RootSlice—A novel functional‐structural model for root anatomical phenotypes
Root anatomy is an important determinant of root metabolic costs, soil exploration, and soil resource capture. Root anatomy varies substantially within and among plant species. RootSlice is a multicellular functional‐structural model of root anatomy developed to facilitate the analysis and understan...
Saved in:
Published in | Plant, cell and environment Vol. 46; no. 5; pp. 1671 - 1690 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.05.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Root anatomy is an important determinant of root metabolic costs, soil exploration, and soil resource capture. Root anatomy varies substantially within and among plant species. RootSlice is a multicellular functional‐structural model of root anatomy developed to facilitate the analysis and understanding of root anatomical phenotypes. RootSlice can capture phenotypically accurate root anatomy in three dimensions of different root classes and developmental zones, of both monocotyledonous and dicotyledonous species. Several case studies are presented illustrating the capabilities of the model. For maize nodal roots, the model illustrated the role of vacuole expansion in cell elongation; and confirmed the individual and synergistic role of increasing root cortical aerenchyma and reducing the number of cortical cell files in reducing root metabolic costs. Integration of RootSlice for different root zones as the temporal properties of the nodal roots in the whole‐plant and soil model OpenSimRoot/maize enabled the multiscale evaluation of root anatomical phenotypes, highlighting the role of aerenchyma formation in enhancing the utility of cortical cell files for improving plant performance over varying soil nitrogen supply. Such integrative in silico approaches present avenues for exploring the fitness landscape of root anatomical phenotypes.
Summary statement
Root anatomy remains an underutilized target for crop breeding. RootSlice, a multicellular functional‐structural model of root anatomy, simulates the costs and benefits of diverse root anatomical phenotypes to estimate their utility for plant fitness in unfavourable soil environments. |
---|---|
AbstractList | Root anatomy is an important determinant of root metabolic costs, soil exploration, and soil resource capture. Root anatomy varies substantially within and among plant species. RootSlice is a multicellular functional‐structural model of root anatomy developed to facilitate the analysis and understanding of root anatomical phenotypes. RootSlice can capture phenotypically accurate root anatomy in three dimensions of different root classes and developmental zones, of both monocotyledonous and dicotyledonous species. Several case studies are presented illustrating the capabilities of the model. For maize nodal roots, the model illustrated the role of vacuole expansion in cell elongation; and confirmed the individual and synergistic role of increasing root cortical aerenchyma and reducing the number of cortical cell files in reducing root metabolic costs. Integration of RootSlice for different root zones as the temporal properties of the nodal roots in the whole‐plant and soil model OpenSimRoot/maize enabled the multiscale evaluation of root anatomical phenotypes, highlighting the role of aerenchyma formation in enhancing the utility of cortical cell files for improving plant performance over varying soil nitrogen supply. Such integrative in silico approaches present avenues for exploring the fitness landscape of root anatomical phenotypes. Root anatomy is an important determinant of root metabolic costs, soil exploration, and soil resource capture. Root anatomy varies substantially within and among plant species. RootSlice is a multicellular functional-structural model of root anatomy developed to facilitate the analysis and understanding of root anatomical phenotypes. RootSlice can capture phenotypically accurate root anatomy in three dimensions of different root classes and developmental zones, of both monocotyledonous and dicotyledonous species. Several case studies are presented illustrating the capabilities of the model. For maize nodal roots, the model illustrated the role of vacuole expansion in cell elongation; and confirmed the individual and synergistic role of increasing root cortical aerenchyma and reducing the number of cortical cell files in reducing root metabolic costs. Integration of RootSlice for different root zones as the temporal properties of the nodal roots in the whole-plant and soil model OpenSimRoot/maize enabled the multiscale evaluation of root anatomical phenotypes, highlighting the role of aerenchyma formation in enhancing the utility of cortical cell files for improving plant performance over varying soil nitrogen supply. Such integrative in silico approaches present avenues for exploring the fitness landscape of root anatomical phenotypes.Root anatomy is an important determinant of root metabolic costs, soil exploration, and soil resource capture. Root anatomy varies substantially within and among plant species. RootSlice is a multicellular functional-structural model of root anatomy developed to facilitate the analysis and understanding of root anatomical phenotypes. RootSlice can capture phenotypically accurate root anatomy in three dimensions of different root classes and developmental zones, of both monocotyledonous and dicotyledonous species. Several case studies are presented illustrating the capabilities of the model. For maize nodal roots, the model illustrated the role of vacuole expansion in cell elongation; and confirmed the individual and synergistic role of increasing root cortical aerenchyma and reducing the number of cortical cell files in reducing root metabolic costs. Integration of RootSlice for different root zones as the temporal properties of the nodal roots in the whole-plant and soil model OpenSimRoot/maize enabled the multiscale evaluation of root anatomical phenotypes, highlighting the role of aerenchyma formation in enhancing the utility of cortical cell files for improving plant performance over varying soil nitrogen supply. Such integrative in silico approaches present avenues for exploring the fitness landscape of root anatomical phenotypes. Root anatomy is an important determinant of root metabolic costs, soil exploration, and soil resource capture. Root anatomy varies substantially within and among plant species. RootSlice is a multicellular functional‐structural model of root anatomy developed to facilitate the analysis and understanding of root anatomical phenotypes. RootSlice can capture phenotypically accurate root anatomy in three dimensions of different root classes and developmental zones, of both monocotyledonous and dicotyledonous species. Several case studies are presented illustrating the capabilities of the model. For maize nodal roots, the model illustrated the role of vacuole expansion in cell elongation; and confirmed the individual and synergistic role of increasing root cortical aerenchyma and reducing the number of cortical cell files in reducing root metabolic costs. Integration of RootSlice for different root zones as the temporal properties of the nodal roots in the whole‐plant and soil model OpenSimRoot/maize enabled the multiscale evaluation of root anatomical phenotypes, highlighting the role of aerenchyma formation in enhancing the utility of cortical cell files for improving plant performance over varying soil nitrogen supply. Such integrative in silico approaches present avenues for exploring the fitness landscape of root anatomical phenotypes. Summary statement Root anatomy remains an underutilized target for crop breeding. RootSlice, a multicellular functional‐structural model of root anatomy, simulates the costs and benefits of diverse root anatomical phenotypes to estimate their utility for plant fitness in unfavourable soil environments. Root anatomy is an important determinant of root metabolic costs, soil exploration, and soil resource capture. Root anatomy varies substantially within and among plant species. RootSlice is a multicellular functional‐structural model of root anatomy developed to facilitate the analysis and understanding of root anatomical phenotypes. RootSlice can capture phenotypically accurate root anatomy in three dimensions of different root classes and developmental zones, of both monocotyledonous and dicotyledonous species. Several case studies are presented illustrating the capabilities of the model. For maize nodal roots, the model illustrated the role of vacuole expansion in cell elongation; and confirmed the individual and synergistic role of increasing root cortical aerenchyma and reducing the number of cortical cell files in reducing root metabolic costs. Integration of RootSlice for different root zones as the temporal properties of the nodal roots in the whole‐plant and soil model OpenSimRoot/maize enabled the multiscale evaluation of root anatomical phenotypes, highlighting the role of aerenchyma formation in enhancing the utility of cortical cell files for improving plant performance over varying soil nitrogen supply. Such integrative in silico approaches present avenues for exploring the fitness landscape of root anatomical phenotypes. Root anatomy remains an underutilized target for crop breeding. RootSlice , a multicellular functional‐structural model of root anatomy, simulates the costs and benefits of diverse root anatomical phenotypes to estimate their utility for plant fitness in unfavourable soil environments. |
Author | Sidhu, Jagdeep Singh Arya, Sankalp Lynch, Jonathan P. Ajmera, Ishan |
Author_xml | – sequence: 1 givenname: Jagdeep Singh surname: Sidhu fullname: Sidhu, Jagdeep Singh organization: The Pennsylvania State University, University Park – sequence: 2 givenname: Ishan surname: Ajmera fullname: Ajmera, Ishan organization: The Pennsylvania State University, University Park – sequence: 3 givenname: Sankalp surname: Arya fullname: Arya, Sankalp organization: The Pennsylvania State University, University Park – sequence: 4 givenname: Jonathan P. surname: Lynch fullname: Lynch, Jonathan P. email: jpl4@psu.edu organization: The Pennsylvania State University, University Park |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36708192$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/2418414$$D View this record in Osti.gov |
BookMark | eNp90c1OHSEUB3BibPRqXfgCZtJu2sUoZwaGYWlu7EdiUmPbNeEyEDEMTIGxuTsfoYs-oU9Sbq91YVLZkHB-5yT8zwHa9cFrhI4Bn0I5Z5PSp0AobXbQAtqO1i0meBctMBBcM8ZhHx2kdItxeWB8D-23HcM98GaBrq5DyF-dVfrh_vd55cOddpWZvco2eOke7n-lHGeV5yhdNYZhUw2xiqWrkl7mMFpVKtON9iGvJ51eo1dGuqSPHu9D9P3Dxbflp_ryy8fPy_PLWhGgTb3qJOW0Mb3BnWSD5JRg03EFTGkwHNN2aFcUK2x4w-hgOFnhAXpugHNmdNseojfbuSFlK5KyWasbFbzXKouGQE-AFPRui6YYfsw6ZTHapLRz0uswJ9EwhgnrOUChb5_R2zDHEsFGcQq8x7wp6uRRzatRD2KKdpRxLf4FWsD7LVAxpBS1eSKAxWZZoixL_F1WsWfPbPmF3ASfo7TupY6f1un1_0eLq-XFtuMPoPWltQ |
CitedBy_id | crossref_primary_10_1111_eva_13673 crossref_primary_10_1111_tpj_16672 crossref_primary_10_1093_jxb_erae191 crossref_primary_10_1111_tpj_16565 crossref_primary_10_1016_j_indcrop_2025_120857 crossref_primary_10_1111_tpj_16478 crossref_primary_10_1093_plphys_kiad214 crossref_primary_10_1111_pbi_14244 crossref_primary_10_1093_plphys_kiae219 crossref_primary_10_1007_s11104_024_07185_6 crossref_primary_10_1007_s11104_023_06301_2 |
Cites_doi | 10.1038/s41598-020-67782-0 10.1242/dev.109.2.373 10.3389/fpls.2022.1010165 10.1093/jxb/36.2.190 10.3389/fcell.2020.586578 10.3389/fpls.2017.01750 10.1086/666058 10.1073/pnas.1201498109 10.1093/aob/mcaa068 10.1242/dev.119.1.71 10.1111/j.1469-8137.1985.tb03636.x 10.1016/S1360-1385(98)01254-0 10.1002/j.1537-2197.1960.tb07117.x 10.1105/tpc.112.101550 10.1152/physiol.00030.2014 10.3390/plants9030308 10.1073/pnas.1113632109 10.1007/s11104-004-1096-4 10.1006/anbo.1997.0565 10.1146/annurev-arplant-050312-120050 10.1073/pnas.1604458113 10.1104/pp.110.167619 10.1016/j.tplants.2022.02.009 10.1073/pnas.0906322107 10.1111/pce.12451 10.1093/aob/mcm313 10.1111/brv.12699 10.1111/j.1469-8137.2004.01191.x 10.1093/jxb/eru162 10.1111/nph.13421 10.3389/fpls.2020.00546 10.1105/tpc.113.119495 10.3389/fpls.2022.827369 10.1146/annurev.cellbio.16.1.393 10.1371/journal.pcbi.1004450 10.1016/S1360-1385(00)01570-3 10.1016/j.fcr.2022.108547 10.1093/jxb/41.9.1063 10.1111/jipb.12041 10.1093/plcell/koac086 10.1104/pp.96.2.619 10.1016/j.tplants.2018.11.005 10.1093/insilicoplants/diz001 10.1093/jxb/erw133 10.1016/j.cub.2014.03.031 10.1071/FP08084 10.1111/pce.14284 10.1111/pce.13197 10.3389/fpls.2017.00686 10.1093/jxb/erv295 10.1038/nature06215 10.1007/s11104-017-3533-1 10.1104/pp.108.2.469 10.3389/fpls.2020.00553 10.1073/pnas.1221766111 10.21273/HORTSCI.42.5.1107 10.1016/j.plaphy.2016.06.035 10.1186/1741-7007-10-101 10.1104/pp.64.6.1114 10.15252/embj.2018100353 10.1083/jcb.200503148 10.1093/jxb/47.7.843 10.1007/978-1-0716-1816-5_8 10.1093/aob/mcs069 10.1073/pnas.1705833114 10.1126/science.1090908 10.1111/nph.14641 10.1016/0034-5687(81)90079-7 10.1126/science.1255215 10.1007/BF00197734 10.1038/nature13663 10.1111/tpj.15774 10.1098/rstb.2015.0520 10.1038/208864a0 10.1038/nplants.2017.57 10.3389/fpls.2013.00233 10.1016/B978-012387582-2/50038-1 10.1016/j.pbiomolbio.2015.01.002 10.1073/pnas.1517445113 10.1104/pp.18.01006 10.1007/BF01287811 10.1104/pp.20.00211 10.1098/rsfs.2016.0043 10.3389/fpls.2013.00355 10.1002/tpg2.20003 10.3389/fpls.2019.00206 10.1111/nph.15738 10.1104/pp.17.01583 10.1242/dev.196253 10.1038/msb.2013.43 10.1242/dev.181669 10.1104/pp.114.241711 10.1007/s11104-021-05010-y 10.4161/psb.1.6.3511 10.1103/PhysRevLett.69.2013 10.1093/aob/mcm235 10.1007/BF00012888 10.1126/science.aad2776 10.1038/srep43004 10.1080/13642810108205772 10.1104/pp.68.5.1081 10.1093/jxb/52.suppl_1.381 10.1104/pp.109.150128 10.1017/S0021859617000302 10.1093/jxb/eraa165 10.1007/s10535-009-0049-4 10.1093/aob/mcq199 10.1098/rspb.2015.2592 10.1073/pnas.2110245119 10.1002/pld3.334 10.1093/aob/mcy092 10.1103/PhysRevE.47.2128 10.3389/fpls.2016.00829 10.1093/jxb/4.2.197 10.1023/B:PLSO.0000020942.97995.f3 10.3389/fpls.2013.00439 10.1104/pp.114.249037 10.1093/oxfordjournals.aob.a086125 10.1073/pnas.2012087118 10.1023/A:1012728819326 10.1093/oxfordjournals.aob.a088244 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd. 2023 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd. – notice: 2023 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Pennsylvania State Univ., University Park, PA (United States) |
CorporateAuthor_xml | – name: Pennsylvania State Univ., University Park, PA (United States) |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 OIOZB OTOTI |
DOI | 10.1111/pce.14552 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Calcium & Calcified Tissue Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1365-3040 |
EndPage | 1690 |
ExternalDocumentID | 2418414 36708192 10_1111_pce_14552 PCE14552 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 OIOZB OTOTI |
ID | FETCH-LOGICAL-c4152-b6a5952f8f06a7da9540f69c17ce1f9053d3b50c0f9275df94b0d189f1997fe33 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 1365-3040 |
IngestDate | Mon Sep 02 05:56:15 EDT 2024 Fri Jul 11 07:34:41 EDT 2025 Fri Jul 25 11:11:59 EDT 2025 Mon Jul 21 06:04:23 EDT 2025 Thu Apr 24 22:57:36 EDT 2025 Tue Jul 01 04:28:48 EDT 2025 Wed Jan 22 16:24:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | OpenSimRoot phene interactions root cortical aerenchyma cortical cell files functional-structural modelling rhizoeconomics vacuole size multiscale model integration root anatomy multicellular model |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2023 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4152-b6a5952f8f06a7da9540f69c17ce1f9053d3b50c0f9275df94b0d189f1997fe33 |
Notes | Jagdeep Singh Sidhu and Ishan Ajmera should be considered the joint first author. Sankalp Arya is independent software consultant. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AR0000821 USDOE Advanced Research Projects Agency - Energy (ARPA-E) |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14552 |
PMID | 36708192 |
PQID | 2795198092 |
PQPubID | 37957 |
PageCount | 20 |
ParticipantIDs | osti_scitechconnect_2418414 proquest_miscellaneous_2770478911 proquest_journals_2795198092 pubmed_primary_36708192 crossref_primary_10_1111_pce_14552 crossref_citationtrail_10_1111_pce_14552 wiley_primary_10_1111_pce_14552_PCE14552 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 1990; 109 2005; 170 2004; 164 2013; 4 2010; 107 2019; 10 1991; 96 2013; 64 2014; 26 2014; 24 2008; 35 2018; 41 2020; 13 1998; 81 2020; 11 2020; 10 2008; 101 2017; 155 2012; 10 2022; 27 2013; 9 1990; 41 2018; 176 2022; 283 2000; 16 1960; 47 2013; 55 1991; 183 2019; 24 2018; 178 2022; 34 1985; 99 2001; 52 2022; 111 1993; 47 1965; 208 2004; 303 2007; 449 2021; 148 2019; 1 1992; 144 1953; 4 2019; 38 2019; 223 2017; 372 2020; 147 2022; 119 2011; 5 2016; 283 2016; 6 2016; 7 2012; 110 1993; 119 1991; 68 2015; 66 2022; 13 1998; 3 2015; 117 2017; 7 2018; 122 2017; 8 2015; 38 2017; 3 2000; 5 2016; 108 2015; 30 2020; 126 1981; 48 2017; 114 2011; 155 2014; 65 1981; 44 2020; 8 2004; 259 2009; 53 2005; 269 2020; 9 2021; 118 2016; 113 2010; 152 1984; 119 1979; 64 2014; 166 2016; 351 2014; 515 2012a; 24 2021; 5 2022; 2395 2021; 466 2012c; 109 2015; 11 2018; 423 2020; 183 2022; 45 1981; 68 2005 2012b; 109 2015; 207 2006; 1 2014; 111 2021; 96 2017; 215 2001; 81 2011; 107 2020; 71 1995; 108 2016 1992; 69 2007; 42 1996; 47 2001; 236 2014; 345 2012; 85 2016; 67 1985; 36 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_118_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 Promkhambut A. (e_1_2_9_95_1) 2011; 5 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 McNear D.H. (e_1_2_9_75_1) 2013; 4 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 38679856 - Plant Cell Environ. 2024 Apr 28 |
References_xml | – volume: 10 start-page: 206 year: 2019 article-title: Lateral root primordium morphogenesis in angiosperms publication-title: Frontiers in Plant Science – volume: 109 start-page: 7577 issue: 19 year: 2012b end-page: 7582 article-title: Growth‐induced hormone dilution can explain the dynamics of plant root cell elongation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 68 start-page: 1081 issue: 5 year: 1981 end-page: 1089 article-title: Vacuole/extravacuole distribution of soluble protease in hippeastrum petal and triticum leaf protoplasts publication-title: Plant Physiology – volume: 5 issue: 7 year: 2021 article-title: Combining cross‐section images and modeling tools to create high‐resolution root system hydraulic atlases in publication-title: Plant Direct – volume: 66 start-page: 5651 issue: 19 year: 2015 end-page: 5662 article-title: The root cap: a short story of life and death publication-title: Journal of Experimental Botany – volume: 38 start-page: 1775 issue: 9 year: 2015 end-page: 1784 article-title: Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture publication-title: Plant, Cell & Environment – volume: 148 issue: 4 year: 2021 article-title: Tissue growth constrains root organ outlines into an isometrically scalable shape publication-title: Development – volume: 55 start-page: 294 issue: 4 year: 2013 end-page: 388 article-title: The plant vascular system: evolution, development and functions publication-title: Journal of Integrative Plant Biology – volume: 110 start-page: 349 issue: 2 year: 2012 end-page: 360 article-title: Combined in silico/in vivo analysis of mechanisms providing for root apical meristem self‐organization and maintenance publication-title: Annals of Botany – volume: 109 start-page: 4668 issue: 12 year: 2012c end-page: 4673 article-title: Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping‐point mechanism publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 152 start-page: 787 issue: 2 year: 2010 end-page: 796 article-title: Real‐time imaging of cellulose reorientation during cell wall expansion in arabidopsis roots publication-title: Plant Physiology – volume: 8 start-page: 1750 year: 2017 article-title: Identifying developmental zones in maize lateral root cell length profiles using multiple change‐point models publication-title: Frontiers in Plant Science – volume: 13 issue: 1 year: 2020 article-title: Genetic control of root anatomical plasticity in maize publication-title: The Plant Genome – volume: 41 start-page: 1063 issue: 9 year: 1990 end-page: 1078 article-title: P NMR measurements of the cytoplasmic and vacuolar Pi content of mature maize roots: relationships with phosphorus status and phosphate fluxes publication-title: Journal of Experimental Botany – volume: 126 start-page: 205 issue: 2 year: 2020 end-page: 218 article-title: Root secondary growth: an unexplored component of soil resource acquisition publication-title: Annals of Botany – volume: 223 start-page: 548 year: 2019 end-page: 564 article-title: Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture publication-title: New Phytologist – volume: 4 start-page: 233 year: 2013 article-title: Vertex‐element models for anisotropic growth of elongated plant organs publication-title: Frontiers in Plant Science – volume: 166 start-page: 1943 issue: 4 year: 2014 end-page: 1955 article-title: Reduced root cortical cell file number improves drought tolerance in maize publication-title: Plant Physiology – volume: 5 start-page: 123 issue: 3 year: 2000 end-page: 127 article-title: Programmed cell death and aerenchyma formation in roots publication-title: Trends in Plant Science – volume: 52 start-page: 381 issue: 1 year: 2001 end-page: 401 article-title: Roots: evolutionary origins and biogeochemical significance publication-title: Journal of Experimental Botany – volume: 109 start-page: 373 issue: 2 year: 1990 end-page: 386 article-title: The mechanical basis of cell rearrangement. I. Epithelial morphogenesis during fundulus epiboly publication-title: Development – volume: 13 year: 2022 article-title: Improving soil resource uptake by plants through capitalizing on synergies between root architecture and anatomy and root‐associated microorganisms publication-title: Frontiers in Plant Science – volume: 166 start-page: 726 issue: 2 year: 2014 end-page: 735 article-title: Root cortical aerenchyma enhances nitrogen acquisition from low‐nitrogen soils in maize publication-title: Plant Physiology – volume: 113 start-page: 452 issue: 2 year: 2016 end-page: 457 article-title: Actin‐dependent vacuolar occupancy of the cell determines auxin‐induced growth repression publication-title: Proceedings of the National Academy of Sciences – volume: 208 start-page: 864 issue: 5013 year: 1965 end-page: 865 article-title: Cytoplasmic organelles and cell growth in root caps publication-title: Nature – volume: 1 start-page: 296 issue: 6 year: 2006 end-page: 304 article-title: The root apex of consists of four distinct zones of growth activities: meristematic zone, transition zone, fast elongation zone and growth terminating zone publication-title: Plant Signaling & Behavior – volume: 11 start-page: 546 year: 2020 article-title: Should root plasticity be a crop breeding target? publication-title: Frontiers in Plant Science – volume: 65 start-page: 6155 issue: 21 year: 2014 end-page: 6166 article-title: Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement publication-title: Journal of Experimental Botany – volume: 117 start-page: 59 issue: 1 year: 2015 end-page: 68 article-title: The successful application of systems approaches in plant biology publication-title: Progress in Biophysics and Molecular Biology – volume: 42 start-page: 1107 issue: 5 year: 2007 end-page: 1109 article-title: Rhizoeconomics: the roots of shoot growth limitations publication-title: HortScience – volume: 108 start-page: 469 issue: 2 year: 1995 end-page: 474 article-title: Mitochondria increase three‐fold and mitochondrial proteins and lipid change dramatically in postmeristematic cells in young wheat leaves grown in elevated CO publication-title: Plant Physiology – volume: 259 start-page: 85 issue: 1 year: 2004 end-page: 95 article-title: Total, and chemical fractions, of nitrogen and phosphorus in eucalyptus seedling leaves: effects of species, nursery fertiliser management and transplanting publication-title: Plant and Soil – volume: 283 year: 2022 article-title: Edaphic stress interactions: important yet poorly understood drivers of plant production in future climates publication-title: Field Crops Research – volume: 164 start-page: 209 issue: 2 year: 2004 end-page: 242 article-title: Pattern formation in the vascular system of monocot and dicot plant species publication-title: New Phytologist – volume: 34 start-page: 2309 issue: 6 year: 2022 end-page: 2327 article-title: Systems approaches reveal that ABCB and PIN proteins mediate co‐dependent auxin efflux publication-title: The Plant Cell – volume: 3 start-page: 218 issue: 6 year: 1998 end-page: 223 article-title: Cell‐death mechanisms in maize publication-title: Trends in Plant Science – volume: 81 start-page: 349 issue: 2 year: 1998 end-page: 354 article-title: Root development and aerenchyma formation in two wheat cultivars and one triticale cultivar grown in stagnant agar and aerated nutrient solution publication-title: Annals of Botany – volume: 155 start-page: 1137 issue: 7 year: 2017 end-page: 1149 article-title: Maize root morphology responses to soil penetration resistance related to tillage and drought in a clayey soil publication-title: The Journal of Agricultural Science – volume: 147 issue: 6 year: 2020 article-title: Auxin fluxes through plasmodesmata modify root‐tip auxin distribution publication-title: Development – volume: 8 start-page: 686 year: 2017 article-title: Virtual plant tissue: building blocks for Next‐Generation plant growth simulation publication-title: Frontiers in Plant Science – volume: 303 start-page: 363 issue: 5656 year: 2004 end-page: 366 article-title: Guar seed ß‐mannan synthase is a member of the cellulose synthase super gene family publication-title: Science – volume: 11 issue: 10 year: 2015 article-title: Parsimonious model of vascular patterning links transverse hormone fluxes to lateral root initiation: auxin leads the way, while cytokinin levels out publication-title: PLoS Computational Biology – volume: 45 start-page: 805 issue: 3 year: 2022 end-page: 822 article-title: Integrated root phenotypes for improved rice performance under low nitrogen availability publication-title: Plant, Cell & Environment – volume: 11 start-page: 553 year: 2020 article-title: To lead or to follow: contribution of the plant vacuole to cell growth publication-title: Frontiers in Plant Science – volume: 96 start-page: 1263 issue: 4 year: 2021 end-page: 1283 article-title: The stele–a developmental perspective on the diversity and evolution of primary vascular architecture publication-title: Biological Reviews – volume: 122 start-page: 485 year: 2018 end-page: 499 article-title: Co‐optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean publication-title: Annals of Botany – volume: 449 start-page: 1008 issue: 7165 year: 2007 end-page: 1013 article-title: Auxin transport is sufficient to generate a maximum and gradient guiding root growth publication-title: Nature – volume: 24 start-page: 250 issue: 3 year: 2019 end-page: 262 article-title: In silico roots: room for growth publication-title: Trends in Plant Science – year: 2016 – volume: 38 issue: 7 year: 2019 article-title: Extracellular matrix sensing by FERONIA and Leucine‐Rich repeat extensins controls vacuolar expansion during cellular elongation in publication-title: The EMBO Journal – volume: 13 year: 2022 article-title: In silico evidence for the utility of parsimonious root phenotypes for improved vegetative growth and carbon sequestration under drought publication-title: Frontiers in Plant Science – volume: 8 year: 2020 article-title: Oxidative damage and antioxidant defense in ferroptosis publication-title: Frontiers in Cell and Developmental Biology – volume: 64 start-page: 1114 issue: 6 year: 1979 end-page: 1120 article-title: Isolation and partial characterization of vacuoles from tobacco protoplasts publication-title: Plant Physiology – volume: 155 start-page: 656 issue: 2 year: 2011 end-page: 666 article-title: VirtualLeaf: an open‐source framework for cell‐based modeling of plant tissue growth and development publication-title: Plant Physiology – volume: 345 issue: 6197 year: 2014 article-title: Integration of growth and patterning during vascular tissue formation in arabidopsis publication-title: Science – volume: 47 start-page: 2128 issue: 3 year: 1993 end-page: 2154 article-title: Simulation of the differential adhesion driven rearrangement of biological cells publication-title: Physical Review E – volume: 96 start-page: 619 issue: 2 year: 1991 end-page: 626 article-title: Study of glucose starvation in excised maize root tips publication-title: Plant Physiology – volume: 269 start-page: 45 year: 2005 end-page: 56 article-title: Rhizoeconomics carbon costs of phosphorus acquisition publication-title: Plant and Soil – volume: 107 start-page: 829 issue: 5 year: 2011 end-page: 841 article-title: Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability publication-title: Annals of Botany – volume: 4 start-page: 439 year: 2013 article-title: Plant cell shape: modulators and measurements publication-title: Frontiers in Plant Science – volume: 9 start-page: 699 year: 2013 article-title: Sequential induction of auxin efflux and influx carriers regulates lateral root emergence publication-title: Molecular Systems Biology – volume: 118 issue: 6 year: 2021 article-title: Multiseriate cortical sclerenchyma enhance root penetration in compacted soils publication-title: Proceedings of the National Academy of Sciences – start-page: 717 year: 2005 end-page: 731 article-title: Paraview: an end‐user tool for large data visualization – volume: 69 start-page: 2013 issue: 13 year: 1992 end-page: 2016 article-title: Simulation of biological cell sorting using a two‐dimensional extended Potts model publication-title: Physical Review Letters – volume: 111 start-page: 857 issue: 2 year: 2014 end-page: 862 article-title: Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in arabidopsis roots publication-title: Proceedings of the National Academy of Sciences – volume: 108 start-page: 90 year: 2016 end-page: 98 article-title: Impact of cadmium stress on two maize hybrids publication-title: Plant Physiology and Biochemistry – volume: 10 issue: 1 year: 2020 article-title: Elongating maize root: zone‐specific combinations of polysaccharides from type I and type II primary cell walls publication-title: Scientific Reports – volume: 372 issue: 1720 year: 2017 article-title: Vertex models: from cell mechanics to tissue morphogenesis publication-title: Philosophical Transactions of the Royal Society, B: Biological Sciences – volume: 1 issue: 1 year: 2019 article-title: yggdrasil: a python package for integrating computational models across languages and scales publication-title: in silico Plants – volume: 24 start-page: R378 issue: 10 year: 2014 end-page: R379 article-title: Pericycle publication-title: Current Biology – volume: 114 start-page: E7641 issue: 36 year: 2017 end-page: E7649 article-title: Auxin minimum triggers the developmental switch from cell division to cell differentiation in the arabidopsis root publication-title: Proceedings of the National Academy of Sciences – volume: 144 start-page: 297 issue: 2 year: 1992 end-page: 303 article-title: Influence of root diameter on the penetration of seminal roots into a compacted subsoil publication-title: Plant and Soil – volume: 466 start-page: 21 issue: 1 year: 2021 end-page: 63 article-title: Root anatomy and soil resource capture publication-title: Plant and Soil – volume: 6 issue: 5 year: 2016 article-title: Hybrid vertex‐midline modelling of elongated plant organs publication-title: Interface Focus – volume: 35 start-page: 751 issue: 10 year: 2008 end-page: 760 article-title: OpenAlea: a visual programming and component‐based software platform for plant modelling publication-title: Functional Plant Biology – volume: 47 start-page: 843 issue: 7 year: 1996 end-page: 854 article-title: Nitrate transport and compartmentation in cereal root cells publication-title: Journal of Experimental Botany – volume: 215 start-page: 1274 issue: 3 year: 2017 end-page: 1286 article-title: OpenSimRoot: widening the scope and application of root architectural models publication-title: New Phytologist – volume: 119 start-page: 1 issue: 1 year: 1984 end-page: 7 article-title: Morphometric analysis of cucurbit mitochondria: the relationship between chondriome volume and DNA content publication-title: Protoplasma – volume: 178 start-page: 1689 issue: 4 year: 2018 end-page: 1703 article-title: Going with the flow: multiscale insights into the composite nature of water transport in roots publication-title: Plant Physiology – volume: 3 year: 2017 article-title: Root hydrotropism is controlled via a cortex‐specific growth mechanism publication-title: Nature Plants – volume: 27 start-page: 520 issue: 6 year: 2022 end-page: 523 article-title: Anatomics: high‐throughput phenotyping of plant anatomy publication-title: Trends in Plant Science – volume: 67 start-page: 3763 issue: 12 year: 2016 end-page: 3775 article-title: Spatiotemporal variation of nitrate uptake kinetics within the maize ( L.) root system is associated with greater nitrate uptake and interactions with architectural phenes publication-title: Journal of Experimental Botany – volume: 2395 start-page: 147 year: 2022 end-page: 164 – volume: 4 start-page: 1 issue: 3 year: 2013 article-title: The rhizosphere‐roots, soil and everything in between publication-title: Nature Education Knowledge – volume: 111 start-page: 38 year: 2022 end-page: 53 article-title: Multi‐objective optimization of root phenotypes for nutrient capture using evolutionary algorithms publication-title: The Plant Journal – volume: 30 start-page: 159 issue: 2 year: 2015 end-page: 166 article-title: Multiscale models in the biomechanics of plant growth publication-title: Physiology – volume: 64 start-page: 531 year: 2013 end-page: 558 article-title: The endodermis publication-title: Annual Review of Plant Biology – volume: 5 start-page: 954 issue: 8 year: 2011 end-page: 965 article-title: Growth, yield and aerenchyma formation of sweet and multipurpose sorghum (‘ ’ L. Moench) as affected by flooding at different growth stages publication-title: Australian Journal of Crop Science – volume: 36 start-page: 190 issue: 2 year: 1985 end-page: 210 article-title: A14N nuclear magnetic resonance study of inorganic nitrogen métabolism in barley, maize and pea roots publication-title: Journal of Experimental Botany – volume: 4 start-page: 355 year: 2013 article-title: Integration of root phenes for soil resource acquisition publication-title: Frontiers in Plant Science – volume: 85 start-page: 321 issue: 4 year: 2012 end-page: 331 article-title: Hybridization in sunfish influences the muscle metabolic phenotype publication-title: Physiological and Biochemical Zoology – volume: 183 start-page: 1011 year: 2020 end-page: 1025 article-title: Multiple integrated root phenotypes are associated with improved drought tolerance publication-title: Plant Physiology – volume: 101 start-page: 1255 issue: 8 year: 2008 end-page: 1265 article-title: A system for modelling cell‐cell interactions during plant morphogenesis publication-title: Annals of Botany – volume: 423 start-page: 13 issue: 1 year: 2018 end-page: 26 article-title: Functional implications of root cortical senescence for soil resource capture publication-title: Plant and Soil – volume: 4 start-page: 197 issue: 2 year: 1953 end-page: 221 article-title: The absorption of potassium by cells in the apex of the root publication-title: Journal of Experimental Botany – volume: 515 start-page: 125 issue: 7525 year: 2014 end-page: 129 article-title: PLETHORA gradient formation mechanism separates auxin responses publication-title: Nature – volume: 47 start-page: 220 issue: 3 year: 1960 end-page: 225 article-title: Histochemical evidence of intracellular enzymatic heterogeneity of plant mitochondria publication-title: American Journal of Botany – volume: 119 issue: 17 year: 2022 article-title: Gradual domestication of root traits in the earliest maize from Tehuacán publication-title: Proceedings of the National Academy of Sciences – volume: 99 start-page: 57 issue: 1 year: 1985 end-page: 69 article-title: Fluxes of carbon in roots of barley plants publication-title: New Phytologist – volume: 283 issue: 1824 year: 2016 article-title: Interactions among ecosystem stressors and their importance in conservation publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 24 start-page: 3892 issue: 10 year: 2012a end-page: 3906 article-title: Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales publication-title: The Plant Cell – volume: 119 start-page: 71 issue: 1 year: 1993 end-page: 84 article-title: Cellular organisation of the root publication-title: Development – volume: 101 start-page: 485 issue: 4 year: 2008 end-page: 489 article-title: Cytosolic nitrate ion homeostasis: could it have a role in sensing nitrogen status? publication-title: Annals of Botany – volume: 7 year: 2017 article-title: A recovery principle provides insight into auxin pattern control in the arabidopsis root publication-title: Scientific Reports – volume: 176 start-page: 691 issue: 1 year: 2018 end-page: 703 article-title: Reduction in root secondary growth as a strategy for phosphorus acquisition publication-title: Plant Physiology – volume: 107 start-page: 2711 issue: 6 year: 2010 end-page: 2716 article-title: Coordination of plant cell division and expansion in a simple morphogenetic system publication-title: Proceedings of the National Academy of Sciences – volume: 236 start-page: 221 year: 2001 end-page: 235 article-title: Morphological synergism in root hair length, density, initiation and geometry for phosphorus acquisition in : A modeling approach publication-title: Plant and Soil – volume: 183 start-page: 359 issue: 3 year: 1991 end-page: 367 article-title: Observations on the subcellular distribution of the ammonium ion in maize root tissue using in‐vivo N‐nuclear magnetic resonance spectroscopy publication-title: Planta – volume: 68 start-page: 195 issue: 3 year: 1991 end-page: 200 article-title: Comparative analysis of chloroplasts and mitochondria in leaf chlorenchyma from mountain plants grown at different altitudes publication-title: Annals of Botany – volume: 71 start-page: 4243 issue: 14 year: 2020 end-page: 4257 article-title: Root anatomical traits contribute to deeper rooting of maize under compacted field conditions publication-title: Journal of Experimental Botany – volume: 10 start-page: 101 issue: 1 year: 2012 article-title: What determines cell size? publication-title: BMC Biology – volume: 207 start-page: 1110 issue: 4 year: 2015 end-page: 1122 article-title: Spatiotemporal modelling of hormonal crosstalk explains the level and patterning of hormones and gene expression in wild‐type and mutant roots publication-title: New Phytologist – volume: 351 start-page: 384 issue: 6271 year: 2016 end-page: 387 article-title: Cyclic programmed cell death stimulates hormone signaling and root development in arabidopsis publication-title: Science – volume: 113 start-page: 11022 issue: 39 year: 2016 end-page: 11027 article-title: Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis publication-title: Proceedings of the National Academy of Sciences – volume: 81 start-page: 699 issue: 7 year: 2001 end-page: 719 article-title: A dynamic cell model for the formation of epithelial tissues publication-title: Philosophical Magazine B – volume: 9 start-page: 308 issue: 3 year: 2020 article-title: Shedding the last layer: mechanisms of root cap cell release publication-title: Plants – volume: 48 start-page: 275 issue: 3 year: 1981 end-page: 290 article-title: Elemental composition of biomass and its relation to energy content, growth efficiency, and growth yield publication-title: Annals of Botany – volume: 26 start-page: 862 issue: 3 year: 2014 end-page: 875 article-title: Systems analysis of auxin transport in the arabidopsis root apex publication-title: The Plant Cell – volume: 16 start-page: 393 issue: 1 year: 2000 end-page: 421 article-title: Plasmodesmata: gatekeepers for cell‐to‐cell transport of developmental signals in plants publication-title: Annual Review of Cell and Developmental Biology – volume: 170 start-page: 237 issue: 2 year: 2005 end-page: 248 article-title: The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria publication-title: Journal of Cell Biology – volume: 44 start-page: 113 issue: 1 year: 1981 end-page: 128 article-title: Design of the mammalian respiratory system. VII. Scaling mitochondrial volume in skeletal muscle to body mass publication-title: Respiration Physiology – volume: 53 start-page: 263 issue: 2 year: 2009 end-page: 270 article-title: Aerenchyma formation in maize roots publication-title: Biologia Plantarum – volume: 7 start-page: 829 year: 2016 article-title: Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots publication-title: Frontiers in Plant Science – volume: 41 start-page: 1579 issue: 7 year: 2018 end-page: 1592 article-title: Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize publication-title: Plant, Cell, & Environment – ident: e_1_2_9_51_1 doi: 10.1038/s41598-020-67782-0 – ident: e_1_2_9_121_1 doi: 10.1242/dev.109.2.373 – ident: e_1_2_9_104_1 doi: 10.3389/fpls.2022.1010165 – ident: e_1_2_9_13_1 doi: 10.1093/jxb/36.2.190 – ident: e_1_2_9_52_1 doi: 10.3389/fcell.2020.586578 – ident: e_1_2_9_87_1 doi: 10.3389/fpls.2017.01750 – ident: e_1_2_9_23_1 doi: 10.1086/666058 – ident: e_1_2_9_11_1 doi: 10.1073/pnas.1201498109 – ident: e_1_2_9_110_1 doi: 10.1093/aob/mcaa068 – ident: e_1_2_9_26_1 doi: 10.1242/dev.119.1.71 – ident: e_1_2_9_32_1 doi: 10.1111/j.1469-8137.1985.tb03636.x – ident: e_1_2_9_17_1 doi: 10.1016/S1360-1385(98)01254-0 – ident: e_1_2_9_7_1 doi: 10.1002/j.1537-2197.1960.tb07117.x – ident: e_1_2_9_8_1 doi: 10.1105/tpc.112.101550 – ident: e_1_2_9_47_1 doi: 10.1152/physiol.00030.2014 – ident: e_1_2_9_53_1 doi: 10.3390/plants9030308 – ident: e_1_2_9_9_1 doi: 10.1073/pnas.1113632109 – ident: e_1_2_9_66_1 doi: 10.1007/s11104-004-1096-4 – ident: e_1_2_9_120_1 doi: 10.1006/anbo.1997.0565 – ident: e_1_2_9_38_1 doi: 10.1146/annurev-arplant-050312-120050 – ident: e_1_2_9_76_1 doi: 10.1073/pnas.1604458113 – ident: e_1_2_9_79_1 doi: 10.1104/pp.110.167619 – ident: e_1_2_9_112_1 doi: 10.1016/j.tplants.2022.02.009 – ident: e_1_2_9_29_1 doi: 10.1073/pnas.0906322107 – ident: e_1_2_9_62_1 doi: 10.1111/pce.12451 – ident: e_1_2_9_82_1 doi: 10.1093/aob/mcm313 – ident: e_1_2_9_113_1 doi: 10.1111/brv.12699 – ident: e_1_2_9_103_1 doi: 10.1111/j.1469-8137.2004.01191.x – ident: e_1_2_9_65_1 doi: 10.1093/jxb/eru162 – ident: e_1_2_9_86_1 doi: 10.1111/nph.13421 – ident: e_1_2_9_108_1 doi: 10.3389/fpls.2020.00546 – ident: e_1_2_9_10_1 doi: 10.1105/tpc.113.119495 – ident: e_1_2_9_37_1 doi: 10.3389/fpls.2022.827369 – ident: e_1_2_9_125_1 doi: 10.1146/annurev.cellbio.16.1.393 – ident: e_1_2_9_31_1 doi: 10.1371/journal.pcbi.1004450 – ident: e_1_2_9_27_1 doi: 10.1016/S1360-1385(00)01570-3 – volume: 5 start-page: 954 issue: 8 year: 2011 ident: e_1_2_9_95_1 article-title: Growth, yield and aerenchyma formation of sweet and multipurpose sorghum (‘Sorghum bicolor’ L. Moench) as affected by flooding at different growth stages publication-title: Australian Journal of Crop Science – ident: e_1_2_9_64_1 doi: 10.1016/j.fcr.2022.108547 – ident: e_1_2_9_57_1 doi: 10.1093/jxb/41.9.1063 – ident: e_1_2_9_60_1 doi: 10.1111/jipb.12041 – ident: e_1_2_9_78_1 doi: 10.1093/plcell/koac086 – ident: e_1_2_9_15_1 doi: 10.1104/pp.96.2.619 – ident: e_1_2_9_100_1 doi: 10.1016/j.tplants.2018.11.005 – ident: e_1_2_9_55_1 doi: 10.1093/insilicoplants/diz001 – ident: e_1_2_9_124_1 doi: 10.1093/jxb/erw133 – ident: e_1_2_9_12_1 doi: 10.1016/j.cub.2014.03.031 – ident: e_1_2_9_94_1 doi: 10.1071/FP08084 – ident: e_1_2_9_4_1 doi: 10.1111/pce.14284 – ident: e_1_2_9_36_1 doi: 10.1111/pce.13197 – ident: e_1_2_9_118_1 doi: 10.3389/fpls.2017.00686 – ident: e_1_2_9_54_1 doi: 10.1093/jxb/erv295 – ident: e_1_2_9_41_1 doi: 10.1038/nature06215 – ident: e_1_2_9_107_1 doi: 10.1007/s11104-017-3533-1 – ident: e_1_2_9_99_1 doi: 10.1104/pp.108.2.469 – ident: e_1_2_9_49_1 doi: 10.3389/fpls.2020.00553 – ident: e_1_2_9_88_1 doi: 10.1073/pnas.1221766111 – ident: e_1_2_9_61_1 doi: 10.21273/HORTSCI.42.5.1107 – ident: e_1_2_9_116_1 doi: 10.1016/j.plaphy.2016.06.035 – ident: e_1_2_9_71_1 doi: 10.1186/1741-7007-10-101 – ident: e_1_2_9_3_1 – ident: e_1_2_9_80_1 doi: 10.1104/pp.64.6.1114 – ident: e_1_2_9_28_1 doi: 10.15252/embj.2018100353 – ident: e_1_2_9_42_1 doi: 10.1083/jcb.200503148 – ident: e_1_2_9_81_1 doi: 10.1093/jxb/47.7.843 – ident: e_1_2_9_20_1 doi: 10.1007/978-1-0716-1816-5_8 – ident: e_1_2_9_83_1 doi: 10.1093/aob/mcs069 – ident: e_1_2_9_70_1 doi: 10.1073/pnas.1705833114 – ident: e_1_2_9_24_1 doi: 10.1126/science.1090908 – ident: e_1_2_9_92_1 doi: 10.1111/nph.14641 – volume: 4 start-page: 1 issue: 3 year: 2013 ident: e_1_2_9_75_1 article-title: The rhizosphere‐roots, soil and everything in between publication-title: Nature Education Knowledge – ident: e_1_2_9_73_1 doi: 10.1016/0034-5687(81)90079-7 – ident: e_1_2_9_101_1 