Novel microfluidic approaches to circulating tumor cell separation and sorting of blood cells: A review
The separation of circulating tumor cells (CTCs) that originate from tumor or cancer tissue plays an important role in cancer diagnostics, progression analyses, and treatment proficiency. Cancer metastasis occurs when CTCs spread throughout the body and invade healthy tissues, which leads to new tum...
Saved in:
Published in | Journal of science. Advanced materials and devices Vol. 6; no. 3; pp. 303 - 320 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2468-2179 2468-2179 |
DOI | 10.1016/j.jsamd.2021.03.005 |
Cover
Loading…
Abstract | The separation of circulating tumor cells (CTCs) that originate from tumor or cancer tissue plays an important role in cancer diagnostics, progression analyses, and treatment proficiency. Cancer metastasis occurs when CTCs spread throughout the body and invade healthy tissues, which leads to new tumors in that area. Although a dramatic rate of death begins from CTCs spreading around the body, valuable measures can be taken to control their development. A first step is separating these harmful cells from the bloodstream and then investigating their features to introduce complementary treatments that can affect the cancerous cells without damaging healthy cells. Numerous techniques have been developed for continuous and fast separation of CTCs. Over the last two decades, the reduction in reagent demand, sample volume, analysis time, and patient safety are just a few of the motivations that encourage researchers to study microfluidic instruments for CTC separation from other blood cells. Among them, inertial microfluidic devices are promising due to their simple structure and setup. However, one shortcoming of this technique is the need for pumps to drive fluid flow, a low ability to control cell movement, and the possibility of clogging the channel. One technique that may potentially overcome these shortcomings is the so-called rotational micro-fluidic platform. However, this technique alone is still not sufficient. In this paper, a detailed analysis of each technique that emphasizes both strengths and shortcomings is presented. Subsequently, a new approach that combines microfluidics with magnetic nanoparticles and is based on the antibody binding principle is proposed. The feasibility of implementing this combined technique will also be discussed. |
---|---|
AbstractList | The separation of circulating tumor cells (CTCs) that originate from tumor or cancer tissue plays an important role in cancer diagnostics, progression analyses, and treatment proficiency. Cancer metastasis occurs when CTCs spread throughout the body and invade healthy tissues, which leads to new tumors in that area. Although a dramatic rate of death begins from CTCs spreading around the body, valuable measures can be taken to control their development. A first step is separating these harmful cells from the bloodstream and then investigating their features to introduce complementary treatments that can affect the cancerous cells without damaging healthy cells. Numerous techniques have been developed for continuous and fast separation of CTCs. Over the last two decades, the reduction in reagent demand, sample volume, analysis time, and patient safety are just a few of the motivations that encourage researchers to study microfluidic instruments for CTC separation from other blood cells. Among them, inertial microfluidic devices are promising due to their simple structure and setup. However, one shortcoming of this technique is the need for pumps to drive fluid flow, a low ability to control cell movement, and the possibility of clogging the channel. One technique that may potentially overcome these shortcomings is the so-called rotational micro-fluidic platform. However, this technique alone is still not sufficient. In this paper, a detailed analysis of each technique that emphasizes both strengths and shortcomings is presented. Subsequently, a new approach that combines microfluidics with magnetic nanoparticles and is based on the antibody binding principle is proposed. The feasibility of implementing this combined technique will also be discussed. |
Author | Badea, I. Farahinia, A. Zhang, W.J. |
Author_xml | – sequence: 1 givenname: A. orcidid: 0000-0001-8201-485X surname: Farahinia fullname: Farahinia, A. email: alf712@usask.ca organization: Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada – sequence: 2 givenname: W.J. surname: Zhang fullname: Zhang, W.J. email: chris.zhang@usask.ca organization: Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada – sequence: 3 givenname: I. surname: Badea fullname: Badea, I. email: ildiko.badea@usask.ca organization: Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada |
BookMark | eNp9kUFv1DAQhS1UJErpL-DiP7DBjp3EQeJQVVAqVXCBszUZjxdH3nhlZ4v497hZkBCHnmyN3vc0895rdrGkhRh7K0Ujhezfzc1c4OCaVrSyEaoRonvBLlvdm10rh_Hin_8rdl3KLERVSqM7fcn2X9IjRX4ImJOPp-ACcjgecwL8QYWviWPIeIqwhmXP19MhZY4UIy90hFynaeGwOF5S3hTJ8ymm5DZRec9veKbHQD_fsJceYqHrP-8V-_7p47fbz7uHr3f3tzcPO9RSrzvvhCQYkTrv1OBw0MILnAbszECkTT9oN42D1Mb1HRqh2w4mCaR7aQSiU1fs_uzrEsz2mMMB8i-bINhtkPLeQt0UI1mjsSOlPJLvdDUxjvSonFAwAHmYqtd49qrZlJLJWwzrdvKaIUQrhX0qwM52K8A-FWCFsrWAyqr_2L-7PE99OFNUI6qxZVsw0ILkQiZc6w3hWf43uKalOA |
CitedBy_id | crossref_primary_10_1063_5_0140358 crossref_primary_10_3390_bios12110956 crossref_primary_10_3390_mi14091769 crossref_primary_10_2174_011574888X265479231127065541 crossref_primary_10_3390_bios12090681 crossref_primary_10_1155_2023_3648247 crossref_primary_10_3390_mi15091118 crossref_primary_10_1177_17588359231192401 crossref_primary_10_1007_s42341_023_00459_3 crossref_primary_10_1063_5_0086109 crossref_primary_10_1080_10618562_2022_2053114 crossref_primary_10_3390_mi13030365 crossref_primary_10_3390_mi14112117 crossref_primary_10_1007_s13367_022_00039_6 crossref_primary_10_3390_s23115300 crossref_primary_10_1016_j_snr_2025_100304 crossref_primary_10_1002_nano_202200158 crossref_primary_10_1007_s40430_021_03215_x crossref_primary_10_1007_s10544_022_00644_w crossref_primary_10_1088_1361_6463_ad9030 crossref_primary_10_3390_magnetochemistry8010010 crossref_primary_10_1007_s10404_023_02692_x crossref_primary_10_3390_s24186031 crossref_primary_10_3390_mi12091055 crossref_primary_10_3390_pr11082438 crossref_primary_10_1002_hed_27167 crossref_primary_10_3390_mi16030349 crossref_primary_10_1002_dro2_149 crossref_primary_10_1002_elps_202300177 crossref_primary_10_1063_5_0100079 crossref_primary_10_1002_smsc_202300206 crossref_primary_10_1039_D4MH00791C crossref_primary_10_1080_23746149_2023_2246704 crossref_primary_10_3390_su15043444 crossref_primary_10_1186_s12951_022_01749_3 crossref_primary_10_1039_D1LC00724F crossref_primary_10_1177_09544119211029753 crossref_primary_10_3390_bios12030171 crossref_primary_10_1039_D2NR01371A crossref_primary_10_1063_5_0253015 crossref_primary_10_1007_s42452_023_05331_w crossref_primary_10_2174_0115734137264742231001142853 crossref_primary_10_1016_j_chroma_2023_463960 crossref_primary_10_1016_j_sna_2023_114897 crossref_primary_10_1140_epjp_s13360_023_04460_w |
Cites_doi | 10.1002/elps.202000034 10.1002/9781118924846.ch2 10.1126/science.1094567 10.1007/s10404-016-1714-5 10.1007/s00542-017-3607-2 10.1016/j.jbiomech.2021.110235 10.1021/acs.analchem.5b00516 10.1002/btpr.3126 10.1007/s40430-019-2015-1 10.1016/j.yexcr.2019.01.029 10.1021/ac702283m 10.1097/JTO.0b013e3181989565 10.1063/1.4938389 10.1002/pd.2079 10.1016/j.sna.2016.02.034 10.1039/c2lc40679a 10.1039/C4LC00947A 10.1039/C7AN01979C 10.1016/j.molliq.2020.113211 10.1039/c0lc00345j 10.1007/s40430-020-02275-9 10.1063/1.4774312 10.1039/b915113c 10.1007/s11517-010-0611-4 10.1016/j.trac.2019.07.018 10.1007/s10404-011-0785-6 10.1063/1.4758131 10.1088/1361-6439/ab7787 10.1039/C3LC50625H 10.1073/pnas.0605967103 10.1007/s42452-019-0751-6 10.1016/j.mam.2019.07.008 10.1063/1.4788914 10.3390/mi8030067 10.1039/B516401J 10.1007/s11012-020-01225-y 10.1002/cam4.3077 10.3390/mi8030073 10.1098/rsfs.2014.0011 10.1021/ac901306y 10.1016/j.snb.2013.08.092 10.1039/D0LC00631A 10.1007/s10404-012-1007-6 10.1021/ac0713813 10.1016/j.jmoldx.2012.09.004 10.3390/mi11040391 10.1038/srep26531 10.1073/pnas.1012539107 10.2174/1872210510666160530125646 10.1016/j.ijheatmasstransfer.2020.120722 10.1038/s41598-019-45182-3 10.1039/b501885d 10.1016/j.bios.2015.06.075 10.1039/C3AY40971F 10.3390/mi12010097 10.1007/s10404-013-1291-9 10.1038/nprot.2016.003 10.1016/j.snb.2020.127833 10.1002/jssc.201601061 10.1063/1.4819275 10.1073/pnas.0704958104 10.1021/ac4006149 10.1021/acscombsci.0c00157 10.1007/s10404-017-1933-4 10.1038/srep44072 10.1039/B601326K 10.1016/j.ymeth.2012.07.002 10.1016/j.actbio.2020.05.004 10.1039/C5IB00288E 10.1002/elps.200800373 10.1039/b908271a 10.3390/cancers12123525 10.1063/1.5082978 10.1073/pnas.1504484112 10.1016/j.jsv.2020.115723 10.1073/pnas.1413325111 10.1038/nphys1637 10.1126/science.aab0917 10.3390/ijms151018281 10.1002/9781119244554.ch10 10.1002/cyto.a.22588 10.1007/s10404-014-1450-7 10.1038/srep01259 10.1021/ac049863r 10.3390/mi11050461 10.1016/j.powtec.2019.04.048 10.1039/C4LC01246A 10.1002/smll.202000171 10.3390/s20195605 10.1177/2211068213504759 10.1039/B514539B 10.1021/acs.analchem.8b04752 10.1002/elps.202000102 10.1039/C9RE00332K 10.1039/D0RA00263A 10.1039/C9AN02092F 10.1021/ac070444e 10.1038/s41598-021-81661-2 10.3390/mi7040056 10.1039/c2lc40072c 10.1021/la703581j 10.1002/elps.201800361 10.1002/adfm.201606039 10.1007/s10544-020-00516-1 10.1021/ac9005765 10.1021/ac802681r 10.1007/s10544-007-9131-x 10.1021/ac061576v 10.1016/j.medengphy.2013.12.010 10.1063/1.4812688 10.1007/s10404-012-1073-9 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jsamd.2021.03.005 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2468-2179 |
EndPage | 320 |
ExternalDocumentID | oai_doaj_org_article_84c5e33fcef54b1a8de493d03a7aefab 10_1016_j_jsamd_2021_03_005 S2468217921000198 |
GroupedDBID | 0R~ 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ KQ8 M41 NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ADVLN AFJKZ APXCP CITATION |
ID | FETCH-LOGICAL-c414t-fd01ea9ce5fd37dc740f0cb7c587ee48674db97148d65c80425ab1ae46180ccd3 |
IEDL.DBID | DOA |
ISSN | 2468-2179 |
IngestDate | Wed Aug 27 01:22:54 EDT 2025 Tue Jul 01 01:19:30 EDT 2025 Thu Apr 24 22:55:21 EDT 2025 Thu Jul 20 20:13:42 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Cancerous cell Cancer metastasis Microfluidic devices Lab-on-a-chip (LOC) Circulating tumor cells (CTCs) Lab-on-a-CD (LOCD) Tumors |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-fd01ea9ce5fd37dc740f0cb7c587ee48674db97148d65c80425ab1ae46180ccd3 |
ORCID | 0000-0001-8201-485X |
OpenAccessLink | https://doaj.org/article/84c5e33fcef54b1a8de493d03a7aefab |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_84c5e33fcef54b1a8de493d03a7aefab crossref_citationtrail_10_1016_j_jsamd_2021_03_005 crossref_primary_10_1016_j_jsamd_2021_03_005 elsevier_sciencedirect_doi_10_1016_j_jsamd_2021_03_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of science. Advanced materials and devices |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Takeishi, Imai, Yamaguchi, Ishikawa (bib91) 2015; 92 Jain, Posner (bib97) 2008; 80 Johansson, Nikolajeff, Johansson, Thorslund (bib52) 2009; 81 Hawkins, Lai, Clague (bib41) 2020; 11 Bazaz, Rouhi, Raoufi, Ejeian, Asadnia, Jin, Warkiani (bib120) 2020; 10 Alazzam, Mathew, Alhammadi (bib37) 2017; 40 Miyamoto, Zheng, Wittner, Lee, Zhu, Broderick, Desai, Fox, Brannigan, Trautwein (bib63) 2015; 349 Kuo, Lin (bib83) 2018; 24 Di Carlo, Irimia, Tompkins, Toner (bib111) 2007; 104 Kandemir, Beelen, Wagterveld, Yntema, Keesman (bib44) 2021; 490 Siani, Sojoodi, Targhi, Movahedin (bib35) 2020; 22 Luo, He (bib60) 2020; 9 Shiriny, Bayareh (bib69) 2020; 55 Aguirre, Efremov, Kitsara, Ducrée (bib130) 2015; 18 Liu, Hu (bib107) 2017; 8 Gossett, Carlo (bib113) 2009; 81 Yang, Yoo, Lee (bib90) 2017; 95 Cupelli, Borchardt, Steiner, Paust, Zengerle, Santer (bib100) 2013; 14 Li, Li, Shao, Li, Zhao, Ye (bib7) 2020; 9 Yamada, Nakashima, Seki (bib94) 2004; 76 Petersson, Åberg, Swärd-Nilsson, Laurell (bib49) 2007; 79 Nivedita, Papautsky (bib110) 2013; 7 Zhao, Yuan, Zhang, Li (bib122) 2020; 11 Yoon, Kim, Lee, Choi, Kim, Lee, Sul, Lee (bib78) 2016; 6 Das, Biswas, Das (bib36) 2014; 36 Davis, Inglis, Morton, Lawrence, Huang, Chou, Sturm, Austin (bib104) 2006; 103 Lee, Shin, Bae, Choi, Park (bib116) 2013; 85 Bacon, Lavoie, Rao, Daniele, Menegatti (bib68) 2020; 112 Rasouli (bib125) 2018 Yin, Deng, Du, Zhang, Jiang (bib3) 2019; 117 Laurell, Petersson, Nilsson (bib54) 2007; 36 Moon, Kwon, Hyun, Seok Sim, Chan Park, Lee, Jung (bib115) 2013; 7 Li, Mao, Peng, Zhou, Chen, Huang, Truica, Drabick, El-Deiry, Dao (bib58) 2015; 112 Di Carlo, Edd, Irimia, Tompkins, Toner (bib112) 2008; 80 Derakhshan, Ramiar, Ghasemi (bib42) 2020; 310 Ding, Peng, Lin, Geri, Li, Li, Chen, Dao, Suresh, Huang (bib56) 2014; 111 Burger, Amato, Boisen (bib128) 2016; 76 Cocuzza, Marasso, Raiti, Barbaresco (bib26) 2019 Farahinia, Zhang (bib17) 2020; 42 Kim, Son, Han, Park (bib123) 2021; 12 Jiang, Jokhun, Lim (bib10) 2021; 117 Nivedita, Ligrani, Papautsky (bib117) 2017; 7 Roy, Stewart, Mounier, Malic, Peytavi, Clime, Madou, Bossinot, Bergeron, Veres (bib131) 2015; 15 Sajeesh, Sen (bib96) 2014; 17 Dong, Skelley, Merdek, Sprott, Jiang, Pierceall, Lin, Stocum, Carney, Smirnov (bib38) 2013; 15 Holmes, Whyte, Bailey, Vergara-Irigaray, Ekpenyong, Guck, Duke (bib81) 2014; 4 Bayareh (bib93) 2020 Lee, Hwang, Choi, Kim (bib39) 2016; 242 Morijiri, Sunahiro, Senaha, Yamada, Seki (bib99) 2011; 11 Chalklen, Jing, Kar-Narayan (bib40) 2020; 20 Alshareef, Metrakos, Juarez Perez, Azer, Yang, Yang, Wang (bib28) 2013; 7 Kunti, Dhar, Bhattacharya, Chakraborty (bib43) 2019; 13 Madadelahi, Madou, Nokoorani, Shamloo, Martinez-Chapa (bib22) 2020; 311 Jo, Shen, Hahn, Park, Park (bib67) 2016; 7 Lei, Bergstrom, Zhang, Zhang, Yin, Song, Zhang (bib15) 2017; 11 Agarwal, Desai, Padh (bib25) 2017 Zheng, Xue, Wang, Zhu, Lu, Li (bib61) 2019; 352 Cai, Briggs, Homburg, Young, Davis, Lin, Battiste, Sughrue (bib65) 2020; 22 Kirby, Glynn, Kijanka, Ducrée (bib76) 2015; 87 Shamloo, Naghdloo, Besanjideh (bib85) 2021; 11 Cortés-Hernández, Eslami-S, Alix-Panabières (bib5) 2020; 72 Lu, Xu, Han, Li, Xue, Li, Wu, Sun, Wang, Ouyang (bib12) 2020; 20 Augustsson, Magnusson, Lilja, Laurell (bib57) 2016 Desir, Chen, Bracconi, Saha, Maestri, Vlachos (bib14) 2020; 5 Shi, Huang, Stratton, Huang, Huang (bib47) 2009; 9 Chang, Yeo (bib30) 2010 Zhou, Tu, Liang, Huang, Fang, Liang, Ye (bib11) 2020; 145 He, Lin (bib24) 2018 Wu, Mao, Chen, Bachman, Chen, Rufo, Ren, Li, Wang, Huang (bib45) 2017; 27 Loutherback, D'Silva, Liu, Wu, Austin, Sturm (bib109) 2012; 2 Kirby, Siegrist, Kijanka, Zavattoni, Sheils, O'Leary, Burger, Ducrée (bib75) 2012; 13 Sugiyama, Teshima, Yamanaka, Briones-Nagata, Maeki, Yamashita, Takahashi, Miyazaki (bib80) 2014; 6 Maenaka, Yamada, Yasuda, Seki (bib98) 2008; 24 Beech (bib108) 2011 Kozminsky, Nagrath, Liu, Lathia (bib6) 2016 Trobia, Gabrick, Seifert, Borges, Protachevicz, Szezech, Iarosz, Santos, Caldas, Tian (bib2) 2020 Yang, Ündar, Zahn (bib87) 2006; 6 Kang, Krause, Tobin, Mammoto, Kanapathipillai, Ingber (bib71) 2012; 12 Kuntaegowdanahalli, Bhagat, Kumar, Papautsky (bib114) 2009; 9 Shah (bib88) 2018 Liu, Jonkheijm, Terstappen, Stevens (bib62) 2020; 12 Ahmad, Rahimi, Tsotsas, Prat, Kharaghani (bib16) 2021; 165 Moon, Kwon, Kim, Han, Sohn, Lee, Jung (bib29) 2011; 11 Zhou, Wang (bib64) 2016; 20 Jang, Haq, Ju, Kim, Kim, Lim (bib86) 2017; 8 Olm, Urbansky, Dykes, Laurell, Scheding (bib55) 2019; 9 Nam, Tan, Khoo, Namgung, Leo, Lim, Kim (bib92) 2015; 9 Henslee (bib33) 2020; 41 Shields IV, Reyes, López (bib66) 2015; 15 Liu, Xue, Chen, Shan, Tian, Hu (bib79) 2015; 87 Antfolk, Laurell (bib50) 2019 Nguyen, Wereley, Shaegh (bib23) 2019 Stott, Hsu, Tsukrov, Yu, Miyamoto, Waltman, Rothenberg, Shah, Smas, Korir (bib89) 2010; 107 Nguyen, Le Manh, Nguyen, Le, Van Hieu (bib34) 2021; 6 Bhagat, Bow, Hou, Tan, Han, Lim (bib72) 2010; 48 Autebert, Coudert, Bidard, Pierga, Descroix, Malaquin, Viovy (bib46) 2012; 57 Yadav, Vadivelu, Ahmed, Barton, Nguyen (bib70) 2019; 378 Zborowski, Chalmers, Lowrie (bib59) 2017 Narayanamurthy, Jeroish, Bhuvaneshwari, Bayat, Premkumar, Samsuri, Yusoff (bib20) 2020; 10 Xu, Clark, Poe, Lounsbury, Nilsson, Laurell, Landers (bib53) 2019; 91 Warkiani, Khoo, Wu, Tay, Bhagat, Han, Lim (bib119) 2016; 11 Qian, Huang, Chen, Li, Ge, Chen, Yang, Sun (bib32) 2014; 15 Farahinia, Jamaati, Niazmand (bib13) 2019; 1 Hou, Warkiani, Khoo, Li, Soo, Tan, Lim, Han, Bhagat, Lim (bib118) 2013; 3 Han, Frazier (bib73) 2006; 6 Gascoyne, Noshari, Anderson, Becker (bib31) 2009; 30 Lei, Zhang, Bergstrom, Anthony, Song, Zhang (bib19) 2020; 30 Nasiri, Shamloo, Ahadian, Amirifar, Akbari, Goudie, Lee, Ashammakhi, Dokmeci, Di Carlo (bib9) 2020; 16 Tang, Jiang, Li, Zhu, Shi, Yang, Xiang (bib8) 2019; 40 Huang, Barber, Schmidt, Tompkins, Toner, Bianchi, Kapur, Flejter (bib103) 2008; 28 Zalis, Reyes, Augustsson, Holmqvist, Roybon, Laurell, Deierborg (bib48) 2016; 8 Jin, McFaul, Duffy, Deng, Tavassoli, Black, Ma (bib106) 2014; 14 Lee, Shin, Choi, Park (bib124) 2014; 190 Sequist, Nagrath, Toner, Haber, Lynch (bib105) 2009; 4 Yin, Zhang, Yang, Zhang (bib21) 2019 Evander, Johansson, Lilliehorn, Piskur, Lindvall, Johansson, Almqvist, Laurell, Nilsson (bib51) 2007; 79 Budiman, Silalahi, Muhamad, Fathurahman, Rozana, Tanaka (bib27) 2020; 41 Sun, Li, Liu, Zhang, Liu, Liu, Hu, Jiang (bib121) 2012; 12 Siegrist, Burger, Kirby, Zavattoni, Kijanka, Ducrée (bib74) 2011 Huang, Cox, Austin, Sturm (bib102) 2004; 304 Mosadegh, Kuo, Tung, Torisawa, Bersano-Begey, Tavana, Takayama (bib126) 2010; 6 Ji, Samper, Chen, Heng, Lim, Yobas (bib82) 2008; 10 Glynn, Kirby, Chung, Kinahan, Kijanka, Ducrée (bib77) 2014; 19 Agrawal, Ramesh, Aishwarya, Sally, Ravi (bib127) 2021 Al-Faqheri, Thio, Qasaimeh, Dietzel, Madou (bib129) 2017; 21 Hu, Liu, Tian, Li, Cui (bib4) 2020; 22 Lin, McFaul, Jin, Black, Ma (bib84) 2013; 7 Cho, Kim, Song, Sohn, Jeon, Han (bib1) 2018; 143 Park, Jung (bib101) 2009; 81 Farahinia, Zhang (bib18) 2019; 41 Takagi, Yamada, Yasuda, Seki (bib95) 2005; 5 Dong (10.1016/j.jsamd.2021.03.005_bib38) 2013; 15 Huang (10.1016/j.jsamd.2021.03.005_bib103) 2008; 28 Kirby (10.1016/j.jsamd.2021.03.005_bib75) 2012; 13 Alshareef (10.1016/j.jsamd.2021.03.005_bib28) 2013; 7 Shields IV (10.1016/j.jsamd.2021.03.005_bib66) 2015; 15 Liu (10.1016/j.jsamd.2021.03.005_bib79) 2015; 87 Shi (10.1016/j.jsamd.2021.03.005_bib47) 2009; 9 Roy (10.1016/j.jsamd.2021.03.005_bib131) 2015; 15 Lei (10.1016/j.jsamd.2021.03.005_bib19) 2020; 30 Holmes (10.1016/j.jsamd.2021.03.005_bib81) 2014; 4 Cai (10.1016/j.jsamd.2021.03.005_bib65) 2020; 22 Yoon (10.1016/j.jsamd.2021.03.005_bib78) 2016; 6 Augustsson (10.1016/j.jsamd.2021.03.005_bib57) 2016 Di Carlo (10.1016/j.jsamd.2021.03.005_bib112) 2008; 80 Jin (10.1016/j.jsamd.2021.03.005_bib106) 2014; 14 Kozminsky (10.1016/j.jsamd.2021.03.005_bib6) 2016 Mosadegh (10.1016/j.jsamd.2021.03.005_bib126) 2010; 6 Kunti (10.1016/j.jsamd.2021.03.005_bib43) 2019; 13 Bhagat (10.1016/j.jsamd.2021.03.005_bib72) 2010; 48 Morijiri (10.1016/j.jsamd.2021.03.005_bib99) 2011; 11 Qian (10.1016/j.jsamd.2021.03.005_bib32) 2014; 15 Han (10.1016/j.jsamd.2021.03.005_bib73) 2006; 6 Sugiyama (10.1016/j.jsamd.2021.03.005_bib80) 2014; 6 Bazaz (10.1016/j.jsamd.2021.03.005_bib120) 2020; 10 Shah (10.1016/j.jsamd.2021.03.005_bib88) 2018 He (10.1016/j.jsamd.2021.03.005_bib24) 2018 Agarwal (10.1016/j.jsamd.2021.03.005_bib25) 2017 Zheng (10.1016/j.jsamd.2021.03.005_bib61) 2019; 352 Wu (10.1016/j.jsamd.2021.03.005_bib45) 2017; 27 Zalis (10.1016/j.jsamd.2021.03.005_bib48) 2016; 8 Shiriny (10.1016/j.jsamd.2021.03.005_bib69) 2020; 55 Olm (10.1016/j.jsamd.2021.03.005_bib55) 2019; 9 Miyamoto (10.1016/j.jsamd.2021.03.005_bib63) 2015; 349 Park (10.1016/j.jsamd.2021.03.005_bib101) 2009; 81 Nasiri (10.1016/j.jsamd.2021.03.005_bib9) 2020; 16 Ji (10.1016/j.jsamd.2021.03.005_bib82) 2008; 10 Jo (10.1016/j.jsamd.2021.03.005_bib67) 2016; 7 Takagi (10.1016/j.jsamd.2021.03.005_bib95) 2005; 5 Lu (10.1016/j.jsamd.2021.03.005_bib12) 2020; 20 Nivedita (10.1016/j.jsamd.2021.03.005_bib110) 2013; 7 Jang (10.1016/j.jsamd.2021.03.005_bib86) 