWouc1a8YzuL1K2C3ILG5pp5nk-mo8wIMNT4eXfX3WhZ3H0dCNki01ZnosIQI52YUv7W1UD1rzMKVH0eq0zjgFR8x-NYr__CA9OB8RaZn8-F_oz_D614--Hv0cD7fhDUGo_JuKHVi7W9z7Txi33BW7zeR8APoO4dE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Location+and+analysis+of+acoustic+infrasound+pulses+in+lightning&rft.jtitle=Geophysical+research+letters&rft.au=Arechiga%2C+R&rft.au=Stock%2C+M&rft.au=Thomas%2C+R&rft.au=Erives%2C+H&rft.date=2014-07-16&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=41&rft.issue=13&rft.spage=4735&rft_id=info:doi/10.1002%2F2014GL060375&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3545554021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon