Recent advances in nanomaterial-based solid-state hydrogen storage
The hydrogen economy is a system that is proposed as a long-term solution for a secure energy future. Hydrogen production, storage, distribution, and utilization make up the fundamental elements of an envisaged hydrogen economy system. These elements have been the subject of intense research for dec...
Saved in:
Published in | Materials today advances Vol. 6; p. 100022 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2590-0498 2590-0498 |
DOI | 10.1016/j.mtadv.2019.100022 |
Cover
Loading…
Abstract | The hydrogen economy is a system that is proposed as a long-term solution for a secure energy future. Hydrogen production, storage, distribution, and utilization make up the fundamental elements of an envisaged hydrogen economy system. These elements have been the subject of intense research for decades; however, the development of a viable safe and efficient strategy for the storage of hydrogen remains the most challenging. Solid-state hydrogen storage research has expanded significantly, with the potential to fulfill the targets of the United States Department of Energy. This review highlights recent advances in the nanomaterial-based solid-state hydrogen storage. In addition, characterization techniques, including gravimetric and volumetric techniques, as well as electrochemical methods are discussed. Moreover, several promising approaches and an outlook for the enhancement of hydrogen storage are addressed.
[Display omitted]
•The feature of a desired hydrogen storage is described.•Recent development of nanomaterials for the solid-state hydrogen storage is highlighted.•Hydrogen sorption measurement techniques are discussed.•Key strategies for enhancing hydrogen storage capacity are presented. |
---|---|
AbstractList | The hydrogen economy is a system that is proposed as a long-term solution for a secure energy future. Hydrogen production, storage, distribution, and utilization make up the fundamental elements of an envisaged hydrogen economy system. These elements have been the subject of intense research for decades; however, the development of a viable safe and efficient strategy for the storage of hydrogen remains the most challenging. Solid-state hydrogen storage research has expanded significantly, with the potential to fulfill the targets of the United States Department of Energy. This review highlights recent advances in the nanomaterial-based solid-state hydrogen storage. In addition, characterization techniques, including gravimetric and volumetric techniques, as well as electrochemical methods are discussed. Moreover, several promising approaches and an outlook for the enhancement of hydrogen storage are addressed.
[Display omitted]
•The feature of a desired hydrogen storage is described.•Recent development of nanomaterials for the solid-state hydrogen storage is highlighted.•Hydrogen sorption measurement techniques are discussed.•Key strategies for enhancing hydrogen storage capacity are presented. The hydrogen economy is a system that is proposed as a long-term solution for a secure energy future. Hydrogen production, storage, distribution, and utilization make up the fundamental elements of an envisaged hydrogen economy system. These elements have been the subject of intense research for decades; however, the development of a viable safe and efficient strategy for the storage of hydrogen remains the most challenging. Solid-state hydrogen storage research has expanded significantly, with the potential to fulfill the targets of the United States Department of Energy. This review highlights recent advances in the nanomaterial-based solid-state hydrogen storage. In addition, characterization techniques, including gravimetric and volumetric techniques, as well as electrochemical methods are discussed. Moreover, several promising approaches and an outlook for the enhancement of hydrogen storage are addressed. |
ArticleNumber | 100022 |
Author | Boateng, Emmanuel Chen, Aicheng |
Author_xml | – sequence: 1 givenname: Emmanuel orcidid: 0000-0002-8605-1962 surname: Boateng fullname: Boateng, Emmanuel – sequence: 2 givenname: Aicheng orcidid: 0000-0002-2239-6785 surname: Chen fullname: Chen, Aicheng email: aicheng@uoguelph.ca |
BookMark | eNqFkM1KAzEURoMoqNUncDMvMDXJpMNk4UKLf1AQRNfhJrmpKdNEkiD07U1bEXGhq4SPnAM5p-QwxICEXDA6ZZT1l6vpuoD9mHLKZF0o5fyAnPCZpC0Vcjj8cT8m5zmvtk-GinbihNw8o8FQmiqAYDA3PjQBQlxDweRhbDVktE2Oo7dtLnVt3jY2xSWGJpeYYIln5MjBmPH865yQ17vbl_lDu3i6f5xfL1ojmCitk7Pe9XzgTliwDCTrGFBjQKAcpEB0WvbUAUg6Q4GaWo1aG067AXBA3U3I495rI6zUe_JrSBsVwavdENNSQSrejKg6joMwWlvWWdGjkaJqXY8cpJ051lVXt3eZFHNO6L59jKptVbVSu6pqW1Xtq1ZK_qKMr0l8DCWBH_9hr_Ys1kQfHpPKxmNNbn1CU-of_J_8JwPPl8Q |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2023_08_128 crossref_primary_10_1049_tje2_12103 crossref_primary_10_1016_j_commatsci_2023_112677 crossref_primary_10_1016_j_ijhydene_2022_02_185 crossref_primary_10_1021_acs_jpclett_3c00941 crossref_primary_10_4236_msce_2020_812003 crossref_primary_10_1039_D4TA00717D crossref_primary_10_1016_j_ijhydene_2023_05_272 crossref_primary_10_1039_D3TA04554D crossref_primary_10_3390_ijms23137111 crossref_primary_10_1016_j_ijhydene_2022_04_227 crossref_primary_10_1016_j_diamond_2020_107968 crossref_primary_10_1007_s10853_024_10054_3 crossref_primary_10_1016_j_ijhydene_2022_06_242 crossref_primary_10_1007_s10854_024_12200_8 crossref_primary_10_1016_j_ijhydene_2021_01_020 crossref_primary_10_1007_s12274_024_6550_4 crossref_primary_10_1016_j_ijhydene_2023_08_131 crossref_primary_10_1016_j_jpcs_2023_111863 crossref_primary_10_32604_iasc_2023_033627 crossref_primary_10_1016_j_carbon_2024_119657 crossref_primary_10_1016_j_ijhydene_2023_08_359 crossref_primary_10_1021_acs_energyfuels_2c00011 crossref_primary_10_1134_S1995078020030027 crossref_primary_10_1016_j_matchemphys_2024_130318 crossref_primary_10_1016_j_ijhydene_2023_08_356 crossref_primary_10_1016_j_ijhydene_2021_03_153 crossref_primary_10_1016_j_ijhydene_2023_05_268 crossref_primary_10_1002_wene_526 crossref_primary_10_1007_s00339_021_05194_1 crossref_primary_10_1021_acs_energyfuels_4c02234 crossref_primary_10_1007_s10450_023_00388_w crossref_primary_10_1016_j_ijhydene_2023_09_281 crossref_primary_10_1016_j_ijhydene_2020_09_185 crossref_primary_10_1016_j_ijhydene_2020_10_110 crossref_primary_10_1016_j_matchar_2020_110795 crossref_primary_10_1021_acsami_4c10351 crossref_primary_10_1016_j_ijhydene_2024_09_215 crossref_primary_10_1002_ente_202201434 crossref_primary_10_1007_s42823_023_00557_5 crossref_primary_10_1039_D2SE01351G crossref_primary_10_3390_qubs5030022 crossref_primary_10_1002_masy_202300036 crossref_primary_10_1002_adfm_202316368 crossref_primary_10_1007_s10098_024_03096_3 crossref_primary_10_1016_j_ijhydene_2022_03_048 crossref_primary_10_3390_cryst13060878 crossref_primary_10_1002_adsu_202200276 crossref_primary_10_1039_D2YA00242F crossref_primary_10_3390_catal15030260 crossref_primary_10_1021_acs_energyfuels_4c01633 crossref_primary_10_33435_tcandtc_1080492 crossref_primary_10_3390_nano13182588 crossref_primary_10_1016_j_ijhydene_2021_07_058 crossref_primary_10_1016_j_ijhydene_2021_09_225 crossref_primary_10_1016_j_ijhydene_2021_09_106 crossref_primary_10_1063_5_0098522 crossref_primary_10_3390_nano14121036 crossref_primary_10_1016_j_energy_2021_120943 crossref_primary_10_1016_j_ijhydene_2020_10_125 crossref_primary_10_1007_s00339_022_06323_0 crossref_primary_10_1002_er_6401 crossref_primary_10_1007_s00339_022_06325_y crossref_primary_10_1080_15567036_2023_2175938 crossref_primary_10_1016_j_ijhydene_2022_08_036 crossref_primary_10_1016_j_ijhydene_2020_03_078 crossref_primary_10_3390_coatings12121813 crossref_primary_10_4236_ojpc_2020_104012 crossref_primary_10_1002_asia_202400365 crossref_primary_10_3390_ijerph17134657 crossref_primary_10_3390_polym14235248 crossref_primary_10_1021_acs_energyfuels_4c02615 crossref_primary_10_1021_acs_jpcc_1c10535 crossref_primary_10_3390_app11073272 crossref_primary_10_1016_j_ijhydene_2023_04_127 crossref_primary_10_1002_est2_421 crossref_primary_10_1039_D4SE00353E crossref_primary_10_1016_j_ceramint_2023_09_067 crossref_primary_10_1016_j_matchemphys_2024_129537 crossref_primary_10_1088_1361_6528_acf66e crossref_primary_10_1007_s11172_022_3567_2 crossref_primary_10_2298_PAC2203259M crossref_primary_10_1016_j_ijhydene_2020_11_224 crossref_primary_10_1039_D0QI01366H crossref_primary_10_1016_j_ijhydene_2020_09_094 crossref_primary_10_1080_17435390_2024_2349304 crossref_primary_10_1016_j_ijhydene_2020_11_100 crossref_primary_10_1016_j_ijhydene_2020_11_222 crossref_primary_10_1002_ese3_1723 crossref_primary_10_1021_acs_energyfuels_3c04084 crossref_primary_10_1039_D0SE01920H crossref_primary_10_1016_j_ijhydene_2021_01_061 crossref_primary_10_1016_S1003_6326_21_65743_6 crossref_primary_10_1039_D1NR04335H crossref_primary_10_1016_j_ijhydene_2021_04_036 crossref_primary_10_23939_chcht18_02_211 crossref_primary_10_1002_er_8407 crossref_primary_10_1016_j_ijhydene_2022_12_277 crossref_primary_10_1002_aesr_202400362 crossref_primary_10_1007_s10971_023_06260_1 crossref_primary_10_1021_acs_jpcc_1c06158 crossref_primary_10_3390_jcs5060145 crossref_primary_10_1007_s12613_022_2510_8 crossref_primary_10_1016_j_ijhydene_2020_05_241 crossref_primary_10_1016_j_ijhydene_2024_11_110 crossref_primary_10_1021_acsanm_3c03763 crossref_primary_10_3390_en18030483 crossref_primary_10_1016_j_cej_2021_131730 crossref_primary_10_1016_j_ijhydene_2024_01_174 crossref_primary_10_1016_j_ijhydene_2021_12_204 crossref_primary_10_1021_acsami_3c14088 crossref_primary_10_1016_j_ijhydene_2020_12_208 crossref_primary_10_1016_j_ijhydene_2021_05_172 crossref_primary_10_18321_ectj1032 crossref_primary_10_1016_j_ijhydene_2024_08_029 crossref_primary_10_1002_cssc_202200281 crossref_primary_10_1021_acscatal_0c02930 crossref_primary_10_1007_s11224_024_02409_y crossref_primary_10_1002_slct_202304582 crossref_primary_10_1016_j_ijhydene_2021_04_135 crossref_primary_10_1016_j_ijhydene_2024_03_133 crossref_primary_10_1021_acs_jpcc_2c06621 crossref_primary_10_1002_jccs_202100369 crossref_primary_10_1016_j_ijhydene_2021_05_206 crossref_primary_10_1016_j_ijhydene_2022_08_072 crossref_primary_10_1039_D4TA07170K crossref_primary_10_1002_slct_202404435 crossref_primary_10_1002_slct_202402932 crossref_primary_10_1016_j_seta_2022_102774 crossref_primary_10_34133_2021_3750689 crossref_primary_10_1007_s11814_024_00311_1 crossref_primary_10_34133_energymatadv_0069 crossref_primary_10_1002_adfm_202406639 crossref_primary_10_1016_j_ijhydene_2020_07_128 crossref_primary_10_3390_mi13060963 crossref_primary_10_1002_adsu_202200470 crossref_primary_10_1016_j_ijhydene_2024_07_405 crossref_primary_10_1016_j_ijhydene_2024_01_314 |
Cites_doi | 10.1021/cr030691s 10.1016/j.ijhydene.2017.12.163 10.1016/j.ijhydene.2016.04.025 10.1016/j.jallcom.2013.03.208 10.1016/j.ijhydene.2019.05.131 10.1016/j.rser.2017.05.132 10.1016/j.ijhydene.2008.07.054 10.1016/j.ijhydene.2009.01.079 10.1016/j.ijhydene.2016.11.195 10.1016/j.mattod.2015.08.002 10.1016/j.ijhydene.2006.11.022 10.1016/j.jallcom.2015.02.104 10.1039/C4CP04214J 10.1021/acs.jpcc.5b01416 10.1007/s00339-016-9651-4 10.1016/j.jechem.2018.04.012 10.1021/ja901798u 10.1016/j.jpowsour.2018.04.037 10.1016/j.jallcom.2004.04.145 10.1016/j.nanoen.2016.06.016 10.1016/j.est.2019.03.020 10.1021/ja9084995 10.1016/j.jpowsour.2017.05.075 10.3938/jkps.66.1649 10.1007/s10008-002-0297-0 10.1016/j.pnsc.2016.12.009 10.1016/j.ijhydene.2017.01.068 10.1016/S1369-7021(11)70143-2 10.1007/978-0-85729-221-6_3 10.1021/la9044072 10.1039/C5CP00412H 10.1016/j.ijhydene.2017.03.167 10.1016/j.ijhydene.2016.07.133 10.1021/cr0501846 10.1155/2015/914845 10.1039/c3ta01332d 10.1016/j.ijhydene.2015.10.040 10.1016/j.ijhydene.2016.05.241 10.1039/C5CC05474E 10.1021/jp504766b 10.1016/j.ijhydene.2009.06.063 10.1016/j.ijhydene.2018.12.026 10.1016/j.ijhydene.2019.04.077 10.1016/j.micromeso.2015.02.017 10.1039/C8EE02499E 10.1016/j.ijhydene.2016.11.069 10.1038/s41467-017-01633-x 10.1002/adma.200306557 10.1021/la301232r 10.1021/la051659r 10.1038/s41467-019-09365-w 10.1016/j.elecom.2015.08.023 10.1016/j.ijhydene.2017.10.124 10.1016/j.cej.2017.12.087 10.1016/j.ijhydene.2019.01.224 10.1021/acs.chemrev.8b00313 10.3934/energy.2015.1.121 10.1038/s42005-019-0142-8 10.1039/c3ta10583k 10.1016/j.carbon.2005.03.037 10.1021/acs.chemrev.5b00324 10.1021/jp908156v 10.1016/j.carbon.2010.05.015 10.1016/j.ijhydene.2009.07.005 10.1039/C4CE01667J 10.1016/j.ijhydene.2017.08.103 10.1016/j.ijhydene.2018.01.084 10.1007/978-0-85729-221-6_2 10.1016/j.ijhydene.2016.03.201 10.1016/j.ensm.2017.03.001 10.1039/C7EE02477K 10.1016/S1369-7021(03)00922-2 10.1016/j.rser.2015.05.011 10.1016/j.ijhydene.2014.01.174 10.1021/acs.energyfuels.6b02510 10.1038/35104634 10.1016/j.matchemphys.2019.01.009 10.1039/C7CS00205J 10.1016/j.ijhydene.2019.03.063 10.1021/jp200038b 10.1016/j.ijhydene.2015.09.051 10.1039/c2dt30383c |
ContentType | Journal Article |
Copyright | 2019 The Authors |
Copyright_xml | – notice: 2019 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.mtadv.2019.100022 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2590-0498 |
ExternalDocumentID | oai_doaj_org_article_32e84cbbd13d46ec94aa9f6e2a9d5f13 10_1016_j_mtadv_2019_100022 S2590049819300967 |
GroupedDBID | 0SF 6I. AAEDW AAFTH AALRI AAXUO AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL SSZ 0R~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c414t-f956f6282f4dad1a9131a0cca4e9894eefb960faa905e4eb0dbebbc2038ae8eb3 |
IEDL.DBID | DOA |
ISSN | 2590-0498 |
IngestDate | Wed Aug 27 01:26:22 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Tue Jul 01 03:00:41 EDT 2025 Tue Jul 25 21:05:23 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spillover effect Nanomaterials Hydrogen economy Kubas interaction |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-f956f6282f4dad1a9131a0cca4e9894eefb960faa905e4eb0dbebbc2038ae8eb3 |
ORCID | 0000-0002-2239-6785 0000-0002-8605-1962 |
OpenAccessLink | https://doaj.org/article/32e84cbbd13d46ec94aa9f6e2a9d5f13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_32e84cbbd13d46ec94aa9f6e2a9d5f13 crossref_primary_10_1016_j_mtadv_2019_100022 crossref_citationtrail_10_1016_j_mtadv_2019_100022 elsevier_sciencedirect_doi_10_1016_j_mtadv_2019_100022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationTitle | Materials today advances |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Ahmed, Liu, Purewal, Tran, Wong-Foy, Veenstra, Matzger, Siegel (bib42) 2017; 10 Zhang, Zhan, Zhuang, Zhu, Qu, Chen, Guo, Wan, Li (bib92) 2016; 41 Huang, Hsieh, Lin, Tong, Chen (bib71) 2015; 119 Suttisawat, Rangsunvigit, Kitiyanan, Williams, Ndungu, Lototskyy, Nechaev, Linkov, Kulprathipanja (bib86) 2009; 34 Zhong, Ouyang, Ye, Liu, Wang, Yao, Zhu (bib59) 2017; 7 Zhong, Ouyang, Liu, Peng, Zhu, Zhu, Fang, Zhu (bib57) 2018; 390 Honarpazhouh, Astaraei, Naderi, Tavakoli (bib91) 2016; 41 Pickering, Li, Reed, Bevan, Book (bib75) 2013; 580 Xia, Yang, Zhu (bib39) 2013; 1 Wang, Wu, Yuan, Liu, Zhang, Fu, Zhu, Zhou, Wu, Huang (bib21) 2017; 46 Khan, Zou, Pan, Ma, Zhu, Huang, Zeng, Ding (bib82) 2019; 44 Heung (bib48) 2003 Oberoi, Nijhawan, Singh (bib23) 2018; 12 Andersson, Grönkvist (bib37) 2019; 44 Read, Thomas, Ordaz, Satyapal (bib9) 2007; 2 Konda, Chen (bib15) 2016; 19 Sakintuna, Lamari-Darkrim, Hirscher (bib34) 2007; 32 Zhao, Guan, Reinecke (bib4) 2019; 2 Xia, Tan, Wu, Fang, Sun, Guo, Huang, Yu (bib85) 2016; 26 Czakkel, Nagy, Dobos, Fouquet, Bahn, László (bib2) 2019; 44 Møller, Sheppard, Ravnsbæk, Buckley, Akiba, Li, Jensen (bib54) 2017; 10 Grochala, Edwards (bib52) 2004; 104 Orimo, Nakamori, Eliseo, Züttel, Jensen (bib55) 2007; 107 Sadaghiani, Mehrpooya, Ansarinasab (bib12) 2017; 42 Parambhath, Nagar, Ramaprabhu (bib67) 2012; 28 Panella, Hirscher, Roth (bib41) 2005; 43 Niaz, Manzoor, Pandith (bib44) 2015; 50 Divya, Ramaprabhu (bib63) 2014; 16 Skowroński, Sierczyńska, Kopczyk (bib24) 2002; 7 Züttel (bib13) 2003; 6 Schneemann, White, Kang, Jeong, Wan, Cho, Heo, Prendergast, Urban, Wood, Allendorf, Stavila (bib49) 2018; 118 Lototskyy, Tolj, Klochko, Davids, Swanepoel, Linkov (bib50) 2019 Broom (bib17) 2011; 27 Callini, Aguey-Zinsou, Ahuja, Ares, Bals, Biliškov, Chakraborty, Charalambopoulou, Chaudhary, Cuevas, Dam, de Jongh, Dornheim, Filinchuk, Grbović Novaković, Hirscher, Jensen, Jensen, Novaković, Lai, Leardini, Gattia, Pasquini, Steriotis, Turner, Vegge, Züttel, Montone (bib32) 2016; 41 Schlapbach, Züttel (bib7) 2001; 414 Morris, Trudeau, Reed, Book, Antonelli (bib61) 2015; 17 Jain, Gosselin, Skryabina, Fruchart, Huot (bib76) 2015; 636 Imamura, Masanari, Kusuhara, Katsumoto, Sumi, Sakata (bib51) 2005; 386 Gangu, Maddila, Mukkamala, Jonnalagadda (bib45) 2019; 30 Adams, Ostrom, Chen (bib26) 2010; 26 Skipper, Hamaed, Antonelli, Kaltsoyannis (bib66) 2012; 41 Chen, Ostrom (bib70) 2015; 115 Kaur, Pal (bib20) 2019; 23 Konda, Ostrom, Chen (bib18) 2015; 40 Doman (bib1) 2017 Spanopoulos, Bratsos, Tampaxis, Kourtellaris, Tasiopoulos, Charalambopoulou, Steriotis, Trikalitis (bib77) 2015; 17 Cardella, Decker, Klein (bib11) 2017; 42 Chen, Ouyang, Liu, Yao, Wang, Liu, Zhu (bib58) 2017; 359 Tan, Ouyang, Liu, Wang, Shao, Zhu (bib3) 2018; 43 Wu, Fan, Kuo, Deng (bib73) 2011; 115 (bib8) 2017 Zlotea, Campesi, Cuevas, Leroy, Dibandjo, Volkringer, Lolseau, Férey, Latroche (bib79) 2010; 132 Zhu, Zhang, Zhu, Zhang, Liu, Lin, Zhang, Li (bib28) 2017; 27 Bliznakov, Lefterova, Dimitrov (bib25) 2008; 33 Broom, Webb, Fanourgakis, Froudakis, Trikalitis, Hirscher (bib40) 2019; 44 Broom (bib60) 2011; 27 (accessed May 29, 2019). Klechikov, Mercier, Merino, Blanco, Merino, Talyzin (bib27) 2015; 210 Kaskun, Kayfeci (bib87) 2018; 43 Gao, Yoo, Nakamura, Zhang, Chua (bib88) 2010; 48 Hydrogen Storage | Department of Energy. Zacharia, ullah Rather (bib33) 2015 Wei, Lim, Tseng, Chan (bib31) 2017; 79 Varin, Shirani Bidabadi (bib56) 2015; 3 Morris, Hales, Trudeau, Georgiev, Embs, Eckert, Kaltsoyannis, Antonelli (bib65) 2019; 12 Seayad, Antonelli (bib47) 2004; 16 Ranjbar, Guo, Yu, Attard, Calka, Liu (bib80) 2009; 34 Konda, Chen (bib68) 2015; 60 Broom (bib30) 2011 Lachawiec, Qi, Yang (bib62) 2005; 21 Zlotea, Moretto, Steriotis (bib29) 2009; 34 Klechikov, Mercier, Sharifi, Baburin, Seifert, Talyzin (bib14) 2015; 51 Wang, Yang (bib72) 2009; 113 Gohari-Bajestani, Akhlaghi, Yürüm, Yürüm (bib83) 2017; 42 Zhang, Xu, Wang, Zhang, Wang, Jiao, Yuan (bib90) 2016; 41 Ahmed, Seth, Purewal, Wong-Foy, Veenstra, Matzger, Siegel (bib5) 2019; 10 Eftekhari, Fang (bib19) 2017; 42 Blankenship, Balahmar, Mokaya (bib89) 2017; 8 Chung, Ihm, Lee (bib64) 2015; 66 Cardella, Decker, Sundberg, Klein (bib10) 2017; 42 Adams, Wu, Nigro, Chen (bib22) 2009; 131 Gohari Bajestani, Yürüm, Yürüm (bib81) 2016; 41 Chen, Xie, Liu, Liu (bib84) 2018; 337 Langseth, Swang, Arstad, Lind, Cavka, Jensen, Kristensen, Moxnes, Unneberg, Heyn (bib43) 2019; 226 Ren, Fang, Zhou, Lu, Ren, Zhang (bib53) 2014; 118 Dillon, Parilla, Zhao, Kim, Gennett, Jones, Zhang, Heben (bib36) 2005 DeSantis, Mason, James, Houchins, Long, Veenstra (bib38) 2017; 31 Alsabawi, Gray, Webb (bib46) 2019; 44 Ren, Musyoka, Langmi, Mathe, Liao (bib35) 2017; 42 Cui, Wang, Liu, Ouyang, Zhang, Sun, Yao, Zhu (bib74) 2013; 1 Broom, Webb, Hurst, Parilla, Gennett, Brown, Zacharia, Tylianakis, Klontzas, Froudakis, Steriotis, Trikalitis, Anton, Hardy, Tamburello, Corgnale, van Hassel, Cossement, Chahine, Hirscher (bib16) 2016; 122 Sharma, Anil Kumar (bib78) 2014; 39 Adams, Chen (bib69) 2011; 14 Heung (10.1016/j.mtadv.2019.100022_bib48) 2003 Seayad (10.1016/j.mtadv.2019.100022_bib47) 2004; 16 Sadaghiani (10.1016/j.mtadv.2019.100022_bib12) 2017; 42 Grochala (10.1016/j.mtadv.2019.100022_bib52) 2004; 104 Bliznakov (10.1016/j.mtadv.2019.100022_bib25) 2008; 33 Xia (10.1016/j.mtadv.2019.100022_bib39) 2013; 1 Chen (10.1016/j.mtadv.2019.100022_bib70) 2015; 115 Andersson (10.1016/j.mtadv.2019.100022_bib37) 2019; 44 Honarpazhouh (10.1016/j.mtadv.2019.100022_bib91) 2016; 41 Eftekhari (10.1016/j.mtadv.2019.100022_bib19) 2017; 42 Lototskyy (10.1016/j.mtadv.2019.100022_bib50) 2019 Adams (10.1016/j.mtadv.2019.100022_bib22) 2009; 131 Xia (10.1016/j.mtadv.2019.100022_bib85) 2016; 26 Wu (10.1016/j.mtadv.2019.100022_bib73) 2011; 115 Ahmed (10.1016/j.mtadv.2019.100022_bib5) 2019; 10 Klechikov (10.1016/j.mtadv.2019.100022_bib14) 2015; 51 Zhang (10.1016/j.mtadv.2019.100022_bib90) 2016; 41 10.1016/j.mtadv.2019.100022_bib6 Alsabawi (10.1016/j.mtadv.2019.100022_bib46) 2019; 44 Blankenship (10.1016/j.mtadv.2019.100022_bib89) 2017; 8 Spanopoulos (10.1016/j.mtadv.2019.100022_bib77) 2015; 17 Read (10.1016/j.mtadv.2019.100022_bib9) 2007; 2 Morris (10.1016/j.mtadv.2019.100022_bib65) 2019; 12 Skowroński (10.1016/j.mtadv.2019.100022_bib24) 2002; 7 Ahmed (10.1016/j.mtadv.2019.100022_bib42) 2017; 10 Zlotea (10.1016/j.mtadv.2019.100022_bib79) 2010; 132 Oberoi (10.1016/j.mtadv.2019.100022_bib23) 2018; 12 Imamura (10.1016/j.mtadv.2019.100022_bib51) 2005; 386 Varin (10.1016/j.mtadv.2019.100022_bib56) 2015; 3 Ren (10.1016/j.mtadv.2019.100022_bib53) 2014; 118 Zhong (10.1016/j.mtadv.2019.100022_bib59) 2017; 7 Kaskun (10.1016/j.mtadv.2019.100022_bib87) 2018; 43 Doman (10.1016/j.mtadv.2019.100022_bib1) 2017 Broom (10.1016/j.mtadv.2019.100022_bib16) 2016; 122 Broom (10.1016/j.mtadv.2019.100022_bib30) 2011 Skipper (10.1016/j.mtadv.2019.100022_bib66) 2012; 41 Zhong (10.1016/j.mtadv.2019.100022_bib57) 2018; 390 Czakkel (10.1016/j.mtadv.2019.100022_bib2) 2019; 44 Langseth (10.1016/j.mtadv.2019.100022_bib43) 2019; 226 Ranjbar (10.1016/j.mtadv.2019.100022_bib80) 2009; 34 Broom (10.1016/j.mtadv.2019.100022_bib17) 2011; 27 Zacharia (10.1016/j.mtadv.2019.100022_bib33) 2015 Schlapbach (10.1016/j.mtadv.2019.100022_bib7) 2001; 414 Konda (10.1016/j.mtadv.2019.100022_bib15) 2016; 19 Cardella (10.1016/j.mtadv.2019.100022_bib10) 2017; 42 Niaz (10.1016/j.mtadv.2019.100022_bib44) 2015; 50 Zhao (10.1016/j.mtadv.2019.100022_bib4) 2019; 2 Ren (10.1016/j.mtadv.2019.100022_bib35) 2017; 42 Chen (10.1016/j.mtadv.2019.100022_bib58) 2017; 359 Huang (10.1016/j.mtadv.2019.100022_bib71) 2015; 119 Sharma (10.1016/j.mtadv.2019.100022_bib78) 2014; 39 Suttisawat (10.1016/j.mtadv.2019.100022_bib86) 2009; 34 Lachawiec (10.1016/j.mtadv.2019.100022_bib62) 2005; 21 Morris (10.1016/j.mtadv.2019.100022_bib61) 2015; 17 Klechikov (10.1016/j.mtadv.2019.100022_bib27) 2015; 210 Konda (10.1016/j.mtadv.2019.100022_bib68) 2015; 60 Tan (10.1016/j.mtadv.2019.100022_bib3) 2018; 43 Schneemann (10.1016/j.mtadv.2019.100022_bib49) 2018; 118 Møller (10.1016/j.mtadv.2019.100022_bib54) 2017; 10 Chung (10.1016/j.mtadv.2019.100022_bib64) 2015; 66 Wang (10.1016/j.mtadv.2019.100022_bib72) 2009; 113 Wang (10.1016/j.mtadv.2019.100022_bib21) 2017; 46 Wei (10.1016/j.mtadv.2019.100022_bib31) 2017; 79 Pickering (10.1016/j.mtadv.2019.100022_bib75) 2013; 580 Jain (10.1016/j.mtadv.2019.100022_bib76) 2015; 636 Zlotea (10.1016/j.mtadv.2019.100022_bib29) 2009; 34 Sakintuna (10.1016/j.mtadv.2019.100022_bib34) 2007; 32 Gangu (10.1016/j.mtadv.2019.100022_bib45) 2019; 30 Cui (10.1016/j.mtadv.2019.100022_bib74) 2013; 1 Parambhath (10.1016/j.mtadv.2019.100022_bib67) 2012; 28 Adams (10.1016/j.mtadv.2019.100022_bib69) 2011; 14 Callini (10.1016/j.mtadv.2019.100022_bib32) 2016; 41 Zhang (10.1016/j.mtadv.2019.100022_bib92) 2016; 41 Cardella (10.1016/j.mtadv.2019.100022_bib11) 2017; 42 (10.1016/j.mtadv.2019.100022_bib8) 2017 Gohari Bajestani (10.1016/j.mtadv.2019.100022_bib81) 2016; 41 Kaur (10.1016/j.mtadv.2019.100022_bib20) 2019; 23 Züttel (10.1016/j.mtadv.2019.100022_bib13) 2003; 6 Broom (10.1016/j.mtadv.2019.100022_bib40) 2019; 44 Panella (10.1016/j.mtadv.2019.100022_bib41) 2005; 43 Divya (10.1016/j.mtadv.2019.100022_bib63) 2014; 16 Chen (10.1016/j.mtadv.2019.100022_bib84) 2018; 337 Gohari-Bajestani (10.1016/j.mtadv.2019.100022_bib83) 2017; 42 Khan (10.1016/j.mtadv.2019.100022_bib82) 2019; 44 Zhu (10.1016/j.mtadv.2019.100022_bib28) 2017; 27 DeSantis (10.1016/j.mtadv.2019.100022_bib38) 2017; 31 Konda (10.1016/j.mtadv.2019.100022_bib18) 2015; 40 Broom (10.1016/j.mtadv.2019.100022_bib60) 2011; 27 Adams (10.1016/j.mtadv.2019.100022_bib26) 2010; 26 Orimo (10.1016/j.mtadv.2019.100022_bib55) 2007; 107 Dillon (10.1016/j.mtadv.2019.100022_bib36) 2005 Gao (10.1016/j.mtadv.2019.100022_bib88) 2010; 48 |
References_xml | – volume: 107 start-page: 4111 year: 2007 end-page: 4132 ident: bib55 article-title: Complex hydrides for hydrogen storage publication-title: Chem. Rev. – volume: 27 start-page: 61 year: 2011 end-page: 115 ident: bib17 article-title: Hydrogen sorption properties of materials publication-title: Green Energy Technol. – volume: 34 start-page: 6669 year: 2009 end-page: 6675 ident: bib86 article-title: Investigation of hydrogen storage capacity of multi-walled carbon nanotubes deposited with Pd or V publication-title: Int. J. Hydrogen Energy – volume: 42 start-page: 12339 year: 2017 end-page: 12354 ident: bib10 article-title: Process optimization for large-scale hydrogen liquefaction publication-title: Int. J. Hydrogen Energy – volume: 30 start-page: 132 year: 2019 end-page: 144 ident: bib45 article-title: Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: a review publication-title: J. Energy Chem. – volume: 44 start-page: 2976 year: 2019 end-page: 2980 ident: bib46 article-title: The effect of ball-milling gas environment on the sorption kinetics of MgH publication-title: Int. J. Hydrogen Energy – year: 2019 ident: bib50 article-title: Metal hydride hydrogen storage tank for fuel cell utility vehicles publication-title: Int. J. Hydrogen Energy – volume: 118 start-page: 21778 year: 2014 end-page: 21784 ident: bib53 article-title: Hydrogen storage properties of magnesium hydride with V-based additives publication-title: J. Phys. Chem. C – volume: 50 start-page: 457 year: 2015 end-page: 469 ident: bib44 article-title: Hydrogen storage: materials, methods and perspectives publication-title: Renew. Sustain. Energy Rev. – volume: 39 start-page: 5888 year: 2014 end-page: 5898 ident: bib78 article-title: Effect of measurement parameters on thermodynamic properties of La-based metal hydrides publication-title: Int. J. Hydrogen Energy – volume: 41 start-page: 8515 year: 2012 ident: bib66 article-title: The Kubas interaction in M(II) (M = Ti, V, Cr) hydrazine-based hydrogen storage materials: a DFT study publication-title: Dalton Trans. – volume: 60 start-page: 148 year: 2015 end-page: 152 ident: bib68 article-title: One-step synthesis of Pd and reduced graphene oxide nanocomposites for enhanced hydrogen sorption and storage publication-title: Electrochem. Commun. – year: 2005 ident: bib36 article-title: NREL Activities in DOE Carbon-Based Materials Center of Excellence Overview : Timeline and Budget Timeline, Time – volume: 7 start-page: 222 year: 2017 end-page: 228 ident: bib59 article-title: An one-step approach towards hydrogen production and storage through regeneration of NaBH publication-title: Energy Storage Mater. – volume: 42 start-page: 29797 year: 2017 end-page: 29819 ident: bib12 article-title: Process development and exergy cost sensitivity analysis of a novel hydrogen liquefaction process publication-title: Int. J. Hydrogen Energy – volume: 27 start-page: 144 year: 2017 end-page: 148 ident: bib28 article-title: Electrochemical hydrogen storage properties of Mg publication-title: Prog. Nat. Sci. Mater. Int. – volume: 580 start-page: 233 year: 2013 end-page: 237 ident: bib75 article-title: Ti-V-Mn based metal hydrides for hydrogen storage publication-title: J. Alloy. Comp. – reference: (accessed May 29, 2019). – volume: 66 start-page: 1649 year: 2015 end-page: 1655 ident: bib64 article-title: Recent progress on Kubas-type hydrogen-storage nanomaterials: from theories to experiments publication-title: J. Korean Phys. Soc. – volume: 1 start-page: 9365 year: 2013 ident: bib39 article-title: Porous carbon-based materials for hydrogen storage: advancement and challenges publication-title: J. Mater. Chem. A – volume: 226 start-page: 220 year: 2019 end-page: 225 ident: bib43 article-title: Synthesis and characterization of Al@MOF materials publication-title: Mater. Chem. Phys. – volume: 43 start-page: 2209 year: 2005 end-page: 2214 ident: bib41 article-title: Hydrogen adsorption in different carbon nanostructures publication-title: Carbon – volume: 43 start-page: 10773 year: 2018 end-page: 10778 ident: bib87 article-title: The synthesized nickel-doped multi-walled carbon nanotubes for hydrogen storage under moderate pressures publication-title: Int. J. Hydrogen Energy – volume: 41 start-page: 17000 year: 2016 end-page: 17007 ident: bib90 article-title: Enhanced hydrogen storage performance of MgH publication-title: Int. J. Hydrogen Energy – volume: 33 start-page: 5789 year: 2008 end-page: 5794 ident: bib25 article-title: Electrochemical PCT isotherm study of hydrogen absorption/desorption in AB publication-title: Int. J. Hydrogen Energy – volume: 43 start-page: 2903 year: 2018 end-page: 2912 ident: bib3 article-title: Hydrogen generation by hydrolysis of Mg-Mg publication-title: Int. J. Hydrogen Energy – start-page: 1 year: 2015 end-page: 18 ident: bib33 article-title: Review of solid state hydrogen storage methods adopting different kinds of novel materials publication-title: J. Nanomater. – volume: 104 start-page: 1283 year: 2004 end-page: 1316 ident: bib52 article-title: Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen publication-title: Chem. Rev. – start-page: 1 year: 2011 end-page: 6 ident: bib30 article-title: Hydrogen storage materials and the characterisation of their hydrogen sorption properties publication-title: Spectroscopy – volume: 2 year: 2019 ident: bib4 article-title: Characterizing hydrogen-fuelled pulsating combustion on thermodynamic properties of a combustor publication-title: Commun. Phys. – volume: 40 start-page: 16365 year: 2015 end-page: 16374 ident: bib18 article-title: Synthesis and electrochemical study of Cd@Pd core/shell nanomaterials for hydrogen sorption and storage publication-title: Int. J. Hydrogen Energy – volume: 7 start-page: 11 year: 2002 end-page: 16 ident: bib24 article-title: Investigation of the influence of nickel content on the correlation between the hydrogen equilibrium pressure for hydrogen absorbing alloys and the capacity of MH electrodes in open and closed cells publication-title: J. Solid State Electrochem. – volume: 21 start-page: 11418 year: 2005 end-page: 11424 ident: bib62 article-title: Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement publication-title: Langmuir – volume: 41 start-page: 9810 year: 2016 end-page: 9818 ident: bib81 article-title: Decoration of graphene sheets with Pd/Al publication-title: Int. J. Hydrogen Energy – volume: 414 start-page: 353 year: 2001 end-page: 358 ident: bib7 article-title: Hydrogen-storage materials for mobile applications publication-title: Nature – volume: 46 start-page: 6816 year: 2017 end-page: 6854 ident: bib21 article-title: Latest advances in supercapacitors: from new electrode materials to novel device designs publication-title: Chem. Soc. Rev. – volume: 122 start-page: 1 year: 2016 end-page: 21 ident: bib16 article-title: Outlook and challenges for hydrogen storage in nanoporous materials publication-title: Appl. Phys. A Mater. Sci. Process – volume: 41 start-page: 14404 year: 2016 end-page: 14428 ident: bib32 article-title: Nanostructured materials for solid-state hydrogen storage: a review of the achievement of COST Action MP1103 publication-title: Int. J. Hydrogen Energy – volume: 42 start-page: 289 year: 2017 end-page: 311 ident: bib35 article-title: Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review publication-title: Int. J. Hydrogen Energy – volume: 113 start-page: 21883 year: 2009 end-page: 21888 ident: bib72 article-title: Hydrogen storage properties of N-doped microporous carbon publication-title: J. Phys. Chem. C – volume: 19 start-page: 100 year: 2016 end-page: 108 ident: bib15 article-title: Palladium based nanomaterials for enhanced hydrogen spillover and storage publication-title: Mater. Today – volume: 10 start-page: 1645 year: 2017 ident: bib54 article-title: Complex metal hydrides for hydrogen, thermal and electrochemical energy storage publication-title: Energ. – volume: 115 start-page: 9241 year: 2011 end-page: 9249 ident: bib73 article-title: DFT study of hydrogen storage by spillover on graphene with boron substitution publication-title: J. Phys. Chem. C – volume: 17 start-page: 532 year: 2015 end-page: 539 ident: bib77 article-title: Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate publication-title: CrystEngComm – volume: 132 start-page: 2991 year: 2010 end-page: 2997 ident: bib79 article-title: Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 26725 year: 2014 end-page: 26729 ident: bib63 article-title: Hydrogen storage in platinum decorated hydrogen exfoliated graphene sheets by spillover mechanism publication-title: Phys. Chem. Chem. Phys. – volume: 31 start-page: 2024 year: 2017 end-page: 2032 ident: bib38 article-title: Techno-economic analysis of metal-organic frameworks for hydrogen and natural gas storage publication-title: Energy Fuels – volume: 26 start-page: 488 year: 2016 end-page: 495 ident: bib85 article-title: Graphene-wrapped reversible reaction for advanced hydrogen storage publication-title: Nano Energy – volume: 10 year: 2019 ident: bib5 article-title: Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks publication-title: Nat. Commun. – volume: 16 start-page: 765 year: 2004 end-page: 777 ident: bib47 article-title: Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials publication-title: Adv. Mater. – volume: 42 start-page: 13329 year: 2017 end-page: 13338 ident: bib11 article-title: Roadmap to economically viable hydrogen liquefaction publication-title: Int. J. Hydrogen Energy – volume: 23 start-page: 234 year: 2019 end-page: 249 ident: bib20 article-title: Review on hydrogen storage materials and methods from an electrochemical viewpoint publication-title: J. Energy Storage – volume: 26 start-page: 7632 year: 2010 end-page: 7637 ident: bib26 article-title: Hydrogen electrosorption into Pd−Cd nanostructures publication-title: Langmuir – year: 2017 ident: bib1 article-title: EIA projects 28% increase in world energy use by 2040, U.S. Energy Information Administration (EIA) publication-title: Today in Energy – volume: 12 start-page: 82 year: 2018 ident: bib23 article-title: A novel electrochemical hydrogen storage-based proton battery for renewable energy storage publication-title: Energ. – volume: 34 start-page: 7263 year: 2009 end-page: 7268 ident: bib80 article-title: Effects of SiC nanoparticles with and without Ni on the hydrogen storage properties of MgH publication-title: Int. J. Hydrogen Energy – volume: 44 start-page: 7768 year: 2019 end-page: 7779 ident: bib40 article-title: Concepts for improving hydrogen storage in nanoporous materials publication-title: Int. J. Hydrogen Energy – volume: 636 start-page: 375 year: 2015 end-page: 380 ident: bib76 article-title: Hydrogenation properties of TiFe with Zr publication-title: J. Alloy. Comp. – volume: 10 start-page: 2459 year: 2017 end-page: 2471 ident: bib42 article-title: Balancing gravimetric and volumetric hydrogen density in MOFs publication-title: Energy Environ. Sci. – volume: 17 start-page: 9480 year: 2015 end-page: 9487 ident: bib61 article-title: Thermodynamically neutral Kubas-type hydrogen storage using amorphous Cr(III) alkyl hydride gels publication-title: Phys. Chem. Chem. Phys. – volume: 42 start-page: 6096 year: 2017 end-page: 6103 ident: bib83 article-title: Synthesis of anatase TiO publication-title: Int. J. Hydrogen Energy – volume: 12 start-page: 1580 year: 2019 end-page: 1591 ident: bib65 article-title: A manganese hydride molecular sieve for practical hydrogen storage under ambient conditions publication-title: Energy Environ. Sci. – volume: 115 start-page: 11999 year: 2015 end-page: 12044 ident: bib70 article-title: Palladium-based nanomaterials: synthesis and electrochemical applications publication-title: Chem. Rev. – volume: 51 start-page: 15280 year: 2015 end-page: 15283 ident: bib14 article-title: Hydrogen storage in high surface area graphene scaffolds publication-title: Chem. Commun. – volume: 14 start-page: 282 year: 2011 end-page: 289 ident: bib69 article-title: The role of palladium in a hydrogen economy publication-title: Mater. Today – volume: 390 start-page: 71 year: 2018 end-page: 77 ident: bib57 article-title: Sodium borohydride regeneration via direct hydrogen transformation of sodium metaborate tetrahydrate publication-title: J. Power Sources – volume: 119 start-page: 7662 year: 2015 end-page: 7669 ident: bib71 article-title: Hydrogen adsorption and storage in heteroatoms (B, N) modified carbon-based materials decorated with alkali metals: a computational study publication-title: J. Phys. Chem. C – volume: 386 start-page: 211 year: 2005 end-page: 216 ident: bib51 article-title: High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling publication-title: J. Alloy. Comp. – volume: 44 start-page: 15146 year: 2019 end-page: 15158 ident: bib82 article-title: Hydrogen storage properties of nanostructured 2MgH publication-title: Int. J. Hydrogen Energy – volume: 34 start-page: 3044 year: 2009 end-page: 3057 ident: bib29 article-title: A Round Robin characterisation of the hydrogen sorption properties of a carbon based material publication-title: Int. J. Hydrogen Energy – year: 2003 ident: bib48 article-title: Using Metal Hydride to Store Hydrogen – volume: 41 start-page: 12175 year: 2016 end-page: 12182 ident: bib91 article-title: Electrochemical hydrogen storage in Pd-coated porous silicon/graphene oxide publication-title: Int. J. Hydrogen Energy – reference: Hydrogen Storage | Department of Energy. – volume: 131 start-page: 6930 year: 2009 end-page: 6931 ident: bib22 article-title: Facile synthesis of Pd-Cd nanostructures with high capacity for hydrogen storage publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 3250 year: 2010 end-page: 3255 ident: bib88 article-title: Hydrogen storage in Pd-Ni doped defective carbon nanotubes through the formation of CH publication-title: Carbon – volume: 210 start-page: 46 year: 2015 end-page: 51 ident: bib27 article-title: Hydrogen storage in bulk graphene-related materials publication-title: Microporous Mesoporous Mater. – volume: 79 start-page: 1122 year: 2017 end-page: 1133 ident: bib31 article-title: A review on the characterization of hydrogen in hydrogen storage materials publication-title: Renew. Sustain. Energy Rev. – volume: 118 start-page: 10775 year: 2018 end-page: 10839 ident: bib49 article-title: Nanostructured metal hydrides for hydrogen storage publication-title: Chem. Rev. – volume: 2 start-page: 3 year: 2007 end-page: 4 ident: bib9 article-title: U.S. Department of Energy's system targets for on-board vehicular hydrogen storage publication-title: Mater. Matters – volume: 359 start-page: 400 year: 2017 end-page: 407 ident: bib58 article-title: Hydrolysis and regeneration of sodium borohydride (NaBH publication-title: J. Power Sources – volume: 44 start-page: 18169 year: 2019 end-page: 18178 ident: bib2 article-title: Static and dynamic studies of hydrogen adsorption on nanoporous carbon gels publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 1545 year: 2017 ident: bib89 article-title: Oxygen-rich microporous carbons with exceptional hydrogen storage capacity publication-title: Nat. Commun. – volume: 27 start-page: 19 year: 2011 end-page: 59 ident: bib60 article-title: Potential storage materials publication-title: Green Energy Technol. – volume: 337 start-page: 161 year: 2018 end-page: 168 ident: bib84 article-title: Facile fabrication of ultrathin carbon layer encapsulated air-stable Mg nanoparticles with enhanced hydrogen storage properties publication-title: Chem. Eng. J. – volume: 6 start-page: 24 year: 2003 end-page: 33 ident: bib13 article-title: Materials for hydrogen storage publication-title: Mater. Today – volume: 28 start-page: 7826 year: 2012 end-page: 7833 ident: bib67 article-title: Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene publication-title: Langmuir – volume: 41 start-page: 1089 year: 2016 end-page: 1097 ident: bib92 article-title: The electrochemical hydrogen storage performances of Mg publication-title: Int. J. Hydrogen Energy – volume: 42 start-page: 25143 year: 2017 end-page: 25165 ident: bib19 article-title: Electrochemical hydrogen storage: opportunities for fuel storage, batteries, fuel cells, and supercapacitors publication-title: Int. J. Hydrogen Energy – start-page: 1 year: 2017 end-page: 29 ident: bib8 article-title: Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles – volume: 32 start-page: 1121 year: 2007 end-page: 1140 ident: bib34 article-title: Metal hydride materials for solid hydrogen storage: a review publication-title: Int. J. Hydrogen Energy – volume: 3 start-page: 121 year: 2015 end-page: 143 ident: bib56 article-title: Nanostructured, complex hydride systems for hydrogen generation publication-title: AIMS Energy – volume: 1 start-page: 5603 year: 2013 end-page: 5611 ident: bib74 article-title: Remarkable enhancement in dehydrogenation of MgH publication-title: J. Mater. Chem. A – volume: 44 start-page: 11901 year: 2019 end-page: 11919 ident: bib37 article-title: Large-scale storage of hydrogen publication-title: Int. J. Hydrogen Energy – volume: 104 start-page: 1283 year: 2004 ident: 10.1016/j.mtadv.2019.100022_bib52 article-title: Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen publication-title: Chem. Rev. doi: 10.1021/cr030691s – volume: 43 start-page: 2903 year: 2018 ident: 10.1016/j.mtadv.2019.100022_bib3 article-title: Hydrogen generation by hydrolysis of Mg-Mg2Si composite and enhanced kinetics performance from introducing of MgCl2 and Si publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.12.163 – volume: 41 start-page: 14404 year: 2016 ident: 10.1016/j.mtadv.2019.100022_bib32 article-title: Nanostructured materials for solid-state hydrogen storage: a review of the achievement of COST Action MP1103 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.04.025 – volume: 580 start-page: 233 year: 2013 ident: 10.1016/j.mtadv.2019.100022_bib75 article-title: Ti-V-Mn based metal hydrides for hydrogen storage publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2013.03.208 – volume: 44 start-page: 18169 year: 2019 ident: 10.1016/j.mtadv.2019.100022_bib2 article-title: Static and dynamic studies of hydrogen adsorption on nanoporous carbon gels publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.131 – volume: 12 start-page: 82 year: 2018 ident: 10.1016/j.mtadv.2019.100022_bib23 article-title: A novel electrochemical hydrogen storage-based proton battery for renewable energy storage publication-title: Energ. – volume: 79 start-page: 1122 year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib31 article-title: A review on the characterization of hydrogen in hydrogen storage materials publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.132 – volume: 33 start-page: 5789 year: 2008 ident: 10.1016/j.mtadv.2019.100022_bib25 article-title: Electrochemical PCT isotherm study of hydrogen absorption/desorption in AB5 type intermetallic compounds publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.07.054 – volume: 34 start-page: 3044 year: 2009 ident: 10.1016/j.mtadv.2019.100022_bib29 article-title: A Round Robin characterisation of the hydrogen sorption properties of a carbon based material publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.01.079 – volume: 42 start-page: 289 year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib35 article-title: Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.11.195 – volume: 19 start-page: 100 year: 2016 ident: 10.1016/j.mtadv.2019.100022_bib15 article-title: Palladium based nanomaterials for enhanced hydrogen spillover and storage publication-title: Mater. Today doi: 10.1016/j.mattod.2015.08.002 – volume: 32 start-page: 1121 year: 2007 ident: 10.1016/j.mtadv.2019.100022_bib34 article-title: Metal hydride materials for solid hydrogen storage: a review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.11.022 – volume: 636 start-page: 375 year: 2015 ident: 10.1016/j.mtadv.2019.100022_bib76 article-title: Hydrogenation properties of TiFe with Zr7Ni10 alloy as additive publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2015.02.104 – volume: 16 start-page: 26725 year: 2014 ident: 10.1016/j.mtadv.2019.100022_bib63 article-title: Hydrogen storage in platinum decorated hydrogen exfoliated graphene sheets by spillover mechanism publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04214J – volume: 119 start-page: 7662 year: 2015 ident: 10.1016/j.mtadv.2019.100022_bib71 article-title: Hydrogen adsorption and storage in heteroatoms (B, N) modified carbon-based materials decorated with alkali metals: a computational study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b01416 – volume: 122 start-page: 1 year: 2016 ident: 10.1016/j.mtadv.2019.100022_bib16 article-title: Outlook and challenges for hydrogen storage in nanoporous materials publication-title: Appl. Phys. A Mater. Sci. Process doi: 10.1007/s00339-016-9651-4 – volume: 30 start-page: 132 year: 2019 ident: 10.1016/j.mtadv.2019.100022_bib45 article-title: Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: a review publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.04.012 – volume: 131 start-page: 6930 year: 2009 ident: 10.1016/j.mtadv.2019.100022_bib22 article-title: Facile synthesis of Pd-Cd nanostructures with high capacity for hydrogen storage publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901798u – volume: 390 start-page: 71 year: 2018 ident: 10.1016/j.mtadv.2019.100022_bib57 article-title: Sodium borohydride regeneration via direct hydrogen transformation of sodium metaborate tetrahydrate publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.037 – volume: 2 start-page: 3 year: 2007 ident: 10.1016/j.mtadv.2019.100022_bib9 article-title: U.S. Department of Energy's system targets for on-board vehicular hydrogen storage publication-title: Mater. Matters – volume: 386 start-page: 211 year: 2005 ident: 10.1016/j.mtadv.2019.100022_bib51 article-title: High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2004.04.145 – volume: 26 start-page: 488 year: 2016 ident: 10.1016/j.mtadv.2019.100022_bib85 article-title: Graphene-wrapped reversible reaction for advanced hydrogen storage publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.016 – volume: 23 start-page: 234 year: 2019 ident: 10.1016/j.mtadv.2019.100022_bib20 article-title: Review on hydrogen storage materials and methods from an electrochemical viewpoint publication-title: J. Energy Storage doi: 10.1016/j.est.2019.03.020 – volume: 132 start-page: 2991 year: 2010 ident: 10.1016/j.mtadv.2019.100022_bib79 article-title: Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9084995 – start-page: 1 year: 2011 ident: 10.1016/j.mtadv.2019.100022_bib30 article-title: Hydrogen storage materials and the characterisation of their hydrogen sorption properties publication-title: Spectroscopy – volume: 359 start-page: 400 year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib58 article-title: Hydrolysis and regeneration of sodium borohydride (NaBH4) – a combination of hydrogen production and storage publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.075 – volume: 66 start-page: 1649 year: 2015 ident: 10.1016/j.mtadv.2019.100022_bib64 article-title: Recent progress on Kubas-type hydrogen-storage nanomaterials: from theories to experiments publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.66.1649 – volume: 7 start-page: 11 year: 2002 ident: 10.1016/j.mtadv.2019.100022_bib24 article-title: Investigation of the influence of nickel content on the correlation between the hydrogen equilibrium pressure for hydrogen absorbing alloys and the capacity of MH electrodes in open and closed cells publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-002-0297-0 – volume: 27 start-page: 144 year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib28 article-title: Electrochemical hydrogen storage properties of Mg100-xNix produced by hydriding combustion synthesis and mechanical milling publication-title: Prog. Nat. Sci. Mater. Int. doi: 10.1016/j.pnsc.2016.12.009 – volume: 42 start-page: 13329 year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib11 article-title: Roadmap to economically viable hydrogen liquefaction publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.01.068 – volume: 14 start-page: 282 year: 2011 ident: 10.1016/j.mtadv.2019.100022_bib69 article-title: The role of palladium in a hydrogen economy publication-title: Mater. Today doi: 10.1016/S1369-7021(11)70143-2 – volume: 27 start-page: 61 year: 2011 ident: 10.1016/j.mtadv.2019.100022_bib17 article-title: Hydrogen sorption properties of materials publication-title: Green Energy Technol. doi: 10.1007/978-0-85729-221-6_3 – volume: 26 start-page: 7632 year: 2010 ident: 10.1016/j.mtadv.2019.100022_bib26 article-title: Hydrogen electrosorption into Pd−Cd nanostructures publication-title: Langmuir doi: 10.1021/la9044072 – volume: 17 start-page: 9480 year: 2015 ident: 10.1016/j.mtadv.2019.100022_bib61 article-title: Thermodynamically neutral Kubas-type hydrogen storage using amorphous Cr(III) alkyl hydride gels publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP00412H – volume: 42 start-page: 12339 year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib10 article-title: Process optimization for large-scale hydrogen liquefaction publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.03.167 – volume: 41 start-page: 17000 year: 2016 ident: 10.1016/j.mtadv.2019.100022_bib90 article-title: Enhanced hydrogen storage performance of MgH2Ni2P/graphene nanosheets publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.07.133 – volume: 107 start-page: 4111 year: 2007 ident: 10.1016/j.mtadv.2019.100022_bib55 article-title: Complex hydrides for hydrogen storage publication-title: Chem. Rev. doi: 10.1021/cr0501846 – year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib1 article-title: EIA projects 28% increase in world energy use by 2040, U.S. Energy Information Administration (EIA) publication-title: Today in Energy – start-page: 1 year: 2015 ident: 10.1016/j.mtadv.2019.100022_bib33 article-title: Review of solid state hydrogen storage methods adopting different kinds of novel materials publication-title: J. Nanomater. doi: 10.1155/2015/914845 – volume: 1 start-page: 5603 year: 2013 ident: 10.1016/j.mtadv.2019.100022_bib74 article-title: Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts publication-title: J. Mater. Chem. A doi: 10.1039/c3ta01332d – volume: 41 start-page: 1089 year: 2016 ident: 10.1016/j.mtadv.2019.100022_bib92 article-title: The electrochemical hydrogen storage performances of MgxCo100-x (x = 40, 45, 50, 55, 60, 63) body-centered cubic alloys and their Pd-doped system publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.10.040 – volume: 41 start-page: 12175 year: 2016 ident: 10.1016/j.mtadv.2019.100022_bib91 article-title: Electrochemical hydrogen storage in Pd-coated porous silicon/graphene oxide publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.05.241 – ident: 10.1016/j.mtadv.2019.100022_bib6 – volume: 51 start-page: 15280 year: 2015 ident: 10.1016/j.mtadv.2019.100022_bib14 article-title: Hydrogen storage in high surface area graphene scaffolds publication-title: Chem. Commun. doi: 10.1039/C5CC05474E – volume: 118 start-page: 21778 year: 2014 ident: 10.1016/j.mtadv.2019.100022_bib53 article-title: Hydrogen storage properties of magnesium hydride with V-based additives publication-title: J. Phys. Chem. C doi: 10.1021/jp504766b – volume: 34 start-page: 6669 year: 2009 ident: 10.1016/j.mtadv.2019.100022_bib86 article-title: Investigation of hydrogen storage capacity of multi-walled carbon nanotubes deposited with Pd or V publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.06.063 – volume: 44 start-page: 2976 year: 2019 ident: 10.1016/j.mtadv.2019.100022_bib46 article-title: The effect of ball-milling gas environment on the sorption kinetics of MgH2 with/without additives for hydrogen storage publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.12.026 – volume: 44 start-page: 15146 year: 2019 ident: 10.1016/j.mtadv.2019.100022_bib82 article-title: Hydrogen storage properties of nanostructured 2MgH2Co powders: the effect of high-pressure compression publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.04.077 – volume: 210 start-page: 46 year: 2015 ident: 10.1016/j.mtadv.2019.100022_bib27 article-title: Hydrogen storage in bulk graphene-related materials publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2015.02.017 – volume: 12 start-page: 1580 year: 2019 ident: 10.1016/j.mtadv.2019.100022_bib65 article-title: A manganese hydride molecular sieve for practical hydrogen storage under ambient conditions publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02499E – volume: 42 start-page: 6096 year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib83 article-title: Synthesis of anatase TiO2 with exposed (001) facets grown on N-doped reduced graphene oxide for enhanced hydrogen storage publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.11.069 – volume: 8 start-page: 1545 year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib89 article-title: Oxygen-rich microporous carbons with exceptional hydrogen storage capacity publication-title: Nat. Commun. doi: 10.1038/s41467-017-01633-x – volume: 16 start-page: 765 year: 2004 ident: 10.1016/j.mtadv.2019.100022_bib47 article-title: Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials publication-title: Adv. Mater. doi: 10.1002/adma.200306557 – volume: 28 start-page: 7826 year: 2012 ident: 10.1016/j.mtadv.2019.100022_bib67 article-title: Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene publication-title: Langmuir doi: 10.1021/la301232r – volume: 21 start-page: 11418 year: 2005 ident: 10.1016/j.mtadv.2019.100022_bib62 article-title: Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement publication-title: Langmuir doi: 10.1021/la051659r – volume: 10 year: 2019 ident: 10.1016/j.mtadv.2019.100022_bib5 article-title: Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks publication-title: Nat. Commun. doi: 10.1038/s41467-019-09365-w – volume: 60 start-page: 148 year: 2015 ident: 10.1016/j.mtadv.2019.100022_bib68 article-title: One-step synthesis of Pd and reduced graphene oxide nanocomposites for enhanced hydrogen sorption and storage publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.08.023 – volume: 42 start-page: 29797 year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib12 article-title: Process development and exergy cost sensitivity analysis of a novel hydrogen liquefaction process publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.10.124 – volume: 337 start-page: 161 year: 2018 ident: 10.1016/j.mtadv.2019.100022_bib84 article-title: Facile fabrication of ultrathin carbon layer encapsulated air-stable Mg nanoparticles with enhanced hydrogen storage properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.087 – volume: 44 start-page: 7768 year: 2019 ident: 10.1016/j.mtadv.2019.100022_bib40 article-title: Concepts for improving hydrogen storage in nanoporous materials publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.01.224 – volume: 118 start-page: 10775 year: 2018 ident: 10.1016/j.mtadv.2019.100022_bib49 article-title: Nanostructured metal hydrides for hydrogen storage publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00313 – volume: 3 start-page: 121 year: 2015 ident: 10.1016/j.mtadv.2019.100022_bib56 article-title: Nanostructured, complex hydride systems for hydrogen generation publication-title: AIMS Energy doi: 10.3934/energy.2015.1.121 – volume: 2 year: 2019 ident: 10.1016/j.mtadv.2019.100022_bib4 article-title: Characterizing hydrogen-fuelled pulsating combustion on thermodynamic properties of a combustor publication-title: Commun. Phys. doi: 10.1038/s42005-019-0142-8 – volume: 1 start-page: 9365 year: 2013 ident: 10.1016/j.mtadv.2019.100022_bib39 article-title: Porous carbon-based materials for hydrogen storage: advancement and challenges publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10583k – start-page: 1 year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib8 – volume: 43 start-page: 2209 year: 2005 ident: 10.1016/j.mtadv.2019.100022_bib41 article-title: Hydrogen adsorption in different carbon nanostructures publication-title: Carbon doi: 10.1016/j.carbon.2005.03.037 – year: 2019 ident: 10.1016/j.mtadv.2019.100022_bib50 article-title: Metal hydride hydrogen storage tank for fuel cell utility vehicles publication-title: Int. J. Hydrogen Energy – volume: 115 start-page: 11999 year: 2015 ident: 10.1016/j.mtadv.2019.100022_bib70 article-title: Palladium-based nanomaterials: synthesis and electrochemical applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00324 – volume: 113 start-page: 21883 year: 2009 ident: 10.1016/j.mtadv.2019.100022_bib72 article-title: Hydrogen storage properties of N-doped microporous carbon publication-title: J. Phys. Chem. C doi: 10.1021/jp908156v – volume: 48 start-page: 3250 year: 2010 ident: 10.1016/j.mtadv.2019.100022_bib88 article-title: Hydrogen storage in Pd-Ni doped defective carbon nanotubes through the formation of CHx (x = 1, 2) publication-title: Carbon doi: 10.1016/j.carbon.2010.05.015 – volume: 34 start-page: 7263 year: 2009 ident: 10.1016/j.mtadv.2019.100022_bib80 article-title: Effects of SiC nanoparticles with and without Ni on the hydrogen storage properties of MgH2 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.07.005 – volume: 17 start-page: 532 year: 2015 ident: 10.1016/j.mtadv.2019.100022_bib77 article-title: Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate publication-title: CrystEngComm doi: 10.1039/C4CE01667J – volume: 42 start-page: 25143 year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib19 article-title: Electrochemical hydrogen storage: opportunities for fuel storage, batteries, fuel cells, and supercapacitors publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.08.103 – volume: 43 start-page: 10773 year: 2018 ident: 10.1016/j.mtadv.2019.100022_bib87 article-title: The synthesized nickel-doped multi-walled carbon nanotubes for hydrogen storage under moderate pressures publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.01.084 – volume: 10 start-page: 1645 year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib54 article-title: Complex metal hydrides for hydrogen, thermal and electrochemical energy storage publication-title: Energ. – volume: 27 start-page: 19 year: 2011 ident: 10.1016/j.mtadv.2019.100022_bib60 article-title: Potential storage materials publication-title: Green Energy Technol. doi: 10.1007/978-0-85729-221-6_2 – volume: 41 start-page: 9810 year: 2016 ident: 10.1016/j.mtadv.2019.100022_bib81 article-title: Decoration of graphene sheets with Pd/Al2O3 hybrid particles for hydrogen storage applications publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.03.201 – volume: 7 start-page: 222 year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib59 article-title: An one-step approach towards hydrogen production and storage through regeneration of NaBH4 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.03.001 – volume: 10 start-page: 2459 year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib42 article-title: Balancing gravimetric and volumetric hydrogen density in MOFs publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02477K – volume: 6 start-page: 24 year: 2003 ident: 10.1016/j.mtadv.2019.100022_bib13 article-title: Materials for hydrogen storage publication-title: Mater. Today doi: 10.1016/S1369-7021(03)00922-2 – year: 2005 ident: 10.1016/j.mtadv.2019.100022_bib36 – volume: 50 start-page: 457 year: 2015 ident: 10.1016/j.mtadv.2019.100022_bib44 article-title: Hydrogen storage: materials, methods and perspectives publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.05.011 – volume: 39 start-page: 5888 year: 2014 ident: 10.1016/j.mtadv.2019.100022_bib78 article-title: Effect of measurement parameters on thermodynamic properties of La-based metal hydrides publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.01.174 – volume: 31 start-page: 2024 year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib38 article-title: Techno-economic analysis of metal-organic frameworks for hydrogen and natural gas storage publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b02510 – year: 2003 ident: 10.1016/j.mtadv.2019.100022_bib48 – volume: 414 start-page: 353 year: 2001 ident: 10.1016/j.mtadv.2019.100022_bib7 article-title: Hydrogen-storage materials for mobile applications publication-title: Nature doi: 10.1038/35104634 – volume: 226 start-page: 220 year: 2019 ident: 10.1016/j.mtadv.2019.100022_bib43 article-title: Synthesis and characterization of Al@MOF materials publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.01.009 – volume: 46 start-page: 6816 year: 2017 ident: 10.1016/j.mtadv.2019.100022_bib21 article-title: Latest advances in supercapacitors: from new electrode materials to novel device designs publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00205J – volume: 44 start-page: 11901 year: 2019 ident: 10.1016/j.mtadv.2019.100022_bib37 article-title: Large-scale storage of hydrogen publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.03.063 – volume: 115 start-page: 9241 year: 2011 ident: 10.1016/j.mtadv.2019.100022_bib73 article-title: DFT study of hydrogen storage by spillover on graphene with boron substitution publication-title: J. Phys. Chem. C doi: 10.1021/jp200038b – volume: 40 start-page: 16365 year: 2015 ident: 10.1016/j.mtadv.2019.100022_bib18 article-title: Synthesis and electrochemical study of Cd@Pd core/shell nanomaterials for hydrogen sorption and storage publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.09.051 – volume: 41 start-page: 8515 year: 2012 ident: 10.1016/j.mtadv.2019.100022_bib66 article-title: The Kubas interaction in M(II) (M = Ti, V, Cr) hydrazine-based hydrogen storage materials: a DFT study publication-title: Dalton Trans. doi: 10.1039/c2dt30383c |
SSID | ssj0002810134 |
Score | 2.566529 |
Snippet | The hydrogen economy is a system that is proposed as a long-term solution for a secure energy future. Hydrogen production, storage, distribution, and... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100022 |
SubjectTerms | Hydrogen economy Kubas interaction Nanomaterials Spillover effect |
Title | Recent advances in nanomaterial-based solid-state hydrogen storage |
URI | https://dx.doi.org/10.1016/j.mtadv.2019.100022 https://doaj.org/article/32e84cbbd13d46ec94aa9f6e2a9d5f13 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1FeysBIRGI7xh4palUhlYlK3Sw_RStIUQlILPx2zk5ShaUsLBkiJ47On3Lf-c7fIXTFc4cz4ouU8MJCgMJMKjRhKVBbR41XmsVT_JNHNp7Sh1kx67T6CjVhtTxwbbgbgh2nRmubE0uZM4IqJTxzWAlb-NivFmci6wRTi7hlBFCLKWWg96F-UfBWcigWd71Wyn6Gwi4RygQyjH-5paje3_FOHY8z2kO7DVVM7upP3EdbrjxAOx0BwUM0ANYHXiNpMvnvybxMSlUugYZGZKXBSdkE8DW3aTw7lDx_2dUSUJOEskj4mRyh6Wj4dD9Om64IqaE5rVIPEY1nECl5apXNlchJrjJYCOqCmLpzXkNU4sFKWeGo05nVTmsDK8KV4xA7H6NeuSzdCUq04iKkXYRRhOqccApkwHp2i40qDKd9hFujSNNIhofOFS-yrQ1byGhJGSwpa0v20fX6obdaMWPz8EGw9npokLuONwAEsgGB_AsEfcTatZINc6gZAbxqvmn20_-Y_Qxt4xCFx72Zc9SrVh_uAqhKpS8jKuE6-R7-AOux56M |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+nanomaterial-based+solid-state+hydrogen+storage&rft.jtitle=Materials+today+advances&rft.au=Emmanuel+Boateng&rft.au=Aicheng+Chen&rft.date=2020-06-01&rft.pub=Elsevier&rft.issn=2590-0498&rft.eissn=2590-0498&rft.volume=6&rft_id=info:doi/10.1016%2Fj.mtadv.2019.100022&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_32e84cbbd13d46ec94aa9f6e2a9d5f13 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0498&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0498&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0498&client=summon |