2017; 8 Moon (10.1016/j.jsamd.2021.03.005_bib29) 2011; 11 Johansson (10.1016/j.jsamd.2021.03.005_bib52) 2009; 81 Nam (10.1016/j.jsamd.2021.03.005_bib92) 2015; 9 Maenaka (10.1016/j.jsamd.2021.03.005_bib98) 2008; 24 Madadelahi (10.1016/j.jsamd.2021.03.005_bib22) 2020; 311 Kuntaegowdanahalli (10.1016/j.jsamd.2021.03.005_bib114) 2009; 9 Hu (10.1016/j.jsamd.2021.03.005_bib4) 2020; 22 Siegrist (10.1016/j.jsamd.2021.03.005_bib74) 2011 Zhou (10.1016/j.jsamd.2021.03.005_bib64) 2016; 20 Kang (10.1016/j.jsamd.2021.03.005_bib71) 2012; 12 Yang (10.1016/j.jsamd.2021.03.005_bib90) 2017; 95 Farahinia (10.1016/j.jsamd.2021.03.005_bib17) 2020; 42 Lin (10.1016/j.jsamd.2021.03.005_bib84) 2013; 7 Rasouli (10.1016/j.jsamd.2021.03.005_bib125) 2018 Liu (10.1016/j.jsamd.2021.03.005_bib62) 2020; 12 Zhou (10.1016/j.jsamd.2021.03.005_bib11) 2020; 145 Moon (10.1016/j.jsamd.2021.03.005_bib115) 2013; 7 Lee (10.1016/j.jsamd.2021.03.005_bib116) 2013; 85 Jiang (10.1016/j.jsamd.2021.03.005_bib10) 2021; 117 Budiman (10.1016/j.jsamd.2021.03.005_bib27) 2020; 41 Lee (10.1016/j.jsamd.2021.03.005_bib124) 2014; 190 Loutherback (10.1016/j.jsamd.2021.03.005_bib109) 2012; 2 Yadav (10.1016/j.jsamd.2021.03.005_bib70) 2019; 378 Kirby (10.1016/j.jsamd.2021.03.005_bib76) 2015; 87 Sajeesh (10.1016/j.jsamd.2021.03.005_bib96) 2014; 17 Gossett (10.1016/j.jsamd.2021.03.005_bib113) 2009; 81 Yin (10.1016/j.jsamd.2021.03.005_bib3) 2019; 117 Zborowski (10.1016/j.jsamd.2021.03.005_bib59) 2017 Kandemir (10.1016/j.jsamd.2021.03.005_bib44) 2021; 490 Liu (10.1016/j.jsamd.2021.03.005_bib107) 2017; 8 Gascoyne (10.1016/j.jsamd.2021.03.005_bib31) 2009; 30 Hawkins (10.1016/j.jsamd.2021.03.005_bib41) 2020; 11 Kuo (10.1016/j.jsamd.2021.03.005_bib83) 2018; 24 Stott (10.1016/j.jsamd.2021.03.005_bib89) 2010; 107 Cocuzza (10.1016/j.jsamd.2021.03.005_bib26) 2019 Aguirre (10.1016/j.jsamd.2021.03.005_bib130) 2015; 18 Yang (10.1016/j.jsamd.2021.03.005_bib87) 2006; 6 Farahinia (10.1016/j.jsamd.2021.03.005_bib18) 2019; 41 Das (10.1016/j.jsamd.2021.03.005_bib36) 2014; 36 Cupelli (10.1016/j.jsamd.2021.03.005_bib100) 2013; 14 Sun (10.1016/j.jsamd.2021.03.005_bib121) 2012; 12 Alazzam (10.1016/j.jsamd.2021.03.005_bib37) 2017; 40 Petersson (10.1016/j.jsamd.2021.03.005_bib49) 2007; 79 Shamloo (10.1016/j.jsamd.2021.03.005_bib85) 2021; 11 Zhao (10.1016/j.jsamd.2021.03.005_bib122) 2020; 11 Lee (10.1016/j.jsamd.2021.03.005_bib39) 2016; 242 Ding (10.1016/j.jsamd.2021.03.005_bib56) 2014; 111 Cortés-Hernández (10.1016/j.jsamd.2021.03.005_bib5) 2020; 72 Cho (10.1016/j.jsamd.2021.03.005_bib1) 2018; 143 Li (10.1016/j.jsamd.2021.03.005_bib58) 2015; 112 Di Carlo (10.1016/j.jsamd.2021.03.005_bib111) 2007; 104 Lei (10.1016/j.jsamd.2021.03.005_bib15) 2017; 11 Glynn (10.1016/j.jsamd.2021.03.005_bib77) 2014; 19 Agrawal (10.1016/j.jsamd.2021.03.005_bib127) 2021 Nguyen (10.1016/j.jsamd.2021.03.005_bib23) 2019 Siani (10.1016/j.jsamd.2021.03.005_bib35) 2020; 22 Henslee (10.1016/j.jsamd.2021.03.005_bib33) 2020; 41 Beech (10.1016/j.jsamd.2021.03.005_bib108) 2011 Trobia (10.1016/j.jsamd.2021.03.005_bib2) 2020 Al-Faqheri (10.1016/j.jsamd.2021.03.005_bib129) 2017; 21 Ahmad (10.1016/j.jsamd.2021.03.005_bib16) 2021; 165 Huang (10.1016/j.jsamd.2021.03.005_bib102) 2004; 304 Sequist (10.1016/j.jsamd.2021.03.005_bib105) 2009; 4 Yamada (10.1016/j.jsamd.2021.03.005_bib94) 2004; 76 Li (10.1016/j.jsamd.2021.03.005_bib7) 2020; 9 Autebert (10.1016/j.jsamd.2021.03.005_bib46) 2012; 57 Hou (10.1016/j.jsamd.2021.03.005_bib118) 2013; 3 Tang (10.1016/j.jsamd.2021.03.005_bib8) 2019; 40 Antfolk (10.1016/j.jsamd.2021.03.005_bib50) 2019 Desir (10.1016/j.jsamd.2021.03.005_bib14) 2020; 5 Xu (10.1016/j.jsamd.2021.03.005_bib53) 2019; 91 Derakhshan (10.1016/j.jsamd.2021.03.005_bib42) 2020; 310 Davis (10.1016/j.jsamd.2021.03.005_bib104) 2006; 103 Luo (10.1016/j.jsamd.2021.03.005_bib60) 2020; 9 Warkiani (10.1016/j.jsamd.2021.03.005_bib119) 2016; 11 Jain (10.1016/j.jsamd.2021.03.005_bib97) 2008; 80 Evander (10.1016/j.jsamd.2021.03.005_bib51) 2007; 79 Nivedita (10.1016/j.jsamd.2021.03.005_bib117) 2017; 7 Yin (10.1016/j.jsamd.2021.03.005_bib21) 2019 Farahinia (10.1016/j.jsamd.2021.03.005_bib13) 2019; 1 Takeishi (10.1016/j.jsamd.2021.03.005_bib91) 2015; 92 Chalklen (10.1016/j.jsamd.2021.03.005_bib40) 2020; 20 Laurell (10.1016/j.jsamd.2021.03.005_bib54) 2007; 36 Kim (10.1016/j.jsamd.2021.03.005_bib123) 2021; 12 Bayareh (10.1016/j.jsamd.2021.03.005_bib93) 2020 Chang (10.1016/j.jsamd.2021.03.005_bib30) 2010 Narayanamurthy (10.1016/j.jsamd.2021.03.005_bib20) 2020; 10 Nguyen (10.1016/j.jsamd.2021.03.005_bib34) 2021; 6 Burger (10.1016/j.jsamd.2021.03.005_bib128) 2016; 76 Bacon (10.1016/j.jsamd.2021.03.005_bib68) 2020; 112 |
References_xml | – start-page: 367 year: 2016 end-page: 394 ident: bib6 article-title: Circulating Tumor Cells, Cancer Stem Cells, and Emerging Microfluidic Detection Technologies with Clinical Applications, Cancer Stem Cells – volume: 12 start-page: 2175 year: 2012 end-page: 2181 ident: bib71 article-title: A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells publication-title: Lab Chip – volume: 11 start-page: 1118 year: 2011 end-page: 1125 ident: bib29 article-title: Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP) publication-title: Lab Chip – start-page: 2 year: 2011 end-page: 6 ident: bib74 article-title: Stress-free Centrifugomagnetic 2D-Separation of Cancer Cells in a Stopped-Flow Mode, 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (uTAS). Seattle, USA – volume: 11 start-page: 1 year: 2021 end-page: 14 ident: bib85 article-title: Cancer cell enrichment on a centrifugal microfluidic platform using hydrodynamic and magnetophoretic techniques publication-title: Sci. Rep. – year: 2011 ident: bib108 article-title: Microfluidics Separation and Analysis of Biological Particles – volume: 1 start-page: 728 year: 2019 end-page: 740 ident: bib13 article-title: Investigation of slip effects on electroosmotic mixing in heterogeneous microchannels based on entropy index publication-title: SN Appl. Sci. – volume: 10 start-page: 1 year: 2020 end-page: 14 ident: bib120 article-title: 3D printing of inertial microfluidic devices publication-title: Sci. Rep. – volume: 112 start-page: 4970 year: 2015 end-page: 4975 ident: bib58 article-title: Acoustic separation of circulating tumor cells publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 20 start-page: 48 year: 2016 ident: bib64 article-title: Microfluidic separation of magnetic particles with soft magnetic microstructures publication-title: Microfluid. Nanofluidics – volume: 117 start-page: 110235 year: 2021 ident: bib10 article-title: Microfluidic detection of human diseases: from liquid biopsy to COVID-19 diagnosis publication-title: J. Biomech. – volume: 15 start-page: 406 year: 2015 end-page: 416 ident: bib131 article-title: From cellular lysis to microarray detection, an integrated thermoplastic elastomer (TPE) point of care Lab on a Disc publication-title: Lab Chip – volume: 143 start-page: 2936 year: 2018 end-page: 2970 ident: bib1 article-title: Microfluidic technologies for circulating tumor cell isolation publication-title: Analyst – volume: 57 start-page: 297 year: 2012 end-page: 307 ident: bib46 article-title: Microfluidic: an innovative tool for efficient cell sorting publication-title: Methods – year: 2019 ident: bib26 article-title: Development of a 3D Printed Micro Free-Flow Electrophoresis Lab-On-A-Chip – volume: 8 start-page: 67 year: 2017 ident: bib86 article-title: Fabrication of all glass bifurcation microfluidic chip for blood plasma separation publication-title: Micromachines – volume: 4 start-page: 20140011 year: 2014 ident: bib81 article-title: Separation of blood cells with differing deformability using deterministic lateral displacement publication-title: Interface focus – volume: 11 start-page: 105 year: 2011 end-page: 110 ident: bib99 article-title: Sedimentation pinched-flow fractionation for size-and density-based particle sorting in microchannels publication-title: Microfluid. Nanofluidics – volume: 81 start-page: 8280 year: 2009 end-page: 8288 ident: bib101 article-title: Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels publication-title: Anal. Chem. – volume: 80 start-page: 1641 year: 2008 end-page: 1648 ident: bib97 article-title: Particle dispersion and separation resolution of pinched flow fractionation publication-title: Anal. Chem. – volume: 11 start-page: 134 year: 2016 end-page: 148 ident: bib119 article-title: Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics publication-title: Nat. Protoc. – volume: 11 start-page: 461 year: 2020 ident: bib122 article-title: A review of secondary flow in inertial microfluidics publication-title: Micromachines – volume: 24 start-page: 4405 year: 2008 end-page: 4410 ident: bib98 article-title: Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels publication-title: Langmuir – volume: 6 start-page: 11 year: 2021 end-page: 18 ident: bib34 article-title: Applied electric field analysis and numerical investigations of the continuous cell separation in a dielectrophoresis-based microfluidic channel publication-title: J. Sci.: Adv. Mater. Devices – volume: 48 start-page: 999 year: 2010 end-page: 1014 ident: bib72 article-title: Microfluidics for cell separation publication-title: Med. Biol. Eng. Comput. – volume: 12 start-page: 3952 year: 2012 end-page: 3960 ident: bib121 article-title: Double spiral microchannel for label-free tumor cell separation and enrichment publication-title: Lab Chip – volume: 9 year: 2015 ident: bib92 article-title: Hybrid capillary-inserted microfluidic device for sheathless particle focusing and separation in viscoelastic flow publication-title: Biomicrofluidics – start-page: 91 year: 2018 ident: bib125 article-title: A Step towards a New Micro-fluidic Switch Valve with Embedded Instructions – volume: 352 start-page: 159 year: 2019 end-page: 169 ident: bib61 article-title: Modeling of particle capture in high gradient magnetic separation: a review publication-title: Powder Technol. – volume: 190 start-page: 311 year: 2014 end-page: 317 ident: bib124 article-title: Enhanced blood plasma separation by modulation of inertial lift force publication-title: Sensor. Actuator. B Chem. – volume: 4 start-page: 281 year: 2009 end-page: 283 ident: bib105 article-title: The CTC-chip: an exciting new tool to detect circulating tumor cells in lung cancer patients publication-title: J. Thorac. Oncol. – volume: 10 start-page: 11652 year: 2020 end-page: 11680 ident: bib20 article-title: Advances in passively driven microfluidics and lab-on-chip devices: a comprehensive literature review and patent analysis publication-title: RSC Adv. – volume: 9 start-page: 2973 year: 2009 end-page: 2980 ident: bib114 article-title: Inertial microfluidics for continuous particle separation in spiral microchannels publication-title: Lab Chip – volume: 111 start-page: 12992 year: 2014 end-page: 12997 ident: bib56 article-title: Cell separation using tilted-angle standing surface acoustic waves publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 6 start-page: 433 year: 2010 ident: bib126 article-title: Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices publication-title: Nat. Phys. – volume: 8 start-page: 332 year: 2016 end-page: 340 ident: bib48 article-title: Label-free concentration of viable neurons, hESCs and cancer cells by means of acoustophoresis publication-title: Integr. Biol. – volume: 40 start-page: 930 year: 2019 end-page: 954 ident: bib8 article-title: Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles publication-title: Electrophoresis – volume: 95 year: 2017 ident: bib90 article-title: Effect of fractional blood flow on plasma skimming in the microvasculature publication-title: Phys. Rev. – volume: 7 year: 2013 ident: bib110 article-title: Continuous separation of blood cells in spiral microfluidic devices publication-title: Biomicrofluidics – volume: 22 start-page: 218 year: 2020 ident: bib35 article-title: Blood particle separation using dielectrophoresis in A novel microchannel: a numerical study publication-title: Cell J. (Yakhteh) – volume: 103 start-page: 14779 year: 2006 end-page: 14784 ident: bib104 article-title: Deterministic hydrodynamics: taking blood apart publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 87 start-page: 74 year: 2015 end-page: 80 ident: bib76 article-title: Rapid and cost-efficient enumeration of rare cancer cells from whole blood by low-loss centrifugo-magnetophoretic purification under stopped-flow conditions publication-title: Cytometry – volume: 20 start-page: 5605 year: 2020 ident: bib40 article-title: Biosensors based on mechanical and electrical detection techniques publication-title: Sensors – volume: 3 start-page: 1259 year: 2013 ident: bib118 article-title: Isolation and retrieval of circulating tumor cells using centrifugal forces publication-title: Sci. Rep. – volume: 79 start-page: 2984 year: 2007 end-page: 2991 ident: bib51 article-title: Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays publication-title: Anal. Chem. – volume: 87 start-page: 6041 year: 2015 end-page: 6048 ident: bib79 article-title: Size-based separation of particles and cells utilizing viscoelastic effects in straight microchannels publication-title: Anal. Chem. – volume: 21 start-page: 1 year: 2017 end-page: 23 ident: bib129 article-title: Particle/cell separation on microfluidic platforms based on centrifugation effect: a review publication-title: Microfluid. Nanofluidics – volume: 81 start-page: 5188 year: 2009 end-page: 5196 ident: bib52 article-title: On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer publication-title: Anal. Chem. – volume: 7 year: 2013 ident: bib115 article-title: Continual collection and re-separation of circulating tumor cells from blood using multi-stage multi-orifice flow fractionation publication-title: Biomicrofluidics – volume: 310 start-page: 113211 year: 2020 ident: bib42 article-title: Numerical investigation into continuous separation of particles and cells in a two-component fluid flow using dielectrophoresis publication-title: J. Mol. Liq. – volume: 55 start-page: 1903 year: 2020 end-page: 1916 ident: bib69 article-title: On magnetophoretic separation of blood cells using Halbach array of magnets publication-title: Meccanica – volume: 22 start-page: 701 year: 2020 end-page: 711 ident: bib4 article-title: Sorting technology for circulating tumor cells based on microfluidics publication-title: ACS Comb. Sci. – volume: 30 year: 2020 ident: bib19 article-title: Experimental and simulation study of flow patterns in the combined flow focusing and T-junction device publication-title: J. Micromech. Microeng. – volume: 378 start-page: 191 year: 2019 end-page: 197 ident: bib70 article-title: Stretching cells – an approach for early cancer diagnosis publication-title: Exp. Cell Res. – volume: 18 start-page: 513 year: 2015 end-page: 526 ident: bib130 article-title: Integrated micromixer for incubation and separation of cancer cells on a centrifugal platform using inertial and dean forces publication-title: Microfluid. Nanofluidics – volume: 9 start-page: 3354 year: 2009 end-page: 3359 ident: bib47 article-title: Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW) publication-title: Lab Chip – volume: 117 start-page: 84 year: 2019 end-page: 100 ident: bib3 article-title: Microfluidics-based approaches for separation and analysis of circulating tumor cells publication-title: Trac. Trends Anal. Chem. – volume: 7 year: 2013 ident: bib28 article-title: Separation of tumor cells with dielectrophoresis-based microfluidic chip publication-title: Biomicrofluidics – volume: 19 start-page: 285 year: 2014 end-page: 296 ident: bib77 article-title: Centrifugo-magnetophoretic purification of CD4+ cells from whole blood toward future HIV/AIDS point-of-care applications publication-title: J. Lab. Autom. – volume: 11 start-page: 391 year: 2020 ident: bib41 article-title: High-sensitivity in dielectrophoresis separations publication-title: Micromachines – volume: 349 start-page: 1351 year: 2015 end-page: 1356 ident: bib63 article-title: RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance publication-title: Science – volume: 80 start-page: 2204 year: 2008 end-page: 2211 ident: bib112 article-title: Equilibrium separation and filtration of particles using differential inertial focusing publication-title: Anal. Chem. – volume: 9 start-page: 1 year: 2019 end-page: 11 ident: bib55 article-title: Label-free neuroblastoma cell separation from hematopoietic progenitor cell products using acoustophoresis-towards cell processing of complex biological samples publication-title: Sci. Rep. – volume: 2 year: 2012 ident: bib109 article-title: Deterministic separation of cancer cells from blood at 10 mL/min publication-title: AIP Adv. – volume: 5 start-page: 778 year: 2005 end-page: 784 ident: bib95 article-title: Continuous particle separation in a microchannel having asymmetrically arranged multiple branches publication-title: Lab Chip – volume: 30 start-page: 1388 year: 2009 end-page: 1398 ident: bib31 article-title: Isolation of rare cells from cell mixtures by dielectrophoresis publication-title: Electrophoresis – volume: 24 start-page: 2063 year: 2018 end-page: 2070 ident: bib83 article-title: Microfluidic blood-plasma separation chip using channel size filtration effect publication-title: Microsyst. Technol. – volume: 13 year: 2019 ident: bib43 article-title: Joule heating-induced particle manipulation on a microfluidic chip publication-title: Biomicrofluidics – volume: 145 start-page: 1706 year: 2020 end-page: 1715 ident: bib11 article-title: The label-free separation and culture of tumor cells in a microfluidic biochip publication-title: Analyst – year: 2018 ident: bib88 article-title: Microfluidic Platform to Create Micro Vortices to Enhance the Capture Cancer Stem Cells – start-page: e3126 year: 2021 ident: bib127 article-title: Devices and techniques used to obtain and analyse 3-Dimensional cell cultures publication-title: Biotechnol. Prog. – volume: 11 start-page: 15 year: 2017 end-page: 33 ident: bib15 article-title: Micro/nanospheres generation by fluid-fluid interaction technology: a literature review publication-title: Recent Patent. Nanotechnol. – volume: 15 start-page: 1230 year: 2015 end-page: 1249 ident: bib66 article-title: Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation publication-title: Lab Chip – volume: 6 start-page: 308 year: 2014 end-page: 311 ident: bib80 article-title: Simple density-based particle separation in a microfluidic chip publication-title: Anal. Methods – volume: 15 start-page: 18281 year: 2014 end-page: 18309 ident: bib32 article-title: Dielectrophoresis for bioparticle manipulation publication-title: Int. J. Mol. Sci. – volume: 14 start-page: 551 year: 2013 end-page: 563 ident: bib100 article-title: Leukocyte enrichment based on a modified pinched flow fractionation approach publication-title: Microfluid. Nanofluidics – year: 2019 ident: bib23 article-title: Fundamentals and Applications of Microfluidics – volume: 22 start-page: 1 year: 2020 end-page: 10 ident: bib65 article-title: Application of microfluidic devices for glioblastoma study: current status and future directions publication-title: Biomed. Microdevices – volume: 14 start-page: 32 year: 2014 end-page: 44 ident: bib106 article-title: Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments publication-title: Lab Chip – volume: 311 start-page: 127833 year: 2020 ident: bib22 article-title: Fluidic barriers in droplet-based centrifugal microfluidics: generation of multiple emulsions and microspheres publication-title: Sensor. Actuator. B Chem. – volume: 6 start-page: 265 year: 2006 end-page: 273 ident: bib73 article-title: Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations publication-title: Lab Chip – volume: 10 start-page: 251 year: 2008 end-page: 257 ident: bib82 article-title: Silicon-based microfilters for whole blood cell separation publication-title: Biomed. Microdevices – volume: 8 start-page: 73 year: 2017 ident: bib107 article-title: High-throughput particle manipulation based on hydrodynamic effects in microchannels publication-title: Micromachines – start-page: 107984 year: 2020 ident: bib93 article-title: An Updated Review on Particle Separation in Passive Microfluidic Devices – volume: 20 start-page: 4094 year: 2020 end-page: 4105 ident: bib12 article-title: A novel microfluidic device integrating focus-separation speed reduction design and trap arrays for high-throughput capture of circulating tumor cells publication-title: Lab Chip – volume: 27 start-page: 1606039 year: 2017 ident: bib45 article-title: Acoustic separation of nanoparticles in continuous flow publication-title: Adv. Funct. Mater. – volume: 12 start-page: 3525 year: 2020 ident: bib62 article-title: Magnetic particles for CTC enrichment publication-title: Cancers – volume: 36 start-page: 492 year: 2007 end-page: 506 ident: bib54 article-title: Chip integrated strategies for acoustic separation and manipulation of cells and particles publication-title: Chem. Soc. Rev. – start-page: 1 year: 2019 end-page: 25 ident: bib50 article-title: Acoustofluidic Blood Component Sample Preparation and Processing in Medical Applications, Applications of Microfluidic Systems in Biology and Medicine – volume: 165 start-page: 120722 year: 2021 ident: bib16 article-title: From micro-scale to macro-scale modeling of solute transport in drying capillary porous media publication-title: Int. J. Heat Mass Tran. – start-page: 1 year: 2020 end-page: 12 ident: bib2 article-title: Effects of drug resistance in the tumour-immune system with chemotherapy treatment publication-title: arXiv preprint arXiv – volume: 12 start-page: 97 year: 2021 ident: bib123 article-title: Inertial microfluidics-based separation of microalgae using a contraction–expansion array microchannel publication-title: Micromachines – volume: 41 start-page: 2159 year: 2020 end-page: 2165 ident: bib27 article-title: Wirelessly powered dielectrophoresis of metal oxide particles using spark-gap Tesla coil publication-title: Electrophoresis – volume: 16 start-page: 2000171 year: 2020 ident: bib9 article-title: Microfluidic-based approaches in targeted cell/particle separation based on physical properties: fundamentals and applications publication-title: Small – volume: 79 start-page: 5117 year: 2007 end-page: 5123 ident: bib49 article-title: Free flow acoustophoresis: microfluidic-based mode of particle and cell separation publication-title: Anal. Chem. – volume: 36 start-page: 726 year: 2014 end-page: 731 ident: bib36 article-title: A microfluidic device for continuous manipulation of biological cells using dielectrophoresis publication-title: Med. Eng. Phys. – volume: 17 start-page: 1 year: 2014 end-page: 52 ident: bib96 article-title: Particle separation and sorting in microfluidic devices: a review publication-title: Microfluid. Nanofluidics – volume: 112 start-page: 29 year: 2020 end-page: 51 ident: bib68 article-title: Past, present, and future of affinity-based cell separation technologies publication-title: Acta Biomater. – volume: 7 start-page: 1 year: 2017 end-page: 10 ident: bib117 article-title: Dean flow dynamics in low-aspect ratio spiral microchannels publication-title: Sci. Rep. – year: 2019 ident: bib21 article-title: A Three-Layer Microfluidic Kidney Chip for Drug Nephrotoxicity Test – volume: 40 start-page: 1193 year: 2017 end-page: 1200 ident: bib37 article-title: Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis publication-title: J. Separ. Sci. – volume: 6 start-page: 1 year: 2016 end-page: 8 ident: bib78 article-title: Clogging-free microfluidics for continuous size-based separation of microparticles publication-title: Sci. Rep. – volume: 107 start-page: 18392 year: 2010 end-page: 18397 ident: bib89 article-title: Isolation of circulating tumor cells using a microvortex-generating herringbone-chip publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 41 start-page: 1915 year: 2020 end-page: 1930 ident: bib33 article-title: Dielectrophoresis in cell characterization publication-title: Electrophoresis – volume: 92 year: 2015 ident: bib91 article-title: Flow of a circulating tumor cell and red blood cells in microvessels publication-title: Phys. Rev. – start-page: 15 year: 2017 end-page: 55 ident: bib59 article-title: Magnetic Cell Manipulation and Sorting – volume: 81 start-page: 8459 year: 2009 end-page: 8465 ident: bib113 article-title: Particle focusing mechanisms in curving confined flows publication-title: Anal. Chem. – volume: 9 start-page: 4207 year: 2020 end-page: 4231 ident: bib60 article-title: Magnetically driven microfluidics for isolation of circulating tumor cells publication-title: Canc Med. – volume: 7 year: 2013 ident: bib84 article-title: Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic ratchets and hydrodynamic concentrator publication-title: Biomicrofluidics – volume: 13 start-page: 899 year: 2012 end-page: 908 ident: bib75 article-title: Centrifugo-magnetophoretic particle separation publication-title: Microfluid. Nanofluidics – volume: 72 start-page: 100816 year: 2020 ident: bib5 article-title: Circulating tumor cell as the functional aspect of liquid biopsy to understand the metastatic cascade in solid cancer publication-title: Mol. Aspect. Med. – start-page: 43 year: 2018 end-page: 93 ident: bib24 article-title: Recent Development of Cell Analysis on Microfludics – volume: 304 start-page: 987 year: 2004 end-page: 990 ident: bib102 article-title: Continuous particle separation through deterministic lateral displacement publication-title: Science – volume: 9 start-page: 3 year: 2020 ident: bib7 article-title: Strategies for enrichment of circulating tumor cells publication-title: Transl. Cancer Res. – volume: 15 start-page: 149 year: 2013 end-page: 157 ident: bib38 article-title: Microfluidics and circulating tumor cells publication-title: J. Mol. Diagn. – volume: 91 start-page: 2186 year: 2019 end-page: 2191 ident: bib53 article-title: Isolation of a low number of sperm cells from female DNA in a glass–PDMS–glass microchip via bead-assisted acoustic differential extraction publication-title: Anal. Chem. – volume: 490 start-page: 115723 year: 2021 ident: bib44 article-title: Dynamic acoustic fields for size selective particle separation on centimeter scale publication-title: J. Sound Vib. – volume: 42 start-page: 1 year: 2020 end-page: 18 ident: bib17 article-title: Numerical analysis of a microfluidic mixer and the effects of different cross-sections and various input angles on its mixing performance publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 85 start-page: 6213 year: 2013 end-page: 6218 ident: bib116 article-title: Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress publication-title: Anal. Chem. – volume: 104 start-page: 18892 year: 2007 end-page: 18897 ident: bib111 article-title: Continuous inertial focusing, ordering, and separation of particles in microchannels publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 5 start-page: 39 year: 2020 end-page: 50 ident: bib14 article-title: Experiments and computations of microfluidic liquid–liquid flow patterns publication-title: React. Chem. & Eng. – year: 2010 ident: bib30 article-title: Electrokinetically Driven Microfluidics and Nanofluidics – volume: 6 start-page: 871 year: 2006 end-page: 880 ident: bib87 article-title: A microfluidic device for continuous, real time blood plasma separation publication-title: Lab Chip – start-page: 25 year: 2017 end-page: 41 ident: bib25 article-title: Isolation and characterization of subcellular organelles from plant cells publication-title: Plant Cells and their Organelles – volume: 76 start-page: 5465 year: 2004 end-page: 5471 ident: bib94 article-title: Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel publication-title: Anal. Chem. – volume: 7 start-page: 56 year: 2016 ident: bib67 article-title: Magnetophoretic sorting of single cell-containing microdroplets publication-title: Micromachines – volume: 41 start-page: 491 year: 2019 end-page: 504 ident: bib18 article-title: Numerical investigation into the mixing performance of micro T-mixers with different patterns of obstacles publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 242 start-page: 1 year: 2016 end-page: 8 ident: bib39 article-title: A novel dielectrophoresis activated cell sorter (DACS) to evaluate the apoptotic rate of K562 cells treated with arsenic trioxide (As2O3) publication-title: Sensor Actuator Phys. – start-page: 227 year: 2016 end-page: 248 ident: bib57 article-title: Acoustophoresis in tumor cell enrichment publication-title: Circulating Tumor Cells – volume: 28 start-page: 892 year: 2008 end-page: 899 ident: bib103 article-title: A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women publication-title: Prenat. Diagn.: Publ. Affil. Int. Soc Prenat. Diagn. – volume: 76 start-page: 54 year: 2016 end-page: 67 ident: bib128 article-title: Detection methods for centrifugal microfluidic platforms publication-title: Biosens. Bioelectron. – volume: 41 start-page: 1915 issue: 21–22 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib33 article-title: Dielectrophoresis in cell characterization publication-title: Electrophoresis doi: 10.1002/elps.202000034 – start-page: 25 year: 2017 ident: 10.1016/j.jsamd.2021.03.005_bib25 article-title: Isolation and characterization of subcellular organelles from plant cells publication-title: Plant Cells and their Organelles doi: 10.1002/9781118924846.ch2 – volume: 304 start-page: 987 issue: 5673 year: 2004 ident: 10.1016/j.jsamd.2021.03.005_bib102 article-title: Continuous particle separation through deterministic lateral displacement publication-title: Science doi: 10.1126/science.1094567 – volume: 20 start-page: 48 issue: 3 year: 2016 ident: 10.1016/j.jsamd.2021.03.005_bib64 article-title: Microfluidic separation of magnetic particles with soft magnetic microstructures publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-016-1714-5 – volume: 24 start-page: 2063 issue: 4 year: 2018 ident: 10.1016/j.jsamd.2021.03.005_bib83 article-title: Microfluidic blood-plasma separation chip using channel size filtration effect publication-title: Microsyst. Technol. doi: 10.1007/s00542-017-3607-2 – volume: 117 start-page: 110235 year: 2021 ident: 10.1016/j.jsamd.2021.03.005_bib10 article-title: Microfluidic detection of human diseases: from liquid biopsy to COVID-19 diagnosis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110235 – volume: 87 start-page: 6041 issue: 12 year: 2015 ident: 10.1016/j.jsamd.2021.03.005_bib79 article-title: Size-based separation of particles and cells utilizing viscoelastic effects in straight microchannels publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b00516 – start-page: e3126 year: 2021 ident: 10.1016/j.jsamd.2021.03.005_bib127 article-title: Devices and techniques used to obtain and analyse 3-Dimensional cell cultures publication-title: Biotechnol. Prog. doi: 10.1002/btpr.3126 – volume: 41 start-page: 491 issue: 11 year: 2019 ident: 10.1016/j.jsamd.2021.03.005_bib18 article-title: Numerical investigation into the mixing performance of micro T-mixers with different patterns of obstacles publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-019-2015-1 – volume: 378 start-page: 191 issue: 2 year: 2019 ident: 10.1016/j.jsamd.2021.03.005_bib70 article-title: Stretching cells – an approach for early cancer diagnosis publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2019.01.029 – volume: 80 start-page: 2204 issue: 6 year: 2008 ident: 10.1016/j.jsamd.2021.03.005_bib112 article-title: Equilibrium separation and filtration of particles using differential inertial focusing publication-title: Anal. Chem. doi: 10.1021/ac702283m – volume: 4 start-page: 281 issue: 3 year: 2009 ident: 10.1016/j.jsamd.2021.03.005_bib105 article-title: The CTC-chip: an exciting new tool to detect circulating tumor cells in lung cancer patients publication-title: J. Thorac. Oncol. doi: 10.1097/JTO.0b013e3181989565 – volume: 9 issue: 6 year: 2015 ident: 10.1016/j.jsamd.2021.03.005_bib92 article-title: Hybrid capillary-inserted microfluidic device for sheathless particle focusing and separation in viscoelastic flow publication-title: Biomicrofluidics doi: 10.1063/1.4938389 – volume: 28 start-page: 892 issue: 10 year: 2008 ident: 10.1016/j.jsamd.2021.03.005_bib103 article-title: A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women publication-title: Prenat. Diagn.: Publ. Affil. Int. Soc Prenat. Diagn. doi: 10.1002/pd.2079 – volume: 242 start-page: 1 year: 2016 ident: 10.1016/j.jsamd.2021.03.005_bib39 article-title: A novel dielectrophoresis activated cell sorter (DACS) to evaluate the apoptotic rate of K562 cells treated with arsenic trioxide (As2O3) publication-title: Sensor Actuator Phys. doi: 10.1016/j.sna.2016.02.034 – volume: 12 start-page: 3952 issue: 20 year: 2012 ident: 10.1016/j.jsamd.2021.03.005_bib121 article-title: Double spiral microchannel for label-free tumor cell separation and enrichment publication-title: Lab Chip doi: 10.1039/c2lc40679a – volume: 15 start-page: 406 issue: 2 year: 2015 ident: 10.1016/j.jsamd.2021.03.005_bib131 article-title: From cellular lysis to microarray detection, an integrated thermoplastic elastomer (TPE) point of care Lab on a Disc publication-title: Lab Chip doi: 10.1039/C4LC00947A – volume: 143 start-page: 2936 issue: 13 year: 2018 ident: 10.1016/j.jsamd.2021.03.005_bib1 article-title: Microfluidic technologies for circulating tumor cell isolation publication-title: Analyst doi: 10.1039/C7AN01979C – start-page: 1 year: 2019 ident: 10.1016/j.jsamd.2021.03.005_bib50 – volume: 310 start-page: 113211 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib42 article-title: Numerical investigation into continuous separation of particles and cells in a two-component fluid flow using dielectrophoresis publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113211 – volume: 11 start-page: 1118 issue: 6 year: 2011 ident: 10.1016/j.jsamd.2021.03.005_bib29 article-title: Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP) publication-title: Lab Chip doi: 10.1039/c0lc00345j – volume: 42 start-page: 1 issue: 4 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib17 article-title: Numerical analysis of a microfluidic mixer and the effects of different cross-sections and various input angles on its mixing performance publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-020-02275-9 – volume: 7 issue: 1 year: 2013 ident: 10.1016/j.jsamd.2021.03.005_bib28 article-title: Separation of tumor cells with dielectrophoresis-based microfluidic chip publication-title: Biomicrofluidics doi: 10.1063/1.4774312 – volume: 9 start-page: 3354 issue: 23 year: 2009 ident: 10.1016/j.jsamd.2021.03.005_bib47 article-title: Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW) publication-title: Lab Chip doi: 10.1039/b915113c – volume: 48 start-page: 999 issue: 10 year: 2010 ident: 10.1016/j.jsamd.2021.03.005_bib72 article-title: Microfluidics for cell separation publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-010-0611-4 – volume: 117 start-page: 84 year: 2019 ident: 10.1016/j.jsamd.2021.03.005_bib3 article-title: Microfluidics-based approaches for separation and analysis of circulating tumor cells publication-title: Trac. Trends Anal. Chem. doi: 10.1016/j.trac.2019.07.018 – start-page: 2 year: 2011 ident: 10.1016/j.jsamd.2021.03.005_bib74 – volume: 11 start-page: 105 issue: 1 year: 2011 ident: 10.1016/j.jsamd.2021.03.005_bib99 article-title: Sedimentation pinched-flow fractionation for size-and density-based particle sorting in microchannels publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-011-0785-6 – volume: 2 issue: 4 year: 2012 ident: 10.1016/j.jsamd.2021.03.005_bib109 article-title: Deterministic separation of cancer cells from blood at 10 mL/min publication-title: AIP Adv. doi: 10.1063/1.4758131 – volume: 30 issue: 5 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib19 article-title: Experimental and simulation study of flow patterns in the combined flow focusing and T-junction device publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/ab7787 – volume: 14 start-page: 32 issue: 1 year: 2014 ident: 10.1016/j.jsamd.2021.03.005_bib106 article-title: Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments publication-title: Lab Chip doi: 10.1039/C3LC50625H – volume: 103 start-page: 14779 issue: 40 year: 2006 ident: 10.1016/j.jsamd.2021.03.005_bib104 article-title: Deterministic hydrodynamics: taking blood apart publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.0605967103 – volume: 1 start-page: 728 issue: 7 year: 2019 ident: 10.1016/j.jsamd.2021.03.005_bib13 article-title: Investigation of slip effects on electroosmotic mixing in heterogeneous microchannels based on entropy index publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-0751-6 – volume: 72 start-page: 100816 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib5 article-title: Circulating tumor cell as the functional aspect of liquid biopsy to understand the metastatic cascade in solid cancer publication-title: Mol. Aspect. Med. doi: 10.1016/j.mam.2019.07.008 – volume: 7 issue: 1 year: 2013 ident: 10.1016/j.jsamd.2021.03.005_bib115 article-title: Continual collection and re-separation of circulating tumor cells from blood using multi-stage multi-orifice flow fractionation publication-title: Biomicrofluidics doi: 10.1063/1.4788914 – volume: 8 start-page: 67 issue: 3 year: 2017 ident: 10.1016/j.jsamd.2021.03.005_bib86 article-title: Fabrication of all glass bifurcation microfluidic chip for blood plasma separation publication-title: Micromachines doi: 10.3390/mi8030067 – volume: 22 start-page: 218 issue: 2 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib35 article-title: Blood particle separation using dielectrophoresis in A novel microchannel: a numerical study publication-title: Cell J. (Yakhteh) – volume: 6 start-page: 871 issue: 7 year: 2006 ident: 10.1016/j.jsamd.2021.03.005_bib87 article-title: A microfluidic device for continuous, real time blood plasma separation publication-title: Lab Chip doi: 10.1039/B516401J – volume: 55 start-page: 1903 issue: 10 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib69 article-title: On magnetophoretic separation of blood cells using Halbach array of magnets publication-title: Meccanica doi: 10.1007/s11012-020-01225-y – volume: 9 start-page: 4207 issue: 12 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib60 article-title: Magnetically driven microfluidics for isolation of circulating tumor cells publication-title: Canc Med. doi: 10.1002/cam4.3077 – volume: 8 start-page: 73 issue: 3 year: 2017 ident: 10.1016/j.jsamd.2021.03.005_bib107 article-title: High-throughput particle manipulation based on hydrodynamic effects in microchannels publication-title: Micromachines doi: 10.3390/mi8030073 – volume: 4 start-page: 20140011 issue: 6 year: 2014 ident: 10.1016/j.jsamd.2021.03.005_bib81 article-title: Separation of blood cells with differing deformability using deterministic lateral displacement publication-title: Interface focus doi: 10.1098/rsfs.2014.0011 – volume: 81 start-page: 8459 issue: 20 year: 2009 ident: 10.1016/j.jsamd.2021.03.005_bib113 article-title: Particle focusing mechanisms in curving confined flows publication-title: Anal. Chem. doi: 10.1021/ac901306y – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib120 article-title: 3D printing of inertial microfluidic devices publication-title: Sci. Rep. – volume: 190 start-page: 311 year: 2014 ident: 10.1016/j.jsamd.2021.03.005_bib124 article-title: Enhanced blood plasma separation by modulation of inertial lift force publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2013.08.092 – volume: 20 start-page: 4094 issue: 22 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib12 article-title: A novel microfluidic device integrating focus-separation speed reduction design and trap arrays for high-throughput capture of circulating tumor cells publication-title: Lab Chip doi: 10.1039/D0LC00631A – volume: 13 start-page: 899 issue: 6 year: 2012 ident: 10.1016/j.jsamd.2021.03.005_bib75 article-title: Centrifugo-magnetophoretic particle separation publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-012-1007-6 – volume: 80 start-page: 1641 issue: 5 year: 2008 ident: 10.1016/j.jsamd.2021.03.005_bib97 article-title: Particle dispersion and separation resolution of pinched flow fractionation publication-title: Anal. Chem. doi: 10.1021/ac0713813 – year: 2011 ident: 10.1016/j.jsamd.2021.03.005_bib108 – volume: 15 start-page: 149 issue: 2 year: 2013 ident: 10.1016/j.jsamd.2021.03.005_bib38 article-title: Microfluidics and circulating tumor cells publication-title: J. Mol. Diagn. doi: 10.1016/j.jmoldx.2012.09.004 – volume: 11 start-page: 391 issue: 4 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib41 article-title: High-sensitivity in dielectrophoresis separations publication-title: Micromachines doi: 10.3390/mi11040391 – volume: 6 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.jsamd.2021.03.005_bib78 article-title: Clogging-free microfluidics for continuous size-based separation of microparticles publication-title: Sci. Rep. doi: 10.1038/srep26531 – start-page: 15 year: 2017 ident: 10.1016/j.jsamd.2021.03.005_bib59 – volume: 107 start-page: 18392 issue: 43 year: 2010 ident: 10.1016/j.jsamd.2021.03.005_bib89 article-title: Isolation of circulating tumor cells using a microvortex-generating herringbone-chip publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1012539107 – start-page: 43 year: 2018 ident: 10.1016/j.jsamd.2021.03.005_bib24 – volume: 11 start-page: 15 issue: 1 year: 2017 ident: 10.1016/j.jsamd.2021.03.005_bib15 article-title: Micro/nanospheres generation by fluid-fluid interaction technology: a literature review publication-title: Recent Patent. Nanotechnol. doi: 10.2174/1872210510666160530125646 – start-page: 91 year: 2018 ident: 10.1016/j.jsamd.2021.03.005_bib125 – volume: 95 issue: 4 year: 2017 ident: 10.1016/j.jsamd.2021.03.005_bib90 article-title: Effect of fractional blood flow on plasma skimming in the microvasculature publication-title: Phys. Rev. – volume: 165 start-page: 120722 year: 2021 ident: 10.1016/j.jsamd.2021.03.005_bib16 article-title: From micro-scale to macro-scale modeling of solute transport in drying capillary porous media publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2020.120722 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.jsamd.2021.03.005_bib55 article-title: Label-free neuroblastoma cell separation from hematopoietic progenitor cell products using acoustophoresis-towards cell processing of complex biological samples publication-title: Sci. Rep. doi: 10.1038/s41598-019-45182-3 – volume: 5 start-page: 778 issue: 7 year: 2005 ident: 10.1016/j.jsamd.2021.03.005_bib95 article-title: Continuous particle separation in a microchannel having asymmetrically arranged multiple branches publication-title: Lab Chip doi: 10.1039/b501885d – volume: 6 start-page: 11 issue: 1 year: 2021 ident: 10.1016/j.jsamd.2021.03.005_bib34 article-title: Applied electric field analysis and numerical investigations of the continuous cell separation in a dielectrophoresis-based microfluidic channel publication-title: J. Sci.: Adv. Mater. Devices – volume: 76 start-page: 54 year: 2016 ident: 10.1016/j.jsamd.2021.03.005_bib128 article-title: Detection methods for centrifugal microfluidic platforms publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.06.075 – volume: 6 start-page: 308 issue: 1 year: 2014 ident: 10.1016/j.jsamd.2021.03.005_bib80 article-title: Simple density-based particle separation in a microfluidic chip publication-title: Anal. Methods doi: 10.1039/C3AY40971F – volume: 12 start-page: 97 issue: 1 year: 2021 ident: 10.1016/j.jsamd.2021.03.005_bib123 article-title: Inertial microfluidics-based separation of microalgae using a contraction–expansion array microchannel publication-title: Micromachines doi: 10.3390/mi12010097 – volume: 17 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.jsamd.2021.03.005_bib96 article-title: Particle separation and sorting in microfluidic devices: a review publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-013-1291-9 – volume: 11 start-page: 134 issue: 1 year: 2016 ident: 10.1016/j.jsamd.2021.03.005_bib119 article-title: Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.003 – volume: 311 start-page: 127833 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib22 article-title: Fluidic barriers in droplet-based centrifugal microfluidics: generation of multiple emulsions and microspheres publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2020.127833 – year: 2019 ident: 10.1016/j.jsamd.2021.03.005_bib23 – volume: 40 start-page: 1193 issue: 5 year: 2017 ident: 10.1016/j.jsamd.2021.03.005_bib37 article-title: Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis publication-title: J. Separ. Sci. doi: 10.1002/jssc.201601061 – volume: 7 issue: 5 year: 2013 ident: 10.1016/j.jsamd.2021.03.005_bib110 article-title: Continuous separation of blood cells in spiral microfluidic devices publication-title: Biomicrofluidics doi: 10.1063/1.4819275 – volume: 104 start-page: 18892 issue: 48 year: 2007 ident: 10.1016/j.jsamd.2021.03.005_bib111 article-title: Continuous inertial focusing, ordering, and separation of particles in microchannels publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.0704958104 – volume: 85 start-page: 6213 issue: 13 year: 2013 ident: 10.1016/j.jsamd.2021.03.005_bib116 article-title: Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress publication-title: Anal. Chem. doi: 10.1021/ac4006149 – volume: 22 start-page: 701 issue: 12 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib4 article-title: Sorting technology for circulating tumor cells based on microfluidics publication-title: ACS Comb. Sci. doi: 10.1021/acscombsci.0c00157 – volume: 21 start-page: 1 issue: 6 year: 2017 ident: 10.1016/j.jsamd.2021.03.005_bib129 article-title: Particle/cell separation on microfluidic platforms based on centrifugation effect: a review publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-017-1933-4 – start-page: 1 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib2 article-title: Effects of drug resistance in the tumour-immune system with chemotherapy treatment publication-title: arXiv preprint arXiv – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.jsamd.2021.03.005_bib117 article-title: Dean flow dynamics in low-aspect ratio spiral microchannels publication-title: Sci. Rep. doi: 10.1038/srep44072 – volume: 36 start-page: 492 issue: 3 year: 2007 ident: 10.1016/j.jsamd.2021.03.005_bib54 article-title: Chip integrated strategies for acoustic separation and manipulation of cells and particles publication-title: Chem. Soc. Rev. doi: 10.1039/B601326K – year: 2019 ident: 10.1016/j.jsamd.2021.03.005_bib26 – volume: 57 start-page: 297 issue: 3 year: 2012 ident: 10.1016/j.jsamd.2021.03.005_bib46 article-title: Microfluidic: an innovative tool for efficient cell sorting publication-title: Methods doi: 10.1016/j.ymeth.2012.07.002 – volume: 112 start-page: 29 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib68 article-title: Past, present, and future of affinity-based cell separation technologies publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.05.004 – volume: 8 start-page: 332 issue: 3 year: 2016 ident: 10.1016/j.jsamd.2021.03.005_bib48 article-title: Label-free concentration of viable neurons, hESCs and cancer cells by means of acoustophoresis publication-title: Integr. Biol. doi: 10.1039/C5IB00288E – volume: 30 start-page: 1388 issue: 8 year: 2009 ident: 10.1016/j.jsamd.2021.03.005_bib31 article-title: Isolation of rare cells from cell mixtures by dielectrophoresis publication-title: Electrophoresis doi: 10.1002/elps.200800373 – volume: 9 start-page: 2973 issue: 20 year: 2009 ident: 10.1016/j.jsamd.2021.03.005_bib114 article-title: Inertial microfluidics for continuous particle separation in spiral microchannels publication-title: Lab Chip doi: 10.1039/b908271a – volume: 12 start-page: 3525 issue: 12 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib62 article-title: Magnetic particles for CTC enrichment publication-title: Cancers doi: 10.3390/cancers12123525 – volume: 13 issue: 1 year: 2019 ident: 10.1016/j.jsamd.2021.03.005_bib43 article-title: Joule heating-induced particle manipulation on a microfluidic chip publication-title: Biomicrofluidics doi: 10.1063/1.5082978 – start-page: 107984 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib93 – volume: 112 start-page: 4970 issue: 16 year: 2015 ident: 10.1016/j.jsamd.2021.03.005_bib58 article-title: Acoustic separation of circulating tumor cells publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1504484112 – volume: 490 start-page: 115723 year: 2021 ident: 10.1016/j.jsamd.2021.03.005_bib44 article-title: Dynamic acoustic fields for size selective particle separation on centimeter scale publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115723 – volume: 111 start-page: 12992 issue: 36 year: 2014 ident: 10.1016/j.jsamd.2021.03.005_bib56 article-title: Cell separation using tilted-angle standing surface acoustic waves publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1413325111 – volume: 6 start-page: 433 issue: 6 year: 2010 ident: 10.1016/j.jsamd.2021.03.005_bib126 article-title: Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices publication-title: Nat. Phys. doi: 10.1038/nphys1637 – volume: 349 start-page: 1351 issue: 6254 year: 2015 ident: 10.1016/j.jsamd.2021.03.005_bib63 article-title: RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance publication-title: Science doi: 10.1126/science.aab0917 – volume: 15 start-page: 18281 issue: 10 year: 2014 ident: 10.1016/j.jsamd.2021.03.005_bib32 article-title: Dielectrophoresis for bioparticle manipulation publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms151018281 – volume: 9 start-page: 3 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib7 article-title: Strategies for enrichment of circulating tumor cells publication-title: Transl. Cancer Res. – start-page: 227 year: 2016 ident: 10.1016/j.jsamd.2021.03.005_bib57 article-title: Acoustophoresis in tumor cell enrichment publication-title: Circulating Tumor Cells doi: 10.1002/9781119244554.ch10 – volume: 87 start-page: 74 issue: 1 year: 2015 ident: 10.1016/j.jsamd.2021.03.005_bib76 article-title: Rapid and cost-efficient enumeration of rare cancer cells from whole blood by low-loss centrifugo-magnetophoretic purification under stopped-flow conditions publication-title: Cytometry doi: 10.1002/cyto.a.22588 – volume: 18 start-page: 513 issue: 3 year: 2015 ident: 10.1016/j.jsamd.2021.03.005_bib130 article-title: Integrated micromixer for incubation and separation of cancer cells on a centrifugal platform using inertial and dean forces publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-014-1450-7 – volume: 3 start-page: 1259 year: 2013 ident: 10.1016/j.jsamd.2021.03.005_bib118 article-title: Isolation and retrieval of circulating tumor cells using centrifugal forces publication-title: Sci. Rep. doi: 10.1038/srep01259 – volume: 76 start-page: 5465 issue: 18 year: 2004 ident: 10.1016/j.jsamd.2021.03.005_bib94 article-title: Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel publication-title: Anal. Chem. doi: 10.1021/ac049863r – volume: 11 start-page: 461 issue: 5 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib122 article-title: A review of secondary flow in inertial microfluidics publication-title: Micromachines doi: 10.3390/mi11050461 – volume: 352 start-page: 159 year: 2019 ident: 10.1016/j.jsamd.2021.03.005_bib61 article-title: Modeling of particle capture in high gradient magnetic separation: a review publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.04.048 – volume: 15 start-page: 1230 issue: 5 year: 2015 ident: 10.1016/j.jsamd.2021.03.005_bib66 article-title: Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation publication-title: Lab Chip doi: 10.1039/C4LC01246A – volume: 16 start-page: 2000171 issue: 29 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib9 article-title: Microfluidic-based approaches in targeted cell/particle separation based on physical properties: fundamentals and applications publication-title: Small doi: 10.1002/smll.202000171 – volume: 20 start-page: 5605 issue: 19 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib40 article-title: Biosensors based on mechanical and electrical detection techniques publication-title: Sensors doi: 10.3390/s20195605 – volume: 19 start-page: 285 issue: 3 year: 2014 ident: 10.1016/j.jsamd.2021.03.005_bib77 article-title: Centrifugo-magnetophoretic purification of CD4+ cells from whole blood toward future HIV/AIDS point-of-care applications publication-title: J. Lab. Autom. doi: 10.1177/2211068213504759 – year: 2018 ident: 10.1016/j.jsamd.2021.03.005_bib88 – year: 2010 ident: 10.1016/j.jsamd.2021.03.005_bib30 – volume: 6 start-page: 265 issue: 2 year: 2006 ident: 10.1016/j.jsamd.2021.03.005_bib73 article-title: Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations publication-title: Lab Chip doi: 10.1039/B514539B – volume: 91 start-page: 2186 issue: 3 year: 2019 ident: 10.1016/j.jsamd.2021.03.005_bib53 article-title: Isolation of a low number of sperm cells from female DNA in a glass–PDMS–glass microchip via bead-assisted acoustic differential extraction publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b04752 – volume: 41 start-page: 2159 issue: 24 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib27 article-title: Wirelessly powered dielectrophoresis of metal oxide particles using spark-gap Tesla coil publication-title: Electrophoresis doi: 10.1002/elps.202000102 – volume: 5 start-page: 39 issue: 1 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib14 article-title: Experiments and computations of microfluidic liquid–liquid flow patterns publication-title: React. Chem. & Eng. doi: 10.1039/C9RE00332K – year: 2019 ident: 10.1016/j.jsamd.2021.03.005_bib21 – volume: 10 start-page: 11652 issue: 20 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib20 article-title: Advances in passively driven microfluidics and lab-on-chip devices: a comprehensive literature review and patent analysis publication-title: RSC Adv. doi: 10.1039/D0RA00263A – volume: 145 start-page: 1706 issue: 5 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib11 article-title: The label-free separation and culture of tumor cells in a microfluidic biochip publication-title: Analyst doi: 10.1039/C9AN02092F – volume: 79 start-page: 5117 issue: 14 year: 2007 ident: 10.1016/j.jsamd.2021.03.005_bib49 article-title: Free flow acoustophoresis: microfluidic-based mode of particle and cell separation publication-title: Anal. Chem. doi: 10.1021/ac070444e – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.jsamd.2021.03.005_bib85 article-title: Cancer cell enrichment on a centrifugal microfluidic platform using hydrodynamic and magnetophoretic techniques publication-title: Sci. Rep. doi: 10.1038/s41598-021-81661-2 – volume: 7 start-page: 56 issue: 4 year: 2016 ident: 10.1016/j.jsamd.2021.03.005_bib67 article-title: Magnetophoretic sorting of single cell-containing microdroplets publication-title: Micromachines doi: 10.3390/mi7040056 – volume: 12 start-page: 2175 issue: 12 year: 2012 ident: 10.1016/j.jsamd.2021.03.005_bib71 article-title: A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells publication-title: Lab Chip doi: 10.1039/c2lc40072c – volume: 24 start-page: 4405 issue: 8 year: 2008 ident: 10.1016/j.jsamd.2021.03.005_bib98 article-title: Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels publication-title: Langmuir doi: 10.1021/la703581j – volume: 92 issue: 6 year: 2015 ident: 10.1016/j.jsamd.2021.03.005_bib91 article-title: Flow of a circulating tumor cell and red blood cells in microvessels publication-title: Phys. Rev. – volume: 40 start-page: 930 issue: 6 year: 2019 ident: 10.1016/j.jsamd.2021.03.005_bib8 article-title: Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles publication-title: Electrophoresis doi: 10.1002/elps.201800361 – volume: 27 start-page: 1606039 issue: 14 year: 2017 ident: 10.1016/j.jsamd.2021.03.005_bib45 article-title: Acoustic separation of nanoparticles in continuous flow publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201606039 – volume: 22 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.jsamd.2021.03.005_bib65 article-title: Application of microfluidic devices for glioblastoma study: current status and future directions publication-title: Biomed. Microdevices doi: 10.1007/s10544-020-00516-1 – volume: 81 start-page: 8280 issue: 20 year: 2009 ident: 10.1016/j.jsamd.2021.03.005_bib101 article-title: Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels publication-title: Anal. Chem. doi: 10.1021/ac9005765 – volume: 81 start-page: 5188 issue: 13 year: 2009 ident: 10.1016/j.jsamd.2021.03.005_bib52 article-title: On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer publication-title: Anal. Chem. doi: 10.1021/ac802681r – volume: 10 start-page: 251 issue: 2 year: 2008 ident: 10.1016/j.jsamd.2021.03.005_bib82 article-title: Silicon-based microfilters for whole blood cell separation publication-title: Biomed. Microdevices doi: 10.1007/s10544-007-9131-x – volume: 79 start-page: 2984 issue: 7 year: 2007 ident: 10.1016/j.jsamd.2021.03.005_bib51 article-title: Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays publication-title: Anal. Chem. doi: 10.1021/ac061576v – start-page: 367 year: 2016 ident: 10.1016/j.jsamd.2021.03.005_bib6 – volume: 36 start-page: 726 issue: 6 year: 2014 ident: 10.1016/j.jsamd.2021.03.005_bib36 article-title: A microfluidic device for continuous manipulation of biological cells using dielectrophoresis publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2013.12.010 – volume: 7 issue: 3 year: 2013 ident: 10.1016/j.jsamd.2021.03.005_bib84 article-title: Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic ratchets and hydrodynamic concentrator publication-title: Biomicrofluidics doi: 10.1063/1.4812688 – volume: 14 start-page: 551 issue: 3–4 year: 2013 ident: 10.1016/j.jsamd.2021.03.005_bib100 article-title: Leukocyte enrichment based on a modified pinched flow fractionation approach publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-012-1073-9 |
SSID | ssj0002118454 |
Score | 2.4657524 |
SecondaryResourceType | review_article |
Snippet | The separation of circulating tumor cells (CTCs) that originate from tumor or cancer tissue plays an important role in cancer diagnostics, progression... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 303 |
SubjectTerms | Cancer metastasis Cancerous cell Circulating tumor cells (CTCs) Lab-on-a-CD (LOCD) Lab-on-a-chip (LOC) Microfluidic devices Tumors |
Title | Novel microfluidic approaches to circulating tumor cell separation and sorting of blood cells: A review |
URI | https://dx.doi.org/10.1016/j.jsamd.2021.03.005 https://doaj.org/article/84c5e33fcef54b1a8de493d03a7aefab |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT1xf5ODRYh9JH95WUUTQk4K3kE4m0mW3lW3X328erdSLXryWaVImk8w35cs3hFyoKAtj0MpscQ0BQ50HZRqpwIDjAg3AN9WY_Q_59Jw-vLLHN_42avVlOWFeHtg77ipnwDFJNKDmrIxkrpAViQoTmUnUsrSnr8l5o2LKnsGmrMmZa4EW26tFBncXg-SQI3fNW7m0OqFx5CVO-Y-05NT7R9lplHHud8h2DxXpzH_iLtnAeo9sjQQE98n7c_OJC7q0rDq9WFeqAjqohGNLu4ZCtQLXoat-p9162ayo_VVPW_Sa301NZa1o26ycRaOpY7I7o_aazqi_2nJAXu_vXm4fgr51QgAsYl2gVRihLAC5VkmmIGOhDqHMgOcZolXZY6osMlMLqZRDbneuNM5FlkZ5CKCSQzKpmxqPCFUxMKnTUhepZDLW0iQ7jhnnsTbVlZJTEg-eE9Dritv2FgsxEMjmwrlbWHeLMBHG3VNy-f3Sh5fV-N38xi7Jt6nVxHYPTKSIPlLEX5EyJemwoKKHFx42mKGq32Y__o_ZT8imHdLT007JpFut8czgma48d6H7Bf4Z9Ys |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+microfluidic+approaches+to+circulating+tumor+cell+separation+and+sorting+of+blood+cells%3A+A+review&rft.jtitle=Journal+of+science.+Advanced+materials+and+devices&rft.au=A.+Farahinia&rft.au=W.J.+Zhang&rft.au=I.+Badea&rft.date=2021-09-01&rft.pub=Elsevier&rft.issn=2468-2179&rft.eissn=2468-2179&rft.volume=6&rft.issue=3&rft.spage=303&rft.epage=320&rft_id=info:doi/10.1016%2Fj.jsamd.2021.03.005&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_84c5e33fcef54b1a8de493d03a7aefab |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2179&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2179&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2179&client=summon |