doi: 10.1126/science.1255215 – ident: e_1_2_9_56_1 doi: 10.1007/BF00197734 – ident: e_1_2_9_69_1 doi: 10.1038/nature13663 – ident: e_1_2_9_96_1 doi: 10.1111/tpj.15774 – ident: e_1_2_9_5_1 doi: 10.1098/rstb.2015.0520 – ident: e_1_2_9_48_1 doi: 10.1038/208864a0 – ident: e_1_2_9_25_1 doi: 10.1038/nplants.2017.57 – ident: e_1_2_9_34_1 doi: 10.3389/fpls.2013.00233 – ident: e_1_2_9_2_1 doi: 10.1016/B978-012387582-2/50038-1 – ident: e_1_2_9_45_1 doi: 10.1016/j.pbiomolbio.2015.01.002 – ident: e_1_2_9_105_1 doi: 10.1073/pnas.1517445113 – ident: e_1_2_9_22_1 doi: 10.1104/pp.18.01006 – ident: e_1_2_9_14_1 doi: 10.1007/BF01287811 – ident: e_1_2_9_50_1 doi: 10.1104/pp.20.00211 – ident: e_1_2_9_33_1 doi: 10.1098/rsfs.2016.0043 – ident: e_1_2_9_123_1 doi: 10.3389/fpls.2013.00355 – ident: e_1_2_9_106_1 doi: 10.1002/tpg2.20003 – ident: e_1_2_9_114_1 doi: 10.3389/fpls.2019.00206 – ident: e_1_2_9_63_1 doi: 10.1111/nph.15738 – ident: e_1_2_9_111_1 doi: 10.1104/pp.17.01583 – ident: e_1_2_9_35_1 doi: 10.1242/dev.196253 – ident: e_1_2_9_91_1 doi: 10.1038/msb.2013.43 – ident: e_1_2_9_77_1 doi: 10.1242/dev.181669 – ident: e_1_2_9_102_1 doi: 10.1104/pp.114.241711 – ident: e_1_2_9_67_1 doi: 10.1007/s11104-021-05010-y – ident: e_1_2_9_117_1 doi: 10.4161/psb.1.6.3511 – ident: e_1_2_9_40_1 doi: 10.1103/PhysRevLett.69.2013 – ident: e_1_2_9_30_1 doi: 10.1093/aob/mcm235 – ident: e_1_2_9_72_1 doi: 10.1007/BF00012888 – ident: e_1_2_9_122_1 doi: 10.1126/science.aad2776 – ident: e_1_2_9_85_1 doi: 10.1038/srep43004 – ident: e_1_2_9_89_1 doi: 10.1080/13642810108205772 – ident: e_1_2_9_119_1 doi: 10.1104/pp.68.5.1081 – ident: e_1_2_9_98_1 doi: 10.1093/jxb/52.suppl_1.381 – ident: e_1_2_9_6_1 doi: 10.1104/pp.109.150128 – ident: e_1_2_9_43_1 doi: 10.1017/S0021859617000302 – ident: e_1_2_9_115_1 doi: 10.1093/jxb/eraa165 – ident: e_1_2_9_58_1 doi: 10.1007/s10535-009-0049-4 – ident: e_1_2_9_93_1 doi: 10.1093/aob/mcq199 – ident: e_1_2_9_21_1 doi: 10.1098/rspb.2015.2592 – ident: e_1_2_9_59_1 doi: 10.1073/pnas.2110245119 – ident: e_1_2_9_44_1 doi: 10.1002/pld3.334 – ident: e_1_2_9_97_1 doi: 10.1093/aob/mcy092 – ident: e_1_2_9_39_1 doi: 10.1103/PhysRevE.47.2128 – ident: e_1_2_9_90_1 doi: 10.3389/fpls.2016.00829 – ident: e_1_2_9_16_1 doi: 10.1093/jxb/4.2.197 – ident: e_1_2_9_19_1 doi: 10.1023/B:PLSO.0000020942.97995.f3 – ident: e_1_2_9_46_1 doi: 10.3389/fpls.2013.00439 – ident: e_1_2_9_18_1 doi: 10.1104/pp.114.249037 – ident: e_1_2_9_74_1 doi: 10.1093/oxfordjournals.aob.a086125 – ident: e_1_2_9_109_1 doi: 10.1073/pnas.2012087118 – ident: e_1_2_9_68_1 doi: 10.1023/A:1012728819326 – ident: e_1_2_9_84_1 doi: 10.1093/oxfordjournals.aob.a088244 – reference: 38679856 - Plant Cell Environ. 2024 Apr 28;: |
SSID | ssj0001479 |
Score | 2.4801443 |
Snippet | Root anatomy is an important determinant of root metabolic costs, soil exploration, and soil resource capture. Root anatomy varies substantially within and... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1671 |
SubjectTerms | Anatomy BASIC BIOLOGICAL SCIENCES Corn cortical cell files Elongation functional-structural modelling Metabolism multicellular model multiscale model integration Nitrogen - metabolism OpenSimRoot phene interactions Phenotype Phenotypes Plant Roots - metabolism Plant species rhizoeconomics root anatomy root cortical aerenchyma Roots Soil Soils Structural models Structure-function relationships vacuole size Zea mays - metabolism |
Title | RootSlice—A novel functional‐structural model for root anatomical phenotypes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14552 https://www.ncbi.nlm.nih.gov/pubmed/36708192 https://www.proquest.com/docview/2795198092 https://www.proquest.com/docview/2770478911 https://www.osti.gov/servlets/purl/2418414 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9UwFD7MywRf1E3drpsjig--9NK0adPg0xwbY6BcpoM9CCVJk5dd2sHthPm0n-CDv3C_xHOatjrZYOyt0BNIenJyviRfvwPw3sRpKvJURJnWKhKYAyK01JGpCi7Twkpe0Y3u5y_54Yk4Os1OV-Dj8C9M0IcYD9woMrr1mgJcm-U_QX5u3YxUtmn9Ja4WAaLjv9JRXASdPaIvSql4rypELJ6x5Y1cNGkwpm7DmTdha5d3Dp7B96HHgW5yNrtozcz-_E_M8YFDeg5PezzKdsMEWoMVV6_D41Ch8nIdVj81iB4vX8D8uGnarwtcVq6vfu-yuvnhFoySYjhLvL76FZRoScWDdeV1GMJhhri8ZbrGnX0nS8CIUdbQse_yJZwc7H_bO4z6agyRpSQfmVxnKkt84eNcy0orxHo-V5ZL67hXGMxVarLYxl4lMqu8EiaueKE8UVm8S9NXMKmb2m0Cy3NhEpXgHtjFgsigNimy2FvnDeIZrqbwYfBLaXupcqqYsSiHLQt-qbL7UlN4N5qeB32O24y2yLklggpSxrVEIbJtieClEFxMYXvwedkH8LJMJEJPVcQKG78dX2Po0X2Krl1zQTaStI0wXUxhI8yVsQ-ki0dacziUzuN3d66c7-13D6_vb7oFT6jsfSBebsMEHezeIDhqzQ48SsR8p4uFP2RaCk0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1FExBcWMI2JECDQOLikbvdXvrAIWTRhCyKQiLl5tjt7gsjO9I4QcMpn8Ahn5Ff4SfyJVS5bUNQkLjkwM2Sa6S2u5bX5TevAN7mfhDIKJBemGXKk1gDPLTMvLxIeBwkOuYFfdHd3onGB_LTYXg4Bxfdf2GcPkTfcKPIaPI1BTg1pH-L8mNtRiSzLVpK5aaZfcUD2_TDxiru7jsh1tf2V8ZeO1PA01SqvDzKQhUKm1g_yuIiU4hYbKQ0j7XhVqFLFkEe-tq3SsRhYZXM_YInyhIhwxpqf2LCn6cJ4qTUv7r3S6yKS6fsR4TJOFa81TEi3lC_1CvVb1BhFF-HbK8C5abSrd-HH907cgSXL6OTOh_pb3_IR_4vL_EB3GshN1t2MfIQ5ky5ALfdEM7ZAtz6WCFAnj2C3b2qqj9PMHNenp0vs7I6NRNGdd-1Sy_PvjuxXRIqYc0EIYaIn-HRo2ZZmdVVo7zAiDRXUWd7-hgObuS5nsCgrErzDFgUyVwogcd840viu2qRhL7VxuYI2bgawvvOEVLdqrHTUJBJ2p3KcGfSZmeG8KY3PXYSJNcZLZI3pYibSPxXE0tK1ynis0RyOYSlzsnSNkdNUxEjulaJr_DHr_vbmF3ok1FWmuqEbGKSb8KKOISnzjn7NZD0H8np4aM0Lvb3xaW7K2vNxfN_N30Fd8b721vp1sbO5iLcFYgtHc90CQa42eYFYsE6f9mEIIOjm3bXn-ICZm4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5VS0FcEC1_S38wCCQuQbHjxPGBQ2m7aumPVkCl3kzi2KdVstIuoL31ETjwFrxVn4SZOBu1Uitx6S3SzkrOjMfz2f7yDcDbMk4SmSUySotCRxJrQISWRVRWOVdJbhWv6Eb35DQ7OJOfz9PzFfi7_BYm6EP0B26UGe16TQk-rfyVJJ9a94FUtkXHqDxyi1-4X5t9PNzD4L4TYrT_bfcg6loKRJYqVVRmRapT4XMfZ4WqCo2AxWfacmUd9xpnZJWUaWxjr4VKK69lGVc81574GN7R6Seu9_focpH4Y0KO-2WfyyDsR3xJpTTvZIyINtQP9VrxGzSYxDcB2-s4uS10o8fwqEOobCdMqTVYcfU63A89KxfrsPqpQTy5eALjL00z_zrBheby4s8Oq5ufbsKoTIbTxcuL30GblnQ9WNtwhyFAZojU56yoca_fChUw4pg1dBA8ewpnd-LMZzCom9q9AJZlshRa4K7YxZLooVbkaeyt8yUiHK6H8H7pOGM78XLqoTExy00M-ti0Ph7Cm950GhQ7bjLaIO8bhBmklWuJVGTnBuFMLrkcwuYyKKZL6ZkRCsGozmONf37d_4zJSDcsRe2aH2SjSO0IC8gQnodg9mMgpTxSn8NXaaN7--DMeHe_fXj5_6av4MF4b2SOD0-PNuChQCQWWJmbMMBYuy1ETvNyu52xDL7fdYr8A55RJUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RootSlice-A+novel+functional-structural+model+for+root+anatomical+phenotypes&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Sidhu%2C+Jagdeep+Singh&rft.au=Ajmera%2C+Ishan&rft.au=Arya%2C+Sankalp&rft.au=Lynch%2C+Jonathan+P&rft.date=2023-05-01&rft.eissn=1365-3040&rft.volume=46&rft.issue=5&rft.spage=1671&rft_id=info:doi/10.1111%2Fpce.14552&rft_id=info%3Apmid%2F36708192&rft.externalDocID=36708192 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |