Recent advances in nanomaterial-based solid-state hydrogen storage

The hydrogen economy is a system that is proposed as a long-term solution for a secure energy future. Hydrogen production, storage, distribution, and utilization make up the fundamental elements of an envisaged hydrogen economy system. These elements have been the subject of intense research for dec...

Full description

Saved in:
Bibliographic Details
Published inMaterials today advances Vol. 6; p. 100022
Main Authors Boateng, Emmanuel, Chen, Aicheng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2020
Elsevier
Subjects
Online AccessGet full text
ISSN2590-0498
2590-0498
DOI10.1016/j.mtadv.2019.100022

Cover

Loading…
Abstract The hydrogen economy is a system that is proposed as a long-term solution for a secure energy future. Hydrogen production, storage, distribution, and utilization make up the fundamental elements of an envisaged hydrogen economy system. These elements have been the subject of intense research for decades; however, the development of a viable safe and efficient strategy for the storage of hydrogen remains the most challenging. Solid-state hydrogen storage research has expanded significantly, with the potential to fulfill the targets of the United States Department of Energy. This review highlights recent advances in the nanomaterial-based solid-state hydrogen storage. In addition, characterization techniques, including gravimetric and volumetric techniques, as well as electrochemical methods are discussed. Moreover, several promising approaches and an outlook for the enhancement of hydrogen storage are addressed. [Display omitted] •The feature of a desired hydrogen storage is described.•Recent development of nanomaterials for the solid-state hydrogen storage is highlighted.•Hydrogen sorption measurement techniques are discussed.•Key strategies for enhancing hydrogen storage capacity are presented.
AbstractList The hydrogen economy is a system that is proposed as a long-term solution for a secure energy future. Hydrogen production, storage, distribution, and utilization make up the fundamental elements of an envisaged hydrogen economy system. These elements have been the subject of intense research for decades; however, the development of a viable safe and efficient strategy for the storage of hydrogen remains the most challenging. Solid-state hydrogen storage research has expanded significantly, with the potential to fulfill the targets of the United States Department of Energy. This review highlights recent advances in the nanomaterial-based solid-state hydrogen storage. In addition, characterization techniques, including gravimetric and volumetric techniques, as well as electrochemical methods are discussed. Moreover, several promising approaches and an outlook for the enhancement of hydrogen storage are addressed. [Display omitted] •The feature of a desired hydrogen storage is described.•Recent development of nanomaterials for the solid-state hydrogen storage is highlighted.•Hydrogen sorption measurement techniques are discussed.•Key strategies for enhancing hydrogen storage capacity are presented.
The hydrogen economy is a system that is proposed as a long-term solution for a secure energy future. Hydrogen production, storage, distribution, and utilization make up the fundamental elements of an envisaged hydrogen economy system. These elements have been the subject of intense research for decades; however, the development of a viable safe and efficient strategy for the storage of hydrogen remains the most challenging. Solid-state hydrogen storage research has expanded significantly, with the potential to fulfill the targets of the United States Department of Energy. This review highlights recent advances in the nanomaterial-based solid-state hydrogen storage. In addition, characterization techniques, including gravimetric and volumetric techniques, as well as electrochemical methods are discussed. Moreover, several promising approaches and an outlook for the enhancement of hydrogen storage are addressed.
ArticleNumber 100022
Author Boateng, Emmanuel
Chen, Aicheng
Author_xml – sequence: 1
  givenname: Emmanuel
  orcidid: 0000-0002-8605-1962
  surname: Boateng
  fullname: Boateng, Emmanuel
– sequence: 2
  givenname: Aicheng
  orcidid: 0000-0002-2239-6785
  surname: Chen
  fullname: Chen, Aicheng
  email: aicheng@uoguelph.ca
BookMark eNqFkM1KAzEURoMoqNUncDMvMDXJpMNk4UKLf1AQRNfhJrmpKdNEkiD07U1bEXGhq4SPnAM5p-QwxICEXDA6ZZT1l6vpuoD9mHLKZF0o5fyAnPCZpC0Vcjj8cT8m5zmvtk-GinbihNw8o8FQmiqAYDA3PjQBQlxDweRhbDVktE2Oo7dtLnVt3jY2xSWGJpeYYIln5MjBmPH865yQ17vbl_lDu3i6f5xfL1ojmCitk7Pe9XzgTliwDCTrGFBjQKAcpEB0WvbUAUg6Q4GaWo1aG067AXBA3U3I495rI6zUe_JrSBsVwavdENNSQSrejKg6joMwWlvWWdGjkaJqXY8cpJ051lVXt3eZFHNO6L59jKptVbVSu6pqW1Xtq1ZK_qKMr0l8DCWBH_9hr_Ys1kQfHpPKxmNNbn1CU-of_J_8JwPPl8Q
CitedBy_id crossref_primary_10_1016_j_ijhydene_2023_08_128
crossref_primary_10_1049_tje2_12103
crossref_primary_10_1016_j_commatsci_2023_112677
crossref_primary_10_1016_j_ijhydene_2022_02_185
crossref_primary_10_1021_acs_jpclett_3c00941
crossref_primary_10_4236_msce_2020_812003
crossref_primary_10_1039_D4TA00717D
crossref_primary_10_1016_j_ijhydene_2023_05_272
crossref_primary_10_1039_D3TA04554D
crossref_primary_10_3390_ijms23137111
crossref_primary_10_1016_j_ijhydene_2022_04_227
crossref_primary_10_1016_j_diamond_2020_107968
crossref_primary_10_1007_s10853_024_10054_3
crossref_primary_10_1016_j_ijhydene_2022_06_242
crossref_primary_10_1007_s10854_024_12200_8
crossref_primary_10_1016_j_ijhydene_2021_01_020
crossref_primary_10_1007_s12274_024_6550_4
crossref_primary_10_1016_j_ijhydene_2023_08_131
crossref_primary_10_1016_j_jpcs_2023_111863
crossref_primary_10_32604_iasc_2023_033627
crossref_primary_10_1016_j_carbon_2024_119657
crossref_primary_10_1016_j_ijhydene_2023_08_359
crossref_primary_10_1021_acs_energyfuels_2c00011
crossref_primary_10_1134_S1995078020030027
crossref_primary_10_1016_j_matchemphys_2024_130318
crossref_primary_10_1016_j_ijhydene_2023_08_356
crossref_primary_10_1016_j_ijhydene_2021_03_153
crossref_primary_10_1016_j_ijhydene_2023_05_268
crossref_primary_10_1002_wene_526
crossref_primary_10_1007_s00339_021_05194_1
crossref_primary_10_1021_acs_energyfuels_4c02234
crossref_primary_10_1007_s10450_023_00388_w
crossref_primary_10_1016_j_ijhydene_2023_09_281
crossref_primary_10_1016_j_ijhydene_2020_09_185
crossref_primary_10_1016_j_ijhydene_2020_10_110
crossref_primary_10_1016_j_matchar_2020_110795
crossref_primary_10_1021_acsami_4c10351
crossref_primary_10_1016_j_ijhydene_2024_09_215
crossref_primary_10_1002_ente_202201434
crossref_primary_10_1007_s42823_023_00557_5
crossref_primary_10_1039_D2SE01351G
crossref_primary_10_3390_qubs5030022
crossref_primary_10_1002_masy_202300036
crossref_primary_10_1002_adfm_202316368
crossref_primary_10_1007_s10098_024_03096_3
crossref_primary_10_1016_j_ijhydene_2022_03_048
crossref_primary_10_3390_cryst13060878
crossref_primary_10_1002_adsu_202200276
crossref_primary_10_1039_D2YA00242F
crossref_primary_10_3390_catal15030260
crossref_primary_10_1021_acs_energyfuels_4c01633
crossref_primary_10_33435_tcandtc_1080492
crossref_primary_10_3390_nano13182588
crossref_primary_10_1016_j_ijhydene_2021_07_058
crossref_primary_10_1016_j_ijhydene_2021_09_225
crossref_primary_10_1016_j_ijhydene_2021_09_106
crossref_primary_10_1063_5_0098522
crossref_primary_10_3390_nano14121036
crossref_primary_10_1016_j_energy_2021_120943
crossref_primary_10_1016_j_ijhydene_2020_10_125
crossref_primary_10_1007_s00339_022_06323_0
crossref_primary_10_1002_er_6401
crossref_primary_10_1007_s00339_022_06325_y
crossref_primary_10_1080_15567036_2023_2175938
crossref_primary_10_1016_j_ijhydene_2022_08_036
crossref_primary_10_1016_j_ijhydene_2020_03_078
crossref_primary_10_3390_coatings12121813
crossref_primary_10_4236_ojpc_2020_104012
crossref_primary_10_1002_asia_202400365
crossref_primary_10_3390_ijerph17134657
crossref_primary_10_3390_polym14235248
crossref_primary_10_1021_acs_energyfuels_4c02615
crossref_primary_10_1021_acs_jpcc_1c10535
crossref_primary_10_3390_app11073272
crossref_primary_10_1016_j_ijhydene_2023_04_127
crossref_primary_10_1002_est2_421
crossref_primary_10_1039_D4SE00353E
crossref_primary_10_1016_j_ceramint_2023_09_067
crossref_primary_10_1016_j_matchemphys_2024_129537
crossref_primary_10_1088_1361_6528_acf66e
crossref_primary_10_1007_s11172_022_3567_2
crossref_primary_10_2298_PAC2203259M
crossref_primary_10_1016_j_ijhydene_2020_11_224
crossref_primary_10_1039_D0QI01366H
crossref_primary_10_1016_j_ijhydene_2020_09_094
crossref_primary_10_1080_17435390_2024_2349304
crossref_primary_10_1016_j_ijhydene_2020_11_100
crossref_primary_10_1016_j_ijhydene_2020_11_222
crossref_primary_10_1002_ese3_1723
crossref_primary_10_1021_acs_energyfuels_3c04084
crossref_primary_10_1039_D0SE01920H
crossref_primary_10_1016_j_ijhydene_2021_01_061
crossref_primary_10_1016_S1003_6326_21_65743_6
crossref_primary_10_1039_D1NR04335H
crossref_primary_10_1016_j_ijhydene_2021_04_036
crossref_primary_10_23939_chcht18_02_211
crossref_primary_10_1002_er_8407
crossref_primary_10_1016_j_ijhydene_2022_12_277
crossref_primary_10_1002_aesr_202400362
crossref_primary_10_1007_s10971_023_06260_1
crossref_primary_10_1021_acs_jpcc_1c06158
crossref_primary_10_3390_jcs5060145
crossref_primary_10_1007_s12613_022_2510_8
crossref_primary_10_1016_j_ijhydene_2020_05_241
crossref_primary_10_1016_j_ijhydene_2024_11_110
crossref_primary_10_1021_acsanm_3c03763
crossref_primary_10_3390_en18030483
crossref_primary_10_1016_j_cej_2021_131730
crossref_primary_10_1016_j_ijhydene_2024_01_174
crossref_primary_10_1016_j_ijhydene_2021_12_204
crossref_primary_10_1021_acsami_3c14088
crossref_primary_10_1016_j_ijhydene_2020_12_208
crossref_primary_10_1016_j_ijhydene_2021_05_172
crossref_primary_10_18321_ectj1032
crossref_primary_10_1016_j_ijhydene_2024_08_029
crossref_primary_10_1002_cssc_202200281
crossref_primary_10_1021_acscatal_0c02930
crossref_primary_10_1007_s11224_024_02409_y
crossref_primary_10_1002_slct_202304582
crossref_primary_10_1016_j_ijhydene_2021_04_135
crossref_primary_10_1016_j_ijhydene_2024_03_133
crossref_primary_10_1021_acs_jpcc_2c06621
crossref_primary_10_1002_jccs_202100369
crossref_primary_10_1016_j_ijhydene_2021_05_206
crossref_primary_10_1016_j_ijhydene_2022_08_072
crossref_primary_10_1039_D4TA07170K
crossref_primary_10_1002_slct_202404435
crossref_primary_10_1002_slct_202402932
crossref_primary_10_1016_j_seta_2022_102774
crossref_primary_10_34133_2021_3750689
crossref_primary_10_1007_s11814_024_00311_1
crossref_primary_10_34133_energymatadv_0069
crossref_primary_10_1002_adfm_202406639
crossref_primary_10_1016_j_ijhydene_2020_07_128
crossref_primary_10_3390_mi13060963
crossref_primary_10_1002_adsu_202200470
crossref_primary_10_1016_j_ijhydene_2024_07_405
crossref_primary_10_1016_j_ijhydene_2024_01_314
Cites_doi 10.1021/cr030691s
10.1016/j.ijhydene.2017.12.163
10.1016/j.ijhydene.2016.04.025
10.1016/j.jallcom.2013.03.208
10.1016/j.ijhydene.2019.05.131
10.1016/j.rser.2017.05.132
10.1016/j.ijhydene.2008.07.054
10.1016/j.ijhydene.2009.01.079
10.1016/j.ijhydene.2016.11.195
10.1016/j.mattod.2015.08.002
10.1016/j.ijhydene.2006.11.022
10.1016/j.jallcom.2015.02.104
10.1039/C4CP04214J
10.1021/acs.jpcc.5b01416
10.1007/s00339-016-9651-4
10.1016/j.jechem.2018.04.012
10.1021/ja901798u
10.1016/j.jpowsour.2018.04.037
10.1016/j.jallcom.2004.04.145
10.1016/j.nanoen.2016.06.016
10.1016/j.est.2019.03.020
10.1021/ja9084995
10.1016/j.jpowsour.2017.05.075
10.3938/jkps.66.1649
10.1007/s10008-002-0297-0
10.1016/j.pnsc.2016.12.009
10.1016/j.ijhydene.2017.01.068
10.1016/S1369-7021(11)70143-2
10.1007/978-0-85729-221-6_3
10.1021/la9044072
10.1039/C5CP00412H
10.1016/j.ijhydene.2017.03.167
10.1016/j.ijhydene.2016.07.133
10.1021/cr0501846
10.1155/2015/914845
10.1039/c3ta01332d
10.1016/j.ijhydene.2015.10.040
10.1016/j.ijhydene.2016.05.241
10.1039/C5CC05474E
10.1021/jp504766b
10.1016/j.ijhydene.2009.06.063
10.1016/j.ijhydene.2018.12.026
10.1016/j.ijhydene.2019.04.077
10.1016/j.micromeso.2015.02.017
10.1039/C8EE02499E
10.1016/j.ijhydene.2016.11.069
10.1038/s41467-017-01633-x
10.1002/adma.200306557
10.1021/la301232r
10.1021/la051659r
10.1038/s41467-019-09365-w
10.1016/j.elecom.2015.08.023
10.1016/j.ijhydene.2017.10.124
10.1016/j.cej.2017.12.087
10.1016/j.ijhydene.2019.01.224
10.1021/acs.chemrev.8b00313
10.3934/energy.2015.1.121
10.1038/s42005-019-0142-8
10.1039/c3ta10583k
10.1016/j.carbon.2005.03.037
10.1021/acs.chemrev.5b00324
10.1021/jp908156v
10.1016/j.carbon.2010.05.015
10.1016/j.ijhydene.2009.07.005
10.1039/C4CE01667J
10.1016/j.ijhydene.2017.08.103
10.1016/j.ijhydene.2018.01.084
10.1007/978-0-85729-221-6_2
10.1016/j.ijhydene.2016.03.201
10.1016/j.ensm.2017.03.001
10.1039/C7EE02477K
10.1016/S1369-7021(03)00922-2
10.1016/j.rser.2015.05.011
10.1016/j.ijhydene.2014.01.174
10.1021/acs.energyfuels.6b02510
10.1038/35104634
10.1016/j.matchemphys.2019.01.009
10.1039/C7CS00205J
10.1016/j.ijhydene.2019.03.063
10.1021/jp200038b
10.1016/j.ijhydene.2015.09.051
10.1039/c2dt30383c
ContentType Journal Article
Copyright 2019 The Authors
Copyright_xml – notice: 2019 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.mtadv.2019.100022
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-0498
ExternalDocumentID oai_doaj_org_article_32e84cbbd13d46ec94aa9f6e2a9d5f13
10_1016_j_mtadv_2019_100022
S2590049819300967
GroupedDBID 0SF
6I.
AAEDW
AAFTH
AALRI
AAXUO
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
SSZ
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-f956f6282f4dad1a9131a0cca4e9894eefb960faa905e4eb0dbebbc2038ae8eb3
IEDL.DBID DOA
ISSN 2590-0498
IngestDate Wed Aug 27 01:26:22 EDT 2025
Thu Apr 24 22:58:22 EDT 2025
Tue Jul 01 03:00:41 EDT 2025
Tue Jul 25 21:05:23 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Spillover effect
Nanomaterials
Hydrogen economy
Kubas interaction
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-f956f6282f4dad1a9131a0cca4e9894eefb960faa905e4eb0dbebbc2038ae8eb3
ORCID 0000-0002-2239-6785
0000-0002-8605-1962
OpenAccessLink https://doaj.org/article/32e84cbbd13d46ec94aa9f6e2a9d5f13
ParticipantIDs doaj_primary_oai_doaj_org_article_32e84cbbd13d46ec94aa9f6e2a9d5f13
crossref_primary_10_1016_j_mtadv_2019_100022
crossref_citationtrail_10_1016_j_mtadv_2019_100022
elsevier_sciencedirect_doi_10_1016_j_mtadv_2019_100022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Materials today advances
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ahmed, Liu, Purewal, Tran, Wong-Foy, Veenstra, Matzger, Siegel (bib42) 2017; 10
Zhang, Zhan, Zhuang, Zhu, Qu, Chen, Guo, Wan, Li (bib92) 2016; 41
Huang, Hsieh, Lin, Tong, Chen (bib71) 2015; 119
Suttisawat, Rangsunvigit, Kitiyanan, Williams, Ndungu, Lototskyy, Nechaev, Linkov, Kulprathipanja (bib86) 2009; 34
Zhong, Ouyang, Ye, Liu, Wang, Yao, Zhu (bib59) 2017; 7
Zhong, Ouyang, Liu, Peng, Zhu, Zhu, Fang, Zhu (bib57) 2018; 390
Honarpazhouh, Astaraei, Naderi, Tavakoli (bib91) 2016; 41
Pickering, Li, Reed, Bevan, Book (bib75) 2013; 580
Xia, Yang, Zhu (bib39) 2013; 1
Wang, Wu, Yuan, Liu, Zhang, Fu, Zhu, Zhou, Wu, Huang (bib21) 2017; 46
Khan, Zou, Pan, Ma, Zhu, Huang, Zeng, Ding (bib82) 2019; 44
Heung (bib48) 2003
Oberoi, Nijhawan, Singh (bib23) 2018; 12
Andersson, Grönkvist (bib37) 2019; 44
Read, Thomas, Ordaz, Satyapal (bib9) 2007; 2
Konda, Chen (bib15) 2016; 19
Sakintuna, Lamari-Darkrim, Hirscher (bib34) 2007; 32
Zhao, Guan, Reinecke (bib4) 2019; 2
Xia, Tan, Wu, Fang, Sun, Guo, Huang, Yu (bib85) 2016; 26
Czakkel, Nagy, Dobos, Fouquet, Bahn, László (bib2) 2019; 44
Møller, Sheppard, Ravnsbæk, Buckley, Akiba, Li, Jensen (bib54) 2017; 10
Grochala, Edwards (bib52) 2004; 104
Orimo, Nakamori, Eliseo, Züttel, Jensen (bib55) 2007; 107
Sadaghiani, Mehrpooya, Ansarinasab (bib12) 2017; 42
Parambhath, Nagar, Ramaprabhu (bib67) 2012; 28
Panella, Hirscher, Roth (bib41) 2005; 43
Niaz, Manzoor, Pandith (bib44) 2015; 50
Divya, Ramaprabhu (bib63) 2014; 16
Skowroński, Sierczyńska, Kopczyk (bib24) 2002; 7
Züttel (bib13) 2003; 6
Schneemann, White, Kang, Jeong, Wan, Cho, Heo, Prendergast, Urban, Wood, Allendorf, Stavila (bib49) 2018; 118
Lototskyy, Tolj, Klochko, Davids, Swanepoel, Linkov (bib50) 2019
Broom (bib17) 2011; 27
Callini, Aguey-Zinsou, Ahuja, Ares, Bals, Biliškov, Chakraborty, Charalambopoulou, Chaudhary, Cuevas, Dam, de Jongh, Dornheim, Filinchuk, Grbović Novaković, Hirscher, Jensen, Jensen, Novaković, Lai, Leardini, Gattia, Pasquini, Steriotis, Turner, Vegge, Züttel, Montone (bib32) 2016; 41
Schlapbach, Züttel (bib7) 2001; 414
Morris, Trudeau, Reed, Book, Antonelli (bib61) 2015; 17
Jain, Gosselin, Skryabina, Fruchart, Huot (bib76) 2015; 636
Imamura, Masanari, Kusuhara, Katsumoto, Sumi, Sakata (bib51) 2005; 386
Gangu, Maddila, Mukkamala, Jonnalagadda (bib45) 2019; 30
Adams, Ostrom, Chen (bib26) 2010; 26
Skipper, Hamaed, Antonelli, Kaltsoyannis (bib66) 2012; 41
Chen, Ostrom (bib70) 2015; 115
Kaur, Pal (bib20) 2019; 23
Konda, Ostrom, Chen (bib18) 2015; 40
Doman (bib1) 2017
Spanopoulos, Bratsos, Tampaxis, Kourtellaris, Tasiopoulos, Charalambopoulou, Steriotis, Trikalitis (bib77) 2015; 17
Cardella, Decker, Klein (bib11) 2017; 42
Chen, Ouyang, Liu, Yao, Wang, Liu, Zhu (bib58) 2017; 359
Tan, Ouyang, Liu, Wang, Shao, Zhu (bib3) 2018; 43
Wu, Fan, Kuo, Deng (bib73) 2011; 115
(bib8) 2017
Zlotea, Campesi, Cuevas, Leroy, Dibandjo, Volkringer, Lolseau, Férey, Latroche (bib79) 2010; 132
Zhu, Zhang, Zhu, Zhang, Liu, Lin, Zhang, Li (bib28) 2017; 27
Bliznakov, Lefterova, Dimitrov (bib25) 2008; 33
Broom, Webb, Fanourgakis, Froudakis, Trikalitis, Hirscher (bib40) 2019; 44
Broom (bib60) 2011; 27
(accessed May 29, 2019).
Klechikov, Mercier, Merino, Blanco, Merino, Talyzin (bib27) 2015; 210
Kaskun, Kayfeci (bib87) 2018; 43
Gao, Yoo, Nakamura, Zhang, Chua (bib88) 2010; 48
Hydrogen Storage | Department of Energy.
Zacharia, ullah Rather (bib33) 2015
Wei, Lim, Tseng, Chan (bib31) 2017; 79
Varin, Shirani Bidabadi (bib56) 2015; 3
Morris, Hales, Trudeau, Georgiev, Embs, Eckert, Kaltsoyannis, Antonelli (bib65) 2019; 12
Seayad, Antonelli (bib47) 2004; 16
Ranjbar, Guo, Yu, Attard, Calka, Liu (bib80) 2009; 34
Konda, Chen (bib68) 2015; 60
Broom (bib30) 2011
Lachawiec, Qi, Yang (bib62) 2005; 21
Zlotea, Moretto, Steriotis (bib29) 2009; 34
Klechikov, Mercier, Sharifi, Baburin, Seifert, Talyzin (bib14) 2015; 51
Wang, Yang (bib72) 2009; 113
Gohari-Bajestani, Akhlaghi, Yürüm, Yürüm (bib83) 2017; 42
Zhang, Xu, Wang, Zhang, Wang, Jiao, Yuan (bib90) 2016; 41
Ahmed, Seth, Purewal, Wong-Foy, Veenstra, Matzger, Siegel (bib5) 2019; 10
Eftekhari, Fang (bib19) 2017; 42
Blankenship, Balahmar, Mokaya (bib89) 2017; 8
Chung, Ihm, Lee (bib64) 2015; 66
Cardella, Decker, Sundberg, Klein (bib10) 2017; 42
Adams, Wu, Nigro, Chen (bib22) 2009; 131
Gohari Bajestani, Yürüm, Yürüm (bib81) 2016; 41
Chen, Xie, Liu, Liu (bib84) 2018; 337
Langseth, Swang, Arstad, Lind, Cavka, Jensen, Kristensen, Moxnes, Unneberg, Heyn (bib43) 2019; 226
Ren, Fang, Zhou, Lu, Ren, Zhang (bib53) 2014; 118
Dillon, Parilla, Zhao, Kim, Gennett, Jones, Zhang, Heben (bib36) 2005
DeSantis, Mason, James, Houchins, Long, Veenstra (bib38) 2017; 31
Alsabawi, Gray, Webb (bib46) 2019; 44
Ren, Musyoka, Langmi, Mathe, Liao (bib35) 2017; 42
Cui, Wang, Liu, Ouyang, Zhang, Sun, Yao, Zhu (bib74) 2013; 1
Broom, Webb, Hurst, Parilla, Gennett, Brown, Zacharia, Tylianakis, Klontzas, Froudakis, Steriotis, Trikalitis, Anton, Hardy, Tamburello, Corgnale, van Hassel, Cossement, Chahine, Hirscher (bib16) 2016; 122
Sharma, Anil Kumar (bib78) 2014; 39
Adams, Chen (bib69) 2011; 14
Heung (10.1016/j.mtadv.2019.100022_bib48) 2003
Seayad (10.1016/j.mtadv.2019.100022_bib47) 2004; 16
Sadaghiani (10.1016/j.mtadv.2019.100022_bib12) 2017; 42
Grochala (10.1016/j.mtadv.2019.100022_bib52) 2004; 104
Bliznakov (10.1016/j.mtadv.2019.100022_bib25) 2008; 33
Xia (10.1016/j.mtadv.2019.100022_bib39) 2013; 1
Chen (10.1016/j.mtadv.2019.100022_bib70) 2015; 115
Andersson (10.1016/j.mtadv.2019.100022_bib37) 2019; 44
Honarpazhouh (10.1016/j.mtadv.2019.100022_bib91) 2016; 41
Eftekhari (10.1016/j.mtadv.2019.100022_bib19) 2017; 42
Lototskyy (10.1016/j.mtadv.2019.100022_bib50) 2019
Adams (10.1016/j.mtadv.2019.100022_bib22) 2009; 131
Xia (10.1016/j.mtadv.2019.100022_bib85) 2016; 26
Wu (10.1016/j.mtadv.2019.100022_bib73) 2011; 115
Ahmed (10.1016/j.mtadv.2019.100022_bib5) 2019; 10
Klechikov (10.1016/j.mtadv.2019.100022_bib14) 2015; 51
Zhang (10.1016/j.mtadv.2019.100022_bib90) 2016; 41
10.1016/j.mtadv.2019.100022_bib6
Alsabawi (10.1016/j.mtadv.2019.100022_bib46) 2019; 44
Blankenship (10.1016/j.mtadv.2019.100022_bib89) 2017; 8
Spanopoulos (10.1016/j.mtadv.2019.100022_bib77) 2015; 17
Read (10.1016/j.mtadv.2019.100022_bib9) 2007; 2
Morris (10.1016/j.mtadv.2019.100022_bib65) 2019; 12
Skowroński (10.1016/j.mtadv.2019.100022_bib24) 2002; 7
Ahmed (10.1016/j.mtadv.2019.100022_bib42) 2017; 10
Zlotea (10.1016/j.mtadv.2019.100022_bib79) 2010; 132
Oberoi (10.1016/j.mtadv.2019.100022_bib23) 2018; 12
Imamura (10.1016/j.mtadv.2019.100022_bib51) 2005; 386
Varin (10.1016/j.mtadv.2019.100022_bib56) 2015; 3
Ren (10.1016/j.mtadv.2019.100022_bib53) 2014; 118
Zhong (10.1016/j.mtadv.2019.100022_bib59) 2017; 7
Kaskun (10.1016/j.mtadv.2019.100022_bib87) 2018; 43
Doman (10.1016/j.mtadv.2019.100022_bib1) 2017
Broom (10.1016/j.mtadv.2019.100022_bib16) 2016; 122
Broom (10.1016/j.mtadv.2019.100022_bib30) 2011
Skipper (10.1016/j.mtadv.2019.100022_bib66) 2012; 41
Zhong (10.1016/j.mtadv.2019.100022_bib57) 2018; 390
Czakkel (10.1016/j.mtadv.2019.100022_bib2) 2019; 44
Langseth (10.1016/j.mtadv.2019.100022_bib43) 2019; 226
Ranjbar (10.1016/j.mtadv.2019.100022_bib80) 2009; 34
Broom (10.1016/j.mtadv.2019.100022_bib17) 2011; 27
Zacharia (10.1016/j.mtadv.2019.100022_bib33) 2015
Schlapbach (10.1016/j.mtadv.2019.100022_bib7) 2001; 414
Konda (10.1016/j.mtadv.2019.100022_bib15) 2016; 19
Cardella (10.1016/j.mtadv.2019.100022_bib10) 2017; 42
Niaz (10.1016/j.mtadv.2019.100022_bib44) 2015; 50
Zhao (10.1016/j.mtadv.2019.100022_bib4) 2019; 2
Ren (10.1016/j.mtadv.2019.100022_bib35) 2017; 42
Chen (10.1016/j.mtadv.2019.100022_bib58) 2017; 359
Huang (10.1016/j.mtadv.2019.100022_bib71) 2015; 119
Sharma (10.1016/j.mtadv.2019.100022_bib78) 2014; 39
Suttisawat (10.1016/j.mtadv.2019.100022_bib86) 2009; 34
Lachawiec (10.1016/j.mtadv.2019.100022_bib62) 2005; 21
Morris (10.1016/j.mtadv.2019.100022_bib61) 2015; 17
Klechikov (10.1016/j.mtadv.2019.100022_bib27) 2015; 210
Konda (10.1016/j.mtadv.2019.100022_bib68) 2015; 60
Tan (10.1016/j.mtadv.2019.100022_bib3) 2018; 43
Schneemann (10.1016/j.mtadv.2019.100022_bib49) 2018; 118
Møller (10.1016/j.mtadv.2019.100022_bib54) 2017; 10
Chung (10.1016/j.mtadv.2019.100022_bib64) 2015; 66
Wang (10.1016/j.mtadv.2019.100022_bib72) 2009; 113
Wang (10.1016/j.mtadv.2019.100022_bib21) 2017; 46
Wei (10.1016/j.mtadv.2019.100022_bib31) 2017; 79
Pickering (10.1016/j.mtadv.2019.100022_bib75) 2013; 580
Jain (10.1016/j.mtadv.2019.100022_bib76) 2015; 636
Zlotea (10.1016/j.mtadv.2019.100022_bib29) 2009; 34
Sakintuna (10.1016/j.mtadv.2019.100022_bib34) 2007; 32
Gangu (10.1016/j.mtadv.2019.100022_bib45) 2019; 30
Cui (10.1016/j.mtadv.2019.100022_bib74) 2013; 1
Parambhath (10.1016/j.mtadv.2019.100022_bib67) 2012; 28
Adams (10.1016/j.mtadv.2019.100022_bib69) 2011; 14
Callini (10.1016/j.mtadv.2019.100022_bib32) 2016; 41
Zhang (10.1016/j.mtadv.2019.100022_bib92) 2016; 41
Cardella (10.1016/j.mtadv.2019.100022_bib11) 2017; 42
(10.1016/j.mtadv.2019.100022_bib8) 2017
Gohari Bajestani (10.1016/j.mtadv.2019.100022_bib81) 2016; 41
Kaur (10.1016/j.mtadv.2019.100022_bib20) 2019; 23
Züttel (10.1016/j.mtadv.2019.100022_bib13) 2003; 6
Broom (10.1016/j.mtadv.2019.100022_bib40) 2019; 44
Panella (10.1016/j.mtadv.2019.100022_bib41) 2005; 43
Divya (10.1016/j.mtadv.2019.100022_bib63) 2014; 16
Chen (10.1016/j.mtadv.2019.100022_bib84) 2018; 337
Gohari-Bajestani (10.1016/j.mtadv.2019.100022_bib83) 2017; 42
Khan (10.1016/j.mtadv.2019.100022_bib82) 2019; 44
Zhu (10.1016/j.mtadv.2019.100022_bib28) 2017; 27
DeSantis (10.1016/j.mtadv.2019.100022_bib38) 2017; 31
Konda (10.1016/j.mtadv.2019.100022_bib18) 2015; 40
Broom (10.1016/j.mtadv.2019.100022_bib60) 2011; 27
Adams (10.1016/j.mtadv.2019.100022_bib26) 2010; 26
Orimo (10.1016/j.mtadv.2019.100022_bib55) 2007; 107
Dillon (10.1016/j.mtadv.2019.100022_bib36) 2005
Gao (10.1016/j.mtadv.2019.100022_bib88) 2010; 48
References_xml – volume: 107
  start-page: 4111
  year: 2007
  end-page: 4132
  ident: bib55
  article-title: Complex hydrides for hydrogen storage
  publication-title: Chem. Rev.
– volume: 27
  start-page: 61
  year: 2011
  end-page: 115
  ident: bib17
  article-title: Hydrogen sorption properties of materials
  publication-title: Green Energy Technol.
– volume: 34
  start-page: 6669
  year: 2009
  end-page: 6675
  ident: bib86
  article-title: Investigation of hydrogen storage capacity of multi-walled carbon nanotubes deposited with Pd or V
  publication-title: Int. J. Hydrogen Energy
– volume: 42
  start-page: 12339
  year: 2017
  end-page: 12354
  ident: bib10
  article-title: Process optimization for large-scale hydrogen liquefaction
  publication-title: Int. J. Hydrogen Energy
– volume: 30
  start-page: 132
  year: 2019
  end-page: 144
  ident: bib45
  article-title: Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: a review
  publication-title: J. Energy Chem.
– volume: 44
  start-page: 2976
  year: 2019
  end-page: 2980
  ident: bib46
  article-title: The effect of ball-milling gas environment on the sorption kinetics of MgH
  publication-title: Int. J. Hydrogen Energy
– year: 2019
  ident: bib50
  article-title: Metal hydride hydrogen storage tank for fuel cell utility vehicles
  publication-title: Int. J. Hydrogen Energy
– volume: 118
  start-page: 21778
  year: 2014
  end-page: 21784
  ident: bib53
  article-title: Hydrogen storage properties of magnesium hydride with V-based additives
  publication-title: J. Phys. Chem. C
– volume: 50
  start-page: 457
  year: 2015
  end-page: 469
  ident: bib44
  article-title: Hydrogen storage: materials, methods and perspectives
  publication-title: Renew. Sustain. Energy Rev.
– volume: 39
  start-page: 5888
  year: 2014
  end-page: 5898
  ident: bib78
  article-title: Effect of measurement parameters on thermodynamic properties of La-based metal hydrides
  publication-title: Int. J. Hydrogen Energy
– volume: 41
  start-page: 8515
  year: 2012
  ident: bib66
  article-title: The Kubas interaction in M(II) (M = Ti, V, Cr) hydrazine-based hydrogen storage materials: a DFT study
  publication-title: Dalton Trans.
– volume: 60
  start-page: 148
  year: 2015
  end-page: 152
  ident: bib68
  article-title: One-step synthesis of Pd and reduced graphene oxide nanocomposites for enhanced hydrogen sorption and storage
  publication-title: Electrochem. Commun.
– year: 2005
  ident: bib36
  article-title: NREL Activities in DOE Carbon-Based Materials Center of Excellence Overview : Timeline and Budget Timeline, Time
– volume: 7
  start-page: 222
  year: 2017
  end-page: 228
  ident: bib59
  article-title: An one-step approach towards hydrogen production and storage through regeneration of NaBH
  publication-title: Energy Storage Mater.
– volume: 42
  start-page: 29797
  year: 2017
  end-page: 29819
  ident: bib12
  article-title: Process development and exergy cost sensitivity analysis of a novel hydrogen liquefaction process
  publication-title: Int. J. Hydrogen Energy
– volume: 27
  start-page: 144
  year: 2017
  end-page: 148
  ident: bib28
  article-title: Electrochemical hydrogen storage properties of Mg
  publication-title: Prog. Nat. Sci. Mater. Int.
– volume: 580
  start-page: 233
  year: 2013
  end-page: 237
  ident: bib75
  article-title: Ti-V-Mn based metal hydrides for hydrogen storage
  publication-title: J. Alloy. Comp.
– reference: (accessed May 29, 2019).
– volume: 66
  start-page: 1649
  year: 2015
  end-page: 1655
  ident: bib64
  article-title: Recent progress on Kubas-type hydrogen-storage nanomaterials: from theories to experiments
  publication-title: J. Korean Phys. Soc.
– volume: 1
  start-page: 9365
  year: 2013
  ident: bib39
  article-title: Porous carbon-based materials for hydrogen storage: advancement and challenges
  publication-title: J. Mater. Chem. A
– volume: 226
  start-page: 220
  year: 2019
  end-page: 225
  ident: bib43
  article-title: Synthesis and characterization of Al@MOF materials
  publication-title: Mater. Chem. Phys.
– volume: 43
  start-page: 2209
  year: 2005
  end-page: 2214
  ident: bib41
  article-title: Hydrogen adsorption in different carbon nanostructures
  publication-title: Carbon
– volume: 43
  start-page: 10773
  year: 2018
  end-page: 10778
  ident: bib87
  article-title: The synthesized nickel-doped multi-walled carbon nanotubes for hydrogen storage under moderate pressures
  publication-title: Int. J. Hydrogen Energy
– volume: 41
  start-page: 17000
  year: 2016
  end-page: 17007
  ident: bib90
  article-title: Enhanced hydrogen storage performance of MgH
  publication-title: Int. J. Hydrogen Energy
– volume: 33
  start-page: 5789
  year: 2008
  end-page: 5794
  ident: bib25
  article-title: Electrochemical PCT isotherm study of hydrogen absorption/desorption in AB
  publication-title: Int. J. Hydrogen Energy
– volume: 43
  start-page: 2903
  year: 2018
  end-page: 2912
  ident: bib3
  article-title: Hydrogen generation by hydrolysis of Mg-Mg
  publication-title: Int. J. Hydrogen Energy
– start-page: 1
  year: 2015
  end-page: 18
  ident: bib33
  article-title: Review of solid state hydrogen storage methods adopting different kinds of novel materials
  publication-title: J. Nanomater.
– volume: 104
  start-page: 1283
  year: 2004
  end-page: 1316
  ident: bib52
  article-title: Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen
  publication-title: Chem. Rev.
– start-page: 1
  year: 2011
  end-page: 6
  ident: bib30
  article-title: Hydrogen storage materials and the characterisation of their hydrogen sorption properties
  publication-title: Spectroscopy
– volume: 2
  year: 2019
  ident: bib4
  article-title: Characterizing hydrogen-fuelled pulsating combustion on thermodynamic properties of a combustor
  publication-title: Commun. Phys.
– volume: 40
  start-page: 16365
  year: 2015
  end-page: 16374
  ident: bib18
  article-title: Synthesis and electrochemical study of Cd@Pd core/shell nanomaterials for hydrogen sorption and storage
  publication-title: Int. J. Hydrogen Energy
– volume: 7
  start-page: 11
  year: 2002
  end-page: 16
  ident: bib24
  article-title: Investigation of the influence of nickel content on the correlation between the hydrogen equilibrium pressure for hydrogen absorbing alloys and the capacity of MH electrodes in open and closed cells
  publication-title: J. Solid State Electrochem.
– volume: 21
  start-page: 11418
  year: 2005
  end-page: 11424
  ident: bib62
  article-title: Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement
  publication-title: Langmuir
– volume: 41
  start-page: 9810
  year: 2016
  end-page: 9818
  ident: bib81
  article-title: Decoration of graphene sheets with Pd/Al
  publication-title: Int. J. Hydrogen Energy
– volume: 414
  start-page: 353
  year: 2001
  end-page: 358
  ident: bib7
  article-title: Hydrogen-storage materials for mobile applications
  publication-title: Nature
– volume: 46
  start-page: 6816
  year: 2017
  end-page: 6854
  ident: bib21
  article-title: Latest advances in supercapacitors: from new electrode materials to novel device designs
  publication-title: Chem. Soc. Rev.
– volume: 122
  start-page: 1
  year: 2016
  end-page: 21
  ident: bib16
  article-title: Outlook and challenges for hydrogen storage in nanoporous materials
  publication-title: Appl. Phys. A Mater. Sci. Process
– volume: 41
  start-page: 14404
  year: 2016
  end-page: 14428
  ident: bib32
  article-title: Nanostructured materials for solid-state hydrogen storage: a review of the achievement of COST Action MP1103
  publication-title: Int. J. Hydrogen Energy
– volume: 42
  start-page: 289
  year: 2017
  end-page: 311
  ident: bib35
  article-title: Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review
  publication-title: Int. J. Hydrogen Energy
– volume: 113
  start-page: 21883
  year: 2009
  end-page: 21888
  ident: bib72
  article-title: Hydrogen storage properties of N-doped microporous carbon
  publication-title: J. Phys. Chem. C
– volume: 19
  start-page: 100
  year: 2016
  end-page: 108
  ident: bib15
  article-title: Palladium based nanomaterials for enhanced hydrogen spillover and storage
  publication-title: Mater. Today
– volume: 10
  start-page: 1645
  year: 2017
  ident: bib54
  article-title: Complex metal hydrides for hydrogen, thermal and electrochemical energy storage
  publication-title: Energ.
– volume: 115
  start-page: 9241
  year: 2011
  end-page: 9249
  ident: bib73
  article-title: DFT study of hydrogen storage by spillover on graphene with boron substitution
  publication-title: J. Phys. Chem. C
– volume: 17
  start-page: 532
  year: 2015
  end-page: 539
  ident: bib77
  article-title: Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate
  publication-title: CrystEngComm
– volume: 132
  start-page: 2991
  year: 2010
  end-page: 2997
  ident: bib79
  article-title: Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 26725
  year: 2014
  end-page: 26729
  ident: bib63
  article-title: Hydrogen storage in platinum decorated hydrogen exfoliated graphene sheets by spillover mechanism
  publication-title: Phys. Chem. Chem. Phys.
– volume: 31
  start-page: 2024
  year: 2017
  end-page: 2032
  ident: bib38
  article-title: Techno-economic analysis of metal-organic frameworks for hydrogen and natural gas storage
  publication-title: Energy Fuels
– volume: 26
  start-page: 488
  year: 2016
  end-page: 495
  ident: bib85
  article-title: Graphene-wrapped reversible reaction for advanced hydrogen storage
  publication-title: Nano Energy
– volume: 10
  year: 2019
  ident: bib5
  article-title: Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks
  publication-title: Nat. Commun.
– volume: 16
  start-page: 765
  year: 2004
  end-page: 777
  ident: bib47
  article-title: Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials
  publication-title: Adv. Mater.
– volume: 42
  start-page: 13329
  year: 2017
  end-page: 13338
  ident: bib11
  article-title: Roadmap to economically viable hydrogen liquefaction
  publication-title: Int. J. Hydrogen Energy
– volume: 23
  start-page: 234
  year: 2019
  end-page: 249
  ident: bib20
  article-title: Review on hydrogen storage materials and methods from an electrochemical viewpoint
  publication-title: J. Energy Storage
– volume: 26
  start-page: 7632
  year: 2010
  end-page: 7637
  ident: bib26
  article-title: Hydrogen electrosorption into Pd−Cd nanostructures
  publication-title: Langmuir
– year: 2017
  ident: bib1
  article-title: EIA projects 28% increase in world energy use by 2040, U.S. Energy Information Administration (EIA)
  publication-title: Today in Energy
– volume: 12
  start-page: 82
  year: 2018
  ident: bib23
  article-title: A novel electrochemical hydrogen storage-based proton battery for renewable energy storage
  publication-title: Energ.
– volume: 34
  start-page: 7263
  year: 2009
  end-page: 7268
  ident: bib80
  article-title: Effects of SiC nanoparticles with and without Ni on the hydrogen storage properties of MgH
  publication-title: Int. J. Hydrogen Energy
– volume: 44
  start-page: 7768
  year: 2019
  end-page: 7779
  ident: bib40
  article-title: Concepts for improving hydrogen storage in nanoporous materials
  publication-title: Int. J. Hydrogen Energy
– volume: 636
  start-page: 375
  year: 2015
  end-page: 380
  ident: bib76
  article-title: Hydrogenation properties of TiFe with Zr
  publication-title: J. Alloy. Comp.
– volume: 10
  start-page: 2459
  year: 2017
  end-page: 2471
  ident: bib42
  article-title: Balancing gravimetric and volumetric hydrogen density in MOFs
  publication-title: Energy Environ. Sci.
– volume: 17
  start-page: 9480
  year: 2015
  end-page: 9487
  ident: bib61
  article-title: Thermodynamically neutral Kubas-type hydrogen storage using amorphous Cr(III) alkyl hydride gels
  publication-title: Phys. Chem. Chem. Phys.
– volume: 42
  start-page: 6096
  year: 2017
  end-page: 6103
  ident: bib83
  article-title: Synthesis of anatase TiO
  publication-title: Int. J. Hydrogen Energy
– volume: 12
  start-page: 1580
  year: 2019
  end-page: 1591
  ident: bib65
  article-title: A manganese hydride molecular sieve for practical hydrogen storage under ambient conditions
  publication-title: Energy Environ. Sci.
– volume: 115
  start-page: 11999
  year: 2015
  end-page: 12044
  ident: bib70
  article-title: Palladium-based nanomaterials: synthesis and electrochemical applications
  publication-title: Chem. Rev.
– volume: 51
  start-page: 15280
  year: 2015
  end-page: 15283
  ident: bib14
  article-title: Hydrogen storage in high surface area graphene scaffolds
  publication-title: Chem. Commun.
– volume: 14
  start-page: 282
  year: 2011
  end-page: 289
  ident: bib69
  article-title: The role of palladium in a hydrogen economy
  publication-title: Mater. Today
– volume: 390
  start-page: 71
  year: 2018
  end-page: 77
  ident: bib57
  article-title: Sodium borohydride regeneration via direct hydrogen transformation of sodium metaborate tetrahydrate
  publication-title: J. Power Sources
– volume: 119
  start-page: 7662
  year: 2015
  end-page: 7669
  ident: bib71
  article-title: Hydrogen adsorption and storage in heteroatoms (B, N) modified carbon-based materials decorated with alkali metals: a computational study
  publication-title: J. Phys. Chem. C
– volume: 386
  start-page: 211
  year: 2005
  end-page: 216
  ident: bib51
  article-title: High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling
  publication-title: J. Alloy. Comp.
– volume: 44
  start-page: 15146
  year: 2019
  end-page: 15158
  ident: bib82
  article-title: Hydrogen storage properties of nanostructured 2MgH
  publication-title: Int. J. Hydrogen Energy
– volume: 34
  start-page: 3044
  year: 2009
  end-page: 3057
  ident: bib29
  article-title: A Round Robin characterisation of the hydrogen sorption properties of a carbon based material
  publication-title: Int. J. Hydrogen Energy
– year: 2003
  ident: bib48
  article-title: Using Metal Hydride to Store Hydrogen
– volume: 41
  start-page: 12175
  year: 2016
  end-page: 12182
  ident: bib91
  article-title: Electrochemical hydrogen storage in Pd-coated porous silicon/graphene oxide
  publication-title: Int. J. Hydrogen Energy
– reference: Hydrogen Storage | Department of Energy.
– volume: 131
  start-page: 6930
  year: 2009
  end-page: 6931
  ident: bib22
  article-title: Facile synthesis of Pd-Cd nanostructures with high capacity for hydrogen storage
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 3250
  year: 2010
  end-page: 3255
  ident: bib88
  article-title: Hydrogen storage in Pd-Ni doped defective carbon nanotubes through the formation of CH
  publication-title: Carbon
– volume: 210
  start-page: 46
  year: 2015
  end-page: 51
  ident: bib27
  article-title: Hydrogen storage in bulk graphene-related materials
  publication-title: Microporous Mesoporous Mater.
– volume: 79
  start-page: 1122
  year: 2017
  end-page: 1133
  ident: bib31
  article-title: A review on the characterization of hydrogen in hydrogen storage materials
  publication-title: Renew. Sustain. Energy Rev.
– volume: 118
  start-page: 10775
  year: 2018
  end-page: 10839
  ident: bib49
  article-title: Nanostructured metal hydrides for hydrogen storage
  publication-title: Chem. Rev.
– volume: 2
  start-page: 3
  year: 2007
  end-page: 4
  ident: bib9
  article-title: U.S. Department of Energy's system targets for on-board vehicular hydrogen storage
  publication-title: Mater. Matters
– volume: 359
  start-page: 400
  year: 2017
  end-page: 407
  ident: bib58
  article-title: Hydrolysis and regeneration of sodium borohydride (NaBH
  publication-title: J. Power Sources
– volume: 44
  start-page: 18169
  year: 2019
  end-page: 18178
  ident: bib2
  article-title: Static and dynamic studies of hydrogen adsorption on nanoporous carbon gels
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 1545
  year: 2017
  ident: bib89
  article-title: Oxygen-rich microporous carbons with exceptional hydrogen storage capacity
  publication-title: Nat. Commun.
– volume: 27
  start-page: 19
  year: 2011
  end-page: 59
  ident: bib60
  article-title: Potential storage materials
  publication-title: Green Energy Technol.
– volume: 337
  start-page: 161
  year: 2018
  end-page: 168
  ident: bib84
  article-title: Facile fabrication of ultrathin carbon layer encapsulated air-stable Mg nanoparticles with enhanced hydrogen storage properties
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 24
  year: 2003
  end-page: 33
  ident: bib13
  article-title: Materials for hydrogen storage
  publication-title: Mater. Today
– volume: 28
  start-page: 7826
  year: 2012
  end-page: 7833
  ident: bib67
  article-title: Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene
  publication-title: Langmuir
– volume: 41
  start-page: 1089
  year: 2016
  end-page: 1097
  ident: bib92
  article-title: The electrochemical hydrogen storage performances of Mg
  publication-title: Int. J. Hydrogen Energy
– volume: 42
  start-page: 25143
  year: 2017
  end-page: 25165
  ident: bib19
  article-title: Electrochemical hydrogen storage: opportunities for fuel storage, batteries, fuel cells, and supercapacitors
  publication-title: Int. J. Hydrogen Energy
– start-page: 1
  year: 2017
  end-page: 29
  ident: bib8
  article-title: Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles
– volume: 32
  start-page: 1121
  year: 2007
  end-page: 1140
  ident: bib34
  article-title: Metal hydride materials for solid hydrogen storage: a review
  publication-title: Int. J. Hydrogen Energy
– volume: 3
  start-page: 121
  year: 2015
  end-page: 143
  ident: bib56
  article-title: Nanostructured, complex hydride systems for hydrogen generation
  publication-title: AIMS Energy
– volume: 1
  start-page: 5603
  year: 2013
  end-page: 5611
  ident: bib74
  article-title: Remarkable enhancement in dehydrogenation of MgH
  publication-title: J. Mater. Chem. A
– volume: 44
  start-page: 11901
  year: 2019
  end-page: 11919
  ident: bib37
  article-title: Large-scale storage of hydrogen
  publication-title: Int. J. Hydrogen Energy
– volume: 104
  start-page: 1283
  year: 2004
  ident: 10.1016/j.mtadv.2019.100022_bib52
  article-title: Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen
  publication-title: Chem. Rev.
  doi: 10.1021/cr030691s
– volume: 43
  start-page: 2903
  year: 2018
  ident: 10.1016/j.mtadv.2019.100022_bib3
  article-title: Hydrogen generation by hydrolysis of Mg-Mg2Si composite and enhanced kinetics performance from introducing of MgCl2 and Si
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.12.163
– volume: 41
  start-page: 14404
  year: 2016
  ident: 10.1016/j.mtadv.2019.100022_bib32
  article-title: Nanostructured materials for solid-state hydrogen storage: a review of the achievement of COST Action MP1103
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.04.025
– volume: 580
  start-page: 233
  year: 2013
  ident: 10.1016/j.mtadv.2019.100022_bib75
  article-title: Ti-V-Mn based metal hydrides for hydrogen storage
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2013.03.208
– volume: 44
  start-page: 18169
  year: 2019
  ident: 10.1016/j.mtadv.2019.100022_bib2
  article-title: Static and dynamic studies of hydrogen adsorption on nanoporous carbon gels
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.131
– volume: 12
  start-page: 82
  year: 2018
  ident: 10.1016/j.mtadv.2019.100022_bib23
  article-title: A novel electrochemical hydrogen storage-based proton battery for renewable energy storage
  publication-title: Energ.
– volume: 79
  start-page: 1122
  year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib31
  article-title: A review on the characterization of hydrogen in hydrogen storage materials
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.132
– volume: 33
  start-page: 5789
  year: 2008
  ident: 10.1016/j.mtadv.2019.100022_bib25
  article-title: Electrochemical PCT isotherm study of hydrogen absorption/desorption in AB5 type intermetallic compounds
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.07.054
– volume: 34
  start-page: 3044
  year: 2009
  ident: 10.1016/j.mtadv.2019.100022_bib29
  article-title: A Round Robin characterisation of the hydrogen sorption properties of a carbon based material
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.01.079
– volume: 42
  start-page: 289
  year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib35
  article-title: Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.11.195
– volume: 19
  start-page: 100
  year: 2016
  ident: 10.1016/j.mtadv.2019.100022_bib15
  article-title: Palladium based nanomaterials for enhanced hydrogen spillover and storage
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.08.002
– volume: 32
  start-page: 1121
  year: 2007
  ident: 10.1016/j.mtadv.2019.100022_bib34
  article-title: Metal hydride materials for solid hydrogen storage: a review
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.11.022
– volume: 636
  start-page: 375
  year: 2015
  ident: 10.1016/j.mtadv.2019.100022_bib76
  article-title: Hydrogenation properties of TiFe with Zr7Ni10 alloy as additive
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2015.02.104
– volume: 16
  start-page: 26725
  year: 2014
  ident: 10.1016/j.mtadv.2019.100022_bib63
  article-title: Hydrogen storage in platinum decorated hydrogen exfoliated graphene sheets by spillover mechanism
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04214J
– volume: 119
  start-page: 7662
  year: 2015
  ident: 10.1016/j.mtadv.2019.100022_bib71
  article-title: Hydrogen adsorption and storage in heteroatoms (B, N) modified carbon-based materials decorated with alkali metals: a computational study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b01416
– volume: 122
  start-page: 1
  year: 2016
  ident: 10.1016/j.mtadv.2019.100022_bib16
  article-title: Outlook and challenges for hydrogen storage in nanoporous materials
  publication-title: Appl. Phys. A Mater. Sci. Process
  doi: 10.1007/s00339-016-9651-4
– volume: 30
  start-page: 132
  year: 2019
  ident: 10.1016/j.mtadv.2019.100022_bib45
  article-title: Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: a review
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2018.04.012
– volume: 131
  start-page: 6930
  year: 2009
  ident: 10.1016/j.mtadv.2019.100022_bib22
  article-title: Facile synthesis of Pd-Cd nanostructures with high capacity for hydrogen storage
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901798u
– volume: 390
  start-page: 71
  year: 2018
  ident: 10.1016/j.mtadv.2019.100022_bib57
  article-title: Sodium borohydride regeneration via direct hydrogen transformation of sodium metaborate tetrahydrate
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.037
– volume: 2
  start-page: 3
  year: 2007
  ident: 10.1016/j.mtadv.2019.100022_bib9
  article-title: U.S. Department of Energy's system targets for on-board vehicular hydrogen storage
  publication-title: Mater. Matters
– volume: 386
  start-page: 211
  year: 2005
  ident: 10.1016/j.mtadv.2019.100022_bib51
  article-title: High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2004.04.145
– volume: 26
  start-page: 488
  year: 2016
  ident: 10.1016/j.mtadv.2019.100022_bib85
  article-title: Graphene-wrapped reversible reaction for advanced hydrogen storage
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.016
– volume: 23
  start-page: 234
  year: 2019
  ident: 10.1016/j.mtadv.2019.100022_bib20
  article-title: Review on hydrogen storage materials and methods from an electrochemical viewpoint
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.03.020
– volume: 132
  start-page: 2991
  year: 2010
  ident: 10.1016/j.mtadv.2019.100022_bib79
  article-title: Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9084995
– start-page: 1
  year: 2011
  ident: 10.1016/j.mtadv.2019.100022_bib30
  article-title: Hydrogen storage materials and the characterisation of their hydrogen sorption properties
  publication-title: Spectroscopy
– volume: 359
  start-page: 400
  year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib58
  article-title: Hydrolysis and regeneration of sodium borohydride (NaBH4) – a combination of hydrogen production and storage
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.075
– volume: 66
  start-page: 1649
  year: 2015
  ident: 10.1016/j.mtadv.2019.100022_bib64
  article-title: Recent progress on Kubas-type hydrogen-storage nanomaterials: from theories to experiments
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.66.1649
– volume: 7
  start-page: 11
  year: 2002
  ident: 10.1016/j.mtadv.2019.100022_bib24
  article-title: Investigation of the influence of nickel content on the correlation between the hydrogen equilibrium pressure for hydrogen absorbing alloys and the capacity of MH electrodes in open and closed cells
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-002-0297-0
– volume: 27
  start-page: 144
  year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib28
  article-title: Electrochemical hydrogen storage properties of Mg100-xNix produced by hydriding combustion synthesis and mechanical milling
  publication-title: Prog. Nat. Sci. Mater. Int.
  doi: 10.1016/j.pnsc.2016.12.009
– volume: 42
  start-page: 13329
  year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib11
  article-title: Roadmap to economically viable hydrogen liquefaction
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.01.068
– volume: 14
  start-page: 282
  year: 2011
  ident: 10.1016/j.mtadv.2019.100022_bib69
  article-title: The role of palladium in a hydrogen economy
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(11)70143-2
– volume: 27
  start-page: 61
  year: 2011
  ident: 10.1016/j.mtadv.2019.100022_bib17
  article-title: Hydrogen sorption properties of materials
  publication-title: Green Energy Technol.
  doi: 10.1007/978-0-85729-221-6_3
– volume: 26
  start-page: 7632
  year: 2010
  ident: 10.1016/j.mtadv.2019.100022_bib26
  article-title: Hydrogen electrosorption into Pd−Cd nanostructures
  publication-title: Langmuir
  doi: 10.1021/la9044072
– volume: 17
  start-page: 9480
  year: 2015
  ident: 10.1016/j.mtadv.2019.100022_bib61
  article-title: Thermodynamically neutral Kubas-type hydrogen storage using amorphous Cr(III) alkyl hydride gels
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP00412H
– volume: 42
  start-page: 12339
  year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib10
  article-title: Process optimization for large-scale hydrogen liquefaction
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.03.167
– volume: 41
  start-page: 17000
  year: 2016
  ident: 10.1016/j.mtadv.2019.100022_bib90
  article-title: Enhanced hydrogen storage performance of MgH2Ni2P/graphene nanosheets
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.07.133
– volume: 107
  start-page: 4111
  year: 2007
  ident: 10.1016/j.mtadv.2019.100022_bib55
  article-title: Complex hydrides for hydrogen storage
  publication-title: Chem. Rev.
  doi: 10.1021/cr0501846
– year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib1
  article-title: EIA projects 28% increase in world energy use by 2040, U.S. Energy Information Administration (EIA)
  publication-title: Today in Energy
– start-page: 1
  year: 2015
  ident: 10.1016/j.mtadv.2019.100022_bib33
  article-title: Review of solid state hydrogen storage methods adopting different kinds of novel materials
  publication-title: J. Nanomater.
  doi: 10.1155/2015/914845
– volume: 1
  start-page: 5603
  year: 2013
  ident: 10.1016/j.mtadv.2019.100022_bib74
  article-title: Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta01332d
– volume: 41
  start-page: 1089
  year: 2016
  ident: 10.1016/j.mtadv.2019.100022_bib92
  article-title: The electrochemical hydrogen storage performances of MgxCo100-x (x = 40, 45, 50, 55, 60, 63) body-centered cubic alloys and their Pd-doped system
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.10.040
– volume: 41
  start-page: 12175
  year: 2016
  ident: 10.1016/j.mtadv.2019.100022_bib91
  article-title: Electrochemical hydrogen storage in Pd-coated porous silicon/graphene oxide
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.05.241
– ident: 10.1016/j.mtadv.2019.100022_bib6
– volume: 51
  start-page: 15280
  year: 2015
  ident: 10.1016/j.mtadv.2019.100022_bib14
  article-title: Hydrogen storage in high surface area graphene scaffolds
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05474E
– volume: 118
  start-page: 21778
  year: 2014
  ident: 10.1016/j.mtadv.2019.100022_bib53
  article-title: Hydrogen storage properties of magnesium hydride with V-based additives
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp504766b
– volume: 34
  start-page: 6669
  year: 2009
  ident: 10.1016/j.mtadv.2019.100022_bib86
  article-title: Investigation of hydrogen storage capacity of multi-walled carbon nanotubes deposited with Pd or V
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.06.063
– volume: 44
  start-page: 2976
  year: 2019
  ident: 10.1016/j.mtadv.2019.100022_bib46
  article-title: The effect of ball-milling gas environment on the sorption kinetics of MgH2 with/without additives for hydrogen storage
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.12.026
– volume: 44
  start-page: 15146
  year: 2019
  ident: 10.1016/j.mtadv.2019.100022_bib82
  article-title: Hydrogen storage properties of nanostructured 2MgH2Co powders: the effect of high-pressure compression
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.04.077
– volume: 210
  start-page: 46
  year: 2015
  ident: 10.1016/j.mtadv.2019.100022_bib27
  article-title: Hydrogen storage in bulk graphene-related materials
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2015.02.017
– volume: 12
  start-page: 1580
  year: 2019
  ident: 10.1016/j.mtadv.2019.100022_bib65
  article-title: A manganese hydride molecular sieve for practical hydrogen storage under ambient conditions
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02499E
– volume: 42
  start-page: 6096
  year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib83
  article-title: Synthesis of anatase TiO2 with exposed (001) facets grown on N-doped reduced graphene oxide for enhanced hydrogen storage
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.11.069
– volume: 8
  start-page: 1545
  year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib89
  article-title: Oxygen-rich microporous carbons with exceptional hydrogen storage capacity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01633-x
– volume: 16
  start-page: 765
  year: 2004
  ident: 10.1016/j.mtadv.2019.100022_bib47
  article-title: Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200306557
– volume: 28
  start-page: 7826
  year: 2012
  ident: 10.1016/j.mtadv.2019.100022_bib67
  article-title: Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene
  publication-title: Langmuir
  doi: 10.1021/la301232r
– volume: 21
  start-page: 11418
  year: 2005
  ident: 10.1016/j.mtadv.2019.100022_bib62
  article-title: Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement
  publication-title: Langmuir
  doi: 10.1021/la051659r
– volume: 10
  year: 2019
  ident: 10.1016/j.mtadv.2019.100022_bib5
  article-title: Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09365-w
– volume: 60
  start-page: 148
  year: 2015
  ident: 10.1016/j.mtadv.2019.100022_bib68
  article-title: One-step synthesis of Pd and reduced graphene oxide nanocomposites for enhanced hydrogen sorption and storage
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.08.023
– volume: 42
  start-page: 29797
  year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib12
  article-title: Process development and exergy cost sensitivity analysis of a novel hydrogen liquefaction process
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.10.124
– volume: 337
  start-page: 161
  year: 2018
  ident: 10.1016/j.mtadv.2019.100022_bib84
  article-title: Facile fabrication of ultrathin carbon layer encapsulated air-stable Mg nanoparticles with enhanced hydrogen storage properties
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.12.087
– volume: 44
  start-page: 7768
  year: 2019
  ident: 10.1016/j.mtadv.2019.100022_bib40
  article-title: Concepts for improving hydrogen storage in nanoporous materials
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.01.224
– volume: 118
  start-page: 10775
  year: 2018
  ident: 10.1016/j.mtadv.2019.100022_bib49
  article-title: Nanostructured metal hydrides for hydrogen storage
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00313
– volume: 3
  start-page: 121
  year: 2015
  ident: 10.1016/j.mtadv.2019.100022_bib56
  article-title: Nanostructured, complex hydride systems for hydrogen generation
  publication-title: AIMS Energy
  doi: 10.3934/energy.2015.1.121
– volume: 2
  year: 2019
  ident: 10.1016/j.mtadv.2019.100022_bib4
  article-title: Characterizing hydrogen-fuelled pulsating combustion on thermodynamic properties of a combustor
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-019-0142-8
– volume: 1
  start-page: 9365
  year: 2013
  ident: 10.1016/j.mtadv.2019.100022_bib39
  article-title: Porous carbon-based materials for hydrogen storage: advancement and challenges
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10583k
– start-page: 1
  year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib8
– volume: 43
  start-page: 2209
  year: 2005
  ident: 10.1016/j.mtadv.2019.100022_bib41
  article-title: Hydrogen adsorption in different carbon nanostructures
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.03.037
– year: 2019
  ident: 10.1016/j.mtadv.2019.100022_bib50
  article-title: Metal hydride hydrogen storage tank for fuel cell utility vehicles
  publication-title: Int. J. Hydrogen Energy
– volume: 115
  start-page: 11999
  year: 2015
  ident: 10.1016/j.mtadv.2019.100022_bib70
  article-title: Palladium-based nanomaterials: synthesis and electrochemical applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00324
– volume: 113
  start-page: 21883
  year: 2009
  ident: 10.1016/j.mtadv.2019.100022_bib72
  article-title: Hydrogen storage properties of N-doped microporous carbon
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp908156v
– volume: 48
  start-page: 3250
  year: 2010
  ident: 10.1016/j.mtadv.2019.100022_bib88
  article-title: Hydrogen storage in Pd-Ni doped defective carbon nanotubes through the formation of CHx (x = 1, 2)
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.05.015
– volume: 34
  start-page: 7263
  year: 2009
  ident: 10.1016/j.mtadv.2019.100022_bib80
  article-title: Effects of SiC nanoparticles with and without Ni on the hydrogen storage properties of MgH2
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.07.005
– volume: 17
  start-page: 532
  year: 2015
  ident: 10.1016/j.mtadv.2019.100022_bib77
  article-title: Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate
  publication-title: CrystEngComm
  doi: 10.1039/C4CE01667J
– volume: 42
  start-page: 25143
  year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib19
  article-title: Electrochemical hydrogen storage: opportunities for fuel storage, batteries, fuel cells, and supercapacitors
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.08.103
– volume: 43
  start-page: 10773
  year: 2018
  ident: 10.1016/j.mtadv.2019.100022_bib87
  article-title: The synthesized nickel-doped multi-walled carbon nanotubes for hydrogen storage under moderate pressures
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.01.084
– volume: 10
  start-page: 1645
  year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib54
  article-title: Complex metal hydrides for hydrogen, thermal and electrochemical energy storage
  publication-title: Energ.
– volume: 27
  start-page: 19
  year: 2011
  ident: 10.1016/j.mtadv.2019.100022_bib60
  article-title: Potential storage materials
  publication-title: Green Energy Technol.
  doi: 10.1007/978-0-85729-221-6_2
– volume: 41
  start-page: 9810
  year: 2016
  ident: 10.1016/j.mtadv.2019.100022_bib81
  article-title: Decoration of graphene sheets with Pd/Al2O3 hybrid particles for hydrogen storage applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.03.201
– volume: 7
  start-page: 222
  year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib59
  article-title: An one-step approach towards hydrogen production and storage through regeneration of NaBH4
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.03.001
– volume: 10
  start-page: 2459
  year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib42
  article-title: Balancing gravimetric and volumetric hydrogen density in MOFs
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02477K
– volume: 6
  start-page: 24
  year: 2003
  ident: 10.1016/j.mtadv.2019.100022_bib13
  article-title: Materials for hydrogen storage
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(03)00922-2
– year: 2005
  ident: 10.1016/j.mtadv.2019.100022_bib36
– volume: 50
  start-page: 457
  year: 2015
  ident: 10.1016/j.mtadv.2019.100022_bib44
  article-title: Hydrogen storage: materials, methods and perspectives
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.05.011
– volume: 39
  start-page: 5888
  year: 2014
  ident: 10.1016/j.mtadv.2019.100022_bib78
  article-title: Effect of measurement parameters on thermodynamic properties of La-based metal hydrides
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.01.174
– volume: 31
  start-page: 2024
  year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib38
  article-title: Techno-economic analysis of metal-organic frameworks for hydrogen and natural gas storage
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.6b02510
– year: 2003
  ident: 10.1016/j.mtadv.2019.100022_bib48
– volume: 414
  start-page: 353
  year: 2001
  ident: 10.1016/j.mtadv.2019.100022_bib7
  article-title: Hydrogen-storage materials for mobile applications
  publication-title: Nature
  doi: 10.1038/35104634
– volume: 226
  start-page: 220
  year: 2019
  ident: 10.1016/j.mtadv.2019.100022_bib43
  article-title: Synthesis and characterization of Al@MOF materials
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2019.01.009
– volume: 46
  start-page: 6816
  year: 2017
  ident: 10.1016/j.mtadv.2019.100022_bib21
  article-title: Latest advances in supercapacitors: from new electrode materials to novel device designs
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00205J
– volume: 44
  start-page: 11901
  year: 2019
  ident: 10.1016/j.mtadv.2019.100022_bib37
  article-title: Large-scale storage of hydrogen
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.03.063
– volume: 115
  start-page: 9241
  year: 2011
  ident: 10.1016/j.mtadv.2019.100022_bib73
  article-title: DFT study of hydrogen storage by spillover on graphene with boron substitution
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp200038b
– volume: 40
  start-page: 16365
  year: 2015
  ident: 10.1016/j.mtadv.2019.100022_bib18
  article-title: Synthesis and electrochemical study of Cd@Pd core/shell nanomaterials for hydrogen sorption and storage
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.09.051
– volume: 41
  start-page: 8515
  year: 2012
  ident: 10.1016/j.mtadv.2019.100022_bib66
  article-title: The Kubas interaction in M(II) (M = Ti, V, Cr) hydrazine-based hydrogen storage materials: a DFT study
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt30383c
SSID ssj0002810134
Score 2.566529
Snippet The hydrogen economy is a system that is proposed as a long-term solution for a secure energy future. Hydrogen production, storage, distribution, and...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100022
SubjectTerms Hydrogen economy
Kubas interaction
Nanomaterials
Spillover effect
Title Recent advances in nanomaterial-based solid-state hydrogen storage
URI https://dx.doi.org/10.1016/j.mtadv.2019.100022
https://doaj.org/article/32e84cbbd13d46ec94aa9f6e2a9d5f13
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1FeysBIRGI7xh4palUhlYlK3Sw_RStIUQlILPx2zk5ShaUsLBkiJ47On3Lf-c7fIXTFc4cz4ouU8MJCgMJMKjRhKVBbR41XmsVT_JNHNp7Sh1kx67T6CjVhtTxwbbgbgh2nRmubE0uZM4IqJTxzWAlb-NivFmci6wRTi7hlBFCLKWWg96F-UfBWcigWd71Wyn6Gwi4RygQyjH-5paje3_FOHY8z2kO7DVVM7upP3EdbrjxAOx0BwUM0ANYHXiNpMvnvybxMSlUugYZGZKXBSdkE8DW3aTw7lDx_2dUSUJOEskj4mRyh6Wj4dD9Om64IqaE5rVIPEY1nECl5apXNlchJrjJYCOqCmLpzXkNU4sFKWeGo05nVTmsDK8KV4xA7H6NeuSzdCUq04iKkXYRRhOqccApkwHp2i40qDKd9hFujSNNIhofOFS-yrQ1byGhJGSwpa0v20fX6obdaMWPz8EGw9npokLuONwAEsgGB_AsEfcTatZINc6gZAbxqvmn20_-Y_Qxt4xCFx72Zc9SrVh_uAqhKpS8jKuE6-R7-AOux56M
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+nanomaterial-based+solid-state+hydrogen+storage&rft.jtitle=Materials+today+advances&rft.au=Emmanuel+Boateng&rft.au=Aicheng+Chen&rft.date=2020-06-01&rft.pub=Elsevier&rft.issn=2590-0498&rft.eissn=2590-0498&rft.volume=6&rft_id=info:doi/10.1016%2Fj.mtadv.2019.100022&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_32e84cbbd13d46ec94aa9f6e2a9d5f13
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0498&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0498&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0498&client=summon