Dilute Doping, Defects, and Ferromagnetism in Metal Oxide Systems

Over the past decade intensive research efforts have been carried out by researchers around the globe on exploring the effects of dilute doping of magnetic impurities on the physical properties of functional non‐magnetic metal oxides such as TiO2 and ZnO. This effort is aimed at inducing spin functi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 22; no. 29; pp. 3125 - 3155
Main Author Ogale, Satishchandra B.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 03.08.2010
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Over the past decade intensive research efforts have been carried out by researchers around the globe on exploring the effects of dilute doping of magnetic impurities on the physical properties of functional non‐magnetic metal oxides such as TiO2 and ZnO. This effort is aimed at inducing spin functionality (magnetism, spin polarization) and thereby novel magneto‐transport and magneto‐optic effects in such oxides. After an early excitement and in spite of some very promising results reported in the literature, this field of diluted magnetic semiconducting oxides (DMSO) has continued to be dogged by concerns regarding uniformity of dopant incorporation, the possibilities of secondary ferromagnetic phases, and contamination issues. The rather sensitive dependence of magnetism of the DMSO systems on growth methods and conditions has led to interesting questions regarding the specific role played by defects in the attendant phenomena. Indeed, it has also led to the rapid re‐emergence of the field of defect ferromagnetism. Many theoretical studies have contributed to the analysis of diverse experimental observations in this field and in some cases to the predictions of new systems and scenarios. In this review an attempt is made to capture the scope and spirit of this effort highlighting the successes, concerns, and questions. The realization of ferromagnetism in functional non‐magnetic metal oxides, such as TiO2 and ZnO, by dilute doping of magnetic impurities or controlled introduction of specific defect types is reviewed. An attempt is made to capture the scope and spirit of this field as it developed over the past decade highlighting the successes, concerns, and new questions. Future research directions are discussed as well.
AbstractList Over the past decade intensive research efforts have been carried out by researchers around the globe on exploring the effects of dilute doping of magnetic impurities on the physical properties of functional non‐magnetic metal oxides such as TiO2 and ZnO. This effort is aimed at inducing spin functionality (magnetism, spin polarization) and thereby novel magneto‐transport and magneto‐optic effects in such oxides. After an early excitement and in spite of some very promising results reported in the literature, this field of diluted magnetic semiconducting oxides (DMSO) has continued to be dogged by concerns regarding uniformity of dopant incorporation, the possibilities of secondary ferromagnetic phases, and contamination issues. The rather sensitive dependence of magnetism of the DMSO systems on growth methods and conditions has led to interesting questions regarding the specific role played by defects in the attendant phenomena. Indeed, it has also led to the rapid re‐emergence of the field of defect ferromagnetism. Many theoretical studies have contributed to the analysis of diverse experimental observations in this field and in some cases to the predictions of new systems and scenarios. In this review an attempt is made to capture the scope and spirit of this effort highlighting the successes, concerns, and questions. The realization of ferromagnetism in functional non‐magnetic metal oxides, such as TiO2 and ZnO, by dilute doping of magnetic impurities or controlled introduction of specific defect types is reviewed. An attempt is made to capture the scope and spirit of this field as it developed over the past decade highlighting the successes, concerns, and new questions. Future research directions are discussed as well.
Abstract Over the past decade intensive research efforts have been carried out by researchers around the globe on exploring the effects of dilute doping of magnetic impurities on the physical properties of functional non‐magnetic metal oxides such as TiO 2 and ZnO. This effort is aimed at inducing spin functionality (magnetism, spin polarization) and thereby novel magneto‐transport and magneto‐optic effects in such oxides. After an early excitement and in spite of some very promising results reported in the literature, this field of diluted magnetic semiconducting oxides (DMSO) has continued to be dogged by concerns regarding uniformity of dopant incorporation, the possibilities of secondary ferromagnetic phases, and contamination issues. The rather sensitive dependence of magnetism of the DMSO systems on growth methods and conditions has led to interesting questions regarding the specific role played by defects in the attendant phenomena. Indeed, it has also led to the rapid re‐emergence of the field of defect ferromagnetism. Many theoretical studies have contributed to the analysis of diverse experimental observations in this field and in some cases to the predictions of new systems and scenarios. In this review an attempt is made to capture the scope and spirit of this effort highlighting the successes, concerns, and questions.
Over the past decade intensive research efforts have been carried out by researchers around the globe on exploring the effects of dilute doping of magnetic impurities on the physical properties of functional non-magnetic metal oxides such as TiO sub(2) and ZnO. This effort is aimed at inducing spin functionality (magnetism, spin polarization) and thereby novel magneto-transport and magneto-optic effects in such oxides. After an early excitement and in spite of some very promising results reported in the literature, this field of diluted magnetic semiconducting oxides (DMSO) has continued to be dogged by concerns regarding uniformity of dopant incorporation, the possibilities of secondary ferromagnetic phases, and contamination issues. The rather sensitive dependence of magnetism of the DMSO systems on growth methods and conditions has led to interesting questions regarding the specific role played by defects in the attendant phenomena. Indeed, it has also led to the rapid re-emergence of the field of defect ferromagnetism. Many theoretical studies have contributed to the analysis of diverse experimental observations in this field and in some cases to the predictions of new systems and scenarios. In this review an attempt is made to capture the scope and spirit of this effort highlighting the successes, concerns, and questions. The realization of ferromagnetism in functional non-magnetic metal oxides, such as TiO sub(2) and ZnO, by dilute doping of magnetic impurities or controlled introduction of specific defect types is reviewed. An attempt is made to capture the scope and spirit of this field as it developed over the past decade highlighting the successes, concerns, and new questions. Future research directions are discussed as well.
Over the past decade intensive research efforts have been carried out by researchers around the globe on exploring the effects of dilute doping of magnetic impurities on the physical properties of functional non-magnetic metal oxides such as TiO(2) and ZnO. This effort is aimed at inducing spin functionality (magnetism, spin polarization) and thereby novel magneto-transport and magneto-optic effects in such oxides. After an early excitement and in spite of some very promising results reported in the literature, this field of diluted magnetic semiconducting oxides (DMSO) has continued to be dogged by concerns regarding uniformity of dopant incorporation, the possibilities of secondary ferromagnetic phases, and contamination issues. The rather sensitive dependence of magnetism of the DMSO systems on growth methods and conditions has led to interesting questions regarding the specific role played by defects in the attendant phenomena. Indeed, it has also led to the rapid re-emergence of the field of defect ferromagnetism. Many theoretical studies have contributed to the analysis of diverse experimental observations in this field and in some cases to the predictions of new systems and scenarios. In this review an attempt is made to capture the scope and spirit of this effort highlighting the successes, concerns, and questions.
Author Ogale, Satishchandra B.
Author_xml – sequence: 1
  givenname: Satishchandra B.
  surname: Ogale
  fullname: Ogale, Satishchandra B.
  email: sb.ogale@ncl.res.in, satishogale@gmail.com
  organization: Physical and Materials Chemistry Division, National Chemical Laboratory, Council of Scientific and Industrial Research, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India) Indian Institute of Science Education and Research (IISER), Pune (India) Phone: 91-20-25902260, 91-9822628242, Fax: 91-20-25902636
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20535732$$D View this record in MEDLINE/PubMed
BookMark eNqFkDtPIzEURi3ECgJsuyWaDgomXNvjsV1GCS8pWUCw2tJyPNfIMI8wngjy75kobES1VFdXOt8pzgHZrZsaCflFYUgB2LktKjtkABq40nSHDKhgNM1Ai10yAM1FqvNM7ZODGJ-hx3LI98g-A8GF5GxARpNQLjtMJs0i1E9nyQQ9ui6eJbYukkts26ayTzV2IVZJqJMZdrZMbt9DgcnDKnZYxSPyw9sy4s_Pe0j-XF48jq_T6e3VzXg0TV1GBU2lUyJD6yTL51LZgvsc-pNjYa3Q1INzzHuh57lANmdKcgveQf9p8JZqfkhONt5F27wuMXamCtFhWdoam2U0MlOaCSrX5Ol_SapURplgivfocIO6tomxRW8WbahsuzIUzDqwWQc228D94PjTvZxXWGzxf0V7QG-At1Di6hudGU1mo6_ydLMNfdn37da2LyaXXArz9_eVuZdjOZvecUP5ByNHlts
CitedBy_id crossref_primary_10_1140_epjb_e2013_40008_5
crossref_primary_10_1016_j_ssc_2023_115217
crossref_primary_10_1016_j_mseb_2021_115200
crossref_primary_10_1016_j_jallcom_2015_09_084
crossref_primary_10_1021_jp400159j
crossref_primary_10_1002_adma_201201595
crossref_primary_10_1007_s12221_020_1409_0
crossref_primary_10_1039_c2tc00172a
crossref_primary_10_1098_rsta_2012_0198
crossref_primary_10_7567_APEX_7_031101
crossref_primary_10_1021_ja108290u
crossref_primary_10_1063_1_4861165
crossref_primary_10_3938_jkps_60_1644
crossref_primary_10_1007_s40145_017_0233_5
crossref_primary_10_1063_1_3579544
crossref_primary_10_1016_j_jallcom_2016_11_183
crossref_primary_10_2139_ssrn_3976003
crossref_primary_10_1103_PhysRevLett_106_066401
crossref_primary_10_18321_ectj892
crossref_primary_10_1007_s10854_022_09564_0
crossref_primary_10_1016_j_jmmm_2021_167741
crossref_primary_10_1021_ar4002944
crossref_primary_10_1103_PhysRevB_86_115212
crossref_primary_10_1063_1_4893563
crossref_primary_10_1002_adfm_201705657
crossref_primary_10_1016_j_cjph_2021_08_012
crossref_primary_10_1039_c3cp52391h
crossref_primary_10_1103_PhysRevB_93_214433
crossref_primary_10_1155_2016_9564394
crossref_primary_10_1007_s11051_013_2120_5
crossref_primary_10_1007_s10854_016_6032_x
crossref_primary_10_1002_pssb_201350230
crossref_primary_10_1134_S1027451018020295
crossref_primary_10_1021_acsomega_8b00667
crossref_primary_10_1016_j_jlumin_2016_08_008
crossref_primary_10_1371_journal_pone_0287322
crossref_primary_10_1016_j_jmmm_2024_171728
crossref_primary_10_1016_j_susc_2014_02_014
crossref_primary_10_1021_jp3104722
crossref_primary_10_1016_j_colsurfa_2011_06_010
crossref_primary_10_1021_acs_jpcc_7b08881
crossref_primary_10_1039_C5TC01216C
crossref_primary_10_1016_j_ceramint_2018_01_162
crossref_primary_10_1063_1_5006167
crossref_primary_10_1063_1_4824772
crossref_primary_10_1016_j_matlet_2015_08_073
crossref_primary_10_1021_jp410813z
crossref_primary_10_1016_j_jallcom_2017_04_128
crossref_primary_10_1021_cm200509g
crossref_primary_10_1007_s10948_017_4184_4
crossref_primary_10_1103_PhysRevB_85_245202
crossref_primary_10_1103_PhysRevB_87_245201
crossref_primary_10_1016_j_apsusc_2011_07_096
crossref_primary_10_1088_0953_8984_23_27_276005
crossref_primary_10_1007_s12034_021_02550_y
crossref_primary_10_1063_1_4770290
crossref_primary_10_1063_1_4813540
crossref_primary_10_1039_C9NR04345D
crossref_primary_10_1063_1_3624775
crossref_primary_10_1088_1361_6528_abc57b
crossref_primary_10_1016_j_jmst_2015_08_011
crossref_primary_10_1039_c1jm13509k
crossref_primary_10_1016_j_physrep_2013_10_002
crossref_primary_10_1002_adma_202207774
crossref_primary_10_1007_s10948_014_2818_3
crossref_primary_10_1016_j_jallcom_2014_06_166
crossref_primary_10_1063_1_3664116
crossref_primary_10_1021_jp306305m
crossref_primary_10_1021_acs_jpcc_3c06278
crossref_primary_10_1039_D3CP02431H
crossref_primary_10_1063_1_4861936
crossref_primary_10_1016_j_optmat_2020_110769
crossref_primary_10_1380_jsssj_32_134
crossref_primary_10_1038_srep07703
crossref_primary_10_1016_j_apmt_2016_09_012
crossref_primary_10_1016_j_jeurceramsoc_2023_08_023
crossref_primary_10_3390_nano12091525
crossref_primary_10_1088_0953_8984_24_50_506001
crossref_primary_10_3390_nano14010042
crossref_primary_10_1002_adma_201103241
crossref_primary_10_1039_C5TC02090E
crossref_primary_10_1063_1_3609964
crossref_primary_10_1088_1674_1056_24_5_057503
crossref_primary_10_1039_C3NJ00888F
crossref_primary_10_1016_j_ceramint_2017_10_104
crossref_primary_10_1039_C6RA02641A
crossref_primary_10_1063_1_3500380
crossref_primary_10_7567_APEX_6_063005
crossref_primary_10_1088_0022_3727_46_44_445004
crossref_primary_10_1149_2_0051804jes
crossref_primary_10_1080_14786435_2016_1243265
crossref_primary_10_1016_j_matchemphys_2015_03_003
crossref_primary_10_1021_acs_chemmater_9b02243
crossref_primary_10_1063_1_3640212
crossref_primary_10_1039_C8TA12238E
crossref_primary_10_1016_j_jmmm_2016_10_159
crossref_primary_10_1021_acs_nanolett_3c04982
crossref_primary_10_1063_1_4879463
crossref_primary_10_1021_acsanm_2c03073
crossref_primary_10_1039_C5TC00405E
crossref_primary_10_1039_C5RA14623B
crossref_primary_10_1063_1_3485058
crossref_primary_10_1021_acssuschemeng_8b00838
crossref_primary_10_1039_D0RA01676D
crossref_primary_10_1039_c3cc42880j
crossref_primary_10_1021_acsami_0c09061
crossref_primary_10_1063_1_5019786
crossref_primary_10_1002_slct_201803377
crossref_primary_10_1063_1_3703669
crossref_primary_10_1039_C9TC04187G
crossref_primary_10_1063_1_3681795
crossref_primary_10_1039_C5RA19426A
crossref_primary_10_1039_C7TA03047A
crossref_primary_10_1063_1_4795262
crossref_primary_10_1002_bio_4505
crossref_primary_10_1016_j_mseb_2015_06_003
crossref_primary_10_1016_j_jallcom_2013_07_024
crossref_primary_10_1088_0953_8984_24_18_185402
crossref_primary_10_1016_j_vacuum_2018_09_053
crossref_primary_10_1038_s41598_018_36336_w
crossref_primary_10_1088_1361_6528_28_3_035601
crossref_primary_10_1016_j_tsf_2011_04_154
crossref_primary_10_1039_C4RA11924J
crossref_primary_10_1088_1742_6596_776_1_012018
crossref_primary_10_1007_s10948_015_2997_6
crossref_primary_10_1021_acsami_5b12542
crossref_primary_10_1088_1361_648X_ab7b1a
crossref_primary_10_1016_j_materresbull_2016_09_034
crossref_primary_10_1039_D0NA00499E
crossref_primary_10_1039_C7DT03237D
crossref_primary_10_1016_j_matchemphys_2021_125110
crossref_primary_10_1109_TMAG_2014_2299972
crossref_primary_10_1007_s40820_023_01147_w
crossref_primary_10_1142_S0217979216501605
crossref_primary_10_1016_j_jallcom_2013_10_193
crossref_primary_10_1088_1674_1056_ab9c0c
crossref_primary_10_1039_C6RA16676H
crossref_primary_10_1021_acsaelm_9b00369
crossref_primary_10_1021_acs_jpcc_8b03322
crossref_primary_10_1016_j_jmmm_2013_11_038
crossref_primary_10_3389_fphy_2023_1124924
crossref_primary_10_1016_j_jallcom_2016_03_111
crossref_primary_10_1063_1_3665401
crossref_primary_10_1109_TED_2016_2612690
crossref_primary_10_1016_j_matchemphys_2018_02_051
crossref_primary_10_1016_j_cap_2014_03_011
crossref_primary_10_1088_0022_3727_45_3_033001
crossref_primary_10_12677_CMP_2018_71005
crossref_primary_10_1039_c3ce26872a
crossref_primary_10_1016_j_apcata_2012_12_003
crossref_primary_10_1021_jp4068922
crossref_primary_10_1016_j_ceramint_2022_03_040
crossref_primary_10_3938_jkps_72_577
crossref_primary_10_1063_1_4921464
crossref_primary_10_1016_j_tsf_2013_03_010
crossref_primary_10_1038_srep31435
crossref_primary_10_1103_PhysRevB_86_054441
crossref_primary_10_1088_0953_8984_24_48_485801
crossref_primary_10_1021_nn203070d
crossref_primary_10_1051_epjap_2014140185
crossref_primary_10_1063_1_4885424
crossref_primary_10_1016_j_apsusc_2012_08_096
crossref_primary_10_1016_j_ssc_2012_10_042
crossref_primary_10_1016_j_jmmm_2013_11_048
crossref_primary_10_1021_ic502905m
crossref_primary_10_1016_j_cej_2021_134189
crossref_primary_10_1007_s00339_015_9040_4
crossref_primary_10_1063_5_0130731
crossref_primary_10_1039_C7CE00378A
crossref_primary_10_1063_1_4720744
crossref_primary_10_1063_1_4897998
crossref_primary_10_1039_C5RA03069B
crossref_primary_10_1016_j_jpcs_2020_109460
crossref_primary_10_1016_j_tsf_2011_01_191
crossref_primary_10_1039_C6RA05746B
crossref_primary_10_1063_1_4749397
crossref_primary_10_1016_j_ccr_2019_06_015
crossref_primary_10_1016_j_apsusc_2015_04_154
crossref_primary_10_1016_j_jmmm_2015_11_093
crossref_primary_10_1063_1_4864150
crossref_primary_10_1016_j_cap_2016_05_007
crossref_primary_10_1039_C8RA08573K
crossref_primary_10_1088_1742_6596_430_1_012128
crossref_primary_10_1103_PhysRevLett_115_167401
crossref_primary_10_1088_0953_8984_24_5_056004
crossref_primary_10_1016_j_cjph_2019_09_037
crossref_primary_10_1002_pssb_201900623
crossref_primary_10_1002_adma_201203493
crossref_primary_10_1063_1_3536414
crossref_primary_10_1063_1_3669505
crossref_primary_10_1016_j_jallcom_2024_173602
crossref_primary_10_1007_s10948_014_2776_9
crossref_primary_10_1016_j_jssc_2011_11_006
crossref_primary_10_1039_c3ce40819a
crossref_primary_10_1016_j_cej_2022_138060
crossref_primary_10_1016_j_jallcom_2014_05_178
crossref_primary_10_1016_j_jallcom_2019_05_118
crossref_primary_10_1063_1_4862306
crossref_primary_10_1016_j_ccr_2016_04_011
crossref_primary_10_1063_1_4721807
crossref_primary_10_1063_1_4921847
crossref_primary_10_1016_j_jallcom_2011_01_211
crossref_primary_10_1063_1_4977765
crossref_primary_10_1016_j_jallcom_2014_05_176
crossref_primary_10_1039_C6RA06606B
crossref_primary_10_1186_1556_276X_8_533
crossref_primary_10_1103_PhysRevB_90_134415
crossref_primary_10_1007_s11664_018_6824_2
crossref_primary_10_1016_j_ceramint_2017_01_140
crossref_primary_10_1039_C7AN00446J
crossref_primary_10_1063_1_4795615
crossref_primary_10_1021_nl301226k
crossref_primary_10_1103_PhysRevB_83_115207
crossref_primary_10_1016_j_ceramint_2020_10_087
crossref_primary_10_1016_j_apsusc_2021_149195
crossref_primary_10_1039_c3cp44047h
crossref_primary_10_1016_j_jallcom_2015_06_033
crossref_primary_10_1016_j_nanoen_2018_10_043
crossref_primary_10_1016_j_ceramint_2020_12_158
crossref_primary_10_1016_j_jre_2022_01_016
crossref_primary_10_1039_c3ra22980g
crossref_primary_10_1063_1_4868297
crossref_primary_10_1063_1_5143487
crossref_primary_10_1007_s10854_021_07253_y
crossref_primary_10_1021_acs_jpcc_2c08045
crossref_primary_10_1002_ange_201703296
crossref_primary_10_1021_cm504261q
crossref_primary_10_1007_s10854_013_1545_z
crossref_primary_10_1021_acsami_6b15071
crossref_primary_10_1007_s00339_013_7658_7
crossref_primary_10_1080_02670844_2022_2063482
crossref_primary_10_1016_j_jallcom_2018_10_304
crossref_primary_10_1103_PhysRevB_104_085154
crossref_primary_10_1021_cm103439e
crossref_primary_10_1016_j_jmmm_2022_169240
crossref_primary_10_1016_j_jmmm_2012_04_047
crossref_primary_10_1016_j_vacuum_2020_109725
crossref_primary_10_1021_acsami_7b11925
crossref_primary_10_7567_JJAP_53_05FB07
crossref_primary_10_1016_j_mssp_2014_11_039
crossref_primary_10_1021_acs_jpcc_0c04049
crossref_primary_10_1007_s10853_016_0218_8
crossref_primary_10_1088_2053_1591_abfd13
crossref_primary_10_1007_s11356_022_22767_6
crossref_primary_10_1016_j_apsusc_2019_03_247
crossref_primary_10_1063_1_3690113
crossref_primary_10_1002_adma_201503906
crossref_primary_10_1063_1_4811539
crossref_primary_10_1063_1_4881265
crossref_primary_10_1063_1_3664764
crossref_primary_10_1103_PhysRevB_89_104411
crossref_primary_10_1063_1_4960555
crossref_primary_10_1002_anie_201703296
crossref_primary_10_1016_j_jmmm_2020_166448
crossref_primary_10_1063_5_0066697
crossref_primary_10_1016_j_mtcomm_2023_105475
crossref_primary_10_1016_j_ceramint_2023_10_041
crossref_primary_10_1021_acs_jpcc_8b09851
crossref_primary_10_1039_c3ce26770a
crossref_primary_10_1088_1361_648X_ab6e8c
crossref_primary_10_1007_s10854_017_8321_4
crossref_primary_10_1039_c2nr11767c
crossref_primary_10_1016_j_ceja_2021_100120
crossref_primary_10_1039_C4CP04599H
crossref_primary_10_1103_PhysRevB_88_085437
crossref_primary_10_1063_1_4870916
crossref_primary_10_1016_j_jallcom_2018_04_221
crossref_primary_10_1103_PhysRevB_93_104418
crossref_primary_10_1103_PhysRevB_87_144414
crossref_primary_10_1111_j_1551_2916_2012_05157_x
crossref_primary_10_1063_1_4885735
crossref_primary_10_1088_0031_8949_90_6_065503
crossref_primary_10_1063_1_4705419
crossref_primary_10_1063_1_4990497
crossref_primary_10_4028_www_scientific_net_DDF_331_235
crossref_primary_10_1039_C4NR07003H
crossref_primary_10_3390_surfaces6040028
crossref_primary_10_1021_acs_chemmater_6b03339
crossref_primary_10_3390_polym15041040
crossref_primary_10_1016_j_jallcom_2014_01_247
crossref_primary_10_1021_jp211363q
crossref_primary_10_3390_magnetochemistry6010015
crossref_primary_10_1007_s10853_011_5830_z
crossref_primary_10_1088_0957_4484_24_27_275704
crossref_primary_10_3390_nano13152222
crossref_primary_10_1016_j_jallcom_2013_10_206
crossref_primary_10_1002_advs_202102911
crossref_primary_10_1088_1674_1056_ab9f29
crossref_primary_10_1016_j_matchemphys_2024_129523
crossref_primary_10_1039_D3TC01152F
crossref_primary_10_1063_1_4947455
crossref_primary_10_1016_j_matchemphys_2015_12_006
crossref_primary_10_1080_10420150_2016_1225066
crossref_primary_10_1063_1_4813217
crossref_primary_10_1088_1367_2630_13_10_103001
crossref_primary_10_1103_PhysRevB_108_134410
crossref_primary_10_3390_electronics6010023
crossref_primary_10_1088_0022_3727_44_15_155404
crossref_primary_10_1021_acssuschemeng_3c06377
crossref_primary_10_1134_S1063783417070083
crossref_primary_10_1088_0953_8984_27_25_256002
crossref_primary_10_1007_s00339_019_2886_0
crossref_primary_10_1063_1_3594717
crossref_primary_10_1016_j_jallcom_2017_12_344
crossref_primary_10_1039_C2TC00262K
crossref_primary_10_1016_j_jmmm_2016_12_002
crossref_primary_10_1039_c3nr00136a
crossref_primary_10_1039_c1jm12359a
crossref_primary_10_1016_j_jpcs_2018_05_038
crossref_primary_10_1016_j_physleta_2020_126278
crossref_primary_10_1016_j_jmmm_2016_06_007
crossref_primary_10_1002_ejic_202300344
crossref_primary_10_1103_PhysRevB_85_235203
crossref_primary_10_1021_accountsmr_3c00170
crossref_primary_10_1103_PhysRevB_92_155302
crossref_primary_10_1002_adfm_201502441
crossref_primary_10_1557_jmr_2013_219
crossref_primary_10_1039_C3CP54098G
crossref_primary_10_1016_j_jallcom_2015_01_187
crossref_primary_10_1088_1674_1056_25_9_097502
crossref_primary_10_1007_s00339_016_9710_x
crossref_primary_10_1016_j_saa_2013_01_017
crossref_primary_10_1016_j_jmmm_2017_09_029
crossref_primary_10_1016_j_materresbull_2012_04_011
crossref_primary_10_1142_S0217984924400025
crossref_primary_10_1142_S2010324712300058
crossref_primary_10_1007_s10854_018_9290_y
crossref_primary_10_1103_PhysRevB_90_125449
crossref_primary_10_1039_C1CE06033C
crossref_primary_10_1063_1_5131566
crossref_primary_10_1007_s12274_016_1063_4
crossref_primary_10_1016_j_physb_2016_07_017
crossref_primary_10_1021_acsami_6b07814
crossref_primary_10_1021_acsami_0c14706
crossref_primary_10_1039_c1ce06032e
crossref_primary_10_1109_TMAG_2013_2255867
crossref_primary_10_1021_acsami_9b19550
crossref_primary_10_1088_1674_1056_22_8_088505
crossref_primary_10_1063_1_4794799
crossref_primary_10_1063_1_4878976
crossref_primary_10_1063_1_3575198
crossref_primary_10_1002_chin_201039223
crossref_primary_10_1039_c0cp02924f
crossref_primary_10_1063_1_4812382
crossref_primary_10_3390_magnetochemistry9080193
crossref_primary_10_1063_1_4768723
crossref_primary_10_1016_j_apmt_2022_101427
Cites_doi 10.1103/PhysRevLett.100.157201
10.1016/j.nimb.2004.01.185
10.1126/science.1174419
10.1016/S0169-4332(03)00906-1
10.1063/1.2711184
10.1016/j.tsf.2004.03.031
10.1063/1.2450652
10.1103/PhysRevLett.88.047202
10.1063/1.2146057
10.1016/j.jcrysgro.2009.07.008
10.1021/ja036811v
10.1002/adma.200502415
10.1103/PhysRevB.67.144415
10.1063/1.1509477
10.1103/PhysRevLett.91.077205
10.1021/cm802280g
10.1103/PhysRevLett.96.107203
10.1063/1.1610796
10.1063/1.2041822
10.1063/1.1703845
10.1038/nmat1310
10.1016/j.tsf.2005.02.028
10.1126/science.281.5379.951
10.1103/PhysRevB.73.155327
10.1103/PhysRevB.77.241201
10.1063/1.3095664
10.1021/jp051878l
10.1038/nphys551
10.1103/PhysRevB.76.115320
10.1103/PhysRevLett.95.217203
10.1021/ja047381r
10.1511/2001.6.516
10.1088/0268-1242/17/4/310
10.1007/b136780
10.1103/PhysRevB.79.155203
10.1103/PhysRevLett.94.217206
10.1103/PhysRevLett.92.166601
10.1103/PhysRevB.77.201306
10.1063/1.2719034
10.1063/1.1556173
10.1021/cm702089z
10.1103/PhysRevLett.68.3749
10.1038/nmat1221
10.1088/0022-3727/41/13/134012
10.1103/PhysRevLett.86.2138
10.1103/PhysRevB.67.100401
10.1126/science.1056186
10.1088/0953-8984/21/6/064238
10.1103/PhysRevLett.91.157202
10.1016/S0040-6090(02)00709-5
10.1063/1.2535777
10.1063/1.1753652
10.1016/S0009-2614(97)00534-4
10.1103/PhysRevLett.100.256401
10.1103/PhysRevB.67.115211
10.1063/1.2161575
10.1002/adma.200400456
10.1021/ja048427j
10.1103/PhysRevLett.66.3052
10.1002/adma.200602222
10.1103/PhysRevB.78.193311
10.1103/PhysRevLett.96.027202
10.1063/1.2957037
10.1088/0953-8984/15/37/R01
10.1103/PhysRevB.55.9817
10.1088/1367-2630/10/5/055018
10.1002/adma.200502200
10.1021/ja050723o
10.1021/ja0543447
10.1103/PhysRevB.67.155201
10.1063/1.1758310
10.1063/1.1650041
10.1143/JJAP.42.L105
10.1088/0268-1242/19/10/R01
10.1103/PhysRevLett.97.037203
10.1063/1.2836328
10.1063/1.2165916
10.1063/1.1846158
10.1103/PhysRevB.71.014440
10.1063/1.1647257
10.1039/b412993h
10.1063/1.2190909
10.1088/0953-8984/17/27/R01
10.1063/1.341700
10.1038/nmat1910
10.1038/430630a
10.1103/PhysRevB.81.054420
10.1103/PhysRevB.73.132404
10.1038/nmat1931
10.1103/PhysRevB.69.125219
10.1016/j.chemphys.2007.06.039
10.1063/1.2163829
10.1063/1.2165108
10.1103/PhysRev.122.1157
10.1103/PhysRevLett.99.167203
10.1063/1.2032588
10.1016/j.mser.2008.04.002
10.1063/1.1420434
10.1063/1.1619212
10.1103/PhysRevLett.83.2417
10.1103/PhysRevLett.94.217205
10.1021/cr050172k
10.1103/PhysRevB.77.085208
10.1038/nmat989
10.1103/PhysRevB.79.205206
10.1103/PhysRevB.72.024450
10.1103/PhysRevB.69.125201
10.1063/1.2402979
10.1103/PhysRevLett.94.157204
10.1103/PhysRevB.23.3805
10.1103/PhysRevLett.96.027207
10.1103/PhysRevLett.99.127201
10.1103/PhysRevLett.71.1079
10.1103/PhysRevLett.84.3970
10.1002/pssb.200844272
10.1103/PhysRevB.73.035201
10.1016/j.jmmm.2008.07.008
10.1038/nmat1099
10.1103/PhysRevB.74.115307
10.1103/PhysRevB.75.184421
10.1063/1.2236829
10.1103/PhysRevB.74.075206
10.1016/j.apsusc.2005.01.043
10.1021/cr0500535
10.1103/PhysRevB.74.161306
10.1103/PhysRevB.73.121201
10.1103/PhysRevB.62.17144
10.1038/nmat984
10.1103/PhysRevLett.93.177206
10.1063/1.1584074
10.1063/1.2748343
10.1126/science.1065389
10.1103/PhysRevB.78.214429
10.1038/nmat1325
10.1103/RevModPhys.76.323
10.1103/PhysRevLett.94.147209
10.1016/j.cossms.2006.12.002
10.1103/PhysRevLett.95.037201
10.1103/PhysRevB.77.201303
10.1021/ja028416v
10.1016/S0304-8853(96)00490-8
10.1021/ja054205p
10.1088/1367-2630/12/1/013020
10.1063/1.2885730
10.1016/j.jmmm.2007.04.015
10.1063/1.1676026
10.1016/j.nantod.2008.10.002
10.1063/1.2920572
10.1016/j.solidstatesciences.2004.11.012
10.1063/1.2857481
10.1103/PhysRevB.72.045336
10.1103/PhysRevB.69.073201
10.1103/PhysRevLett.38.81
10.1002/0471725560.ch2
10.1103/PhysRevLett.94.126601
10.1103/PhysRevLett.89.216403
10.1103/PhysRevLett.90.017401
10.1103/PhysRevB.77.033205
10.1103/PhysRevB.70.195204
10.1063/1.1564864
10.1063/1.2219145
10.1002/adma.200803019
10.1063/1.2834247
10.1063/1.125353
10.1103/PhysRevB.69.193205
10.1016/j.jmmm.2009.07.025
10.1103/PhysRevLett.89.277202
10.1063/1.3112603
10.1103/PhysRevLett.88.247202
10.1063/1.1922569
10.1088/1367-2630/10/5/055010
10.1103/PhysRevB.76.085323
10.1021/ja060488p
10.1021/jp900392j
10.1063/1.1384478
10.1063/1.2751587
10.1103/PhysRevB.75.054423
10.1103/PhysRevB.68.125203
ContentType Journal Article
Copyright Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.200903891
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 3155
ExternalDocumentID 10_1002_adma_200903891
20535732
ADMA200903891
ark_67375_WNG_Q7C7MLP3_1
Genre reviewArticle
Journal Article
GrantInformation_xml – fundername: NSF MRSEC and DARPA, NCL
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABHUG
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4151-7c854eac726b78ad3f608ad6edaa591f0cc2ff59b65e2b2873a0fc065e90fa193
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Thu Aug 15 22:29:06 EDT 2024
Fri Aug 16 12:18:15 EDT 2024
Fri Aug 23 03:19:46 EDT 2024
Thu May 23 23:15:18 EDT 2024
Sat Aug 24 00:59:07 EDT 2024
Wed Jan 17 05:01:36 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4151-7c854eac726b78ad3f608ad6edaa591f0cc2ff59b65e2b2873a0fc065e90fa193
Notes ArticleID:ADMA200903891
NSF MRSEC and DARPA, NCL
istex:EF8AD773F3E343EF85CEE04691FE45A70FFD5998
ark:/67375/WNG-Q7C7MLP3-1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20535732
PQID 1884125283
PQPubID 23500
PageCount 31
ParticipantIDs proquest_miscellaneous_748925179
proquest_miscellaneous_1884125283
crossref_primary_10_1002_adma_200903891
pubmed_primary_20535732
wiley_primary_10_1002_adma_200903891_ADMA200903891
istex_primary_ark_67375_WNG_Q7C7MLP3_1
PublicationCentury 2000
PublicationDate August 3, 2010
PublicationDateYYYYMMDD 2010-08-03
PublicationDate_xml – month: 08
  year: 2010
  text: August 3, 2010
  day: 03
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2010
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References J. R. Simpson, H. D. Drew, S. R. Shinde, R. J. Choudhary, S. B. Ogale, T. Venkatesan, Phys. Rev. B 2004, 69, 193205.
D. Chakraborti, J. Narayan, J. T. Prater, Appl. Phys. Lett 2007, 90, 062504.
D. C. Kundaliya, S. B. Ogale, S. E. Lofland, S. Dhar, C. J. Metting, S. R. Shinde, Nat. Mater 2004, 3, 709.
S. D. Sarma, E. H. Hwang, A. Kaminski, Phys. Rev. B 2003, 67, 155201.
K. R. Kittilstved, N. S. Norberg, D. R. Gamelin, Phys. Rev. Lett. 2005, 94, 147209.
M. Venkatesan, P. Stamenov, L. S. Dorneles, R. D. Gunning, B. Bernoux, J. M. D. Coey, Appl. Phys. Lett. 2007, 90, 242508.
H. J. Fan, C. Liu, M. Liao, Chem. Phys. Lett. 1997, 273, 353.
C. Sudakar, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik, Phy. Rev. B 2007, 75, 054423.
D. H. Kim, J. S. Yang, Y. S. Kim, T. W. Noh, S. D. Bu, S.-I. Baik, Y.-W. Kim, Y. D. Park, S. J. Pearton, J.-Y. Kim, J.-H. Park, H.-J. Lin, C. T. Chen, Phy. Rev. B 2005, 71, 014440.
R. N. Bozorth, P. A. Wolff, D. D. Davis, V. B. Compton, J. H. Wernick, Phy. Rev. 1961, 122, 1157.
J. M. Sullivan, S. C. Erwin, Phy. Rev. B 2003, 67, 144415.
K. Ueno, T. Fukumura, H. Toyosaki, M. Nakano, T. Yamasaki, Y. Yamada, M. Kawasaki, J. Appl. Phys. 2008, 103, 07D114.
J.-Y. Kim, J.-H. Park, B.-G. Park, H.-J. Noh, S.-J. Oh, J. S. Yang, D.-H. Kim, S. D. Bu, T.-W. Noh, H.-J. Lin, H.-H. Hsieh, C. T. Chen, Phy. Rev. Lett. 2003, 90, 017401-1.
T. C. Droubay, D. J. Keavney, T. C. Kaspar, S. M. Heald, C. M. Wang, C. A. Johnson, K. M. Whitaker D. R. Gamelin, S. A. Chambers, Phy. Rev. B 2009, 79, 155203.
G. Bergmann, Phy. Rev. B 1981, 23, 3805.
T. C. Kaspar, S. M. Heald, C. M. Wang, J. D. Bryan, T. Droubay, V. Shutthanandan, S. Thevuthasan, D. E. McCready, A. J. Kellock, D. R. Gamelin, S. A. Chambers, Phys. Rev. Lett. 2005, 95, 217203.
K. A. Bogle, M. N. Bachhav, M. S. Deo, N. Valanoor, S. B. Ogale, Appl. Phy. Lett. 2009, 1, 95.
B. B. Straumal, A. A. Mazilkin, S. G. Protasova, A. A. Myatiev, P. B. Straumal, G. Schütz, P. A. van Aken, E. Goering, B. Baretzky, Phys. Rev. B. 2009, 79, 205206.
A. Ney, M. Opel, T. C. Kaspar, V. Ney, S. Ye, K. Ollefs, T. Kammermeier, S. Bauer, K.-W. Nielsen, S. T. B. Goennenwein, M. H. Engelhard, S. Zhou, K. Potzger, J. Simon, W. Mader, New J. Phys. 2010, 12, 013020.
S. R. Shinde, S. B. Ogale, J. S. Higgins, H. Zheng, A. J. Millis, V. N. Kulkarni, R. Ramesh, R. L. Greene, T. Venkatesan, Phys. Rev. Lett.. 2004, 92, 166601.
B. Sanyal, R. Knut, O. Grånäs, D. M. Ius¸an, O. Karis, O. Eriksson, J. Appl. Phys. 2008, 103, 07D131.
J. Flouquet, O. Taurian, J. Sanchez, M. Chapellier, J. L. Tholence, Phy. Rev. Lett. 1977, 38, 81.
N. H. Hong, J. Sakai, N. T. Huong, N. Poirot, A. Ruyter, Phys. Rev. B. 2005, 72, 045336.
J. M. D. Coey, Solid State Sci. 2005, 7, 660.
A. Sundaresan, C. N. R. Rao, Nano Today 2009, 4, 96.
D. H. Kim, J. S. Yang, Y. S. Kim, D.-W. Kim, T. W. Noh, S. D. Bu, Y.-W. Kim, Y. D. Park, S. J. Pearton, Y. Jo, J.-G. Park, Appl. Phys. Lett. 2003, 83, 22.
D. J. Keavney, D. B. Buchholz, Q. Ma, R. P. H. Chang, Appl. Phys. Lett. 2007, 91, 012501.
V. Shutthanandan, S. Thevuthasan, S. M. Heald, T. Droubay, M. H. Engelhard, T. C. Kaspar, D. E. McCready, L. Saraf, S. A. Chambers, B. S. Mun, N. Hamdan, P. Nachimuthu, B. Taylor, R. P. Sears, B. Sinkovic, Appl. Phys. Lett. 2004, 84, 4466.
A. Kaminski, S. D. Sarma, Phy. Rev. Lett. 2002, 88, 247202-1.
S. Guha, K. Ghosh, J. G. Keeth, S. B. Ogale, S. R. Shinde, J. R. Simpson, H. D. Drew, T. Venkatesan, Appl. Phys. Lett. 2004, 84, 1613.
C. N. R. Rao, F. L. Deepak, J. Mater. Chem. 2005, 15, 573.
J. P. Bucher, D. C. Douglass, L. A. Bloomfield, Phy. Rev. Lett. 1991, 66, 3052.
M. Venkatesan, C. B. Fitzgerald, J. M. D. Coey, Nature 2004, 430, 630.
S. D. Sarma, American Scientist 2001, 89, 516.
W. Prellier, A. Fouchet, B. Mercey, J. Phys: Condens. Matter 2003, 15, R1583.
G. Bergmann, M. Hossain, Phy. Rev. Lett. 2001, 86, 2138.
K. Mamiya and T. Koide A. Fujimori H. Tokano H. Manaka A. Tanaka H. Toyosaki, T. Fukumura, M. Kawasaki, Appl. Phys. Lett. 2006, 89, 062506.
A. Ney, T. Kammermeier, K. Ollefs, S. Ye, V. Ney, T. C. Kaspar, S. A. Chambers, F. Wilhelm and A. Rogalev, Phys. Rev. B 2010, 81, 054420.
S. A. Chambers, T. Droubay, C. M. Wang, and A. S. Lea R. F. C. Farrow, L. Folks, V. Deline, S. Anders, Appl. Phys. Lett. 2003, 82, 1257.
J. Osterwalder, T. Droubay, T. Kaspar, J. Williams, C. M. Wang, S. A. Chambers, Thin Solid Films 2005, 484, 289.
T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 2000, 287, 1020.
J. M. D. Coey, K. Wongsaprom, J. Alaria, M. Venkatesan, J. Phys. D: Appl. Phys. 2008, 41, 134012.
Ney, T. Kammermeier, V. Ney, K. Ollefs, S. Ye, J. Magn. Magn. Mater. 2008, 320, 3341.
J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, Nat. Mater. 2005, 4, 173.
R. Beaulac, L. Schneider, P. I. Archer, G. Bacher, D. R. Gamelin, Science 2010, 325, 973.
T. Zhao, S. R. Shinde, S. B. Ogale, H. Zheng, T. Venkatesan, R. Ramesh, S. Das Sarma, Phys. Rev. Lett. 2005, 94, 126601.
P. T. Qiao, Z. H. Zhao, Y. G. Zhao, S. P. Zhang, W. Y. Zhang, S. B. Ogale, S. R. Shinde, T. Venkatesan, S. Lofland, C. Lanci, Thin Solid Films 2004, 468, 8.
S. H. Kang, H. Nguyen, T. Quynh, S. G. Yoon, E. T. Kim, Z. Lee, App. Phys. Lett. 2007, 90, 102504.
K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 2001, 79, 988.
F-Y. Ran, M. Tanemura, Y. Hayashia, T. Hihara, Journal of Crystal Growth 2009, 311, 4270.
T. Matsumura, D. Okuyama, S. Niioka, H. Ishida, T. Satoh, Y. Murakami, H. Toyoski, Y. Yamada, T. Fukumura, M. Kawasaki, Phys. Rev. B. 2007, 76, 115320.
S. Mitani, H. Fujimori, S. Ohnuma, J. Magn. Magn. Mater. 1997, 165, 141.
D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, D. R. Gamelin, J. Am. Chem. Soc. 2003, 125, 13205.
S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. D. Sarma, H. D. Drew, R. L. Greene, T. Venkatesan, Phys. Rev. Lett. 2003, 91, 077205.
P. Gambardella, S. S. Dhesi, S. Gardonio, C. Grazioli, P. Ohresser, C. Carbone, Phy. Rev. Lett. 2002, 88, 047202.
R. Salzer, D. Spemann, P. Esquinazi, R. Hohne, A. Setzer, K. Schindler, H. Schmidt, T. Butz, J. Magn. Magn. Mater. 2007, 317, 53.
S. Krishnamurthy, C. McGuinness, L. S. Dorneles, M. Venkatesan, J. M. D. Coey, J. G. Lunney, C. H. Pattersonb, K. E. Smith, T. Learmonth, P.-A. Glans, T. Schmittc, J.-H. Guo, J. Appl. Phys. 2006, 99, 08M111.
L. F. Fu, N. D. Browning, S. X. Zhang, S. B. Ogale, D. C. Kundaliya, T. Venkatesan, J. Appl. Phys. 2006, 100, 123910.
F. J. Owens, J. Magn. Magn. Mater. 2009, 321, 3734.
Y. J. Kim, S. Thevuthasan, T. Droubay, A. S. Lea, C. M. Wang, V. Shutthanandan, S. A. Chambers, R. P. Sears, B. Taylor, B. Sinkovic, Appl. Phys. Lett. 2004, 84, 3531.
A. Brinkman, M. Huijben, M. V. Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. Van Der Wiel, G. Rijnders, D. H. A. Blank, H. Hilgenkamp, Nat. Mater. 2007, 6, 493.
C. Madhu, A. Sundaresan, C. N. R. Rao, Phys. Rev. B 2008, 77, 201306.
J. S. Higgins, S. R. Shinde, S. B. Ogale, T. Venkatesan, R. L. Greene, Phys. Rev. B 2004, 69, 073201.
K. R. Kittilstved and D. R. Gamelin, J. Am. Chem. Soc. 2005, 127, 5292
Lin-Hui Ye, A. J. Freeman, B. Delley, Phy. Rev. B 2006, 73, 033203.
S. X. Zhang, S. B. Ogale, D. C. Kundaliya, L. F. Fu, N. D. Browning, S. Dhar, W. Ramadan, J. S. Higgins, R. L. Greene, T. Venkatesan, Appl. Phys. Lett. 2006, 89, 012501.
H. Ohno, Science 1998, 281, 951.
E. Tirosh, G. Markovich, Adv. Mater. 2007, 19, 2608.
D. D. Awschalom, M. E. Flatté, Nat. Phys. 2007, 3, 153.
N. Chandrasekhar, O. T. Valls, A. M. Goldman, Phy. Rev. Lett. 1993, 71, 1079.
Y. Yamada, H. Toyosaki, A. Tsukazaki, T. Fukumura, K. Tamura, Y. Segawa, K. Nakajima, T. Aoyama, T. Chikyow, T. Hasegawa, H. Koinuma, M. Kawasaki, J. Appl. Phys. 2004, 96, 5097.
S. A. Chambers, C. M. Wang, S. Thevuthasan, T. Droubay, D. E. McCready, A. S. Lea, V. Shutthanandan, C. F. Windisch Jr, Thin Solid Films 2002, 418, 197.
S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton, T. Steiner, Semicond. Sci. Technol 2004, 19, R59.
K. Potzger, S. Zhou, Phys. Status Solidi B 2009, 246, 1147.
J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, L. S. Dorneles, Phy. Rev. B 2005, 72, 024450.
Y. G. Zhao, S. R. Shinde, S. B. Ogale, J. Higgins, R. J. Choudhary, V. N. Kulkarni, R. L. Greene, T. Venkatesan, S. Lofland, C. Lanci, J. Buban, N. Browning, S. D. Sarma, A. J. Millis, Appl. Phys. Lett. 2003, 83, 2199.
L. M. Huang, A. L. Rosa, R. Ahuja, Phy. Rev. B 2006, 74, 075206.
W. K. Liu, G. M. Salley, D. R. Gamelin, J. Phys. Chem. B 2005, 109, 14486.
T. Yamasaki, T. Fukumura, Y. Yamada, M. Nakano, K. Ueno, T. Makino, M. Kawasaki, Appl. Phys. Lett. 2009, 94, 102515.
T. Dietl, Semocond. Sci. Technol. 2002, 17, 377.
H. Toyosaki, T. Fukumura, Y. Yamada, M. Kawasaki, Appl. Phys. Lett. 2005, 86, 182503.
H. Toyosaki, T. Fukumura, Y. Yamada, K. Nakajima, T. Chikyow, T. Hasegawa, H. Koinuma, M. Kawasaki, Nat Mater 2004, 3, 221.
S. A. Chambers, S. M. Heald, T. Droubay, Phys. Rev. B 2003, 67, 100401.
K. A. Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald, K. M. Krishnan, Phys. Rev. Lett. 2005, 94, 157204.
K. R. Kittilstved, D. A. Schwartz, A. C. Tuan, S. M. Heald, S. A. Chambers, D. R. Gamelin, Phy. Rev. Lett. 2006, 97, 037203.
D. A. Schwartz, D. R. Gamelin, Adv. Mater. 2004, 16, 2115.
T. Droubay, S. M. Heald, V. Shutthanandan, S. Thevuthasan, S. A. Chambers, J. Osterwalder, J. Appl. Phys. 2005, 97, 046103.
O. D. Jayakumar, I. K. Gopalakrishnan, S. K. Kulshreshtha, Adv. Mater. 2006, 18, 1857.
A. Tiwari, M. Snure, D. Kumar, J. T. Abiade, Appl. Phys. Lett 2008, 92, 062509.
P. V. Radovanovic, N. S. Norberg, K. E. McNally, D. R. Gamelin, J. Am. Chem. Soc. 2002, 124, 15192.
C. B. Fitzgerald, M. Venkatesan, A. P. Douvalis, S. Huber, J. M. D. Coey, T. Bakas, J. Appl. Phys. 2004, 95, 7390.
D. W. Abraham, M. M. Frank, S. Guha, Appl. Phys. Lett. 2005, 87, 252502.
D. H. Kim, J. S. Yang, K. W. Lee, S. D. Bu, T. W. Noh, S.-J. Oh, Y.-W. Kim, J.-S. Chung, H. Tanaka, H. Y. Lee, T. Kawai, Appl. Phys. Lett. 2002, 81, 2421.
H. Beckmann, G. Bergmann, Phy. Rev. Lett. 1999, 83, 2417.
C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R.
2010; 12
2002; 17
1998; 281
2007; 107
1997; 273
2004; 3
2009; 113
2008; 103
2007; 75
2007; 76
2008; 100
2007; 339
1997; 55
2009; 94
1977; 38
2002; 89
2002; 88
2007; 6
2005; 109
2005; 71
2007; 3
2008; 20
2005; 72
2009; 246
2003; 42
2004; 219–20
2007; 19
2010; 325
2007; 90
2005; 86
2007; 91
2000; 71
2005; 87
2002; 418
2002; 81
2007; 99
1981; 23
2004; 430
2009; 79
2007; 317
2005; 484
1991; 66
2002; 124
1997; 165
2005; 247
2005; 127
2005; 95
2005; 4
2000; 84
1961; 122
2005; 97
2005; 7
2008; 41
2005; 94
2005; 15
2005; 17
2006; 106
2006; 100
46
2006; 74
2004; 126
2006; 73
2004; 69
2003; 15
2008; 78
2009; 311
2008; 77
1999; 83
2001; 89
2001; 86
2004; 76
2001; 294
2003; 90
2003; 91
2004; 70
1993; 71
2001; 291
2003; 2
287
2000; 62
2009; 321
2003; 82
2003; 83
2003; 125
2006; 128
2006; 96
2004; 468
2004; 84
2006; 97
2009; 21
2004; 223
2006; 10
2006; 99
2008
2006; 18
2005
2008; 10
2010; 81
2008; 320
2008; 92
2008; 93
2004; 96
2004; 95
2004; 92
2004; 93
2006; 89
2004; 19
2004; 16
2006; 88
2003; 68
2005; 54
1999; 75
1992; 68
1988; 64
2009; 4
2001; 79
2009; 1
2003; 67
e_1_2_12_172_2
e_1_2_12_2_2
e_1_2_12_17_2
e_1_2_12_111_2
e_1_2_12_134_2
e_1_2_12_157_2
e_1_2_12_115_2
e_1_2_12_130_2
e_1_2_12_153_2
e_1_2_12_176_2
e_1_2_12_108_2
e_1_2_12_20_2
e_1_2_12_43_2
e_1_2_12_62_2
e_1_2_12_85_2
e_1_2_12_127_2
e_1_2_12_24_2
e_1_2_12_47_2
e_1_2_12_66_2
e_1_2_12_89_2
e_1_2_12_81_2
e_1_2_12_184_2
e_1_2_12_161_2
e_1_2_12_180_2
e_1_2_12_100_2
e_1_2_12_146_2
e_1_2_12_28_2
e_1_2_12_169_2
e_1_2_12_104_2
e_1_2_12_142_2
e_1_2_12_123_2
e_1_2_12_165_2
e_1_2_12_31_2
e_1_2_12_54_2
e_1_2_12_73_2
e_1_2_12_96_2
e_1_2_12_116_2
e_1_2_12_139_2
e_1_2_12_35_2
e_1_2_12_58_2
e_1_2_12_77_2
e_1_2_12_12_2
e_1_2_12_6_2
e_1_2_12_50_2
e_1_2_12_92_2
e_1_2_12_3_2
e_1_2_12_171_2
e_1_2_12_18_2
e_1_2_12_37_2
e_1_2_12_110_2
e_1_2_12_156_2
e_1_2_12_137_2
e_1_2_12_179_2
e_1_2_12_114_2
e_1_2_12_152_2
e_1_2_12_133_2
e_1_2_12_175_2
e_1_2_12_107_2
e_1_2_12_40_2
e_1_2_12_86_2
e_1_2_12_21_2
e_1_2_12_63_2
e_1_2_12_149_2
e_1_2_12_44_2
e_1_2_12_25_2
e_1_2_12_67_2
e_1_2_12_82_2
e_1_2_12_160_2
e_1_2_12_183_2
e_1_2_12_122_2
e_1_2_12_145_2
e_1_2_12_168_2
e_1_2_12_48_2
e_1_2_12_29_2
e_1_2_12_103_2
e_1_2_12_126_2
e_1_2_12_141_2
e_1_2_12_164_2
Felser C. (e_1_2_12_5_2); 46
e_1_2_12_119_2
e_1_2_12_51_2
e_1_2_12_97_2
e_1_2_12_32_2
e_1_2_12_74_2
e_1_2_12_138_2
e_1_2_12_55_2
e_1_2_12_36_2
e_1_2_12_78_2
Aronzon B. A. (e_1_2_12_59_2) 2000; 71
e_1_2_12_13_2
e_1_2_12_7_2
Bogle K. A. (e_1_2_12_68_2) 2009; 1
e_1_2_12_93_2
e_1_2_12_70_2
e_1_2_12_151_2
e_1_2_12_170_2
e_1_2_12_4_2
e_1_2_12_19_2
Lin‐Hui Ye (e_1_2_12_174_2) 2006; 73
e_1_2_12_15_2
e_1_2_12_38_2
e_1_2_12_136_2
e_1_2_12_159_2
e_1_2_12_178_2
e_1_2_12_113_2
e_1_2_12_132_2
e_1_2_12_155_2
e_1_2_12_41_2
e_1_2_12_64_2
e_1_2_12_87_2
e_1_2_12_129_2
e_1_2_12_106_2
e_1_2_12_22_2
e_1_2_12_45_2
Kim D. H. (e_1_2_12_72_2) 2003; 83
e_1_2_12_60_2
e_1_2_12_83_2
e_1_2_12_140_2
e_1_2_12_182_2
e_1_2_12_26_2
e_1_2_12_49_2
e_1_2_12_121_2
e_1_2_12_167_2
e_1_2_12_148_2
e_1_2_12_125_2
e_1_2_12_163_2
e_1_2_12_102_2
e_1_2_12_144_2
e_1_2_12_52_2
e_1_2_12_75_2
e_1_2_12_98_2
e_1_2_12_118_2
e_1_2_12_33_2
e_1_2_12_56_2
e_1_2_12_79_2
e_1_2_12_14_2
e_1_2_12_90_2
e_1_2_12_10_2
e_1_2_12_71_2
e_1_2_12_94_2
e_1_2_12_173_2
e_1_2_12_150_2
Dietl T. (e_1_2_12_8_2); 287
e_1_2_12_1_2
e_1_2_12_16_2
e_1_2_12_135_2
e_1_2_12_39_2
e_1_2_12_158_2
e_1_2_12_131_2
e_1_2_12_177_2
e_1_2_12_112_2
e_1_2_12_154_2
e_1_2_12_65_2
e_1_2_12_105_2
e_1_2_12_128_2
e_1_2_12_42_2
e_1_2_12_84_2
e_1_2_12_23_2
e_1_2_12_69_2
e_1_2_12_109_2
e_1_2_12_46_2
e_1_2_12_88_2
e_1_2_12_61_2
e_1_2_12_80_2
e_1_2_12_162_2
e_1_2_12_181_2
e_1_2_12_27_2
e_1_2_12_120_2
e_1_2_12_147_2
e_1_2_12_101_2
e_1_2_12_124_2
e_1_2_12_143_2
e_1_2_12_166_2
e_1_2_12_30_2
e_1_2_12_76_2
e_1_2_12_117_2
e_1_2_12_53_2
e_1_2_12_95_2
e_1_2_12_34_2
e_1_2_12_57_2
e_1_2_12_99_2
e_1_2_12_11_2
e_1_2_12_9_2
e_1_2_12_91_2
References_xml – volume: 87
  start-page: 252502
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 493
  year: 2007
  publication-title: Nat. Mater.
– volume: 68
  start-page: 3749
  year: 1992
  publication-title: Phy. Rev. Lett.
– volume: 79
  start-page: 155203
  year: 2009
  publication-title: Phy. Rev. B
– volume: 83
  start-page: 3296
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 88
  start-page: 247202
  year: 2002
  end-page: 1.
  publication-title: Phy. Rev. Lett.
– year: 2005
– volume: 89
  start-page: 277202
  year: 2002
  publication-title: Phy. Rev. Lett.
– volume: 67
  start-page: 155201.
  year: 2003
  publication-title: Phys. Rev. B
– volume: 76
  start-page: 115320
  year: 2007
  publication-title: Phys. Rev. B.
– volume: 18
  start-page: 1449
  year: 2006
  publication-title: Adv. Mater.
– volume: 69
  start-page: 193205
  year: 2004
  publication-title: Phys. Rev. B
– volume: 73
  start-page: 132404
  year: 2006
  publication-title: Phys. Rev. B.
– volume: 17
  start-page: R657
  year: 2005
  publication-title: J. Phys.: Condens. Matter
– volume: 103
  start-page: 07D114
  year: 2008
  publication-title: J. Appl. Phys.
– volume: 122
  start-page: 1157
  year: 1961
  publication-title: Phy. Rev.
– volume: 76
  start-page: 323
  year: 2004
  publication-title: Reviews of Modern Physics
– volume: 74
  start-page: 161306
  year: 2006
  publication-title: Phys. Rev. B
– volume: 73
  start-page: 121201
  year: 2006
  publication-title: Phy. Rev. B
– volume: 75
  start-page: 184421
  year: 2007
  publication-title: Phy. Rev. B
– volume: 7
  start-page: 660
  year: 2005
  publication-title: Solid State Sci.
– volume: 96
  start-page: 107203
  year: 2006
  publication-title: Phy. Rev. Lett.
– volume: 91
  start-page: 012501
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 127
  start-page: 15568
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 75
  start-page: 054423
  year: 2007
  publication-title: Phy. Rev. B
– volume: 127
  start-page: 5292
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 94
  start-page: 102515
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 573
  year: 2005
  publication-title: J. Mater. Chem.
– volume: 83
  start-page: 2417
  year: 1999
  publication-title: Phy. Rev. Lett.
– volume: 19
  start-page: R59
  year: 2004
  publication-title: Semicond. Sci. Technol
– volume: 21
  start-page: 2282
  year: 2009
  publication-title: Adv. Mater.
– volume: 321
  start-page: 3734
  year: 2009
  publication-title: J. Magn. Magn. Mater.
– volume: 83
  start-page: 2199
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 124
  start-page: 15192
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 125
  start-page: 13205
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 165
  start-page: 141
  year: 1997
  publication-title: J. Magn. Magn. Mater.
– volume: 91
  start-page: 157202
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 94
  start-page: 126601
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 79
  start-page: 988
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 16
  start-page: 2115
  year: 2004
  publication-title: Adv. Mater.
– volume: 38
  start-page: 81
  year: 1977
  publication-title: Phy. Rev. Lett.
– volume: 12
  start-page: 013020
  year: 2010
  publication-title: New J. Phys.
– volume: 90
  start-page: 142502
  year: 2007
  publication-title: Appl. Phys. Lett
– volume: 69
  start-page: 073201
  year: 2004
  publication-title: Phys. Rev. B
– volume: 86
  start-page: 182503
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 96
  start-page: 027207
  year: 2006
  publication-title: Phy. Rev. Lett.
– volume: 67
  start-page: 144415
  year: 2003
  publication-title: Phy. Rev. B
– volume: 99
  start-page: 08M105
  year: 2006
  publication-title: J. Appl. Phys.
– volume: 99
  start-page: 127201
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 247
  start-page: 493
  year: 2005
  publication-title: Appl. Sur. Sci
– volume: 74
  start-page: 075206
  year: 2006
  publication-title: Phy. Rev. B
– volume: 317
  start-page: 53
  year: 2007
  publication-title: J. Magn. Magn. Mater.
– start-page: 1
  year: 2008
  publication-title: Materials Science and Engineering
– volume: 83
  start-page: 22.
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 70
  start-page: 195204
  year: 2004
  publication-title: Phys. Rev. B.
– volume: 20
  start-page: 7107
  year: 2008
  publication-title: Chem. Mater.
– volume: 4
  start-page: 173
  year: 2005
  publication-title: Nat. Mater.
– volume: 91
  start-page: 077205
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 41
  start-page: 134012
  year: 2008
  publication-title: J. Phys. D: Appl. Phys.
– volume: 62
  start-page: 17144
  year: 2000
  publication-title: Phy. Rev. B
– volume: 89
  start-page: 012501
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 219–20
  start-page: 902
  year: 2004
  publication-title: Nucl. Instrum. and Meth. for Phys. Res. B.
– volume: 2
  start-page: 646
  year: 2003
  publication-title: Nat. Mater.
– volume: 90
  start-page: 242508
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 84
  start-page: 1332.
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 100
  start-page: 256401
  year: 2008
  publication-title: Phy. Rev. Lett
– volume: 83
  start-page: 57
  year: 2003
  publication-title: Appl. Phy. Lett.
– volume: 4
  start-page: 96
  year: 2009
  publication-title: Nano Today
– volume: 339
  start-page: 1
  year: 2007
  publication-title: Chem. Phys.
– volume: 99
  start-page: 167203
  year: 2007
  publication-title: Phy. Rev. Lett.
– volume: 89
  start-page: 516
  year: 2001
  publication-title: American Scientist
– volume: 81
  start-page: 2421.
  year: 2002
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: 1857
  year: 2006
  publication-title: Adv. Mater.
– volume: 88
  start-page: 142505
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 99
  start-page: 08M111
  year: 2006
  publication-title: J. Appl. Phys.
– volume: 20
  start-page: 1344
  year: 2008
  publication-title: Chem. Mater.
– volume: 94
  start-page: 217205
  year: 2005
  publication-title: Phy. Rev. Lett.
– volume: 46
  start-page: 668
  publication-title: Angew Chemie 2007
– volume: 94
  start-page: 142502
  year: 2009
  publication-title: Appl. Phys. Lett
– volume: 79
  start-page: 3467
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 128
  start-page: 3910
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 440
  year: 2007
  publication-title: Nat. Mater.
– volume: 84
  start-page: 3531
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 90
  start-page: 062504
  year: 2007
  publication-title: Appl. Phys. Lett
– volume: 93
  start-page: 177206
  year: 2004
  publication-title: Phy. Rev. Lett.
– volume: 69
  start-page: 125201
  year: 2004
  publication-title: Phys. Rev. B
– volume: 84
  start-page: 3970
  year: 2000
  publication-title: Phy. Rev. Lett.
– volume: 87
  start-page: 082504
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 294
  start-page: 1488
  year: 2001
  publication-title: Science
– volume: 79
  start-page: 205206
  year: 2009
  publication-title: Phys. Rev. B.
– volume: 77
  start-page: 085208
  year: 2008
  publication-title: Phys. Rev. B
– volume: 93
  start-page: 023103
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 92
  start-page: 166601
  year: 2004
  publication-title: Phys. Rev. Lett..
– volume: 77
  start-page: 033205
  year: 2008
  publication-title: Phys. Rev. B.
– volume: 73
  start-page: 035201
  year: 2006
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 055010
  year: 2008
  publication-title: New J. of Phys
– volume: 72
  start-page: 024450
  year: 2005
  publication-title: Phy. Rev. B
– volume: 10
  start-page: 055018
  year: 2008
  publication-title: New J. of Phys
– volume: 19
  start-page: 2608
  year: 2007
  publication-title: Adv. Mater.
– volume: 73
  start-page: 155327
  year: 2006
  publication-title: Phy. Rev. B
– volume: 76
  start-page: 085323
  year: 2007
  publication-title: Phys. Rev. B
– volume: 92
  start-page: 082508
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 88
  start-page: 012513
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 71
  start-page: 014440
  year: 2005
  publication-title: Phy. Rev. B
– volume: 273
  start-page: 353
  year: 1997
  publication-title: Chem. Phys. Lett.
– volume: 325
  start-page: 973
  year: 2010
  publication-title: Science
– volume: 127
  start-page: 14479
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 82
  start-page: 1257
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 87
  start-page: 102505
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 94
  start-page: 147209
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 81
  start-page: 054420
  year: 2010
  publication-title: Phys. Rev. B
– volume: 126
  start-page: 9387
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 96
  start-page: 5097
  year: 2004
  publication-title: J. Appl. Phys.
– volume: 15
  start-page: R1583
  year: 2003
  publication-title: J. Phys: Condens. Matter
– volume: 99
  start-page: 08M102
  year: 2006
  publication-title: J. Appl. Phys.
– volume: 100
  start-page: 123910
  year: 2006
  publication-title: J. Appl. Phys.
– volume: 92
  start-page: 062509
  year: 2008
  publication-title: Appl. Phys. Lett
– volume: 21
  start-page: 064238
  year: 2009
  publication-title: J. Phys.: Condens. Matter
– volume: 72
  start-page: 045336
  year: 2005
  publication-title: Phys. Rev. B.
– volume: 68
  start-page: 125203
  year: 2003
  publication-title: Phys. Rev. B
– volume: 75
  start-page: 3366
  year: 1999
  publication-title: Appl. Phys. Lett.
– volume: 89
  start-page: 216403
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 95
  start-page: 037201
  year: 2005
  publication-title: Phy. Rev. Lett.
– volume: 55
  start-page: 9817
  year: 1997
  publication-title: Phy. Rev. B
– volume: 126
  start-page: 11640.
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 92
  start-page: 182509
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 67
  start-page: 115211
  year: 2003
  publication-title: Phys. Rev. B
– volume: 94
  start-page: 217206
  year: 2005
  publication-title: Phy. Rev. Lett
– volume: 287
  start-page: 1020
  publication-title: Science 2000
– volume: 107
  start-page: 2891
  year: 2007
  publication-title: Chem. Rev.
– volume: 96
  start-page: 027202
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 195
  year: 2005
  publication-title: Nat. Mater.
– volume: 71
  start-page: 1079
  year: 1993
  publication-title: Phy. Rev. Lett.
– volume: 113
  start-page: 8710
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 67
  start-page: 100401
  year: 2003
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 153
  year: 2007
  publication-title: Nat. Phys.
– volume: 78
  start-page: 214429
  year: 2008
  publication-title: Phy. Rev. B
– volume: 54
  start-page: 47
  year: 2005
  publication-title: Prog. Inorg. Chem.
– volume: 86
  start-page: 2138
  year: 2001
  publication-title: Phy. Rev. Lett.
– volume: 430
  start-page: 630
  year: 2004
  publication-title: Nature
– volume: 64
  start-page: R29
  year: 1988
  publication-title: J. Appl. Phys.
– volume: 468
  start-page: 8
  year: 2004
  publication-title: Thin Solid Films
– volume: 10
  start-page: 83
  year: 2006
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 281
  start-page: 951
  year: 1998
  publication-title: Science
– volume: 42
  start-page: L105
  year: 2003
  publication-title: Jpn. J. Appl. Phys
– volume: 109
  start-page: 14486
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 73
  start-page: 033203
  year: 2006
  publication-title: Phy. Rev. B
– volume: 97
  start-page: 046103
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 418
  start-page: 197
  year: 2002
  publication-title: Thin Solid Films
– volume: 291
  start-page: 854
  year: 2001
  publication-title: Science
– volume: 100
  start-page: 157201
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 95
  start-page: 217203
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 77
  start-page: 201303
  year: 2008
  publication-title: Phys. Rev. B
– volume: 74
  start-page: 115307
  year: 2006
  publication-title: Phys. Rev. B
– volume: 84
  start-page: 4466
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 66
  start-page: 3052
  year: 1991
  publication-title: Phy. Rev. Lett.
– volume: 320
  start-page: 3341
  year: 2008
  publication-title: J. Magn. Magn. Mater.
– volume: 103
  start-page: 07D131
  year: 2008
  publication-title: J. Appl. Phys.
– volume: 77
  start-page: 241201
  year: 2008
  publication-title: Phy. Rev. B
– volume: 88
  start-page: 047202
  year: 2002
  publication-title: Phy. Rev. Lett.
– volume: 78
  start-page: 193311
  year: 2008
  publication-title: Phy. Rev. B
– volume: 106
  start-page: 4428
  year: 2006
  publication-title: Chem. Rev.
– volume: 84
  start-page: 1613
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 221
  year: 2004
  publication-title: Nat Mater
– volume: 90
  start-page: 072103
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 377
  year: 2002
  publication-title: Semocond. Sci. Technol.
– volume: 95
  start-page: 7390
  year: 2004
  publication-title: J. Appl. Phys.
– volume: 82
  start-page: 2100
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 3805
  year: 1981
  publication-title: Phy. Rev. B
– volume: 90
  start-page: 017401
  year: 2003
  end-page: 1
  publication-title: Phy. Rev. Lett.
– volume: 2
  start-page: 673
  year: 2003
  publication-title: Nat. Mater.
– volume: 69
  start-page: 125219
  year: 2004
  publication-title: Phys. Rev. B
– volume: 223
  start-page: 245
  year: 2004
  publication-title: Appl. Surf. Sci.
– volume: 71
  start-page: 687
  year: 2000
  publication-title: J. Exp. Theor. Phys.
– volume: 484
  start-page: 289
  year: 2005
  publication-title: Thin Solid Films
– volume: 1
  start-page: 95
  year: 2009
  publication-title: Appl. Phy. Lett.
– volume: 3
  start-page: 709
  year: 2004
  publication-title: Nat. Mater
– volume: 89
  start-page: 062506
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 77
  start-page: 201306
  year: 2008
  publication-title: Phys. Rev. B
– volume: 90
  start-page: 102504
  year: 2007
  publication-title: App. Phys. Lett.
– volume: 97
  start-page: 037203
  year: 2006
  publication-title: Phy. Rev. Lett.
– volume: 246
  start-page: 1147
  year: 2009
  publication-title: Phys. Status Solidi B
– volume: 311
  start-page: 4270
  year: 2009
  publication-title: Journal of Crystal Growth
– volume: 94
  start-page: 157204
  year: 2005
  publication-title: Phys. Rev. Lett.
– ident: e_1_2_12_77_2
  doi: 10.1103/PhysRevLett.100.157201
– ident: e_1_2_12_56_2
  doi: 10.1016/j.nimb.2004.01.185
– ident: e_1_2_12_181_2
  doi: 10.1126/science.1174419
– ident: e_1_2_12_26_2
  doi: 10.1016/S0169-4332(03)00906-1
– ident: e_1_2_12_73_2
  doi: 10.1063/1.2711184
– ident: e_1_2_12_123_2
  doi: 10.1016/j.tsf.2004.03.031
– ident: e_1_2_12_108_2
  doi: 10.1063/1.2450652
– ident: e_1_2_12_127_2
  doi: 10.1103/PhysRevLett.88.047202
– ident: e_1_2_12_142_2
  doi: 10.1063/1.2146057
– ident: e_1_2_12_116_2
  doi: 10.1016/j.jcrysgro.2009.07.008
– ident: e_1_2_12_80_2
  doi: 10.1021/ja036811v
– ident: e_1_2_12_98_2
  doi: 10.1002/adma.200502415
– ident: e_1_2_12_155_2
  doi: 10.1103/PhysRevB.67.144415
– ident: e_1_2_12_70_2
  doi: 10.1063/1.1509477
– ident: e_1_2_12_92_2
  doi: 10.1103/PhysRevLett.91.077205
– volume: 71
  start-page: 687
  year: 2000
  ident: e_1_2_12_59_2
  publication-title: J. Exp. Theor. Phys.
  contributor:
    fullname: Aronzon B. A.
– ident: e_1_2_12_85_2
  doi: 10.1021/cm802280g
– ident: e_1_2_12_140_2
  doi: 10.1103/PhysRevLett.96.107203
– ident: e_1_2_12_121_2
  doi: 10.1063/1.1610796
– ident: e_1_2_12_136_2
  doi: 10.1063/1.2041822
– ident: e_1_2_12_42_2
  doi: 10.1063/1.1703845
– ident: e_1_2_12_170_2
  doi: 10.1038/nmat1310
– ident: e_1_2_12_47_2
  doi: 10.1016/j.tsf.2005.02.028
– ident: e_1_2_12_7_2
  doi: 10.1126/science.281.5379.951
– ident: e_1_2_12_52_2
  doi: 10.1103/PhysRevB.73.155327
– ident: e_1_2_12_87_2
  doi: 10.1103/PhysRevB.77.241201
– ident: e_1_2_12_37_2
  doi: 10.1063/1.3095664
– ident: e_1_2_12_83_2
  doi: 10.1021/jp051878l
– ident: e_1_2_12_4_2
  doi: 10.1038/nphys551
– ident: e_1_2_12_35_2
  doi: 10.1103/PhysRevB.76.115320
– ident: e_1_2_12_48_2
  doi: 10.1103/PhysRevLett.95.217203
– ident: e_1_2_12_50_2
  doi: 10.1021/ja047381r
– ident: e_1_2_12_2_2
  doi: 10.1511/2001.6.516
– ident: e_1_2_12_9_2
  doi: 10.1088/0268-1242/17/4/310
– ident: e_1_2_12_20_2
  doi: 10.1007/b136780
– ident: e_1_2_12_101_2
  doi: 10.1103/PhysRevB.79.155203
– ident: e_1_2_12_104_2
  doi: 10.1103/PhysRevLett.94.217206
– ident: e_1_2_12_58_2
  doi: 10.1103/PhysRevLett.92.166601
– ident: e_1_2_12_153_2
  doi: 10.1103/PhysRevB.77.201306
– ident: e_1_2_12_109_2
  doi: 10.1063/1.2719034
– ident: e_1_2_12_40_2
  doi: 10.1063/1.1556173
– ident: e_1_2_12_67_2
  doi: 10.1021/cm702089z
– ident: e_1_2_12_23_2
  doi: 10.1103/PhysRevLett.68.3749
– ident: e_1_2_12_103_2
  doi: 10.1038/nmat1221
– ident: e_1_2_12_173_2
  doi: 10.1088/0022-3727/41/13/134012
– ident: e_1_2_12_128_2
  doi: 10.1103/PhysRevLett.86.2138
– ident: e_1_2_12_41_2
  doi: 10.1103/PhysRevB.67.100401
– ident: e_1_2_12_21_2
  doi: 10.1126/science.1056186
– ident: e_1_2_12_167_2
  doi: 10.1088/0953-8984/21/6/064238
– ident: e_1_2_12_49_2
  doi: 10.1103/PhysRevLett.91.157202
– ident: e_1_2_12_39_2
  doi: 10.1016/S0040-6090(02)00709-5
– ident: e_1_2_12_33_2
  doi: 10.1063/1.2535777
– ident: e_1_2_12_43_2
  doi: 10.1063/1.1753652
– ident: e_1_2_12_106_2
  doi: 10.1016/S0009-2614(97)00534-4
– ident: e_1_2_12_88_2
  doi: 10.1103/PhysRevLett.100.256401
– ident: e_1_2_12_53_2
  doi: 10.1103/PhysRevB.67.115211
– ident: e_1_2_12_65_2
  doi: 10.1063/1.2161575
– ident: e_1_2_12_81_2
  doi: 10.1002/adma.200400456
– ident: e_1_2_12_99_2
  doi: 10.1021/ja048427j
– ident: e_1_2_12_105_2
  doi: 10.1103/PhysRevLett.66.3052
– ident: e_1_2_12_147_2
  doi: 10.1002/adma.200602222
– ident: e_1_2_12_177_2
  doi: 10.1103/PhysRevB.78.193311
– ident: e_1_2_12_30_2
  doi: 10.1103/PhysRevLett.96.027202
– ident: e_1_2_12_114_2
  doi: 10.1063/1.2957037
– ident: e_1_2_12_11_2
  doi: 10.1088/0953-8984/15/37/R01
– ident: e_1_2_12_61_2
  doi: 10.1103/PhysRevB.55.9817
– ident: e_1_2_12_36_2
  doi: 10.1088/1367-2630/10/5/055018
– ident: e_1_2_12_97_2
  doi: 10.1002/adma.200502200
– ident: e_1_2_12_100_2
  doi: 10.1021/ja050723o
– ident: e_1_2_12_51_2
  doi: 10.1021/ja0543447
– ident: e_1_2_12_46_2
  doi: 10.1103/PhysRevB.67.155201
– ident: e_1_2_12_28_2
  doi: 10.1063/1.1758310
– ident: e_1_2_12_45_2
  doi: 10.1063/1.1650041
– ident: e_1_2_12_25_2
  doi: 10.1143/JJAP.42.L105
– volume: 1
  start-page: 95
  year: 2009
  ident: e_1_2_12_68_2
  publication-title: Appl. Phy. Lett.
  contributor:
    fullname: Bogle K. A.
– ident: e_1_2_12_12_2
  doi: 10.1088/0268-1242/19/10/R01
– ident: e_1_2_12_96_2
  doi: 10.1103/PhysRevLett.97.037203
– ident: e_1_2_12_168_2
  doi: 10.1063/1.2836328
– ident: e_1_2_12_93_2
  doi: 10.1063/1.2165916
– ident: e_1_2_12_44_2
  doi: 10.1063/1.1846158
– ident: e_1_2_12_71_2
  doi: 10.1103/PhysRevB.71.014440
– ident: e_1_2_12_55_2
  doi: 10.1063/1.1647257
– ident: e_1_2_12_89_2
  doi: 10.1039/b412993h
– ident: e_1_2_12_146_2
  doi: 10.1063/1.2190909
– ident: e_1_2_12_19_2
  doi: 10.1088/0953-8984/17/27/R01
– ident: e_1_2_12_6_2
  doi: 10.1063/1.341700
– ident: e_1_2_12_15_2
  doi: 10.1038/nmat1910
– ident: e_1_2_12_141_2
  doi: 10.1038/430630a
– ident: e_1_2_12_180_2
  doi: 10.1103/PhysRevB.81.054420
– ident: e_1_2_12_150_2
  doi: 10.1103/PhysRevB.73.132404
– ident: e_1_2_12_154_2
  doi: 10.1038/nmat1931
– ident: e_1_2_12_158_2
  doi: 10.1103/PhysRevB.69.125219
– volume: 83
  start-page: 22.
  year: 2003
  ident: e_1_2_12_72_2
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Kim D. H.
– ident: e_1_2_12_182_2
  doi: 10.1016/j.chemphys.2007.06.039
– ident: e_1_2_12_31_2
  doi: 10.1063/1.2163829
– ident: e_1_2_12_160_2
  doi: 10.1063/1.2165108
– ident: e_1_2_12_133_2
  doi: 10.1103/PhysRev.122.1157
– ident: e_1_2_12_120_2
  doi: 10.1103/PhysRevLett.99.167203
– ident: e_1_2_12_107_2
  doi: 10.1063/1.2032588
– ident: e_1_2_12_17_2
  doi: 10.1016/j.mser.2008.04.002
– ident: e_1_2_12_38_2
  doi: 10.1063/1.1420434
– ident: e_1_2_12_54_2
  doi: 10.1063/1.1619212
– ident: e_1_2_12_130_2
  doi: 10.1103/PhysRevLett.83.2417
– ident: e_1_2_12_86_2
  doi: 10.1103/PhysRevLett.94.217205
– ident: e_1_2_12_183_2
  doi: 10.1021/cr050172k
– volume: 287
  start-page: 1020
  ident: e_1_2_12_8_2
  publication-title: Science 2000
  contributor:
    fullname: Dietl T.
– ident: e_1_2_12_163_2
  doi: 10.1103/PhysRevB.77.085208
– ident: e_1_2_12_10_2
  doi: 10.1038/nmat989
– ident: e_1_2_12_118_2
  doi: 10.1103/PhysRevB.79.205206
– ident: e_1_2_12_143_2
  doi: 10.1103/PhysRevB.72.024450
– ident: e_1_2_12_162_2
  doi: 10.1103/PhysRevB.69.125201
– ident: e_1_2_12_66_2
  doi: 10.1063/1.2402979
– ident: e_1_2_12_74_2
  doi: 10.1103/PhysRevLett.94.157204
– ident: e_1_2_12_131_2
  doi: 10.1103/PhysRevB.23.3805
– volume: 46
  start-page: 668
  ident: e_1_2_12_5_2
  publication-title: Angew Chemie 2007
  contributor:
    fullname: Felser C.
– ident: e_1_2_12_125_2
  doi: 10.1103/PhysRevLett.96.027207
– ident: e_1_2_12_149_2
  doi: 10.1103/PhysRevLett.99.127201
– ident: e_1_2_12_64_2
  doi: 10.1103/PhysRevLett.71.1079
– ident: e_1_2_12_129_2
  doi: 10.1103/PhysRevLett.84.3970
– ident: e_1_2_12_18_2
  doi: 10.1002/pssb.200844272
– ident: e_1_2_12_157_2
  doi: 10.1103/PhysRevB.73.035201
– ident: e_1_2_12_145_2
  doi: 10.1016/j.jmmm.2008.07.008
– ident: e_1_2_12_27_2
  doi: 10.1038/nmat1099
– ident: e_1_2_12_135_2
  doi: 10.1103/PhysRevB.74.115307
– ident: e_1_2_12_169_2
  doi: 10.1103/PhysRevB.75.184421
– ident: e_1_2_12_32_2
  doi: 10.1063/1.2236829
– ident: e_1_2_12_175_2
  doi: 10.1103/PhysRevB.74.075206
– ident: e_1_2_12_91_2
  doi: 10.1016/j.apsusc.2005.01.043
– ident: e_1_2_12_184_2
  doi: 10.1021/cr0500535
– ident: e_1_2_12_152_2
  doi: 10.1103/PhysRevB.74.161306
– ident: e_1_2_12_159_2
  doi: 10.1103/PhysRevB.73.121201
– ident: e_1_2_12_60_2
  doi: 10.1103/PhysRevB.62.17144
– ident: e_1_2_12_102_2
  doi: 10.1038/nmat984
– ident: e_1_2_12_90_2
  doi: 10.1103/PhysRevLett.93.177206
– ident: e_1_2_12_164_2
  doi: 10.1063/1.1584074
– ident: e_1_2_12_94_2
  doi: 10.1063/1.2748343
– ident: e_1_2_12_1_2
  doi: 10.1126/science.1065389
– ident: e_1_2_12_115_2
  doi: 10.1103/PhysRevB.78.214429
– ident: e_1_2_12_14_2
  doi: 10.1038/nmat1325
– ident: e_1_2_12_3_2
  doi: 10.1103/RevModPhys.76.323
– ident: e_1_2_12_82_2
  doi: 10.1103/PhysRevLett.94.147209
– ident: e_1_2_12_172_2
  doi: 10.1016/j.cossms.2006.12.002
– ident: e_1_2_12_165_2
  doi: 10.1103/PhysRevLett.95.037201
– ident: e_1_2_12_78_2
  doi: 10.1103/PhysRevB.77.201303
– ident: e_1_2_12_79_2
  doi: 10.1021/ja028416v
– ident: e_1_2_12_24_2
  doi: 10.1016/S0304-8853(96)00490-8
– ident: e_1_2_12_137_2
  doi: 10.1021/ja054205p
– ident: e_1_2_12_179_2
  doi: 10.1088/1367-2630/12/1/013020
– ident: e_1_2_12_111_2
  doi: 10.1063/1.2885730
– ident: e_1_2_12_144_2
  doi: 10.1016/j.jmmm.2007.04.015
– ident: e_1_2_12_134_2
  doi: 10.1063/1.1676026
– ident: e_1_2_12_16_2
  doi: 10.1016/j.nantod.2008.10.002
– ident: e_1_2_12_176_2
  doi: 10.1063/1.2920572
– ident: e_1_2_12_171_2
  doi: 10.1016/j.solidstatesciences.2004.11.012
– ident: e_1_2_12_110_2
  doi: 10.1063/1.2857481
– ident: e_1_2_12_138_2
  doi: 10.1103/PhysRevB.72.045336
– volume: 73
  start-page: 033203
  year: 2006
  ident: e_1_2_12_174_2
  publication-title: Phy. Rev. B
  contributor:
    fullname: Lin‐Hui Ye
– ident: e_1_2_12_57_2
  doi: 10.1103/PhysRevB.69.073201
– ident: e_1_2_12_132_2
  doi: 10.1103/PhysRevLett.38.81
– ident: e_1_2_12_13_2
  doi: 10.1002/0471725560.ch2
– ident: e_1_2_12_63_2
  doi: 10.1103/PhysRevLett.94.126601
– ident: e_1_2_12_139_2
  doi: 10.1103/PhysRevLett.89.216403
– ident: e_1_2_12_69_2
  doi: 10.1103/PhysRevLett.90.017401
– ident: e_1_2_12_151_2
  doi: 10.1103/PhysRevB.77.033205
– ident: e_1_2_12_75_2
  doi: 10.1103/PhysRevB.70.195204
– ident: e_1_2_12_119_2
  doi: 10.1063/1.1564864
– ident: e_1_2_12_126_2
  doi: 10.1063/1.2219145
– ident: e_1_2_12_148_2
  doi: 10.1002/adma.200803019
– ident: e_1_2_12_34_2
  doi: 10.1063/1.2834247
– ident: e_1_2_12_22_2
  doi: 10.1063/1.125353
– ident: e_1_2_12_62_2
  doi: 10.1103/PhysRevB.69.193205
– ident: e_1_2_12_117_2
  doi: 10.1016/j.jmmm.2009.07.025
– ident: e_1_2_12_166_2
  doi: 10.1103/PhysRevLett.89.277202
– ident: e_1_2_12_178_2
  doi: 10.1063/1.3112603
– ident: e_1_2_12_122_2
  doi: 10.1103/PhysRevLett.88.247202
– ident: e_1_2_12_29_2
  doi: 10.1063/1.1922569
– ident: e_1_2_12_95_2
  doi: 10.1088/1367-2630/10/5/055010
– ident: e_1_2_12_124_2
  doi: 10.1103/PhysRevB.76.085323
– ident: e_1_2_12_84_2
  doi: 10.1021/ja060488p
– ident: e_1_2_12_161_2
  doi: 10.1021/jp900392j
– ident: e_1_2_12_76_2
  doi: 10.1063/1.1384478
– ident: e_1_2_12_112_2
  doi: 10.1063/1.2751587
– ident: e_1_2_12_113_2
  doi: 10.1103/PhysRevB.75.054423
– ident: e_1_2_12_156_2
  doi: 10.1103/PhysRevB.68.125203
SSID ssj0009606
Score 2.543074
Snippet Over the past decade intensive research efforts have been carried out by researchers around the globe on exploring the effects of dilute doping of magnetic...
Abstract Over the past decade intensive research efforts have been carried out by researchers around the globe on exploring the effects of dilute doping of...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 3125
SubjectTerms Defects
Dilution
Doping
Ferromagnetism
Impurities
Magnetics
Metal oxides
Models, Molecular
Models, Theoretical
Oxides
Oxides - chemistry
Semiconductors
Titanium dioxide
Transition Elements - chemistry
Title Dilute Doping, Defects, and Ferromagnetism in Metal Oxide Systems
URI https://api.istex.fr/ark:/67375/WNG-Q7C7MLP3-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.200903891
https://www.ncbi.nlm.nih.gov/pubmed/20535732
https://search.proquest.com/docview/1884125283
https://search.proquest.com/docview/748925179
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LT9wwEIetCi7toQ_6IC1FrlS1FwKJ41eOK5YFoS59qKjcrIkzrlaIbLUPCfHXYzu7ga2okMopijRWHM_Y_tkZfyHko66sktKJVGpeprzKMdUMRRpoT46XOaCN2RYn8uiUH5-Js1un-Fs-RLfhFnpGHK9DB4dquncDDYW65QaVAREX1j-BphdU0Y8bflSQ5xG2V4i0lFwvqY0Z21stvjIrrYcGvrxLcq4q2DgFDZ4RWFa-zTw5353Pql179RfX8SFv95w8XehT2msD6gV5hM0GeXKLWviS9PojH65I-_Gs1Q7tY0wJ2aHQ1HSAk8n4An43OBtNL-iooUP0-p5-vRzVSBd89FfkdHDwc_8oXfyJIbV-gs9TZbXgfohWTFZKQ104mfmLxBpAlLnLrGXOibKSAlnlF2EFZM56dYNl5sBrxNdkrRk3uEloraTyFgIcD6g59IpPIoAuBeTIwSbk89IT5k8L3DAtWpmZ0Cima5SEfIqO6sxgch7S1JQwv04OzXe1r4ZfvhXGG35YetL4zhO-iECD4_nU5Fpzr_C8xEoI_YdNwPNErltC3rRR0D2QBTiOKlhCWPTlPRU2vf6w1929_Z9C78jjNn0hnIvcImuzyRzfe1U0q7Zj5F8DZ04BNA
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bb9MwFIeP0PYAPHC_hKuRELwsW-L4lsdqpRRoy0Wb4M1ynGNUTUtR10oTfz2202QUgZDgKYp0rDg-PvbPzvEXgOeqslIIx1OhWJmyKsdUUeRpoD05VuYGbcy2mInxMXv7hXfZhOEsTMuH6DfcQmTE8ToEeNiQPrighpq6BQeVgRHnF0C7PuZ5XFV9uiBIBYEecXsFT0vBVMdtzOjBdvmteWk3NPH570TntoaNk9DoOlRd9dvck5P99arat99_ITv-1_vdgGsbiUoGbZ-6CZewuQVXfwIX3obBcO57LJJhPG61R4YYs0L2iGlqMsLlcnFqvja4mp-dknlDpuglPnl_Pq-RbBDpd-B49OrocJxufsaQWj_H56m0ijM_SksqKqlMXTiR-YvA2hhe5i6zljrHy0pwpJVfhxUmc9YLHCwzZ7xMvAs7zaLB-0BqKaS34MaxQJtDL_oEGqNKbnJkxibwsnOF_tYyN3RLV6Y6NIruGyWBF9FTvZlZnoRMNcn159lr_VEeyunkQ6G94bPOldrHT_goYhpcrM90rhTzIs-rrATIH2wCoSei3RK413aD_oE08HFkQROg0Zl_qbAeDKeD_u7BvxR6CpfHR9OJnryZvXsIV9pshnBM8hHsrJZrfOxF0qp6EsPgB5f-BVY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMdPaJMQPPCbEX4aCcHLsiWOf-WxWigD1jIQE3uzHOeMqmnp1LXSxF-P7bTZikBI8BRFOiuO787-Jjl_AvBK1VYK4XgqFCtTVueYKoo8DbQnx8rcoI3VFmOxf8Q-HPPjK7v4Oz5E_8ItZEacr0OCnzVu9xIaapqOG1QGRJx__tlkoqAhrqsvlwCpoM8jba_gaSmYWmEbM7q73n5tWdoMI3zxO825LmHjGjS8DWbV-6705GRnMa937I9fwI7_c3t34NZSoJJBF1F34Rq29-DmFWzhfRhUEx-vSKq42WqbVBhrQraJaRsyxNlsemq-tzifnJ-SSUtG6AU--XQxaZAsAekP4Gj49uvefrr8FUNq_Qqfp9IqzvwcLamopTJN4UTmDwIbY3iZu8xa6hwva8GR1v4prDCZs17eYJk540XiQ9hopy0-AtJIIb0FN44F1hx6ySfQGFVykyMzNoE3K0_os464oTu2MtVhUHQ_KAm8jo7qzczsJNSpSa6_jd_pz3JPjg4OC-0NX648qX32hE8ipsXp4lznSjEv8bzGSoD8wSbweSLYLYGtLgr6C9JAx5EFTYBGX_6lw3pQjQb92eN_afQCrh9WQ33wfvzxCdzoShnCHsmnsDGfLfCZV0jz-nlMgp95wQQF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dilute+Doping%2C+Defects%2C+and+Ferromagnetism+in+Metal+Oxide+Systems&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ogale%2C+Satishchandra+B.&rft.date=2010-08-03&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=22&rft.issue=29&rft.spage=3125&rft.epage=3155&rft_id=info:doi/10.1002%2Fadma.200903891&rft.externalDBID=10.1002%252Fadma.200903891&rft.externalDocID=ADMA200903891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon