Location and analysis of acoustic infrasound pulses in lightning
Acoustic, VHF, and electrostatic measurements throw new light onto the origin and production mechanism of the thunder infrasound signature (<10 Hz) from lightning. This signature, composed of an initial compression followed by a rarefaction pulse, has been the subject of several unconfirmed theor...
Saved in:
Published in | Geophysical research letters Vol. 41; no. 13; pp. 4735 - 4744 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
16.07.2014
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acoustic, VHF, and electrostatic measurements throw new light onto the origin and production mechanism of the thunder infrasound signature (<10 Hz) from lightning. This signature, composed of an initial compression followed by a rarefaction pulse, has been the subject of several unconfirmed theories and models. The observations of two intracloud flashes which each produced multiple infrasound pulses were analyzed for this work. Once the variation of the speed of sound with temperature is taken into account, both the compression and rarefaction portions of the infrasound pulses are found to originate very near lightning channels mapped by the Lightning Mapping Array. We found that none of the currently proposed models can explain infrasound generation by lightning, and thus propose an alternate theory: The infrasound compression pulse is produced by electrostatic interaction of the charge deposited on the channel and in the streamer zone of the lightning channel.
Key Points
Recent theories on infrasound pulse generation are tested against observations
A mechanism is proposed which may explain infrasound pulse generation
Correction for the speed of sound variation is developed for acoustic location |
---|---|
AbstractList | Acoustic, VHF, and electrostatic measurements throw new light onto the origin and production mechanism of the thunder infrasound signature (<10 Hz) from lightning. This signature, composed of an initial compression followed by a rarefaction pulse, has been the subject of several unconfirmed theories and models. The observations of two intracloud flashes which each produced multiple infrasound pulses were analyzed for this work. Once the variation of the speed of sound with temperature is taken into account, both the compression and rarefaction portions of the infrasound pulses are found to originate very near lightning channels mapped by the Lightning Mapping Array. We found that none of the currently proposed models can explain infrasound generation by lightning, and thus propose an alternate theory: The infrasound compression pulse is produced by electrostatic interaction of the charge deposited on the channel and in the streamer zone of the lightning channel. Acoustic, VHF, and electrostatic measurements throw new light onto the origin and production mechanism of the thunder infrasound signature (<10 Hz) from lightning. This signature, composed of an initial compression followed by a rarefaction pulse, has been the subject of several unconfirmed theories and models. The observations of two intracloud flashes which each produced multiple infrasound pulses were analyzed for this work. Once the variation of the speed of sound with temperature is taken into account, both the compression and rarefaction portions of the infrasound pulses are found to originate very near lightning channels mapped by the Lightning Mapping Array. We found that none of the currently proposed models can explain infrasound generation by lightning, and thus propose an alternate theory: The infrasound compression pulse is produced by electrostatic interaction of the charge deposited on the channel and in the streamer zone of the lightning channel. Key Points Recent theories on infrasound pulse generation are tested against observations A mechanism is proposed which may explain infrasound pulse generation Correction for the speed of sound variation is developed for acoustic location Acoustic, VHF, and electrostatic measurements throw new light onto the origin and production mechanism of the thunder infrasound signature (<10 Hz) from lightning. This signature, composed of an initial compression followed by a rarefaction pulse, has been the subject of several unconfirmed theories and models. The observations of two intracloud flashes which each produced multiple infrasound pulses were analyzed for this work. Once the variation of the speed of sound with temperature is taken into account, both the compression and rarefaction portions of the infrasound pulses are found to originate very near lightning channels mapped by the Lightning Mapping Array. We found that none of the currently proposed models can explain infrasound generation by lightning, and thus propose an alternate theory: The infrasound compression pulse is produced by electrostatic interaction of the charge deposited on the channel and in the streamer zone of the lightning channel. Key Points * Recent theories on infrasound pulse generation are tested against observations * A mechanism is proposed which may explain infrasound pulse generation * Correction for the speed of sound variation is developed for acoustic location Acoustic, VHF, and electrostatic measurements throw new light onto the origin and production mechanism of the thunder infrasound signature (<10 Hz) from lightning. This signature, composed of an initial compression followed by a rarefaction pulse, has been the subject of several unconfirmed theories and models. The observations of two intracloud flashes which each produced multiple infrasound pulses were analyzed for this work. Once the variation of the speed of sound with temperature is taken into account, both the compression and rarefaction portions of the infrasound pulses are found to originate very near lightning channels mapped by the Lightning Mapping Array. We found that none of the currently proposed models can explain infrasound generation by lightning, and thus propose an alternate theory: The infrasound compression pulse is produced by electrostatic interaction of the charge deposited on the channel and in the streamer zone of the lightning channel. Recent theories on infrasound pulse generation are tested against observations A mechanism is proposed which may explain infrasound pulse generation Correction for the speed of sound variation is developed for acoustic location |
Author | Arechiga, R. Erives, H. Rison, W. Lapierre, J. Thomas, R. Stock, M. Edens, H. |
Author_xml | – sequence: 1 givenname: R. surname: Arechiga fullname: Arechiga, R. email: rene@ee.nmt.edu organization: Electrical Engineering Department, New Mexico Institute of Mining and Technology, New Mexico, Socorro, USA – sequence: 2 givenname: M. surname: Stock fullname: Stock, M. organization: Department of Physics, New Mexico Institute of Mining and Technology, New Mexico, Socorro, USA – sequence: 3 givenname: R. surname: Thomas fullname: Thomas, R. organization: Electrical Engineering Department, New Mexico Institute of Mining and Technology, New Mexico, Socorro, USA – sequence: 4 givenname: H. surname: Erives fullname: Erives, H. organization: Electrical Engineering Department, New Mexico Institute of Mining and Technology, New Mexico, Socorro, USA – sequence: 5 givenname: W. surname: Rison fullname: Rison, W. organization: Electrical Engineering Department, New Mexico Institute of Mining and Technology, New Mexico, Socorro, USA – sequence: 6 givenname: H. surname: Edens fullname: Edens, H. organization: Department of Physics, New Mexico Institute of Mining and Technology, New Mexico, Socorro, USA – sequence: 7 givenname: J. surname: Lapierre fullname: Lapierre, J. organization: Department of Physics, New Mexico Institute of Mining and Technology, New Mexico, Socorro, USA |
BookMark | eNp9kEGP0zAQhS1UJNqyN35AJC4cCIztxF7fQBXNQgNIK9g9WlPHWVzSuNiJ2P77dWmFUCX2MLL1_L2Z8ZuRSe97S8gLCm8oAHvLgBZVDQK4LJ-QKVVFkV8CyAmZAqh0Z1I8I7MYNwDAgdMpeVd7g4PzfYZ9kwq7fXQx822Gxo9xcCZzfRsw-jG978Yu2piUrHN3P4be9XfPydMWk3pxOufk-_LDt8VVXn-tPi7e17kpaClzKhuGVDUNLxHN-nLdCiOklVLQFhUvlDJScjBWwlogV2xtBQpQqrGmKbHlc_Lq2HcX_K_RxkFvXTS267C3aVFNSwEUClHKhL48Qzd-DOlriRIFg5JJfqDYkTLBxxhsq40b_kQxBHSdpqAPoep_Q02m12emXXBbDPv_4acZv11n94-yurquSyrVYbH8aHJxsPd_TRh-aiEP5O2XKhVbfVrdLPVn_gBGbJZV |
CitedBy_id | crossref_primary_10_1049_hve_2019_0030 crossref_primary_10_1007_s00445_019_1349_y crossref_primary_10_3389_feart_2021_614820 crossref_primary_10_1016_j_atmosres_2017_04_031 crossref_primary_10_1063_5_0110866 crossref_primary_10_1002_2015JD023745 crossref_primary_10_1007_s10712_022_09713_4 crossref_primary_10_1007_s10712_017_9444_0 crossref_primary_10_1029_2018GL078401 crossref_primary_10_1029_2021GL096326 crossref_primary_10_1029_2018JD028814 |
Cites_doi | 10.1002/2013GL059164 10.1029/2004JD004549 10.1002/2013GL059180 10.1029/2008JD011145 10.1029/JZ065i004p01189 10.1029/2004GL021802 10.1029/JZ072i024p06149 10.1098/rsta.1921.0003 10.1029/2008GL034193 10.1175/JTECH-D-11-00101.1 10.1029/1999GL010856 10.1029/2011JD015998 10.1029/2011GL049162 10.1029/JC088iC06p03879 10.1029/JC084iC04p01735 10.1029/JD090iD04p06175 10.1002/jgrd.50805 10.1029/JC078i012p01889 10.1029/JC074i028p06926 10.1029/2012JD018542 10.1029/GL004i001p00049 |
ContentType | Journal Article |
Copyright | 2014. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2014. American Geophysical Union. All Rights Reserved. |
DBID | BSCLL AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1002/2014GL060375 |
DatabaseName | Istex CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | 4744 |
ExternalDocumentID | 3545554021 10_1002_2014GL060375 GRL51797 ark_67375_WNG_WN2KJKVF_M |
Genre | article |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BDRZF BENPR BMXJE BRXPI BSCLL CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AANHP ACRPL ACYXJ ADNMO AAFWJ AAYXX ACTHY AGQPQ CITATION 7TG 7TN 8FD AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c4157-17d2a19dd35aacb8bf6c67e7761fa93499c7730ce70b6a392be6a6099decd5af3 |
ISSN | 0094-8276 |
IngestDate | Tue Aug 05 10:28:52 EDT 2025 Fri Jul 25 10:41:12 EDT 2025 Tue Jul 01 01:05:29 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Wed Jan 22 17:10:40 EST 2025 Wed Oct 30 09:54:29 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4157-17d2a19dd35aacb8bf6c67e7761fa93499c7730ce70b6a392be6a6099decd5af3 |
Notes | ark:/67375/WNG-WN2KJKVF-M istex:41B3B7371756FD74BB91959E944EB330ED450364 ArticleID:GRL51797 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2014GL060375 |
PQID | 1642052737 |
PQPubID | 54723 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1560104657 proquest_journals_1642052737 crossref_citationtrail_10_1002_2014GL060375 crossref_primary_10_1002_2014GL060375 wiley_primary_10_1002_2014GL060375_GRL51797 istex_primary_ark_67375_WNG_WN2KJKVF_M |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 16 July 2014 |
PublicationDateYYYYMMDD | 2014-07-16 |
PublicationDate_xml | – month: 07 year: 2014 text: 16 July 2014 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationTitleAlternate | Geophys. Res. Lett |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Balachandran, N. K. (1979), Infrasonic signals from thunder, J. Geophys. Res., 84(C4), 1735-1745. Edens, H., K. Eack, W. Rison, and S. Hunyady (2014), Photographic observations of streamers and steps in a cloud-to-air negative leader, Geophys. Res. Lett., 41(4), 1336-1342, doi:10.1002/2013GL059180. Marcillo, O., J. B. Johnson, and D. E. Hart (2012), Implementation, characterization, and evaluation of an inexpensive low-power low-noise infrasound sensor based on a micromachined differential pressure transducer and a mechanical filter, J. Atmos. Oceanic Technol., 29(9), 1275-1284. Pasko, V. P. (2009), Mechanism of lightning-associated infrasonic pulses from thunderclouds, J. Geophys. Res., 114, D08205, doi:10.1029/2008JD011145. Few, A., A. Dessler, D. J. Latham, and M. Brook (1967), A dominant 200-hertz peak in the acoustic spectrum of thunder, J. Geophys. Res., 72(24), 6149-6154. Johnson, J., R. Arechiga, R. Thomas, H. Edens, J. Anderson, and R. Johnson (2011), Imaging thunder, Geophys. Res. Lett., 38(19), L19807, doi:10.1029/2011GL049162. Qiu, S., B.-H. Zhou, and L.-H. Shi (2012), Synchronized observations of cloud-to-ground lightning using VHF broadband interferometer and acoustic arrays, J. Geophys. Res., 117, D19204, doi:10.1029/2012JD018542. Tipler, P. A., and G. Mosca (2004), Physics for Scientists and Engineers, 5th ed., W. H. Freeman and Company, New York. Bazelyan, E. M., and Y. P. Raizer (1997), Spark Discharge, CRC Press, Boca Raton, Fla. Bohannon, J., A. Few, and A. Dessler (1977), Detection of infrasonic pulses from thunderclouds, Geophys. Res. Lett., 4(1), 49-52. Balachandran, N. K. (1983), Acoustic and electric signals from lightning, J. Geophys. Res., 88(C6), 3879-3884. Few, A. (1985), The production of lightning-associated infrasonic acoustic sources in thunderclouds, J. Geophys. Res., 90(D4), 6175-6180. Assink, J., L. Evers, I. Holleman, and H. Paulssen (2008), Characterization of infrasound from lightning, Geophys. Res. Lett., 35(15), L15802, doi:10.1029/2008GL034193. Dessler, A. (1973), Infrasonic thunder, J. Geophys. Res., 78(12), 1889-1896. Chum, J., G. Diendorfer, T. Šindelářovaá, J. Baše, and F. Hruška (2013), Infrasound pulses from lightning and electrostatic field changes: Observation and discussion, J. Geophys. Res. Atmos., 118, 10,653-10,664. Few, A. (1969), Power spectrum of thunder, J. Geophys. Res., 74(28), 6926-6934, doi:10.1029/JC074i028p06926. Marshall, T., M. Stolzenburg, C. Maggio, L. Coleman, P. Krehbiel, T. Hamlin, R. Thomas, and W. Rison (2005), Observed electric fields associated with lightning initiation, Geophys. Res. Lett., 32(3), L03813, doi:10.1029/2004GL021802. Thomas, R., P. Krehbiel, W. Rison, S. Hunyady, W. Winn, T. Hamlin, and J. Harlin (2004), Accuracy of the lightning mapping array, J. Geophys. Res., 109, D14207, doi:10.1029/2004JD004549. Kitagawa, N., and M. Brook (1960), A comparison of intracloud and cloud-to-ground lightning discharges, J. Geophys. Res., 65(4), 1189-1201. Wilson, C. (1920), Investigations on lightning discharges and on the electric field of thunderstorms, Philos. Trans. R. Soc. London, Ser. A, 221, 73-115. Rison, W., R. Thomas, P. Krehbiel, T. Hamlin, and J. Harlin (1999), A GPS-based three-dimensional lightning mapping, Geophys. Res. Lett., 26(23), 3573-3576. Arechiga, R., J. Johnson, H. Edens, W. Rison, R. Thomas, K. Eack, and E. Eastvedt (2009), Infrasonic observations from triggered lightning, Eos Trans. AGU, 90(5), Fall Meeting Abstracts AE21A-0295. Winn, W., G. Aulich, S. Hunyady, K. Eack, H. Edens, P. Krehbiel, W. Rison, and R. Sonnenfeld (2011), Lightning leader stepping, K changes, and other observations near an intracloud flash, J. Geophys. Res., 116, D23115, doi:10.1029/2011JD015998. da Silva, C. L., and V. P. Pasko (2014), Infrasonic acoustic waves generated by fast air heating in sprite cores, Geophys. Res. Lett., 41(5), 1789-1795, doi:10.1002/2013GL059164. 2011; 116 1973; 78 1969; 74 1920; 221 1999; 26 2009 1997 2008; 35 2004 2014; 41 2004; 109 2011; 38 2009; 114 1978 1960; 65 1967; 72 2009; 90 2013; 118 1977; 4 1985; 90 2005; 32 2012; 29 2013 1980 2012; 117 1969 1979; 84 1983; 88 Arechiga R. (e_1_2_6_2_1) 2009; 90 e_1_2_6_10_1 e_1_2_6_30_1 Bazelyan E. M. (e_1_2_6_7_1) 1997 Few A. (e_1_2_6_17_1) 1969 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 Tipler P. A. (e_1_2_6_28_1) 2004 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Balachandran, N. K. (1983), Acoustic and electric signals from lightning, J. Geophys. Res., 88(C6), 3879-3884. – reference: Wilson, C. (1920), Investigations on lightning discharges and on the electric field of thunderstorms, Philos. Trans. R. Soc. London, Ser. A, 221, 73-115. – reference: Few, A. (1969), Power spectrum of thunder, J. Geophys. Res., 74(28), 6926-6934, doi:10.1029/JC074i028p06926. – reference: Arechiga, R., J. Johnson, H. Edens, W. Rison, R. Thomas, K. Eack, and E. Eastvedt (2009), Infrasonic observations from triggered lightning, Eos Trans. AGU, 90(5), Fall Meeting Abstracts AE21A-0295. – reference: Kitagawa, N., and M. Brook (1960), A comparison of intracloud and cloud-to-ground lightning discharges, J. Geophys. Res., 65(4), 1189-1201. – reference: Bohannon, J., A. Few, and A. Dessler (1977), Detection of infrasonic pulses from thunderclouds, Geophys. Res. Lett., 4(1), 49-52. – reference: Balachandran, N. K. (1979), Infrasonic signals from thunder, J. Geophys. Res., 84(C4), 1735-1745. – reference: Rison, W., R. Thomas, P. Krehbiel, T. Hamlin, and J. Harlin (1999), A GPS-based three-dimensional lightning mapping, Geophys. Res. Lett., 26(23), 3573-3576. – reference: Thomas, R., P. Krehbiel, W. Rison, S. Hunyady, W. Winn, T. Hamlin, and J. Harlin (2004), Accuracy of the lightning mapping array, J. Geophys. Res., 109, D14207, doi:10.1029/2004JD004549. – reference: Johnson, J., R. Arechiga, R. Thomas, H. Edens, J. Anderson, and R. Johnson (2011), Imaging thunder, Geophys. Res. Lett., 38(19), L19807, doi:10.1029/2011GL049162. – reference: Few, A., A. Dessler, D. J. Latham, and M. Brook (1967), A dominant 200-hertz peak in the acoustic spectrum of thunder, J. Geophys. Res., 72(24), 6149-6154. – reference: Marshall, T., M. Stolzenburg, C. Maggio, L. Coleman, P. Krehbiel, T. Hamlin, R. Thomas, and W. Rison (2005), Observed electric fields associated with lightning initiation, Geophys. Res. Lett., 32(3), L03813, doi:10.1029/2004GL021802. – reference: Bazelyan, E. M., and Y. P. Raizer (1997), Spark Discharge, CRC Press, Boca Raton, Fla. – reference: Tipler, P. A., and G. Mosca (2004), Physics for Scientists and Engineers, 5th ed., W. H. Freeman and Company, New York. – reference: Chum, J., G. Diendorfer, T. Šindelářovaá, J. Baše, and F. Hruška (2013), Infrasound pulses from lightning and electrostatic field changes: Observation and discussion, J. Geophys. Res. Atmos., 118, 10,653-10,664. – reference: Few, A. (1985), The production of lightning-associated infrasonic acoustic sources in thunderclouds, J. Geophys. Res., 90(D4), 6175-6180. – reference: Qiu, S., B.-H. Zhou, and L.-H. Shi (2012), Synchronized observations of cloud-to-ground lightning using VHF broadband interferometer and acoustic arrays, J. Geophys. Res., 117, D19204, doi:10.1029/2012JD018542. – reference: Dessler, A. (1973), Infrasonic thunder, J. Geophys. Res., 78(12), 1889-1896. – reference: Marcillo, O., J. B. Johnson, and D. E. Hart (2012), Implementation, characterization, and evaluation of an inexpensive low-power low-noise infrasound sensor based on a micromachined differential pressure transducer and a mechanical filter, J. Atmos. Oceanic Technol., 29(9), 1275-1284. – reference: Edens, H., K. Eack, W. Rison, and S. Hunyady (2014), Photographic observations of streamers and steps in a cloud-to-air negative leader, Geophys. Res. Lett., 41(4), 1336-1342, doi:10.1002/2013GL059180. – reference: Assink, J., L. Evers, I. Holleman, and H. Paulssen (2008), Characterization of infrasound from lightning, Geophys. Res. Lett., 35(15), L15802, doi:10.1029/2008GL034193. – reference: Pasko, V. P. (2009), Mechanism of lightning-associated infrasonic pulses from thunderclouds, J. Geophys. Res., 114, D08205, doi:10.1029/2008JD011145. – reference: Winn, W., G. Aulich, S. Hunyady, K. Eack, H. Edens, P. Krehbiel, W. Rison, and R. Sonnenfeld (2011), Lightning leader stepping, K changes, and other observations near an intracloud flash, J. Geophys. Res., 116, D23115, doi:10.1029/2011JD015998. – reference: da Silva, C. L., and V. P. Pasko (2014), Infrasonic acoustic waves generated by fast air heating in sprite cores, Geophys. Res. Lett., 41(5), 1789-1795, doi:10.1002/2013GL059164. – year: 2009 – volume: 41 start-page: 1789 issue: 5 year: 2014 end-page: 1795 article-title: Infrasonic acoustic waves generated by fast air heating in sprite cores publication-title: Geophys. Res. Lett. – volume: 116 year: 2011 article-title: Lightning leader stepping, K changes, and other observations near an intracloud flash publication-title: J. Geophys. Res. – volume: 84 start-page: 1735 issue: C4 year: 1979 end-page: 1745 article-title: Infrasonic signals from thunder publication-title: J. Geophys. Res. – volume: 109 start-page: D14207 year: 2004 article-title: Accuracy of the lightning mapping array publication-title: J. Geophys. Res. – volume: 221 start-page: 73 year: 1920 end-page: 115 article-title: Investigations on lightning discharges and on the electric field of thunderstorms publication-title: Philos. Trans. R. Soc. London, Ser. A – volume: 118 start-page: 10,653 year: 2013 end-page: 10,664 article-title: Infrasound pulses from lightning and electrostatic field changes: Observation and discussion publication-title: J. Geophys. Res. Atmos. – volume: 26 start-page: 3573 issue: 23 year: 1999 end-page: 3576 article-title: A GPS‐based three‐dimensional lightning mapping publication-title: Geophys. Res. Lett. – volume: 114 year: 2009 article-title: Mechanism of lightning‐associated infrasonic pulses from thunderclouds publication-title: J. Geophys. Res. – volume: 35 issue: 15 year: 2008 article-title: Characterization of infrasound from lightning publication-title: Geophys. Res. Lett. – volume: 90 start-page: 6175 issue: D4 year: 1985 end-page: 6180 article-title: The production of lightning‐associated infrasonic acoustic sources in thunderclouds publication-title: J. Geophys. Res. – volume: 65 start-page: 1189 issue: 4 year: 1960 end-page: 1201 article-title: A comparison of intracloud and cloud‐to‐ground lightning discharges publication-title: J. Geophys. Res. – volume: 38 issue: 19 year: 2011 article-title: Imaging thunder publication-title: Geophys. Res. Lett. – start-page: 573 year: 1969 – volume: 72 start-page: 6149 issue: 24 year: 1967 end-page: 6154 article-title: A dominant 200‐hertz peak in the acoustic spectrum of thunder publication-title: J. Geophys. Res. – volume: 74 start-page: 6926 issue: 28 year: 1969 end-page: 6934 article-title: Power spectrum of thunder publication-title: J. Geophys. Res. – volume: 117 year: 2012 article-title: Synchronized observations of cloud‐to‐ground lightning using VHF broadband interferometer and acoustic arrays publication-title: J. Geophys. Res. – year: 1980 – volume: 90 start-page: Fall Meeting Abstracts AE21A issue: 5 year: 2009 end-page: 0295 article-title: Infrasonic observations from triggered lightning publication-title: Eos Trans. AGU – volume: 29 start-page: 1275 issue: 9 year: 2012 end-page: 1284 article-title: Implementation, characterization, and evaluation of an inexpensive low‐power low‐noise infrasound sensor based on a micromachined differential pressure transducer and a mechanical filter publication-title: J. Atmos. Oceanic Technol. – year: 2004 – year: 1997 – volume: 78 start-page: 1889 issue: 12 year: 1973 end-page: 1896 article-title: Infrasonic thunder publication-title: J. Geophys. Res. – year: 1978 – volume: 32 issue: 3 year: 2005 article-title: Observed electric fields associated with lightning initiation publication-title: Geophys. Res. Lett. – volume: 41 start-page: 1336 issue: 4 year: 2014 end-page: 1342 article-title: Photographic observations of streamers and steps in a cloud‐to‐air negative leader publication-title: Geophys. Res. Lett. – volume: 4 start-page: 49 issue: 1 year: 1977 end-page: 52 article-title: Detection of infrasonic pulses from thunderclouds publication-title: Geophys. Res. Lett. – volume: 88 start-page: 3879 issue: C6 year: 1983 end-page: 3884 article-title: Acoustic and electric signals from lightning publication-title: J. Geophys. Res. – year: 2013 – ident: e_1_2_6_12_1 doi: 10.1002/2013GL059164 – ident: e_1_2_6_27_1 doi: 10.1029/2004JD004549 – ident: e_1_2_6_14_1 doi: 10.1002/2013GL059180 – ident: e_1_2_6_24_1 doi: 10.1029/2008JD011145 – ident: e_1_2_6_20_1 doi: 10.1029/JZ065i004p01189 – ident: e_1_2_6_23_1 doi: 10.1029/2004GL021802 – ident: e_1_2_6_18_1 doi: 10.1029/JZ072i024p06149 – ident: e_1_2_6_29_1 doi: 10.1098/rsta.1921.0003 – ident: e_1_2_6_3_1 doi: 10.1029/2008GL034193 – ident: e_1_2_6_22_1 doi: 10.1175/JTECH-D-11-00101.1 – ident: e_1_2_6_26_1 doi: 10.1029/1999GL010856 – ident: e_1_2_6_30_1 doi: 10.1029/2011JD015998 – ident: e_1_2_6_4_1 – ident: e_1_2_6_19_1 doi: 10.1029/2011GL049162 – volume-title: Physics for Scientists and Engineers year: 2004 ident: e_1_2_6_28_1 – volume-title: Spark Discharge year: 1997 ident: e_1_2_6_7_1 – ident: e_1_2_6_10_1 – ident: e_1_2_6_6_1 doi: 10.1029/JC088iC06p03879 – volume: 90 start-page: Fall Meeting Ab issue: 5 year: 2009 ident: e_1_2_6_2_1 article-title: Infrasonic observations from triggered lightning publication-title: Eos Trans. AGU – ident: e_1_2_6_21_1 – ident: e_1_2_6_5_1 doi: 10.1029/JC084iC04p01735 – ident: e_1_2_6_16_1 doi: 10.1029/JD090iD04p06175 – ident: e_1_2_6_9_1 – start-page: 573 volume-title: Planetary Electrodynamics, Proceedings of the 4th International Conference on the Universal Aspects of Atmospheric Electricity, Held in Tokyo year: 1969 ident: e_1_2_6_17_1 – ident: e_1_2_6_11_1 doi: 10.1002/jgrd.50805 – ident: e_1_2_6_13_1 doi: 10.1029/JC078i012p01889 – ident: e_1_2_6_15_1 doi: 10.1029/JC074i028p06926 – ident: e_1_2_6_25_1 doi: 10.1029/2012JD018542 – ident: e_1_2_6_8_1 doi: 10.1029/GL004i001p00049 |
SSID | ssj0003031 |
Score | 2.2138934 |
Snippet | Acoustic, VHF, and electrostatic measurements throw new light onto the origin and production mechanism of the thunder infrasound signature (<10 Hz) from... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4735 |
SubjectTerms | Acoustics atmospheric electricity Channels Compressing electrostatic interaction Electrostatics Infrasound infrasound pulses Lightning Rarefaction Signatures thunder |
Title | Location and analysis of acoustic infrasound pulses in lightning |
URI | https://api.istex.fr/ark:/67375/WNG-WN2KJKVF-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2014GL060375 https://www.proquest.com/docview/1642052737 https://www.proquest.com/docview/1560104657 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdQKyReEONDdGwoSMBLFUic2G7eqICmrF2F2DomXizHsTVElVZth4C_nnPsfFQbE_DQKHKsOvGd78O--x1Cz4XOB7lW1M8TKXyQktpPiA58rGOCZRaIJDcnusczOp7HR-fkvHViarJLttkr-evavJL_oSq0AV1Nluw_ULb-U2iAe6AvXIHCcP0rGk-XdsPNIa428CIg5soqXSbWai02pnRSf3UJWrCMfl0Yh7yodJazTFO1XFU0cwhAF_1FmeyzabhCyYuvdiu2PiE62TqRWu_h2KCjnU4gbr9bgTRu7zOEsdnAtGmQVgdcDeS5Eq1pwhT9AWYO29pK1CSGtsCWtq1ErsW6qlgraglQUwn5WslukWLNi6XTgJrKvY0Gq07tx8MT_vHdiE8_zCa7T63CBmsRrKfA4A50MbgVuIO6w7P5l3mtu0Gh2xqL7kNcqgQM_ro99I4R0zXr8ceOh9L2c0pD5fQeuus8DG9o2WUP3VLFfXQ7LSs4_4S7MuZXbh6gNxX7eMA-XsU-3lJ7Fft4Dft4ln2gxavZ5yGaj96fvh37rqCGL8FOM2CgORZhkucREUJmg0xTSZlijIZaJBE4v5KBxJeKBRkVYDlnigoKPkSuZE6Ejh6hTrEs1GPkxSpMFGFyQIiItYYuSZwMQJ7rKKEa4x7qVzPEpUObN0VPFtziZGPens8eelH3XlmUlT_0e1lOdt1JrL-ZyERG-OdZCj88OZqcjfhxDx1U1OBuwW54CL52YAAHWQ89qx-DODVnZKJQMLU8tDsUlECffknFG1-Ip5-mBuSO7d884BN0p1lTB6izXV-qQ7Bmt9lTx4K_ATSymk8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB5am9JeQp_ESdqq0PQSRKS1dld7ayi13Vj2ocRp6GVZ7ePSIAc7geTfZ0ZSFOfQQA4CIY2EmN157ur7AL6a4HIXvIidsiZGLxlixUMSs5BxZsvEKEcrurO5mCyy4zN-1vKc0r8wDT5E13Ajy6j9NRk4NaQP71FDMXRl4yIRxOL6HPqU2OQ96B-dLv4uOmeMHrohzVNZnDMp2r3v-IbDzecfRKU-Kfj6Qcq5mbjWkWf0GrbalDE6asb4DTzz1Vt4Ma4peW_wrN7Eadfv4HuxbBpwkakcHg3cSLQMEbq9mrUrwvm0MmuiUoourjAqrvFKdE4FOvVH3sNi9PPkxyRuGRJii4GX0B0dM6lybsiNsWVeBmGF9FKKNBg1xGrGSjRh62VSCoOpUOmFEZgUOm8dN2H4AXrVsvLbEGU-VZ5Lm3NushBQRGUqRwMNQyUCYwM4uNOQti18OLFYnOsG-JjpTX0OYL-TvmhgM_4j961WdidkVv9oq5nk-s98jAebHk9PR3o2gL270dCtla01lnosIQQ5OYAv3W20D1r0MJVH1eq0KTkFR5mDehQf_SA9_l0QapnceZL0Z3g5OZkVuvg1n-7CK5KhBnAq9qB3ubryHzFzuSw_tbPzFlNp4qg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB61RK16QX2ASKHUlVouyMLeeHe9N1BLQkmIKkQAcVmt93EhcqIEpPbfM2MbNxyo1IMly_5sWbM7z11_A_DVBJe74EXslDUxWskQKx6SmIWMM1skRjla0T0bi5NJdnrNr5uCG_0LU_NDtAU30ozKXpOCz104-Esaip4rG4wSQU1cX0KHiPJwVneOLic3k9YWo4Gue-apLM6ZFM3Wd3zDwerzT5xSh-T7-0nEuRq3Vo6n_xbWm4gxOqqH-B288OV7eDWoOvL-wbNqD6ddfoDD0ayuv0WmdHjUbCPRLERo9aqmXRFOp4VZUielaH6PTnGJV6Ip5edUHtmASf_44vtJ3DRIiC36XSJ3dMykyrkeN8YWeRGEFdJLKdJgVA-TGStRg62XSSEMRkKFFwbFpJy3jpvQ24S1clb6LYgynyrPpc05N1kICFGZylE_Q0-JwFgX9h8lpG3DHk5NLKa65j1melWeXfjWouc1a8YzuL1K2C3ILG5pp5nk-mo8wIMNT4eXfX3WhZ3H0dCNki01ZnosIQI52YUv7W1UD1rzMKVH0eq0zjgFR8x-NYr__CA9OB8RaZn8-F_oz_D614--Hv0cD7fhDUGo_JuKHVi7W9z7Txi33BW7zeR8APoO4dE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Location+and+analysis+of+acoustic+infrasound+pulses+in+lightning&rft.jtitle=Geophysical+research+letters&rft.au=Arechiga%2C+R&rft.au=Stock%2C+M&rft.au=Thomas%2C+R&rft.au=Erives%2C+H&rft.date=2014-07-16&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=41&rft.issue=13&rft.spage=4735&rft_id=info:doi/10.1002%2F2014GL060375&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3545554021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |