Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution
The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundari...
Saved in:
Published in | Physics in medicine & biology Vol. 61; no. 24; pp. 8676 - 8698 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
21.12.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-9155 1361-6560 1361-6560 |
DOI | 10.1088/1361-6560/61/24/8676 |
Cover
Loading…
Abstract | The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of 80.3±4.5, yielding a mean Dice similarity coefficient of 97.25±0.65%, and an average symmetric surface distance of 0.84±0.25 mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application. |
---|---|
AbstractList | The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of [Formula: see text], yielding a mean Dice similarity coefficient of [Formula: see text], and an average symmetric surface distance of [Formula: see text] mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of [Formula: see text], yielding a mean Dice similarity coefficient of [Formula: see text], and an average symmetric surface distance of [Formula: see text] mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application. The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of 80.3±4.5, yielding a mean Dice similarity coefficient of 97.25±0.65%, and an average symmetric surface distance of 0.84±0.25 mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application. The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of [Formula: see text], yielding a mean Dice similarity coefficient of [Formula: see text], and an average symmetric surface distance of [Formula: see text] mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application. |
Author | Liang, Ping Kong, Dexing Hu, Peijun Peng, Jialin Wu, Fa |
Author_xml | – sequence: 1 givenname: Peijun surname: Hu fullname: Hu, Peijun organization: Zhejiang University School of Mathematical Sciences, Hangzhou 310027, People's Republic of China – sequence: 2 givenname: Fa surname: Wu fullname: Wu, Fa organization: Zhejiang University School of Mathematical Sciences, Hangzhou 310027, People's Republic of China – sequence: 3 givenname: Jialin surname: Peng fullname: Peng, Jialin organization: Huaqiao University College of Computer Science and Technology, Xiamen 361021, People's Republic of China – sequence: 4 givenname: Ping surname: Liang fullname: Liang, Ping organization: Chinese PLA General Hospital Department of Interventional Ultrasound, Beijing 100853, People's Republic of China – sequence: 5 givenname: Dexing surname: Kong fullname: Kong, Dexing email: dkong@zju.edu.cn organization: Zhejiang University School of Mathematical Sciences, Hangzhou 310027, People's Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27880735$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P3DAQhi0EguXjH6DKx17C2ontOL2tKJRKSL3A2XKc8corx07tZCX660m0Sw89lNOMRu8zh-e9RKchBkDolpI7SqRc00rQQnBB1oKuS7aWohYnaPX3fIpWhFS0aCjnF-gy5x0hlMqSnaOLspaS1BVfIbWZxtjr0Rlcfcfe7SHhDNsewjgfY8CtztDheekABuxBp-DCFuvQ4a2Prfb-DcdhdL37M-fylKw2gGEf_bTw1-jMap_h5jiv0Ovjw8v9U_H868fP-81zYRhlY2E5I1Q0lnFumea2rTSRhhFJSxCtAUlE07XEthKs0Z2RTd2CbTRnFbekZtUV-nr4O6T4e4I8qt5lA97rAHHKikpWNUJSJufol2N0anvo1JBcr9Ob-pAyB74dAibFnBNYZdzBxpi084oStTSgFtVqUa3mWTK1NDDD7B_44_8nGDlgLg5qF6cUZlv_R94BX6-YAw |
CODEN | PHMBA7 |
CitedBy_id | crossref_primary_10_1007_s10278_018_0052_4 crossref_primary_10_1109_JBHI_2020_3023462 crossref_primary_10_1088_1361_6560_aabd19 crossref_primary_10_1088_1361_6560_ac3345 crossref_primary_10_1155_2018_6797102 crossref_primary_10_3348_kjr_2019_0752 crossref_primary_10_1162_dint_a_00204 crossref_primary_10_1001_jamaoncol_2019_0159 crossref_primary_10_3390_s23218890 crossref_primary_10_1007_s42452_021_04853_5 crossref_primary_10_1038_s41571_020_0417_8 crossref_primary_10_1109_ACCESS_2021_3062380 crossref_primary_10_1016_j_imed_2024_09_008 crossref_primary_10_1016_j_compbiomed_2022_106352 crossref_primary_10_1016_j_media_2017_07_005 crossref_primary_10_3390_cancers13092162 crossref_primary_10_1038_s41598_024_55137_y crossref_primary_10_1007_s10916_018_1116_1 crossref_primary_10_1016_j_rico_2021_100087 crossref_primary_10_1109_TMI_2020_2975347 crossref_primary_10_1016_j_neucom_2021_08_138 crossref_primary_10_1186_s13244_019_0738_2 crossref_primary_10_1155_2022_4277436 crossref_primary_10_7599_hmr_2017_37_2_61 crossref_primary_10_61186_ijbc_15_3_4 crossref_primary_10_1016_j_liver_2024_100232 crossref_primary_10_1007_s00530_021_00884_5 crossref_primary_10_1007_s13246_024_01390_4 crossref_primary_10_3390_diagnostics13040581 crossref_primary_10_1109_TBME_2019_2894123 crossref_primary_10_1016_j_compmedimag_2018_08_012 crossref_primary_10_1016_j_radonc_2017_11_012 crossref_primary_10_1155_2022_9614356 crossref_primary_10_1016_j_engappai_2022_105532 crossref_primary_10_1038_s41598_022_26328_2 crossref_primary_10_1055_a_1238_2887 crossref_primary_10_1016_j_eswa_2021_115406 crossref_primary_10_1186_s13014_019_1392_z crossref_primary_10_1088_1361_6560_aaa360 crossref_primary_10_1002_mp_13221 crossref_primary_10_1007_s11548_016_1501_5 crossref_primary_10_1002_acm2_12865 crossref_primary_10_1142_S0218001419570052 crossref_primary_10_1093_jrr_rrx104 crossref_primary_10_1016_j_semradonc_2019_02_001 crossref_primary_10_3348_kjr_2021_0892 crossref_primary_10_1007_s11548_017_1671_9 crossref_primary_10_1177_1533033819884561 crossref_primary_10_3934_mbe_2021387 crossref_primary_10_1016_j_compbiomed_2023_107467 crossref_primary_10_1088_1361_6560_ab9b57 crossref_primary_10_1016_j_optlastec_2024_111298 crossref_primary_10_1016_j_ijrobp_2024_01_201 crossref_primary_10_1016_j_yacr_2023_06_001 crossref_primary_10_1016_j_gande_2025_03_002 crossref_primary_10_3233_XST_210993 crossref_primary_10_1049_iet_ipr_2019_0690 crossref_primary_10_1117_1_OE_58_1_013104 crossref_primary_10_1016_j_neucom_2021_08_157 crossref_primary_10_1007_s13246_025_01535_z crossref_primary_10_1038_s41598_022_20108_8 crossref_primary_10_1016_j_adro_2020_04_023 crossref_primary_10_1109_TMI_2018_2881110 crossref_primary_10_3389_fonc_2017_00315 crossref_primary_10_1186_s12880_021_00669_2 crossref_primary_10_3390_app12178650 crossref_primary_10_1088_1361_6560_ab6f51 crossref_primary_10_1007_s12024_017_9906_1 crossref_primary_10_1007_s11831_023_09901_4 crossref_primary_10_1016_j_rpor_2020_09_005 crossref_primary_10_1007_s00330_023_09609_w crossref_primary_10_1088_1361_6560_ab0ef4 crossref_primary_10_1109_TMI_2021_3084748 crossref_primary_10_1016_j_artmed_2021_102231 crossref_primary_10_1016_j_media_2024_103156 crossref_primary_10_1016_j_compbiomed_2019_02_017 crossref_primary_10_1016_j_artmed_2023_102557 crossref_primary_10_1155_2022_7954333 crossref_primary_10_1002_mp_14732 crossref_primary_10_1007_s00330_019_06407_1 crossref_primary_10_48175_IJARSCT_18821 crossref_primary_10_1016_j_mri_2019_12_008 crossref_primary_10_1007_s12072_021_10229_z crossref_primary_10_1016_j_neucom_2018_10_099 crossref_primary_10_1016_j_compbiomed_2024_108870 crossref_primary_10_1016_j_mehy_2019_109431 crossref_primary_10_1186_s12938_021_00890_8 crossref_primary_10_2139_ssrn_4122019 crossref_primary_10_1088_1361_6560_abf2f8 crossref_primary_10_1364_BOE_8_004061 crossref_primary_10_1088_1361_6560_ab28a1 crossref_primary_10_1088_1742_6596_1922_1_012010 crossref_primary_10_1016_j_ejrad_2019_02_038 crossref_primary_10_1016_j_compmedimag_2019_05_003 crossref_primary_10_23838_pfm_2018_00030 crossref_primary_10_3934_mbe_2022066 crossref_primary_10_1016_j_semcancer_2023_02_005 crossref_primary_10_1016_j_ceh_2023_09_001 crossref_primary_10_1016_j_media_2022_102680 crossref_primary_10_1109_TMRB_2021_3054326 crossref_primary_10_1007_s00432_023_05564_7 crossref_primary_10_1002_mp_16375 crossref_primary_10_1007_s11042_024_18388_5 crossref_primary_10_1016_j_cmpb_2021_106439 crossref_primary_10_1109_ACCESS_2020_3006362 crossref_primary_10_1109_TRPMS_2020_3030611 crossref_primary_10_47164_ijngc_v13i5_902 crossref_primary_10_1002_mp_13264 crossref_primary_10_1007_s00521_017_2856_4 crossref_primary_10_1016_j_compeleceng_2021_107118 crossref_primary_10_1002_mp_12204 crossref_primary_10_1109_TMI_2021_3089702 crossref_primary_10_1146_annurev_control_062420_090543 crossref_primary_10_3390_app14125144 crossref_primary_10_1109_TMI_2017_2722237 crossref_primary_10_1016_j_media_2021_102156 crossref_primary_10_1002_aisy_202000063 crossref_primary_10_1007_s40477_022_00726_8 crossref_primary_10_1155_2018_8536854 crossref_primary_10_4240_wjgs_v15_i11_2382 crossref_primary_10_1200_CCI_23_00136 crossref_primary_10_1155_2020_1645479 crossref_primary_10_1158_1078_0432_CCR_19_0374 crossref_primary_10_1016_j_media_2017_11_005 crossref_primary_10_1002_mp_15275 crossref_primary_10_1007_s11548_019_02085_y crossref_primary_10_1002_ima_22663 crossref_primary_10_1016_j_measurement_2019_107086 crossref_primary_10_1007_s00330_023_09613_0 crossref_primary_10_1002_cac2_12215 crossref_primary_10_1038_s41598_021_85436_7 crossref_primary_10_3233_THC_191718 crossref_primary_10_1016_j_media_2021_102161 crossref_primary_10_1088_1742_6596_1631_1_012060 crossref_primary_10_3348_kjr_2020_0237 crossref_primary_10_1109_TMI_2019_2948320 crossref_primary_10_1007_s11517_023_02849_4 crossref_primary_10_1016_j_ejmp_2023_102653 crossref_primary_10_1016_j_artmed_2022_102331 crossref_primary_10_1109_JBHI_2020_2998146 |
Cites_doi | 10.1016/j.media.2014.10.003 10.1016/j.media.2015.06.012 10.1007/978-3-642-41083-3_27 10.1109/TPAMI.2002.1017623 10.1007/978-3-642-40763-5_31 10.1155/2014/182909 10.1118/1.3284530 10.1016/j.neuroimage.2014.12.061 10.1109/iccv.2015.123 10.1088/0031-9155/60/19/7461 10.1137/060660709 10.3322/caac.21262 10.1007/978-3-642-04271-3_4 10.1109/5.726791 10.1002/9781119196037 10.1109/cvpr.2008.4587393 10.1118/1.4823765 10.1109/CVPR.2015.7298965 10.1109/TMI.2009.2013851 10.1118/1.4866837 10.1186/1475-925X-10-30 10.1118/1.4934834 10.1016/j.artmed.2008.07.020 10.1016/j.patrec.2013.07.010 10.1007/978-3-319-24553-9_68 10.1118/1.4819824 10.1214/aoms/1177704472 10.1007/11539087_135 10.1016/j.patcog.2015.09.001 10.1007/s11263-008-0153-5 10.1016/j.compbiomed.2015.10.007 10.1016/j.media.2009.05.004 10.1109/TBME.2010.2056369 10.1109/CVPR.2010.5539903 10.1007/978-3-642-33418-4_49 10.1109/TIP.2015.2481326 10.1007/978-3-642-28557-8_25 |
ContentType | Journal Article |
Copyright | 2016 Institute of Physics and Engineering in Medicine |
Copyright_xml | – notice: 2016 Institute of Physics and Engineering in Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1088/1361-6560/61/24/8676 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology Physics |
DocumentTitleAlternate | Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution |
EISSN | 1361-6560 |
EndPage | 8698 |
ExternalDocumentID | 27880735 10_1088_1361_6560_61_24_8676 pmbaa445d |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LZ13A010002 – fundername: National Natural Science Foundation of China grantid: 11271323; 91330105; 11401231 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | --- -DZ -~X 123 1JI 4.4 5B3 5RE 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 UCJ W28 XPP AAYXX ADEQX CITATION CGR CUY CVF ECM EIF NPM 7X8 AEINN |
ID | FETCH-LOGICAL-c414t-f540169f455f4a5fb3a08c40812e6bce8069db0fb8efcadc897bef9a5435f0743 |
IEDL.DBID | IOP |
ISSN | 0031-9155 1361-6560 |
IngestDate | Wed Jul 30 11:14:35 EDT 2025 Wed Feb 19 02:42:59 EST 2025 Tue Jul 01 00:25:15 EDT 2025 Thu Apr 24 23:04:17 EDT 2025 Wed Aug 21 03:40:41 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-f540169f455f4a5fb3a08c40812e6bce8069db0fb8efcadc897bef9a5435f0743 |
Notes | Institute of Physics and Engineering in Medicine PMB-103775.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27880735 |
PQID | 1843968148 |
PQPubID | 23479 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_1843968148 crossref_citationtrail_10_1088_1361_6560_61_24_8676 pubmed_primary_27880735 crossref_primary_10_1088_1361_6560_61_24_8676 iop_journals_10_1088_1361_6560_61_24_8676 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-21 |
PublicationDateYYYYMMDD | 2016-12-21 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physics in medicine & biology |
PublicationTitleAbbrev | PMB |
PublicationTitleAlternate | Phys. Med. Biol |
PublicationYear | 2016 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Li D (15) 2015; 60 22 van Rikxoort E (38) 2007 44 23 45 24 25 26 27 28 29 Kainmüller D (12) 2007 Al-Shaikhli S D S (2) 2015 30 31 10 11 34 Krizhevsky A (13) 2012 35 14 36 Lu F (21) 2016 37 16 17 39 18 19 Rusko L (32) 2007; 2 Saddi K A (33) 2007 1 3 4 5 6 7 8 9 40 41 20 42 Yuan J (43) 2012 |
References_xml | – volume: 2 year: 2007 ident: 32 publication-title: Proc. MICCAI Workshop 3D Segmentation in the Clinic: a Grand Challenge – ident: 39 doi: 10.1016/j.media.2014.10.003 – ident: 11 doi: 10.1016/j.media.2015.06.012 – ident: 6 doi: 10.1007/978-3-642-41083-3_27 – ident: 23 doi: 10.1109/TPAMI.2002.1017623 – ident: 30 doi: 10.1007/978-3-642-40763-5_31 – ident: 29 doi: 10.1155/2014/182909 – ident: 19 doi: 10.1118/1.3284530 – ident: 44 doi: 10.1016/j.neuroimage.2014.12.061 – ident: 7 doi: 10.1109/iccv.2015.123 – volume: 60 start-page: 7461 issn: 0031-9155 year: 2015 ident: 15 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/19/7461 – ident: 42 doi: 10.1137/060660709 – ident: 37 doi: 10.3322/caac.21262 – year: 2015 ident: 2 – start-page: 101 year: 2007 ident: 38 publication-title: Proc. MICCAI Workshop 3D Segmentation in the Clinic: a Grand Challenge (Brisbane, Australia, 2007) – ident: 40 doi: 10.1007/978-3-642-04271-3_4 – ident: 14 doi: 10.1109/5.726791 – start-page: 207 year: 2007 ident: 33 publication-title: Proc. MICCAI Workshop 3D Segmentation in the Clinic: a Grand Challenge (Brisbane, Australia, 2007) – ident: 10 doi: 10.1002/9781119196037 – ident: 17 doi: 10.1109/cvpr.2008.4587393 – ident: 22 doi: 10.1118/1.4823765 – ident: 20 doi: 10.1109/CVPR.2015.7298965 – ident: 9 doi: 10.1109/TMI.2009.2013851 – ident: 26 doi: 10.1118/1.4866837 – start-page: 1097 year: 2012 ident: 13 publication-title: Advances in Neural Information Processing Systems 25 (NIPS2012) – ident: 24 doi: 10.1186/1475-925X-10-30 – ident: 27 doi: 10.1118/1.4934834 – ident: 4 doi: 10.1016/j.artmed.2008.07.020 – ident: 28 doi: 10.1016/j.patrec.2013.07.010 – ident: 31 doi: 10.1007/978-3-319-24553-9_68 – ident: 36 doi: 10.1118/1.4819824 – ident: 25 doi: 10.1214/aoms/1177704472 – year: 2016 ident: 21 publication-title: Int. J. Comput. Assist. Radiol. Surg. – ident: 34 doi: 10.1007/11539087_135 – ident: 35 doi: 10.1016/j.patcog.2015.09.001 – ident: 3 doi: 10.1007/s11263-008-0153-5 – ident: 5 doi: 10.1016/j.compbiomed.2015.10.007 – ident: 8 doi: 10.1016/j.media.2009.05.004 – ident: 45 doi: 10.1109/TBME.2010.2056369 – start-page: 109 year: 2007 ident: 12 publication-title: Proc. MICCAI Workshop 3D Segmentation in the Clinic: a Grand Challenge (Brisbane, Australia, 2007) – ident: 41 doi: 10.1109/CVPR.2010.5539903 – ident: 1 doi: 10.1007/978-3-642-33418-4_49 – ident: 16 doi: 10.1109/TIP.2015.2481326 – year: 2012 ident: 43 – ident: 18 doi: 10.1007/978-3-642-28557-8_25 |
SSID | ssj0011824 |
Score | 2.5790071 |
Snippet | The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning.... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8676 |
SubjectTerms | 3D convolutional neural network 3D liver segmentation Abdominal Neoplasms - diagnostic imaging Algorithms Automation convex optimization Databases, Factual Humans Imaging, Three-Dimensional - methods Liver Neoplasms - diagnostic imaging local prior Neural Networks (Computer) surface evolution Tomography, X-Ray Computed - methods |
Title | Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution |
URI | https://iopscience.iop.org/article/10.1088/1361-6560/61/24/8676 https://www.ncbi.nlm.nih.gov/pubmed/27880735 https://www.proquest.com/docview/1843968148 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xUBEXSikt2wdypV44ZDeJHcc5orYIkGh7AImbsR0bVV2SFZsgwa_vOPauVCSEqp5iRePYGXvsz5rxNwCfuVZpkTqeCIdG7vlJksopnaTU1FVmapsPB8Wz7_z4gp1eFpcxz-lwF6adxaV_jMVAFBxUGAPixCSjPEs8Z8yEZ5OcTQQv-SqsU8G5T2Fw8uPn0o2A4DnQMFPsAu6ci7tzT3zlr71pFdt_GnYO28_RS7hadDxEnfwe950em4dHnI7_8WfbsBWhKTkM4q9gxTY78CIkq7zfgY2z6IbHl0PcqJm_BnnYd-3A-kroVzL1QR5kbq9v4o2mhvhdsiZYqK2dkZij4pqopiaBi2R6T1pctm5-PaDcvL91ylhi76JF7MLF0bfzL8dJzNmQGJaxLnGIADNeOVYUjqnCaapSYRgCj9xybaxIeVXr1GlhnVG1EVWpratUgbDNeTjzBtaatrF7QFSuTa6Vy7gumXOpxgE2nFtHETSJshwBXYyWNJHQ3OfVmMrBsS6E9PqUXp8SnzmTXp8jSJa1ZoHQ4xn5AxwuGS17_ozsp8V0kWil3vWiGtv2WEsg8OMCz54jeBvm0bL1vMQ1tKTFu39o6T1sInIbMijl2QdY6257-xHRUaf3Bwv4A0Ar_-w |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RVRceBQKy9NIXDhk83DiOMeqZdUCLT1QqTfLzwqxTVbdBKn99Yxj70ogVRXiFCuyY2fs8XzWjL8B-MCUzKrMsYQ7VHLPT5I0Tqoko9o0uTa2GA-Kxyfs8Kz8fF6db8D--i5Mt4hb_xSLgSg4iDAGxPE0pyxPPGdMyvK0KFPOapYujNuEexVl1BPoH307XbsSEEAHKmaKw0Drubo_d8uX_rBPmziG26HnaIJmj8CsBh8iT35Oh15N9c1fvI7_-XeP4WGEqGQvNHkCG7bdgfshaeX1DmwfR3c8vhzjR_XyKYi9oe9G9ldCD8jcB3uQpb24jDebWuKtpSFYMNYuSMxVcUFka0jgJJlfkw63r8sfN1hvOVw5qS2xv6JmPIOz2afv-4dJzN2Q6DIv-8QhEsxZ48qqcqWsnKIy47pEAFJYprTlGWuMypzi1mlpNG9qZV0jK4RvzsOaXdhqu9a-ACILpQslXc5UXTqXKc6YZsw6iuCJ1_UE6GrGhI7E5j6_xlyMDnbOhZep8DIV-CxK4WU6gWTdahGIPe6o_xGnTEQNX95R9_1qyQjUVu-Cka3tBmzFEQAyjmfQCTwPa2nde1HjXlrT6uU_9PQOtk8PZuLr0cmXV_AAwdyYVKnIX8NWfzXYNwiYevV2VIjf1u0FXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+3D+liver+segmentation+based+on+deep+learning+and+globally+optimized+surface+evolution&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Hu%2C+Peijun&rft.au=Wu%2C+Fa&rft.au=Peng%2C+Jialin&rft.au=Liang%2C+Ping&rft.date=2016-12-21&rft.issn=0031-9155&rft.eissn=1361-6560&rft.volume=61&rft.issue=24&rft.spage=8676&rft.epage=8698&rft_id=info:doi/10.1088%2F1361-6560%2F61%2F24%2F8676&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6560_61_24_8676 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon |