Thermal, electrical and structural characteristics under different concentrator positions for Fresnel concentrating photovoltaic system

There are always installation errors in linear Fresnel concentrating photovoltaic (CPV) system that make the system unable to work under the designed conditions. Based on the optical, thermal, electrical, and structural coupling principle, the influences of vertical position (including distance and...

Full description

Saved in:
Bibliographic Details
Published inCase studies in thermal engineering Vol. 41; p. 102597
Main Authors Wu, Shuang-Ying, Duan, Shu-Zhen, Xiao, Lan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There are always installation errors in linear Fresnel concentrating photovoltaic (CPV) system that make the system unable to work under the designed conditions. Based on the optical, thermal, electrical, and structural coupling principle, the influences of vertical position (including distance and direction) e of concentrator deviation from the focal length on the thermal (heat flux and temperature distributions), electrical (average electrical efficiency) and structural (stress and deflection) characteristics of PV panel under natural convection conditions were investigated numerically by MCRT-FVM-FEM coupling method. The results reveal that, the thermal, electrical and structural characteristics change slightly with the tilt angle α of PV panel from 15° to 60°, while these characteristics experience a relatively greater change for α increasing to 75°. The concentrator position has little effect on the flow and temperature fields near the PV panel. Compared with the situation at α = 30°, changing the concentrator position at α = 75° has a more obvious effect on the thermal and structural characteristics of PV panel. When the concentrator moves from the designed position (e = 0 mm) to the deviated position (e = −45mm) at α = 75°, the maximum thermal stress and maximum deflection of cells are dropped by 30.12% and 13.72%, respectively. Even if the concentrator moves the same distance, different directions (upward and downward) of movement can lead to differences in the thermal and structural characteristics. The change trend and magnitude of average electrical efficiency with the position of concentrator when α = 30° are both opposite to those when α = 75°. The average electrical efficiency at α = 30° decreases from 7.76% at the designed position (e = 0 mm) to 7.62% at the deviated position (e = −45mm), while the average electrical efficiency at α = 75° increases from 9.26% to 10.54%.
AbstractList There are always installation errors in linear Fresnel concentrating photovoltaic (CPV) system that make the system unable to work under the designed conditions. Based on the optical, thermal, electrical, and structural coupling principle, the influences of vertical position (including distance and direction) e of concentrator deviation from the focal length on the thermal (heat flux and temperature distributions), electrical (average electrical efficiency) and structural (stress and deflection) characteristics of PV panel under natural convection conditions were investigated numerically by MCRT-FVM-FEM coupling method. The results reveal that, the thermal, electrical and structural characteristics change slightly with the tilt angle α of PV panel from 15° to 60°, while these characteristics experience a relatively greater change for α increasing to 75°. The concentrator position has little effect on the flow and temperature fields near the PV panel. Compared with the situation at α = 30°, changing the concentrator position at α = 75° has a more obvious effect on the thermal and structural characteristics of PV panel. When the concentrator moves from the designed position (e = 0 mm) to the deviated position (e = −45mm) at α = 75°, the maximum thermal stress and maximum deflection of cells are dropped by 30.12% and 13.72%, respectively. Even if the concentrator moves the same distance, different directions (upward and downward) of movement can lead to differences in the thermal and structural characteristics. The change trend and magnitude of average electrical efficiency with the position of concentrator when α = 30° are both opposite to those when α = 75°. The average electrical efficiency at α = 30° decreases from 7.76% at the designed position (e = 0 mm) to 7.62% at the deviated position (e = −45mm), while the average electrical efficiency at α = 75° increases from 9.26% to 10.54%.
ArticleNumber 102597
Author Duan, Shu-Zhen
Xiao, Lan
Wu, Shuang-Ying
Author_xml – sequence: 1
  givenname: Shuang-Ying
  orcidid: 0000-0001-6978-5094
  surname: Wu
  fullname: Wu, Shuang-Ying
  email: shuangyingwu@126.com
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, China
– sequence: 2
  givenname: Shu-Zhen
  surname: Duan
  fullname: Duan, Shu-Zhen
  organization: School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
– sequence: 3
  givenname: Lan
  surname: Xiao
  fullname: Xiao, Lan
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, China
BookMark eNqFkc1uUzEQha9QkSilT8DGD0CC7fvrBQtU0VKpEpsisbPmjseNoxs7GjuV-gS8Nk6DUMUCVuMZ-Rx7zve2OYspUtO8V3KtpBo-bteYQ6G1llrXie7N-Ko511p1K9WPP85enN80lzlvpZRqbCfVdefNz_sN8Q6WD4IWwsIBYREQnciFD1gOXFvcAAMW4pBLwCwO0RELF7wnplgEpoi1MpTEYp_qZ0KKWfjaXTPlSMuLKyE-iP0mlfSYlgIBRX7KhXbvmtcelkyXv-tF8_36y_3V19Xdt5vbq893K-xUV1begXbTaHDAQU5eysFP3TxO80htPyto0ZtZzmZ0RqpOSkSDPShHBrSRQ99eNLcnX5dga_ccdsBPNkGwz4PEDxa4brmQ7ZWZQOMAmtpOj8PsVY9u9jjK-mjbVq_25IWccmbyf_yUtEc0dmuf0dgjGntCU1XmLxWGAsfIajxh-Y_200lLNaLHQGwzBqrRusCVXt0h_FP_C3lNsfs
CitedBy_id crossref_primary_10_1016_j_tsep_2024_102962
crossref_primary_10_1016_j_energy_2023_129241
crossref_primary_10_1007_s10973_023_12767_0
Cites_doi 10.1016/j.renene.2020.07.131
10.1016/j.solener.2018.02.033
10.1016/j.energy.2019.116436
10.1016/j.energy.2017.02.028
10.1007/s00202-018-0722-8
10.1016/j.solener.2020.05.103
10.1016/j.solmat.2013.11.009
10.1016/j.solener.2015.07.046
10.1016/j.energy.2015.07.015
10.1115/1.4026355
10.1016/j.enconman.2014.07.047
10.1016/S0038-092X(00)00045-1
10.1016/j.applthermaleng.2016.04.030
10.1016/j.solener.2016.06.070
10.1016/j.jclepro.2017.11.058
10.1016/j.solener.2005.12.006
10.1016/j.apenergy.2020.114701
10.1016/j.enbuild.2015.12.038
10.1016/j.solmat.2013.01.012
10.1016/j.enconman.2015.12.086
10.1002/pip.705
10.1155/2015/537538
10.1016/j.rser.2016.03.032
10.1016/j.rser.2005.12.012
10.1016/j.apenergy.2016.01.077
10.1016/j.energy.2019.05.082
10.1016/j.enconman.2015.04.082
10.1016/j.solener.2018.05.016
10.1016/j.applthermaleng.2018.05.070
10.1016/j.apenergy.2019.05.083
10.1016/j.icheatmasstransfer.2017.09.022
10.1016/j.solmat.2011.12.024
10.1016/j.egyr.2019.02.003
10.1016/j.energy.2018.10.089
10.1016/j.renene.2018.11.009
10.1016/j.rser.2012.09.007
10.1016/j.solener.2014.01.047
10.1007/s12206-017-1243-5
10.1016/j.solener.2011.10.032
10.1016/j.apenergy.2013.02.011
10.1115/1.2840572
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2022.102597
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_5198a2c6a2e34276bf15cdbfc70f8433
10_1016_j_csite_2022_102597
S2214157X22008346
GroupedDBID 0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-fda2d879c6c608f006f84b78b7e35b1a3cf9b0b97d901400cc9c5a1de9a290653
IEDL.DBID IXB
ISSN 2214-157X
IngestDate Wed Aug 27 00:23:14 EDT 2025
Thu Apr 24 23:07:59 EDT 2025
Tue Jul 01 02:28:36 EDT 2025
Tue Jul 25 20:57:46 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Tilt angle
Concentrating photovoltaic
Concentrator position
Thermal and electrical characteristics
Thermal stress and deflection
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-fda2d879c6c608f006f84b78b7e35b1a3cf9b0b97d901400cc9c5a1de9a290653
ORCID 0000-0001-6978-5094
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2214157X22008346
ParticipantIDs doaj_primary_oai_doaj_org_article_5198a2c6a2e34276bf15cdbfc70f8433
crossref_primary_10_1016_j_csite_2022_102597
crossref_citationtrail_10_1016_j_csite_2022_102597
elsevier_sciencedirect_doi_10_1016_j_csite_2022_102597
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ju, Pan, Zhang, Xu, Wei (bib11) 2019; 250
Huaxu, Fuqiang, Ziming, Yong, Bo, Yuzhai (bib13) 2020; 206
Faupel, Fisher (bib46) 1964
Wu, Wu, Xiao, Yang (bib48) 2018; 32
Wang, Wang, Shen, Chen, Hu (bib34) 2019; 180
Li, Pei, Ji, Yang, Su, Xu (bib12) 2015; 120
Li, Wu, Yang, Cai, Wang, Zhai (bib42) 2010; 32
El-Samie, Ju, Zhang, Adam, Pan, Xu (bib3) 2020; 190
Irvine, Liley (bib43) 1984
Liu, Hu, Zhang, Chen (bib33) 2014; 103
Phiraphat, Prommas, Puangsombut (bib44) 2017; 89
Antonio, Gabriel, Ignacio (bib2) 2006; 14
Xu, Kleinstreuer (bib10) 2014; 6
Xu, Ji, Sun, Huang, Jin (bib25) 2015; 2015
Kong, Xu, Yao (bib30) 2013; 112
Xu, Ji, Sun, Han, Chen, Jin (bib24) 2015; 100
Hornung, Steiner, Nitz (bib29) 2012; 99
Feng, Zheng, Wang, Ma (bib31) 2016; 111
Ju, Abd El-Samie, Xu, Yu, Pan, Yang (bib5) 2020; 264
Radwan, Ookawara, Ahmed (bib18) 2016; 136
Zhang, Wei, Xie, Wang, Xi, Khalid (bib4) 2018; 163
Amanlou, Hashjin, Ghobadian, Najafi (bib39) 2018; 141
Wang, Wang, Chen, Hu, Cao (bib36) 2019; 134
Xu, Ji, Sun, Huang, Li, Jin (bib23) 2016; 168
Karimi, Xu, Wang, Chen, Yang (bib21) 2017; 123
Ryu, Rhee, Park, Kim (bib32) 2006; 80
Fernandez, Almonacid, Rodrigo, Perez-Higueras (bib6) 2014; 121
Xu, Kleinstreuer (bib22) 2014; 87
Shanks, Ferrer-Rodriguez, Fernández, Almonacid, Pérez-Higueras, Senthilarasu, Mallick (bib16) 2018; 169
Al Imam, Beg, Rahman, Khan (bib9) 2016; 113
Chen, Ji, Pei, Yang, Zhang (bib27) 2018; 174
Wu, Eames, Mallick, Sabry (bib19) 2012; 86
Whitfield, Bentley, Weatherby, Hunt, Mohring, Klotz, Keuber, Minano, Alarte-Garvi (bib7) 1999; 67
Chen (bib47) 2013
Wang, Yao, Chen, Hu (bib35) 2019; 166
Wang, Yao, Wang, Hu (bib37) 2020; 37
Zondag (bib45) 2008; 12
Boumaaraf, Talha, Saidi, Habireche (bib14) 2018; 100
Yadav, Tripathi, Lokhande, Kumar (bib28) 2013; 112
Fernandez, Almonacid, Soria-Moya, Terrados (bib15) 2015; 90
Mallick, Eames (bib20) 2008
Du, Hu, Kolhe (bib26) 2012; 16
Liu, Zhang, Zhang (bib49) 2020; 41
Cao, Butler, Benoit, Jiang, Radhakrishnan, Chen, Bendapudi, Horne (bib40) 2008; 130
Han, Zhao, Chen (bib17) 2020; 162
Wang, Chen, Hu, Cheng (bib1) 2016; 102
Zuhur, Ceylan (bib8) 2019; 5
Amanlou, Hashjin, Ghobadian, Najafi, Mama (bib38) 2016; 60
Shi, Yan, Tian, Zhong, Bao, Wang (bib41) 2015; 33
Al Imam (10.1016/j.csite.2022.102597_bib9) 2016; 113
Xu (10.1016/j.csite.2022.102597_bib10) 2014; 6
Shanks (10.1016/j.csite.2022.102597_bib16) 2018; 169
Xu (10.1016/j.csite.2022.102597_bib23) 2016; 168
Fernandez (10.1016/j.csite.2022.102597_bib6) 2014; 121
Feng (10.1016/j.csite.2022.102597_bib31) 2016; 111
Huaxu (10.1016/j.csite.2022.102597_bib13) 2020; 206
Irvine (10.1016/j.csite.2022.102597_bib43) 1984
Antonio (10.1016/j.csite.2022.102597_bib2) 2006; 14
Fernandez (10.1016/j.csite.2022.102597_bib15) 2015; 90
Radwan (10.1016/j.csite.2022.102597_bib18) 2016; 136
Wang (10.1016/j.csite.2022.102597_bib35) 2019; 166
Zhang (10.1016/j.csite.2022.102597_bib4) 2018; 163
Amanlou (10.1016/j.csite.2022.102597_bib38) 2016; 60
Zondag (10.1016/j.csite.2022.102597_bib45) 2008; 12
Kong (10.1016/j.csite.2022.102597_bib30) 2013; 112
Liu (10.1016/j.csite.2022.102597_bib49) 2020; 41
Ryu (10.1016/j.csite.2022.102597_bib32) 2006; 80
Xu (10.1016/j.csite.2022.102597_bib24) 2015; 100
Whitfield (10.1016/j.csite.2022.102597_bib7) 1999; 67
Hornung (10.1016/j.csite.2022.102597_bib29) 2012; 99
Wu (10.1016/j.csite.2022.102597_bib48) 2018; 32
Ju (10.1016/j.csite.2022.102597_bib5) 2020; 264
Karimi (10.1016/j.csite.2022.102597_bib21) 2017; 123
Wang (10.1016/j.csite.2022.102597_bib37) 2020; 37
Ju (10.1016/j.csite.2022.102597_bib11) 2019; 250
Xu (10.1016/j.csite.2022.102597_bib22) 2014; 87
Du (10.1016/j.csite.2022.102597_bib26) 2012; 16
Liu (10.1016/j.csite.2022.102597_bib33) 2014; 103
Yadav (10.1016/j.csite.2022.102597_bib28) 2013; 112
Phiraphat (10.1016/j.csite.2022.102597_bib44) 2017; 89
El-Samie (10.1016/j.csite.2022.102597_bib3) 2020; 190
Mallick (10.1016/j.csite.2022.102597_bib20) 2008
Li (10.1016/j.csite.2022.102597_bib42) 2010; 32
Chen (10.1016/j.csite.2022.102597_bib47) 2013
Amanlou (10.1016/j.csite.2022.102597_bib39) 2018; 141
Shi (10.1016/j.csite.2022.102597_bib41) 2015; 33
Wang (10.1016/j.csite.2022.102597_bib1) 2016; 102
Faupel (10.1016/j.csite.2022.102597_bib46) 1964
Han (10.1016/j.csite.2022.102597_bib17) 2020; 162
Wang (10.1016/j.csite.2022.102597_bib36) 2019; 134
Wu (10.1016/j.csite.2022.102597_bib19) 2012; 86
Cao (10.1016/j.csite.2022.102597_bib40) 2008; 130
Li (10.1016/j.csite.2022.102597_bib12) 2015; 120
Wang (10.1016/j.csite.2022.102597_bib34) 2019; 180
Boumaaraf (10.1016/j.csite.2022.102597_bib14) 2018; 100
Zuhur (10.1016/j.csite.2022.102597_bib8) 2019; 5
Xu (10.1016/j.csite.2022.102597_bib25) 2015; 2015
Chen (10.1016/j.csite.2022.102597_bib27) 2018; 174
References_xml – volume: 37
  year: 2020
  ident: bib37
  article-title: Design and thermodynamic analysis of an innovative hybrid solar PV-CT system with multi-segment PV panels
  publication-title: Sustain. Energy Technol. Assessments
– volume: 163
  start-page: 552
  year: 2018
  end-page: 563
  ident: bib4
  article-title: Performance investigation on a novel spectral splitting concentrating photovoltaic/thermal system based on direct absorption collection
  publication-title: Sol. Energy
– volume: 32
  start-page: 62
  year: 2010
  end-page: 66
  ident: bib42
  article-title: General design method and optical efficiency of the solar concentrator by Fresnel lens
  publication-title: J. Wuhan Univ. Technol.
– volume: 206
  start-page: 84
  year: 2020
  end-page: 91
  ident: bib13
  article-title: Performance study on optical splitting film-based spectral splitting concentrated photovoltaic/thermal applications under concentrated solar irradiation
  publication-title: Sol. Energy
– volume: 32
  start-page: 423
  year: 2018
  end-page: 432
  ident: bib48
  article-title: Experimental study of natural convection heat transfer from a nonuniformly heated flat plate simulating PV panel
  publication-title: J. Mech. Sci. Technol.
– volume: 112
  start-page: 65
  year: 2013
  end-page: 72
  ident: bib28
  article-title: Estimation of steady state and dynamic parameters of low concentration photovoltaic system
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 130
  year: 2008
  ident: bib40
  article-title: Thermal stress analysis/life prediction of concentrating photovoltaic module
  publication-title: J. Sol. Energy Eng.
– volume: 169
  start-page: 457
  year: 2018
  end-page: 467
  ident: bib16
  article-title: A >3000 suns high concentrator photovoltaic design based on multiple Fresnel lens primaries focusing to one central solar cell
  publication-title: Sol. Energy
– volume: 102
  start-page: 695
  year: 2016
  end-page: 700
  ident: bib1
  article-title: Design and optical analysis of the band-focus Fresnel lens solar concentrator
  publication-title: Appl. Therm. Eng.
– volume: 264
  year: 2020
  ident: bib5
  article-title: A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter
  publication-title: Appl. Energy
– volume: 112
  start-page: 618
  year: 2013
  end-page: 625
  ident: bib30
  article-title: Outdoor performance of a low-concentrated photovoltaic-thermal hybrid system with crystalline silicon solar cells
  publication-title: Appl. Energy
– volume: 87
  start-page: 504
  year: 2014
  end-page: 512
  ident: bib22
  article-title: Concentration photovoltaic-thermal energy co-generation system using nanofluids for cooling and heating
  publication-title: Energy Convers. Manag.
– start-page: 1500
  year: 2008
  end-page: 1504
  ident: bib20
  article-title: Optical and thermal performance predictions for a high concentration point focus photovoltaic system
  publication-title: Proceedings of ISES World Congress 2007
– volume: 100
  start-page: 191
  year: 2015
  end-page: 200
  ident: bib24
  article-title: Outdoor performance analysis of a 1090× point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells
  publication-title: Energy Convers. Manag.
– volume: 80
  start-page: 1580
  year: 2006
  end-page: 1587
  ident: bib32
  article-title: Concept and design of modular Fresnel lenses for concentration solar PV system
  publication-title: Sol. Energy
– volume: 111
  start-page: 401
  year: 2016
  end-page: 408
  ident: bib31
  article-title: Performance investigation of a concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator
  publication-title: Energy Convers. Manag.
– volume: 121
  start-page: 144
  year: 2014
  end-page: 151
  ident: bib6
  article-title: Calculation of the cell temperature of a high concentrator photovoltaic (HCPV) module: a study and comparison of different methods
  publication-title: Sol. Energy Mater. Sol. Cell.
– year: 1964
  ident: bib46
  article-title: Engineering Design: a Synthesis of Stress Analysis and Material Engineering
– volume: 41
  start-page: 215
  year: 2020
  end-page: 220
  ident: bib49
  article-title: Thermal stress and internal force analysis of photovoltaic module
  publication-title: Acta Energiae Solaris Sin.
– volume: 134
  start-page: 284
  year: 2019
  end-page: 291
  ident: bib36
  article-title: Experimental study and optical analyses of a multi-segment plate (MSP) concentrator for solar concentration photovoltaic (CPV) system
  publication-title: Renew. Energy
– volume: 250
  start-page: 904
  year: 2019
  end-page: 915
  ident: bib11
  article-title: Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under non-uniform illumination
  publication-title: Appl. Energy
– volume: 99
  start-page: 333
  year: 2012
  end-page: 338
  ident: bib29
  article-title: Estimation of the influence of Fresnel lens temperature on energy generation of a concentrator photovoltaic system
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 103
  start-page: 191
  year: 2014
  end-page: 199
  ident: bib33
  article-title: Thermodynamic and optical analysis for a CPVT hybrid system with beam splitter and fully tracked linear Fresnel reflector concentrator utilizing sloped panels
  publication-title: Sol. Energy
– volume: 120
  start-page: 565
  year: 2015
  end-page: 574
  ident: bib12
  article-title: Numerical and experimental study on a PV/T system with static miniature solar concentrator
  publication-title: Sol. Energy
– volume: 136
  start-page: 35
  year: 2016
  end-page: 48
  ident: bib18
  article-title: Analysis and simulation of concentrating photovoltaic systems with a microchannel heat sink
  publication-title: Sol. Energy
– volume: 16
  start-page: 6732
  year: 2012
  end-page: 6736
  ident: bib26
  article-title: Performance analysis of water cooled concentrated photovoltaic (CPV) system
  publication-title: Renew. Sustain. Energy Rev.
– year: 1984
  ident: bib43
  article-title: Steam and Gas Tables with Computer Equations
– year: 2013
  ident: bib47
  article-title: Study on Concentration Performance of Fresnel Lens
– volume: 6
  year: 2014
  ident: bib10
  article-title: Computational analysis of nanofluid cooling of high concentration photovoltaic cells
  publication-title: J. Therm. Sci. Eng. Appl.
– volume: 89
  start-page: 31
  year: 2017
  end-page: 38
  ident: bib44
  article-title: Experimental study of natural convection in PV roof solar collector
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 67
  start-page: 23
  year: 1999
  end-page: 34
  ident: bib7
  article-title: The development and testing of small concentrating PV systems
  publication-title: Sol. Energy
– volume: 174
  start-page: 1288
  year: 2018
  end-page: 1298
  ident: bib27
  article-title: Experimental and numerical comparative investigation on a concentrating photovoltaic system
  publication-title: J. Clean. Prod.
– volume: 5
  start-page: 262
  year: 2019
  end-page: 270
  ident: bib8
  article-title: Energy, Exergy and Enviroeconomic (3E) analysis of concentrated PV and thermal system in the winter application
  publication-title: Energy Rep.
– volume: 90
  start-page: 1878
  year: 2015
  end-page: 1886
  ident: bib15
  article-title: Experimental analysis of the spectral factor for quantifying the spectral influence on concentrator photovoltaic systems under real operating conditions
  publication-title: Energy
– volume: 123
  start-page: 402
  year: 2017
  end-page: 412
  ident: bib21
  article-title: Experimental study of a concentrated PV/T system using linear Fresnel lens
  publication-title: Energy
– volume: 100
  start-page: 2569
  year: 2018
  end-page: 2578
  ident: bib14
  article-title: Experimental study of low-concentrator photovoltaic systems: electrical and thermal
  publication-title: Electr. Eng.
– volume: 141
  start-page: 413
  year: 2018
  end-page: 421
  ident: bib39
  article-title: Air cooling low concentrated photovoltaic/thermal (LCPVT) solar collector to approach uniform temperature distribution on the PV plate
  publication-title: Appl. Therm. Eng.
– volume: 60
  start-page: 1430
  year: 2016
  end-page: 1441
  ident: bib38
  article-title: A comprehensive review of uniform solar illumination at low concentration photovoltaic (LCPV) systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 33
  start-page: 497
  year: 2015
  end-page: 503
  ident: bib41
  article-title: Thermal stress analysis of silicon solar cells under thermal-structural coupling
  publication-title: Renew. Energy Resourc.
– volume: 190
  year: 2020
  ident: bib3
  article-title: Three-dimensional numerical investigation of a hybrid low concentrated photovoltaic/thermal system
  publication-title: Energy
– volume: 86
  start-page: 430
  year: 2012
  end-page: 440
  ident: bib19
  article-title: Experimental characterisation of a Fresnel lens photovoltaic concentrating system
  publication-title: Sol. Energy
– volume: 113
  start-page: 139
  year: 2016
  end-page: 144
  ident: bib9
  article-title: Performance of PVT solar collector with compound parabolic concentrator and phase change materials
  publication-title: Energy Build.
– volume: 162
  start-page: 55
  year: 2020
  end-page: 70
  ident: bib17
  article-title: Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling
  publication-title: Renew. Energy
– volume: 180
  start-page: 133
  year: 2019
  end-page: 148
  ident: bib34
  article-title: Novel design and thermodynamic analysis of a solar concentration PV and thermal combined system based on compact linear Fresnel reflector
  publication-title: Energy
– volume: 166
  start-page: 256
  year: 2019
  end-page: 266
  ident: bib35
  article-title: Thermodynamic and optical analyses of a hybrid solar CPVT system with high solar concentrating uniformity based on spectral beam splitting technology
  publication-title: Energy
– volume: 14
  start-page: 413
  year: 2006
  end-page: 428
  ident: bib2
  article-title: Photovoltaic concentration at the onset of its commercial deployment
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 2015
  year: 2015
  ident: bib25
  article-title: Electrical and thermal performance analysis for a highly concentrating Photovoltaic/Thermal system
  publication-title: Int. J. Photoenergy
– volume: 12
  start-page: 891
  year: 2008
  end-page: 959
  ident: bib45
  article-title: Flat-plate PV-Thermal collectors and systems: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 168
  start-page: 269
  year: 2016
  end-page: 281
  ident: bib23
  article-title: Numerical simulation and experimental validation of a high concentration photovoltaic/thermal module based on point-focus Fresnel lens
  publication-title: Appl. Energy
– volume: 162
  start-page: 55
  year: 2020
  ident: 10.1016/j.csite.2022.102597_bib17
  article-title: Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.07.131
– volume: 163
  start-page: 552
  year: 2018
  ident: 10.1016/j.csite.2022.102597_bib4
  article-title: Performance investigation on a novel spectral splitting concentrating photovoltaic/thermal system based on direct absorption collection
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.02.033
– volume: 190
  year: 2020
  ident: 10.1016/j.csite.2022.102597_bib3
  article-title: Three-dimensional numerical investigation of a hybrid low concentrated photovoltaic/thermal system
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116436
– volume: 123
  start-page: 402
  year: 2017
  ident: 10.1016/j.csite.2022.102597_bib21
  article-title: Experimental study of a concentrated PV/T system using linear Fresnel lens
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.028
– volume: 100
  start-page: 2569
  issue: 4
  year: 2018
  ident: 10.1016/j.csite.2022.102597_bib14
  article-title: Experimental study of low-concentrator photovoltaic systems: electrical and thermal
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-018-0722-8
– volume: 206
  start-page: 84
  year: 2020
  ident: 10.1016/j.csite.2022.102597_bib13
  article-title: Performance study on optical splitting film-based spectral splitting concentrated photovoltaic/thermal applications under concentrated solar irradiation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.05.103
– volume: 121
  start-page: 144
  year: 2014
  ident: 10.1016/j.csite.2022.102597_bib6
  article-title: Calculation of the cell temperature of a high concentrator photovoltaic (HCPV) module: a study and comparison of different methods
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2013.11.009
– volume: 120
  start-page: 565
  year: 2015
  ident: 10.1016/j.csite.2022.102597_bib12
  article-title: Numerical and experimental study on a PV/T system with static miniature solar concentrator
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.07.046
– volume: 90
  start-page: 1878
  issue: 2
  year: 2015
  ident: 10.1016/j.csite.2022.102597_bib15
  article-title: Experimental analysis of the spectral factor for quantifying the spectral influence on concentrator photovoltaic systems under real operating conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2015.07.015
– volume: 6
  issue: 3
  year: 2014
  ident: 10.1016/j.csite.2022.102597_bib10
  article-title: Computational analysis of nanofluid cooling of high concentration photovoltaic cells
  publication-title: J. Therm. Sci. Eng. Appl.
  doi: 10.1115/1.4026355
– volume: 87
  start-page: 504
  year: 2014
  ident: 10.1016/j.csite.2022.102597_bib22
  article-title: Concentration photovoltaic-thermal energy co-generation system using nanofluids for cooling and heating
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.07.047
– volume: 67
  start-page: 23
  issue: 1–3
  year: 1999
  ident: 10.1016/j.csite.2022.102597_bib7
  article-title: The development and testing of small concentrating PV systems
  publication-title: Sol. Energy
  doi: 10.1016/S0038-092X(00)00045-1
– volume: 102
  start-page: 695
  year: 2016
  ident: 10.1016/j.csite.2022.102597_bib1
  article-title: Design and optical analysis of the band-focus Fresnel lens solar concentrator
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.04.030
– volume: 136
  start-page: 35
  year: 2016
  ident: 10.1016/j.csite.2022.102597_bib18
  article-title: Analysis and simulation of concentrating photovoltaic systems with a microchannel heat sink
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.06.070
– volume: 174
  start-page: 1288
  year: 2018
  ident: 10.1016/j.csite.2022.102597_bib27
  article-title: Experimental and numerical comparative investigation on a concentrating photovoltaic system
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.11.058
– volume: 80
  start-page: 1580
  issue: 12
  year: 2006
  ident: 10.1016/j.csite.2022.102597_bib32
  article-title: Concept and design of modular Fresnel lenses for concentration solar PV system
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2005.12.006
– volume: 264
  year: 2020
  ident: 10.1016/j.csite.2022.102597_bib5
  article-title: A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114701
– volume: 113
  start-page: 139
  year: 2016
  ident: 10.1016/j.csite.2022.102597_bib9
  article-title: Performance of PVT solar collector with compound parabolic concentrator and phase change materials
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.12.038
– start-page: 1500
  year: 2008
  ident: 10.1016/j.csite.2022.102597_bib20
  article-title: Optical and thermal performance predictions for a high concentration point focus photovoltaic system
– volume: 112
  start-page: 65
  year: 2013
  ident: 10.1016/j.csite.2022.102597_bib28
  article-title: Estimation of steady state and dynamic parameters of low concentration photovoltaic system
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2013.01.012
– year: 2013
  ident: 10.1016/j.csite.2022.102597_bib47
– volume: 111
  start-page: 401
  year: 2016
  ident: 10.1016/j.csite.2022.102597_bib31
  article-title: Performance investigation of a concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.12.086
– volume: 14
  start-page: 413
  issue: 5
  year: 2006
  ident: 10.1016/j.csite.2022.102597_bib2
  article-title: Photovoltaic concentration at the onset of its commercial deployment
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.705
– volume: 2015
  year: 2015
  ident: 10.1016/j.csite.2022.102597_bib25
  article-title: Electrical and thermal performance analysis for a highly concentrating Photovoltaic/Thermal system
  publication-title: Int. J. Photoenergy
  doi: 10.1155/2015/537538
– volume: 60
  start-page: 1430
  year: 2016
  ident: 10.1016/j.csite.2022.102597_bib38
  article-title: A comprehensive review of uniform solar illumination at low concentration photovoltaic (LCPV) systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.03.032
– volume: 12
  start-page: 891
  issue: 4
  year: 2008
  ident: 10.1016/j.csite.2022.102597_bib45
  article-title: Flat-plate PV-Thermal collectors and systems: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2005.12.012
– volume: 41
  start-page: 215
  year: 2020
  ident: 10.1016/j.csite.2022.102597_bib49
  article-title: Thermal stress and internal force analysis of photovoltaic module
  publication-title: Acta Energiae Solaris Sin.
– volume: 168
  start-page: 269
  year: 2016
  ident: 10.1016/j.csite.2022.102597_bib23
  article-title: Numerical simulation and experimental validation of a high concentration photovoltaic/thermal module based on point-focus Fresnel lens
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.01.077
– volume: 180
  start-page: 133
  year: 2019
  ident: 10.1016/j.csite.2022.102597_bib34
  article-title: Novel design and thermodynamic analysis of a solar concentration PV and thermal combined system based on compact linear Fresnel reflector
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.082
– volume: 100
  start-page: 191
  year: 2015
  ident: 10.1016/j.csite.2022.102597_bib24
  article-title: Outdoor performance analysis of a 1090× point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.04.082
– volume: 169
  start-page: 457
  year: 2018
  ident: 10.1016/j.csite.2022.102597_bib16
  article-title: A >3000 suns high concentrator photovoltaic design based on multiple Fresnel lens primaries focusing to one central solar cell
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.05.016
– volume: 141
  start-page: 413
  year: 2018
  ident: 10.1016/j.csite.2022.102597_bib39
  article-title: Air cooling low concentrated photovoltaic/thermal (LCPVT) solar collector to approach uniform temperature distribution on the PV plate
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.05.070
– volume: 250
  start-page: 904
  year: 2019
  ident: 10.1016/j.csite.2022.102597_bib11
  article-title: Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under non-uniform illumination
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.05.083
– volume: 33
  start-page: 497
  issue: 4
  year: 2015
  ident: 10.1016/j.csite.2022.102597_bib41
  article-title: Thermal stress analysis of silicon solar cells under thermal-structural coupling
  publication-title: Renew. Energy Resourc.
– volume: 89
  start-page: 31
  year: 2017
  ident: 10.1016/j.csite.2022.102597_bib44
  article-title: Experimental study of natural convection in PV roof solar collector
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2017.09.022
– year: 1964
  ident: 10.1016/j.csite.2022.102597_bib46
– year: 1984
  ident: 10.1016/j.csite.2022.102597_bib43
– volume: 99
  start-page: 333
  issue: SI
  year: 2012
  ident: 10.1016/j.csite.2022.102597_bib29
  article-title: Estimation of the influence of Fresnel lens temperature on energy generation of a concentrator photovoltaic system
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2011.12.024
– volume: 5
  start-page: 262
  year: 2019
  ident: 10.1016/j.csite.2022.102597_bib8
  article-title: Energy, Exergy and Enviroeconomic (3E) analysis of concentrated PV and thermal system in the winter application
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2019.02.003
– volume: 32
  start-page: 62
  issue: 6
  year: 2010
  ident: 10.1016/j.csite.2022.102597_bib42
  article-title: General design method and optical efficiency of the solar concentrator by Fresnel lens
  publication-title: J. Wuhan Univ. Technol.
– volume: 166
  start-page: 256
  year: 2019
  ident: 10.1016/j.csite.2022.102597_bib35
  article-title: Thermodynamic and optical analyses of a hybrid solar CPVT system with high solar concentrating uniformity based on spectral beam splitting technology
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.089
– volume: 134
  start-page: 284
  year: 2019
  ident: 10.1016/j.csite.2022.102597_bib36
  article-title: Experimental study and optical analyses of a multi-segment plate (MSP) concentrator for solar concentration photovoltaic (CPV) system
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.11.009
– volume: 16
  start-page: 6732
  issue: 9
  year: 2012
  ident: 10.1016/j.csite.2022.102597_bib26
  article-title: Performance analysis of water cooled concentrated photovoltaic (CPV) system
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.09.007
– volume: 103
  start-page: 191
  year: 2014
  ident: 10.1016/j.csite.2022.102597_bib33
  article-title: Thermodynamic and optical analysis for a CPVT hybrid system with beam splitter and fully tracked linear Fresnel reflector concentrator utilizing sloped panels
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.01.047
– volume: 32
  start-page: 423
  issue: 1
  year: 2018
  ident: 10.1016/j.csite.2022.102597_bib48
  article-title: Experimental study of natural convection heat transfer from a nonuniformly heated flat plate simulating PV panel
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-017-1243-5
– volume: 86
  start-page: 430
  issue: 1
  year: 2012
  ident: 10.1016/j.csite.2022.102597_bib19
  article-title: Experimental characterisation of a Fresnel lens photovoltaic concentrating system
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.10.032
– volume: 112
  start-page: 618
  issue: SI
  year: 2013
  ident: 10.1016/j.csite.2022.102597_bib30
  article-title: Outdoor performance of a low-concentrated photovoltaic-thermal hybrid system with crystalline silicon solar cells
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.02.011
– volume: 130
  issue: 2
  year: 2008
  ident: 10.1016/j.csite.2022.102597_bib40
  article-title: Thermal stress analysis/life prediction of concentrating photovoltaic module
  publication-title: J. Sol. Energy Eng.
  doi: 10.1115/1.2840572
– volume: 37
  year: 2020
  ident: 10.1016/j.csite.2022.102597_bib37
  article-title: Design and thermodynamic analysis of an innovative hybrid solar PV-CT system with multi-segment PV panels
  publication-title: Sustain. Energy Technol. Assessments
SSID ssj0001738144
Score 2.2841294
Snippet There are always installation errors in linear Fresnel concentrating photovoltaic (CPV) system that make the system unable to work under the designed...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 102597
SubjectTerms Concentrating photovoltaic
Concentrator position
Thermal and electrical characteristics
Thermal stress and deflection
Tilt angle
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEICD7EkP4hPXFzl43GKbR5MeVVwWQU8u7K0k0xRXlu4i_Q_-bSdJu9TLehF6KmlSZqadmTy-IeTOGfQpFcsSzD1MIpyxiRbOJRINBgpuuK78aeTXt3w2Fy8LuRiU-vJ7wiIeOAruHiMMbRjkhjkumMptnUmobA0qrbXggfOJPm-QTIXZFYWeKFRyZSwTSSbVokcOhc1dEJZmMfFnnl0gPfJp4JYCvX_gnQYeZ3pEDrtQkT7EVzwme645IQcDgOAp-UYt4591NaGxnI2XODVNRSMW1iM1KPxGMlN_auyL9oVRWgr-4KKf4sXsm273cFEMZukUc_HGrQZNcFS6-Vi3a_yrtWYJNJKgz8h8-vz-NEu60goJiEy0SV0ZVmlVQA55qmv89FCYVmmrHJc2Mxzqwqa2UJVfZk1TgAKkySpXGM-Hl_ycjJp14y4IxV6YFUYWhXMi5UZrJwAvwa2qrUzHhPWSLaHjjvvyF6uy32D2WQZ1lF4dZVTHmEy2D20idmN380evsm1Tz8wON9CSys6Syr8saUzyXuFlF37EsAK7Wu4a_fI_Rr8i-76SfZzduSYjNBN3g_FOa2-Daf8AvOYAWA
  priority: 102
  providerName: Directory of Open Access Journals
Title Thermal, electrical and structural characteristics under different concentrator positions for Fresnel concentrating photovoltaic system
URI https://dx.doi.org/10.1016/j.csite.2022.102597
https://doaj.org/article/5198a2c6a2e34276bf15cdbfc70f8433
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDI4QJzislpd2lody4Eg1bR5NegTECCHBBZDmViVuCoNGnRHqf-BvY6ftUC4ckHqK8mhj13Yc-zNj58GhTqlEluDZwyUqOJ9YFUKikWGgkE7airKR7x_y22d1N9fzLXY95MJQWGUv-zuZHqV13zLtd3O6Xiymj0JkqH3MXNAVvlQEuy2VjUl886svP4tBnRRrulL_hAYM4EMxzAviJa1AVUYoBprAn0YKKuL4j_TUSPfM_rI_vdHIL7v32mNbodlnuyMowQP2gfRGGbu84F1hG9p77pqKdwCxBK7B4Ts4M6f8sXc-lEhpOVAKIzl78RzON9FcHM1aPsNTeROWoy64Kl-_rtoVyrfWLYB3mNCH7Hl283R9m_RFFhJQmWqTunKisqaAHPLU1vgT1lZ5Y70JUvvMSagLn_rCVHThmqYABWiXVaFwhBSv5RHbblZN-Mc4ziK8crooQlCpdNYGBfgo6U3tdTphYtjZEnoEciqEsSyHULO3MpKjJHKUHTkm7GIzaN0BcPzc_YpItulK6NmxYfX-UvbsU6LVap2A3IkglTC5rzMNla_BpPjxUk5YPhC8_MaMONXip9X__3bgMduhOvadb-eEbSNrhFO0dlp_Fr0EZ5GpPwHNFQIG
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONAeqvKouoW2PnAk2sSP2DkCYrW0wAWQ9mbZjtNutcquUP5D_3Zn8tiGC4dKOVkeO_FMZsb2zDcAZ9GhTSl5luDewyUyOp8YGWOiUGBCIZwwJWUj393n8yf5faEWO3A15MJQWGWv-zud3mrrvmXar-Z0s1xOHzjP0ProBacrfCHzN7CH3oCm-g03i8t_By0ajVJb1JUIEqIY0IfaOK_Q3tJytGUEY6AI_WlkoVog_5GhGhmf2Qd433uN7KJ7sQPYifUhvBthCR7BH2Q4KtnVOesq29DiM1eXrEOIJXQNFl6iMzNKIHtmQ42UhgXKYaTTXtyIs204F0O_ls1wW17H1agLzso2v9bNGhVc45aBdaDQx_A0u368mid9lYUkyEw2SVU6XhpdhDzkqanwL6yM9Np4HYXymROhKnzqC13SjWuahlAE5bIyFo6g4pX4CLv1uo6fgOEo3EuniiJGmQpnTJQBHym8rrxKJ8CHlbWhhyCnShgrO8Sa_bYtOyyxw3bsmMD5lmjTIXC83v2SWLbtSvDZbcP6-aft5cei22ocD7njUUiuc19lKpS-CjrFjxdiAvnAcPtCGnGo5Wuzf_5fwm-wP3-8u7W3N_c_TuAtFbXvDnpOYRfFJH5B16fxX1vR_guvWAQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal%2C+electrical+and+structural+characteristics+under+different+concentrator+positions+for+Fresnel+concentrating+photovoltaic+system&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Wu%2C+Shuang-Ying&rft.au=Duan%2C+Shu-Zhen&rft.au=Xiao%2C+Lan&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=41&rft_id=info:doi/10.1016%2Fj.csite.2022.102597&rft.externalDocID=S2214157X22008346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon