Effective Homogeneous Hydrolysis of Phosphodiester and DNA Cleavage by Chitosan-copper Complex
We aimed to explore the role of chitosan-based metal complexes in catalyzing the hydrolysis of phosphodiesters To this end, we performed detailed studies on the kinetics of the chitosan copper complex (CSCu)-catalyzed hydrolysis of bis(4-nitrophenol) phosphate (BNPP) in Tris-H+ buffer and in an orga...
Saved in:
Published in | Chinese journal of chemistry Vol. 29; no. 4; pp. 711 - 718 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.04.2011
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1001-604X 1614-7065 |
DOI | 10.1002/cjoc.201190145 |
Cover
Loading…
Abstract | We aimed to explore the role of chitosan-based metal complexes in catalyzing the hydrolysis of phosphodiesters To this end, we performed detailed studies on the kinetics of the chitosan copper complex (CSCu)-catalyzed hydrolysis of bis(4-nitrophenol) phosphate (BNPP) in Tris-H+ buffer and in an organic solvent. A significant enhancement in the rate of reaction (up to 3 X 105-fold acceleration) was observed at pH 8.0 (25 ℃). The pH depend- ence of BNPP hydrolysis at pH 5.5-9.5 and the UV spectra revealed that the copper-bounded water molecules un- derwent deprotonation to form the active catalytic species CSCu-OH. The kinetic behavior of BNPP catalytic hydrolysis in the Tris-H+ buffer was consistent with that predicted by the Michaelis-Menten kinetics model. An in-ramolecular nucleophilic attack by the copper-bonded hydroxide group on the same activated phosphodiester substrate was proposed as the catalytic mechanism for CSCu-catalyzed reaction system. The results of DNA binding and cleavage experiments indicated electrostatic binding mode of CSCu to DNA as well as the strong capability of CSCu to disturb the supercoiled strand of DNA and cleave it to nicked circular form. |
---|---|
AbstractList | We aimed to explore the role of chitosan-based metal complexes in catalyzing the hydrolysis of phosphodiesters. To this end, we performed detailed studies on the kinetics of the chitosan copper complex (CSCu)-catalyzed hydrolysis of bis(4-nitrophenol) phosphate (BNPP) in Tris-H super(+) buffer and in an organic solvent. A significant enhancement in the rate of reaction (up to 310 super(5)-fold acceleration) was observed at pH 8.0 (25 degree C). The pH dependence of BNPP hydrolysis at pH 5.5-9.5 and the UV spectra revealed that the copper-bounded water molecules underwent deprotonation to form the active catalytic species CSCu-OH. The kinetic behavior of BNPP catalytic hydrolysis in the Tris-H super(+) buffer was consistent with that predicted by the Michaelis-Menten kinetics model. An intramolecular nucleophilic attack by the copper-bonded hydroxide group on the same activated phosphodiester substrate was proposed as the catalytic mechanism for CSCu-catalyzed reaction system. The results of DNA binding and cleavage experiments indicated electrostatic binding mode of CSCu to DNA as well as the strong capability of CSCu to disturb the supercoiled strand of DNA and cleave it to nicked circular form. The chitosan copper complex (CSCu) is used as artificial hydrolase for both phosphodiester bond and DNA molecular. The apparent hydrolytic rate of bis(4-nitrophenol) phosphate can be greatly enhanced in mild buffer solution by CSCu. The results of DNA binding and cleavage experiments indicated electrostatic binding mode of CSCu to DNA as well as the strong capability of CSCu to disturb the supercoiled strand of DNA and cleave it to nicked circular form. We aimed to explore the role of chitosan‐based metal complexes in catalyzing the hydrolysis of phosphodiesters. To this end, we performed detailed studies on the kinetics of the chitosan copper complex (CSCu)‐catalyzed hydrolysis of bis(4‐nitrophenol) phosphate (BNPP) in Tris‐H+ buffer and in an organic solvent. A significant enhancement in the rate of reaction (up to 3×105‐fold acceleration) was observed at pH 8.0 (25°C). The pH dependence of BNPP hydrolysis at pH 5.5–9.5 and the UV spectra revealed that the copper‐bounded water molecules underwent deprotonation to form the active catalytic species CSCu‐OH. The kinetic behavior of BNPP catalytic hydrolysis in the Tris‐H+ buffer was consistent with that predicted by the Michaelis‐Menten kinetics model. An intramolecular nucleophilic attack by the copper‐bonded hydroxide group on the same activated phosphodiester substrate was proposed as the catalytic mechanism for CSCu‐catalyzed reaction system. The results of DNA binding and cleavage experiments indicated electrostatic binding mode of CSCu to DNA as well as the strong capability of CSCu to disturb the supercoiled strand of DNA and cleave it to nicked circular form. The chitosan copper complex (CSCu) is used as artificial hydrolase for both phosphodiester bond and DNA molecular. The apparent hydrolytic rate of bis(4‐nitrophenol) phosphate can be greatly enhanced in mild buffer solution by CSCu. The results of DNA binding and cleavage experiments indicated electrostatic binding mode of CSCu to DNA as well as the strong capability of CSCu to disturb the supercoiled strand of DNA and cleave it to nicked circular form. We aimed to explore the role of chitosan-based metal complexes in catalyzing the hydrolysis of phosphodiesters To this end, we performed detailed studies on the kinetics of the chitosan copper complex (CSCu)-catalyzed hydrolysis of bis(4-nitrophenol) phosphate (BNPP) in Tris-H+ buffer and in an organic solvent. A significant enhancement in the rate of reaction (up to 3 X 105-fold acceleration) was observed at pH 8.0 (25 ℃). The pH depend- ence of BNPP hydrolysis at pH 5.5-9.5 and the UV spectra revealed that the copper-bounded water molecules un- derwent deprotonation to form the active catalytic species CSCu-OH. The kinetic behavior of BNPP catalytic hydrolysis in the Tris-H+ buffer was consistent with that predicted by the Michaelis-Menten kinetics model. An in-ramolecular nucleophilic attack by the copper-bonded hydroxide group on the same activated phosphodiester substrate was proposed as the catalytic mechanism for CSCu-catalyzed reaction system. The results of DNA binding and cleavage experiments indicated electrostatic binding mode of CSCu to DNA as well as the strong capability of CSCu to disturb the supercoiled strand of DNA and cleave it to nicked circular form. We aimed to explore the role of chitosan-based metal complexes in catalyzing the hydrolysis of phosphodiesters. To this end, we performed detailed studies on the kinetics of the chitosan copper complex (CSCu)-catalyzed hydrolysis of bis(4-nitrophenol) phosphate (BNPP) in Tris-H+ buffer and in an organic solvent. A significant enhancement in the rate of reaction (up to 3×105-fold acceleration) was observed at pH 8.0 (25°C). The pH dependence of BNPP hydrolysis at pH 5.5-9.5 and the UV spectra revealed that the copper-bounded water molecules underwent deprotonation to form the active catalytic species CSCu-OH. The kinetic behavior of BNPP catalytic hydrolysis in the Tris-H+ buffer was consistent with that predicted by the Michaelis-Menten kinetics model. An intramolecular nucleophilic attack by the copper-bonded hydroxide group on the same activated phosphodiester substrate was proposed as the catalytic mechanism for CSCu-catalyzed reaction system. The results of DNA binding and cleavage experiments indicated electrostatic binding mode of CSCu to DNA as well as the strong capability of CSCu to disturb the supercoiled strand of DNA and cleave it to nicked circular form. |
Author | Zhang, Qi Yang, Ruxin Si, Jiangju Xiang, Yan Guo, Hong |
AuthorAffiliation | School of Materials Science and Engineering, Beihang University, Beijing 100191, China School of Chemistry and Environment, Beihang University, Beijing 100191, China |
Author_xml | – sequence: 1 fullname: 张琦 相艳 杨汝新 司江菊 郭红 |
BookMark | eNqFkc9PFDEYhhuDiYBePU_04mWWttMfM0ccYBdDwINGTjYfnXa3y2w7tLPI_PcWlxBDYjz1OzxPv7dvD9CeD94g9J7gGcGYHul10DOKCWkwYfwV2ieCsFJiwffyjDEpBWbXb9BBSuvMS0nFPvp5aq3Ro7s3xSJswtJ4E7apWExdDP2UXCqCLb6uQhpWoXMmjSYW4Lvi5PK4aHsD97A0xc1UtCs3hgS-1GEYMtOGzdCbh7fotYU-mXdP5yH6fnb6rV2UF1fz8_b4otSMcF4aQTsAZipJZdMArq0GSytMalJRZjpiQfAOmAXQVuumI1TozjJTk9rSrq4O0afdvUMMd9scU21c0qbv4c97FJFSCCYF5hn9-AJdh230OV2mhKgxzXCm2I7SMaQUjVXajTC64McIrlcEq8fS1WPp6rn0rM1eaEN0G4jTv4VmJ_xyvZn-Q6v2y1X7t1vuXJe_5eHZhXirhKwkVz8u52rOK8k-n10rlvkPT-FWwS_vnF-qG9C3Nm9WGeeCiar6DewJsfo |
CitedBy_id | crossref_primary_10_1002_cjoc_201300488 crossref_primary_10_3390_nano7010006 crossref_primary_10_1016_j_ica_2016_05_055 crossref_primary_10_1002_cjoc_201300699 |
Cites_doi | 10.1021/ja027728v 10.1021/ja964319o 10.1021/ic000169d 10.1002/(SICI)1521-3773(19991102)38:21<3189::AID-ANIE3189>3.0.CO;2-X 10.1002/ejic.200500595 10.1021/ja0737366 10.1021/ic970199p 10.1016/j.enzmictec.2006.06.009 10.1021/ja9607300 10.1021/ic00023a003 10.1002/cjoc.200591303 10.1021/ic049469b 10.1016/j.carres.2003.10.024 10.1021/cr9804341 10.1016/j.ica.2004.10.024 10.1021/ja020877t 10.1021/ja054003t 10.1021/ja0443934 10.1021/ic00100a031 10.1021/ja0010103 10.1021/ja00068a033 10.1021/ic960955b 10.1016/j.molcata.2010.02.011 10.1021/bm0504126 10.1021/ic061024v 10.1002/kin.20045 10.1016/j.reactfunctpolym.2009.04.001 10.1002/ejic.200700383 10.1021/ja961789+ 10.1021/ic00292a025 10.1016/S1381-1169(02)00276-5 10.1021/ic00069a005 10.1016/S0020-1693(96)05264-4 10.1021/ja00142a010 10.1021/bc800062g 10.1016/S0020-1693(02)00704-1 |
ContentType | Journal Article |
Copyright | Copyright © 2011 SIOC, CAS, Shanghai & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2011 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2011 SIOC, CAS, Shanghai & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2011 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 2RA 92L CQIGP W92 ~WA BSCLL AAYXX CITATION 7TM |
DOI | 10.1002/cjoc.201190145 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Istex CrossRef Nucleic Acids Abstracts |
DatabaseTitle | CrossRef Nucleic Acids Abstracts |
DatabaseTitleList | Nucleic Acids Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Effective Homogeneous Hydrolysis of Phosphodiester and DNA Cleavage by Chitosan-copper Complex |
EISSN | 1614-7065 |
EndPage | 718 |
ExternalDocumentID | 3957936931 10_1002_cjoc_201190145 CJOC201190145 ark_67375_WNG_G5374BFX_4 37556463 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: the Beijing Novel Program funderid: 2008B12 – fundername: the National Natural Science Foundation of China funderid: 20403002, 20773008 – fundername: the National High‐Tech R&D Program funderid: 2007AA05Z146 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29B 2RA 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VR 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 92L AAESR AAEVG AAHHS AAONW AAPBV AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABHUG ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFUIB AFVGU AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 BZXJU CCEZO CDRFL CDYEO CHBEP CQIGP CS3 CW9 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FA0 FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2W P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RK2 RNS ROL RWI RX1 RYL SAMSI SUPJJ W8V W92 W99 WBFHL WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WA ~WT -SB -S~ 5XA 5XC AANLZ AAXDM ABJNI AEIGN AEUYR AFFPM AHBTC AITYG BSCLL CAJEB HGLYW OIG Q-- U1G U5L AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ AGHNM AGQPQ AGYGG ALVPJ AAYXX AEYWJ CITATION TGP AAMMB AEFGJ AGXDD AIDQK AIDYY 7TM |
ID | FETCH-LOGICAL-c4155-e62daa4e372799a08fcaf230181324ed1fa65da4faacfcc9d126cdf4e818f2d83 |
IEDL.DBID | DR2 |
ISSN | 1001-604X |
IngestDate | Thu Jul 10 20:09:19 EDT 2025 Fri Jul 25 10:35:55 EDT 2025 Tue Jul 01 03:35:08 EDT 2025 Thu Apr 24 23:01:18 EDT 2025 Fri Apr 25 07:47:31 EDT 2025 Wed Oct 30 09:54:35 EDT 2024 Fri Nov 25 18:20:58 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4155-e62daa4e372799a08fcaf230181324ed1fa65da4faacfcc9d126cdf4e818f2d83 |
Notes | 31-1547/O6 TQ460.35 homogeneous catalysis, chitosan, copper, kinetics, phosphodiester, hydrolysis TQ225.241 the Beijing Novel Program - No. 2008B12 the National Natural Science Foundation of China - No. 20403002, 20773008 ArticleID:CJOC201190145 istex:247CF82F325D3487F1D4D1E70C172CB0FD1DF175 the National High-Tech R&D Program - No. 2007AA05Z146 ark:/67375/WNG-G5374BFX-4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1766802177 |
PQPubID | 986331 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1776647605 proquest_journals_1766802177 crossref_citationtrail_10_1002_cjoc_201190145 crossref_primary_10_1002_cjoc_201190145 wiley_primary_10_1002_cjoc_201190145_CJOC201190145 istex_primary_ark_67375_WNG_G5374BFX_4 chongqing_backfile_37556463 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April, 2011 |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: April, 2011 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Shanghai |
PublicationTitle | Chinese journal of chemistry |
PublicationTitleAlternate | Chinese Journal of Chemistry |
PublicationYear | 2011 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | Xiang, Y.; Zhang, Q.; Si, J. J.; Du, J. P.; Guo, H.; Zhang, T.. J. Mol. Catal A: Chem., 2010, 322. Aguilar-Perez, F.; GomezTagle, P.; Collado-Fregoso, E.; Yatsinirsky, A. K.. Inorg. Chem., 2006, 45, 9502. Burstyn, J. N.; Deal, K. A.. Inorg. Chem., 1993, 32, 3585. Bruice, T. C.; Tsubouchi, A.; Dempcy, R. O.; Olson, L. P., J. Am. Chem. Soc., 1996, 118, 9867. Terreux, R.; Domard, M.; Viton, C.; Domard, A.. Biomacromolecules, 2006, 7, 31. Rammo, J.; Schneider, H.-J.. Inorg. Chim. Acta, 1996, 251, 125. Shao, Y.; Sheng, X.; Li, Y.; Jia, Z. L.; Zhang, L. L.; Lin, F.; Lu, G. Y.. Bioconjugate Chem., 2008, 19, 1840. Hanafy, A. I.; Lykourinou-Tibbs, V.,, Inorg. Chim. Acta, 2005, 358, 1247. Iranzo, O.; Kovalevsky, A. Y.; Morrow, J. R.; Richard, J. P., J. Am. Chem. Soc, 2003, 125. Chen, X. Q.; Peng, X. J.; Wang, J. Y.. Eur. J. Inorg. Chem., 2007, 34, 5400. Xiang, Q.-X.; Yu, X.-Q.; Su, X.-Y.; Yan, Q. S.; Wang, T.; You, J. S.; Xie, R. G.. J. Mol. Catal A:Chem., 2002, 187, 195. Molenveld, P.; Engbersen, J. F. J.; Reinhoudt, D. N.. Angew. Chem., Int. Ed., 1999, 38, 3189. Chin, K. O. A.; Morrow, J. R.. Inorg. Chem., 1994, 33, 5036. Chang, Y.-C.; Chen, D.-H.. React. Funct. Polym., 2009, 69. Li, C. L.; Hor, L. I.; Chang, Z. F.; Tsai, L. C.; Yang, W. Z.; Yuan, H. S.. Embo J., 2003, 22. Kimura, E.; Hashimoto, H.; Koike, T.. J. Am. Chem. Soc., 1996, 118, 10963. Zhang, Y. Q.; Liu, F.; Xiang, Q. X.. Int. J. Chem. Kinet., 2004, 36, 687. Kou, X. M.; Hu, Y.; Huang, Z.; Meng, X. G.; Zeng, X. C.. Chin. J. Chem., 2005, 23, 1303. Komiyama, M.; Kina, S.; Matsumura, K.. J. Am. Chem. Soc., 2002, 124, 13731. Cacciapaglia, R.; Casnati, A.; Mandolini, L.. J. Am. Chem. Soc., 2007, 129, 12512. Shionoya, M.; Kimura, E.; Shirot, M.. J. Am. Chem. Soc., 1993, 115, 6730. Fry, F. H.; Fischmann, A. J.; Belousoff, M. J.; Spiccia, L.; Brugger, J.. Inorg. Chem., 2005, 44, 941. Hegg, E. L.; Deal, K. A.; Kiessling, L. L.; Burstyn, J. N.. Inorg. Chem., 1997, 36, 1715. Lim, S.-H.; Hudson, S. M.. Carbohydr. Res., 2004, 339, 313. Young, M. J.; Wahnon, D.; Hynes, R. C.; Chin, J.. J. Am. Chem. Soc., 1995, 117, 9441. Branum, M. E.; Tipton, A. K.; Zhu, S.; Que, L.. J. Am. Chem. Soc., 2001, 123. Foresti, M. L.; Ferreira, M. L.. Enzyme Microb. Technol., 2007, 40, 769. Kong, D. Y.; Martell, A. E.; Reibenspies, J.. Inorg. Chim. Acta, 2002, 333, 7. Kaminskaia, N. V.; He, C.; Lippard, S. J.. Inorg. Chem., 2000, 39, 3365. Huang, Y.; Chen, S. Y.; Zhang, J.; Tan, X. Y.; Jiang, N.; Zhang, J. J.; Zhang, Y.; Lin, H. H.; Yu, X. Q.. Chem. Biodivers., 2009, 6. Shelton, V. M.; Morrow, J. R.. Inorg. Chem., 1991, 30, 4295. Erkkila, K. E.; Odom, D. T.; Barton, J. K.. Chem. Rev., 1999, 99, 2777. Selmeczi, K.; Giorgi, M.; Speier, G.; Farkas, E.; Reglier, M., Eur. J. Inorg. Chem., 2006, 1022. Hettich, R.; Schneider, H.-J.. J. Am. Chem. Soc., 1997, 119, 5638. Morrow, J. R.; Trogler, W. C.. Inorg. Chem., 1988, 27, 3387. Zhao, Y. M.; Zhu, J. H.; He, W. J.; Yang, Z.; Zhu, Y. G.; Li, Y.; Zhang, J. F.; Guo, Z.. Chem. Eur. J., 2006, 12. Detmer, C. A.; Pamatong, F. V.; Bocarsly, J. R.. Inorg. Chem., 1997, 36, 3676. Scheffer, U.; Strick, A.; Ludwig, V.; Peter, S.; Kalden, E.; GÖbel, M. W.. J. Am. Chem. Soc., 2005, 127. Feng, G.; Mareque-Rivas, J. C.; Torres Martin, R.; Williams, N. H., J. Am. Chem. Soc, 2005, 127, 13470. 2009; 69 2001; 123 2007; 129 1997; 119 2006; 12 1991; 30 2002; 333 2008; 19 2005; 358 2010; 322 1995; 117 2006; 7 2006 2007; 34 2005; 44 2005; 23 2000; 39 2006; 45 2002; 187 2002; 124 2004; 36 1999; 38 1997; 36 1993; 32 2005; 127 1988; 27 1994; 33 1999; 99 2009; 6 2007; 40 1996; 251 2003; 125 2004; 339 1993; 115 1996; 118 2003; 22 Chang (10.1002/cjoc.201190145-BIB10|cit40) 2009; 69 Li (10.1002/cjoc.201190145-BIB3c|cit14) 2003; 22 Shionoya (10.1002/cjoc.201190145-BIB7a|cit30) 1993; 115 Aguilar-Perez (10.1002/cjoc.201190145-BIB6a|cit26) 2006; 45 Burstyn (10.1002/cjoc.201190145-BIB7b|cit31) 1993; 32 Hegg (10.1002/cjoc.201190145-BIB4a|cit17) 1997; 36 Iranzo (10.1002/cjoc.201190145-BIB3b|cit13) 2003; 125 Foresti (10.1002/cjoc.201190145-BIB9b|cit39) 2007; 40 Detmer (10.1002/cjoc.201190145-BIB4d|cit20) 1997; 36 Lim (10.1002/cjoc.201190145-BIB9a|cit38) 2004; 339 Kou (10.1002/cjoc.201190145-BIB6b|cit27) 2005; 23 Branum (10.1002/cjoc.201190145-BIB2b|cit8) 2001; 123 Molenveld (10.1002/cjoc.201190145-BIB1c|cit4) 1999; 38 Hanafy (10.1002/cjoc.201190145-BIB13|cit43) 2005; 358 Young (10.1002/cjoc.201190145-BIB4b|cit18) 1995; 117 Chin (10.1002/cjoc.201190145-BIB4c|cit19) 1994; 33 Fry (10.1002/cjoc.201190145-BIB7e|cit34) 2005; 44 Cacciapaglia (10.1002/cjoc.201190145-BIB4e|cit21) 2007; 129 Shao (10.1002/cjoc.201190145-BIB4g|cit23) 2008; 19 Kong (10.1002/cjoc.201190145-BIB7d|cit33) 2002; 333 Zhang (10.1002/cjoc.201190145-BIB6c|cit28) 2004; 36 Komiyama (10.1002/cjoc.201190145-BIB2c|cit9) 2002; 124 Feng (10.1002/cjoc.201190145-BIB3d|cit15) 2005; 127 Kimura (10.1002/cjoc.201190145-BIB8|cit36) 1996; 118 Hettich (10.1002/cjoc.201190145-BIB5|cit24) 1997; 119 Huang (10.1002/cjoc.201190145-BIB7f|cit35) 2009; 6 Xiang (10.1002/cjoc.201190145-BIB11|cit41) 2010; 322 Chen (10.1002/cjoc.201190145-BIB1d|cit5) 2007; 34 Bruice (10.1002/cjoc.201190145-BIB13a|cit12) 1996; 118 Erkkila (10.1002/cjoc.201190145-BIB12a|cit7) 1999; 99 Scheffer (10.1002/cjoc.201190145-BIB2d|cit10) 2005; 127 Shelton (10.1002/cjoc.201190145-BIB1a|cit2) 1991; 30 Kaminskaia (10.1002/cjoc.201190145-BIB15|cit45) 2000; 39 Terreux (10.1002/cjoc.201190145-BIB16|cit46) 2006; 7 Xiang (10.1002/cjoc.201190145-BIB7c|cit32) 2002; 187 Morrow (10.1002/cjoc.201190145-BIB14|cit44) 1988; 27 Zhao (10.1002/cjoc.201190145-BIB12|cit42) 2006; 12 Selmeczi (10.1002/cjoc.201190145-BIB4f|cit22) 2006 Rammo (10.1002/cjoc.201190145-BIB1b|cit3) 1996; 251 |
References_xml | – reference: Feng, G.; Mareque-Rivas, J. C.; Torres Martin, R.; Williams, N. H., J. Am. Chem. Soc, 2005, 127, 13470. – reference: Foresti, M. L.; Ferreira, M. L.. Enzyme Microb. Technol., 2007, 40, 769. – reference: Xiang, Y.; Zhang, Q.; Si, J. J.; Du, J. P.; Guo, H.; Zhang, T.. J. Mol. Catal A: Chem., 2010, 322. – reference: Kong, D. Y.; Martell, A. E.; Reibenspies, J.. Inorg. Chim. Acta, 2002, 333, 7. – reference: Branum, M. E.; Tipton, A. K.; Zhu, S.; Que, L.. J. Am. Chem. Soc., 2001, 123. – reference: Erkkila, K. E.; Odom, D. T.; Barton, J. K.. Chem. Rev., 1999, 99, 2777. – reference: Komiyama, M.; Kina, S.; Matsumura, K.. J. Am. Chem. Soc., 2002, 124, 13731. – reference: Fry, F. H.; Fischmann, A. J.; Belousoff, M. J.; Spiccia, L.; Brugger, J.. Inorg. Chem., 2005, 44, 941. – reference: Hanafy, A. I.; Lykourinou-Tibbs, V.,, Inorg. Chim. Acta, 2005, 358, 1247. – reference: Aguilar-Perez, F.; GomezTagle, P.; Collado-Fregoso, E.; Yatsinirsky, A. K.. Inorg. Chem., 2006, 45, 9502. – reference: Shionoya, M.; Kimura, E.; Shirot, M.. J. Am. Chem. Soc., 1993, 115, 6730. – reference: Burstyn, J. N.; Deal, K. A.. Inorg. Chem., 1993, 32, 3585. – reference: Molenveld, P.; Engbersen, J. F. J.; Reinhoudt, D. N.. Angew. Chem., Int. Ed., 1999, 38, 3189. – reference: Huang, Y.; Chen, S. Y.; Zhang, J.; Tan, X. Y.; Jiang, N.; Zhang, J. J.; Zhang, Y.; Lin, H. H.; Yu, X. Q.. Chem. Biodivers., 2009, 6. – reference: Rammo, J.; Schneider, H.-J.. Inorg. Chim. Acta, 1996, 251, 125. – reference: Chang, Y.-C.; Chen, D.-H.. React. Funct. Polym., 2009, 69. – reference: Bruice, T. C.; Tsubouchi, A.; Dempcy, R. O.; Olson, L. P., J. Am. Chem. Soc., 1996, 118, 9867. – reference: Xiang, Q.-X.; Yu, X.-Q.; Su, X.-Y.; Yan, Q. S.; Wang, T.; You, J. S.; Xie, R. G.. J. Mol. Catal A:Chem., 2002, 187, 195. – reference: Selmeczi, K.; Giorgi, M.; Speier, G.; Farkas, E.; Reglier, M., Eur. J. Inorg. Chem., 2006, 1022. – reference: Kaminskaia, N. V.; He, C.; Lippard, S. J.. Inorg. Chem., 2000, 39, 3365. – reference: Zhang, Y. Q.; Liu, F.; Xiang, Q. X.. Int. J. Chem. Kinet., 2004, 36, 687. – reference: Li, C. L.; Hor, L. I.; Chang, Z. F.; Tsai, L. C.; Yang, W. Z.; Yuan, H. S.. Embo J., 2003, 22. – reference: Scheffer, U.; Strick, A.; Ludwig, V.; Peter, S.; Kalden, E.; GÖbel, M. W.. J. Am. Chem. Soc., 2005, 127. – reference: Kimura, E.; Hashimoto, H.; Koike, T.. J. Am. Chem. Soc., 1996, 118, 10963. – reference: Cacciapaglia, R.; Casnati, A.; Mandolini, L.. J. Am. Chem. Soc., 2007, 129, 12512. – reference: Zhao, Y. M.; Zhu, J. H.; He, W. J.; Yang, Z.; Zhu, Y. G.; Li, Y.; Zhang, J. F.; Guo, Z.. Chem. Eur. J., 2006, 12. – reference: Morrow, J. R.; Trogler, W. C.. Inorg. Chem., 1988, 27, 3387. – reference: Young, M. J.; Wahnon, D.; Hynes, R. C.; Chin, J.. J. Am. Chem. Soc., 1995, 117, 9441. – reference: Kou, X. M.; Hu, Y.; Huang, Z.; Meng, X. G.; Zeng, X. C.. Chin. J. Chem., 2005, 23, 1303. – reference: Chin, K. O. A.; Morrow, J. R.. Inorg. Chem., 1994, 33, 5036. – reference: Terreux, R.; Domard, M.; Viton, C.; Domard, A.. Biomacromolecules, 2006, 7, 31. – reference: Iranzo, O.; Kovalevsky, A. Y.; Morrow, J. R.; Richard, J. P., J. Am. Chem. Soc, 2003, 125. – reference: Shelton, V. M.; Morrow, J. R.. Inorg. Chem., 1991, 30, 4295. – reference: Lim, S.-H.; Hudson, S. M.. Carbohydr. Res., 2004, 339, 313. – reference: Hegg, E. L.; Deal, K. A.; Kiessling, L. L.; Burstyn, J. N.. Inorg. Chem., 1997, 36, 1715. – reference: Chen, X. Q.; Peng, X. J.; Wang, J. Y.. Eur. J. Inorg. Chem., 2007, 34, 5400. – reference: Shao, Y.; Sheng, X.; Li, Y.; Jia, Z. L.; Zhang, L. L.; Lin, F.; Lu, G. Y.. Bioconjugate Chem., 2008, 19, 1840. – reference: Hettich, R.; Schneider, H.-J.. J. Am. Chem. Soc., 1997, 119, 5638. – reference: Detmer, C. A.; Pamatong, F. V.; Bocarsly, J. R.. Inorg. Chem., 1997, 36, 3676. – volume: 118 start-page: 10963 year: 1996 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 1840 year: 2008 publication-title: Bioconjugate Chem. – volume: 7 start-page: 31 year: 2006 publication-title: Biomacromolecules – volume: 36 start-page: 687 year: 2004 publication-title: Int. J. Chem. Kinet. – volume: 39 start-page: 3365 year: 2000 publication-title: Inorg. Chem. – volume: 127 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 129 start-page: 12512 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 6730 year: 1993 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 9867 year: 1996 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 769 year: 2007 publication-title: Enzyme Microb. Technol. – volume: 6 year: 2009 publication-title: Chem. Biodivers. – volume: 12 year: 2006 publication-title: Chem. Eur. J. – start-page: 1022 year: 2006 publication-title: Eur. J. Inorg. Chem. – volume: 187 start-page: 195 year: 2002 publication-title: J. Mol. Catal A:Chem. – volume: 34 start-page: 5400 year: 2007 publication-title: Eur. J. Inorg. Chem. – volume: 22 year: 2003 publication-title: Embo J. – volume: 333 start-page: 7 year: 2002 publication-title: Inorg. Chim. Acta – volume: 124 start-page: 13731 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 69 year: 2009 publication-title: React. Funct. Polym. – volume: 45 start-page: 9502 year: 2006 publication-title: Inorg. Chem. – volume: 358 start-page: 1247 year: 2005 publication-title: Inorg. Chim. Acta – volume: 33 start-page: 5036 year: 1994 publication-title: Inorg. Chem. – volume: 30 start-page: 4295 year: 1991 publication-title: Inorg. Chem. – volume: 119 start-page: 5638 year: 1997 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 3387 year: 1988 publication-title: Inorg. Chem. – volume: 123 year: 2001 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 13470 year: 2005 publication-title: J. Am. Chem. Soc – volume: 322 year: 2010 publication-title: J. Mol. Catal A: Chem. – volume: 38 start-page: 3189 year: 1999 publication-title: Angew. Chem., Int. Ed. – volume: 36 start-page: 1715 year: 1997 publication-title: Inorg. Chem. – volume: 32 start-page: 3585 year: 1993 publication-title: Inorg. Chem. – volume: 251 start-page: 125 year: 1996 publication-title: Inorg. Chim. Acta – volume: 44 start-page: 941 year: 2005 publication-title: Inorg. Chem. – volume: 117 start-page: 9441 year: 1995 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 1303 year: 2005 publication-title: Chin. J. Chem. – volume: 99 start-page: 2777 year: 1999 publication-title: Chem. Rev. – volume: 125 year: 2003 publication-title: J. Am. Chem. Soc – volume: 36 start-page: 3676 year: 1997 publication-title: Inorg. Chem. – volume: 339 start-page: 313 year: 2004 publication-title: Carbohydr. Res. – volume: 125 year: 2003 ident: 10.1002/cjoc.201190145-BIB3b|cit13 publication-title: J. Am. Chem. Soc doi: 10.1021/ja027728v – volume: 119 start-page: 5638 year: 1997 ident: 10.1002/cjoc.201190145-BIB5|cit24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja964319o – volume: 39 start-page: 3365 year: 2000 ident: 10.1002/cjoc.201190145-BIB15|cit45 publication-title: Inorg. Chem. doi: 10.1021/ic000169d – volume: 38 start-page: 3189 year: 1999 ident: 10.1002/cjoc.201190145-BIB1c|cit4 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3189::AID-ANIE3189>3.0.CO;2-X – start-page: 1022 year: 2006 ident: 10.1002/cjoc.201190145-BIB4f|cit22 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200500595 – volume: 129 start-page: 12512 year: 2007 ident: 10.1002/cjoc.201190145-BIB4e|cit21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0737366 – volume: 36 start-page: 3676 year: 1997 ident: 10.1002/cjoc.201190145-BIB4d|cit20 publication-title: Inorg. Chem. doi: 10.1021/ic970199p – volume: 40 start-page: 769 year: 2007 ident: 10.1002/cjoc.201190145-BIB9b|cit39 publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2006.06.009 – volume: 118 start-page: 9867 year: 1996 ident: 10.1002/cjoc.201190145-BIB13a|cit12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9607300 – volume: 30 start-page: 4295 year: 1991 ident: 10.1002/cjoc.201190145-BIB1a|cit2 publication-title: Inorg. Chem. doi: 10.1021/ic00023a003 – volume: 23 start-page: 1303 year: 2005 ident: 10.1002/cjoc.201190145-BIB6b|cit27 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.200591303 – volume: 44 start-page: 941 year: 2005 ident: 10.1002/cjoc.201190145-BIB7e|cit34 publication-title: Inorg. Chem. doi: 10.1021/ic049469b – volume: 339 start-page: 313 year: 2004 ident: 10.1002/cjoc.201190145-BIB9a|cit38 publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2003.10.024 – volume: 99 start-page: 2777 year: 1999 ident: 10.1002/cjoc.201190145-BIB12a|cit7 publication-title: Chem. Rev. doi: 10.1021/cr9804341 – volume: 358 start-page: 1247 year: 2005 ident: 10.1002/cjoc.201190145-BIB13|cit43 publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2004.10.024 – volume: 124 start-page: 13731 year: 2002 ident: 10.1002/cjoc.201190145-BIB2c|cit9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja020877t – volume: 127 start-page: 13470 year: 2005 ident: 10.1002/cjoc.201190145-BIB3d|cit15 publication-title: J. Am. Chem. Soc doi: 10.1021/ja054003t – volume: 127 year: 2005 ident: 10.1002/cjoc.201190145-BIB2d|cit10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0443934 – volume: 6 year: 2009 ident: 10.1002/cjoc.201190145-BIB7f|cit35 publication-title: Chem. Biodivers. – volume: 33 start-page: 5036 year: 1994 ident: 10.1002/cjoc.201190145-BIB4c|cit19 publication-title: Inorg. Chem. doi: 10.1021/ic00100a031 – volume: 123 year: 2001 ident: 10.1002/cjoc.201190145-BIB2b|cit8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0010103 – volume: 115 start-page: 6730 year: 1993 ident: 10.1002/cjoc.201190145-BIB7a|cit30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00068a033 – volume: 36 start-page: 1715 year: 1997 ident: 10.1002/cjoc.201190145-BIB4a|cit17 publication-title: Inorg. Chem. doi: 10.1021/ic960955b – volume: 322 year: 2010 ident: 10.1002/cjoc.201190145-BIB11|cit41 publication-title: J. Mol. Catal A: Chem. doi: 10.1016/j.molcata.2010.02.011 – volume: 12 year: 2006 ident: 10.1002/cjoc.201190145-BIB12|cit42 publication-title: Chem. Eur. J. – volume: 7 start-page: 31 year: 2006 ident: 10.1002/cjoc.201190145-BIB16|cit46 publication-title: Biomacromolecules doi: 10.1021/bm0504126 – volume: 45 start-page: 9502 year: 2006 ident: 10.1002/cjoc.201190145-BIB6a|cit26 publication-title: Inorg. Chem. doi: 10.1021/ic061024v – volume: 36 start-page: 687 year: 2004 ident: 10.1002/cjoc.201190145-BIB6c|cit28 publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.20045 – volume: 69 year: 2009 ident: 10.1002/cjoc.201190145-BIB10|cit40 publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2009.04.001 – volume: 34 start-page: 5400 year: 2007 ident: 10.1002/cjoc.201190145-BIB1d|cit5 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200700383 – volume: 118 start-page: 10963 year: 1996 ident: 10.1002/cjoc.201190145-BIB8|cit36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja961789+ – volume: 22 year: 2003 ident: 10.1002/cjoc.201190145-BIB3c|cit14 publication-title: Embo J. – volume: 27 start-page: 3387 year: 1988 ident: 10.1002/cjoc.201190145-BIB14|cit44 publication-title: Inorg. Chem. doi: 10.1021/ic00292a025 – volume: 187 start-page: 195 year: 2002 ident: 10.1002/cjoc.201190145-BIB7c|cit32 publication-title: J. Mol. Catal A:Chem. doi: 10.1016/S1381-1169(02)00276-5 – volume: 32 start-page: 3585 year: 1993 ident: 10.1002/cjoc.201190145-BIB7b|cit31 publication-title: Inorg. Chem. doi: 10.1021/ic00069a005 – volume: 251 start-page: 125 year: 1996 ident: 10.1002/cjoc.201190145-BIB1b|cit3 publication-title: Inorg. Chim. Acta doi: 10.1016/S0020-1693(96)05264-4 – volume: 117 start-page: 9441 year: 1995 ident: 10.1002/cjoc.201190145-BIB4b|cit18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00142a010 – volume: 19 start-page: 1840 year: 2008 ident: 10.1002/cjoc.201190145-BIB4g|cit23 publication-title: Bioconjugate Chem. doi: 10.1021/bc800062g – volume: 333 start-page: 7 year: 2002 ident: 10.1002/cjoc.201190145-BIB7d|cit33 publication-title: Inorg. Chim. Acta doi: 10.1016/S0020-1693(02)00704-1 |
SSID | ssj0027726 |
Score | 1.8591995 |
Snippet | We aimed to explore the role of chitosan-based metal complexes in catalyzing the hydrolysis of phosphodiesters To this end, we performed detailed studies on... We aimed to explore the role of chitosan‐based metal complexes in catalyzing the hydrolysis of phosphodiesters. To this end, we performed detailed studies on... We aimed to explore the role of chitosan-based metal complexes in catalyzing the hydrolysis of phosphodiesters. To this end, we performed detailed studies on... |
SourceID | proquest crossref wiley istex chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 711 |
SubjectTerms | BNPP chitosan chitosan, copper Copper Deoxyribonucleic acid DNA DNA裂解 homogeneous catalysis Hydrolysis Kinetics Metal complexes phosphodiester 催化水解 动力学模型 壳聚糖 磷酸二酯 铜配合物 |
Title | Effective Homogeneous Hydrolysis of Phosphodiester and DNA Cleavage by Chitosan-copper Complex |
URI | http://lib.cqvip.com/qk/84126X/20114/37556463.html https://api.istex.fr/ark:/67375/WNG-G5374BFX-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.201190145 https://www.proquest.com/docview/1766802177 https://www.proquest.com/docview/1776647605 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbQcoALy68IuyAjIThlt3WcpDkugW61h4IQK3ozE_9Q0RJ3mxbtcuIReEaehJmkyW6REBLcEmUsOZ7xzGd7_A1jzyKpUxdHvRDsIAol6DSETBQhONrmt0DkkJRtMU5Gp_JkEk-u3OJv-CG6DTeaGbW_pgkORXV4SRqqP3tdU3DSQSDdMqeELUJF78Tliiut660Rz1CY9OSkZW3sicPt5sSsMPXlpzOMF1sR6joN9vkW_LwKYusoNNxl0Pa_ST6ZHaxXxYH-9hu14__84G12awNR-VFjU3fYNVveZTfytjLcPfaxoTxGP8lH_otHE7R-XfHRhVn6muGEe8ffTn21mHpKUkTVcSgNfzU-4vncwlf0Yby44PkU3UkF5c_vP7RfLFCKvNPcnt9np8PX7_NRuKnUEGoCJKFNhAGQNkI0lGXQGzgNDhc3CB8QsFnTd5DEBqQD0E7rzPRFoo2TFuGCE2YQPWA7pS_tQ8axnckQOOiYiGSEziLTE4VL8Vnil37A9jpNYaTXM-KvUlEax4lMooCFre6U3pCcU62NuWromYWiUVXdqAbsRSe_aOg9_ij5vDaFTgyWM0qKS2P1YXysjuMolS-HEyUDtt_aitr4g0oRDeeAln9pwJ52n1FtdDwDtZZQBoVkiuvLgInaMP7SJZWfvMm7t0f_0miP3Ww2ySkVaZ_trJZr-xhR1qp4Us-kX63cHk8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPZQLb0RoASMhOKXNOk6yOZbAdillQagVe3MdP1ixS7zsA7Wc-An8Rn4JM84mZZEQEtwSeSzFnvH4G3vyDSGPY64ym8RRKE03DrlUWShzVobS4jG_kUgOidkWg7R_wg-HSZNNiP_C1PwQ7YEbrgzvr3GB44H03gVrqProlOfgxJvA5DLZxLLePqp6xy5irsxXXEOmoTCN-LDhbYzY3np_5FYYuerDZ9gx1vaoTZzuszUA-iuM9ftQ7xopmxHU6Sfj3eWi3FVffyN3_K8hXidXVyiV7tdmdYNcMtVNslU0xeFukdOa9RhcJe27Tw6s0LjlnPbP9cx5khPqLH07cvPpyGGeImiPykrT54N9WkyM_AJujJbntBiBR5nL6se378pNpyCFDmpizm6Tk96L46Ifroo1hAoxSWhSpqXkJgZAlOcy6lolLcQ3gCAAsxndsTJNtORWSmWVynWHpUpbbgAxWKa78R2yUbnK3CUU-ukcsINKkEuGqTzWESttBs8cWjoB2W5VBZu9GiOFlYizJEl5GgckbJQn1IrnHMttTETN0MwEzqpoZzUgT1v5ac3w8UfJJ94WWjE5G2NeXJaI94MDcZDEGX_WGwoekJ3GWMTKJcwFMnF2MQLMAvKobQa14Q2N9FoCGRDiGYSYAWHeMv7ySaI4fFO0b_f-pdNDstU_fn0kjl4OXm2TK_WZOWYm7ZCNxWxp7gPoWpQP_LL6CYbbImo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglYALb0RoASMhOKXNOk6yOZYs26WgpUJU7M11_GDV3cZhH6jlxE_gN_JLmEk2aRcJIcEtkcdS7BnPfLYn3xDyPOQqsVEY-NJ0Q59LlfgyZbkvLR7zG4nkkJhtMYwHR_xgFI0u_cVf80O0B264Mip_jQu81Hb3gjRUnThVUXDiRWB0lWzyOOiiXfc-sIstV1IVXEOiIT8O-KihbQzY7np_pFYYu-LzFwgYayFqE2f7bA1_XkaxVRjq3yKyGUCdfTLZWS7yHfXtN27H_xnhbXJzhVHpXm1Ud8gVU9wl17OmNNw9clxzHoOjpAN36sAGjVvO6eBcz1xFcUKdpYdjNy_HDrMUQXdUFpr2hns0mxr5FZwYzc9pNgZ_MpfFz-8_lCtLkEL3NDVn98lR__XHbOCvSjX4ChGJb2KmpeQmBDiUpjLoWiUt7G4APwBiM7pjZRxpya2UyiqV6g6LlbbcAF6wTHfDB2SjcIV5SCj00ykgBxUhkwxTaagDltsEnjm0dDyy1WoKQr2aIIGVCJMoinkcesRvdCfUiuUci21MRc3PzATOqmhn1SMvW_my5vf4o-SLyhRaMTmbYFZcEolPw32xH4UJf9UfCe6R7cZWxMohzAXycHZx_5d45FnbDGrD-xlZaQlkQIgnsMH0CKsM4y-fJLKD91n79uhfOj0l1w57ffHuzfDtFrlRH5hjWtI22VjMluYxIK5F_qRaVL8AHLwhIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Homogeneous+Hydrolysis+of+Phosphodiester+and+DNA+Cleavage+by+Chitosan-copper+Complex&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Zhang%2C+Qi&rft.au=Xiang%2C+Yan&rft.au=Yang%2C+Ruxin&rft.au=Si%2C+Jiangju&rft.date=2011-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=29&rft.issue=4&rft.spage=711&rft_id=info:doi/10.1002%2Fcjoc.201190145&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3957936931 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84126X%2F84126X.jpg |