Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution

The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundari...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 61; no. 24; pp. 8676 - 8698
Main Authors Hu, Peijun, Wu, Fa, Peng, Jialin, Liang, Ping, Kong, Dexing
Format Journal Article
LanguageEnglish
Published England IOP Publishing 21.12.2016
Subjects
Online AccessGet full text
ISSN0031-9155
1361-6560
1361-6560
DOI10.1088/1361-6560/61/24/8676

Cover

Loading…
Abstract The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of 80.3±4.5, yielding a mean Dice similarity coefficient of 97.25±0.65%, and an average symmetric surface distance of 0.84±0.25 mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.
AbstractList The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of [Formula: see text], yielding a mean Dice similarity coefficient of [Formula: see text], and an average symmetric surface distance of [Formula: see text] mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of [Formula: see text], yielding a mean Dice similarity coefficient of [Formula: see text], and an average symmetric surface distance of [Formula: see text] mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.
The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of 80.3±4.5, yielding a mean Dice similarity coefficient of 97.25±0.65%, and an average symmetric surface distance of 0.84±0.25 mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.
The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of [Formula: see text], yielding a mean Dice similarity coefficient of [Formula: see text], and an average symmetric surface distance of [Formula: see text] mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.
Author Liang, Ping
Kong, Dexing
Hu, Peijun
Peng, Jialin
Wu, Fa
Author_xml – sequence: 1
  givenname: Peijun
  surname: Hu
  fullname: Hu, Peijun
  organization: Zhejiang University School of Mathematical Sciences, Hangzhou 310027, People's Republic of China
– sequence: 2
  givenname: Fa
  surname: Wu
  fullname: Wu, Fa
  organization: Zhejiang University School of Mathematical Sciences, Hangzhou 310027, People's Republic of China
– sequence: 3
  givenname: Jialin
  surname: Peng
  fullname: Peng, Jialin
  organization: Huaqiao University College of Computer Science and Technology, Xiamen 361021, People's Republic of China
– sequence: 4
  givenname: Ping
  surname: Liang
  fullname: Liang, Ping
  organization: Chinese PLA General Hospital Department of Interventional Ultrasound, Beijing 100853, People's Republic of China
– sequence: 5
  givenname: Dexing
  surname: Kong
  fullname: Kong, Dexing
  email: dkong@zju.edu.cn
  organization: Zhejiang University School of Mathematical Sciences, Hangzhou 310027, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27880735$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhi0EguXjH6DKx17C2ontOL2tKJRKSL3A2XKc8corx07tZCX660m0Sw89lNOMRu8zh-e9RKchBkDolpI7SqRc00rQQnBB1oKuS7aWohYnaPX3fIpWhFS0aCjnF-gy5x0hlMqSnaOLspaS1BVfIbWZxtjr0Rlcfcfe7SHhDNsewjgfY8CtztDheekABuxBp-DCFuvQ4a2Prfb-DcdhdL37M-fylKw2gGEf_bTw1-jMap_h5jiv0Ovjw8v9U_H868fP-81zYRhlY2E5I1Q0lnFumea2rTSRhhFJSxCtAUlE07XEthKs0Z2RTd2CbTRnFbekZtUV-nr4O6T4e4I8qt5lA97rAHHKikpWNUJSJufol2N0anvo1JBcr9Ob-pAyB74dAibFnBNYZdzBxpi084oStTSgFtVqUa3mWTK1NDDD7B_44_8nGDlgLg5qF6cUZlv_R94BX6-YAw
CODEN PHMBA7
CitedBy_id crossref_primary_10_1007_s10278_018_0052_4
crossref_primary_10_1109_JBHI_2020_3023462
crossref_primary_10_1088_1361_6560_aabd19
crossref_primary_10_1088_1361_6560_ac3345
crossref_primary_10_1155_2018_6797102
crossref_primary_10_3348_kjr_2019_0752
crossref_primary_10_1162_dint_a_00204
crossref_primary_10_1001_jamaoncol_2019_0159
crossref_primary_10_3390_s23218890
crossref_primary_10_1007_s42452_021_04853_5
crossref_primary_10_1038_s41571_020_0417_8
crossref_primary_10_1109_ACCESS_2021_3062380
crossref_primary_10_1016_j_imed_2024_09_008
crossref_primary_10_1016_j_compbiomed_2022_106352
crossref_primary_10_1016_j_media_2017_07_005
crossref_primary_10_3390_cancers13092162
crossref_primary_10_1038_s41598_024_55137_y
crossref_primary_10_1007_s10916_018_1116_1
crossref_primary_10_1016_j_rico_2021_100087
crossref_primary_10_1109_TMI_2020_2975347
crossref_primary_10_1016_j_neucom_2021_08_138
crossref_primary_10_1186_s13244_019_0738_2
crossref_primary_10_1155_2022_4277436
crossref_primary_10_7599_hmr_2017_37_2_61
crossref_primary_10_61186_ijbc_15_3_4
crossref_primary_10_1016_j_liver_2024_100232
crossref_primary_10_1007_s00530_021_00884_5
crossref_primary_10_1007_s13246_024_01390_4
crossref_primary_10_3390_diagnostics13040581
crossref_primary_10_1109_TBME_2019_2894123
crossref_primary_10_1016_j_compmedimag_2018_08_012
crossref_primary_10_1016_j_radonc_2017_11_012
crossref_primary_10_1155_2022_9614356
crossref_primary_10_1016_j_engappai_2022_105532
crossref_primary_10_1038_s41598_022_26328_2
crossref_primary_10_1055_a_1238_2887
crossref_primary_10_1016_j_eswa_2021_115406
crossref_primary_10_1186_s13014_019_1392_z
crossref_primary_10_1088_1361_6560_aaa360
crossref_primary_10_1002_mp_13221
crossref_primary_10_1007_s11548_016_1501_5
crossref_primary_10_1002_acm2_12865
crossref_primary_10_1142_S0218001419570052
crossref_primary_10_1093_jrr_rrx104
crossref_primary_10_1016_j_semradonc_2019_02_001
crossref_primary_10_3348_kjr_2021_0892
crossref_primary_10_1007_s11548_017_1671_9
crossref_primary_10_1177_1533033819884561
crossref_primary_10_3934_mbe_2021387
crossref_primary_10_1016_j_compbiomed_2023_107467
crossref_primary_10_1088_1361_6560_ab9b57
crossref_primary_10_1016_j_optlastec_2024_111298
crossref_primary_10_1016_j_ijrobp_2024_01_201
crossref_primary_10_1016_j_yacr_2023_06_001
crossref_primary_10_1016_j_gande_2025_03_002
crossref_primary_10_3233_XST_210993
crossref_primary_10_1049_iet_ipr_2019_0690
crossref_primary_10_1117_1_OE_58_1_013104
crossref_primary_10_1016_j_neucom_2021_08_157
crossref_primary_10_1007_s13246_025_01535_z
crossref_primary_10_1038_s41598_022_20108_8
crossref_primary_10_1016_j_adro_2020_04_023
crossref_primary_10_1109_TMI_2018_2881110
crossref_primary_10_3389_fonc_2017_00315
crossref_primary_10_1186_s12880_021_00669_2
crossref_primary_10_3390_app12178650
crossref_primary_10_1088_1361_6560_ab6f51
crossref_primary_10_1007_s12024_017_9906_1
crossref_primary_10_1007_s11831_023_09901_4
crossref_primary_10_1016_j_rpor_2020_09_005
crossref_primary_10_1007_s00330_023_09609_w
crossref_primary_10_1088_1361_6560_ab0ef4
crossref_primary_10_1109_TMI_2021_3084748
crossref_primary_10_1016_j_artmed_2021_102231
crossref_primary_10_1016_j_media_2024_103156
crossref_primary_10_1016_j_compbiomed_2019_02_017
crossref_primary_10_1016_j_artmed_2023_102557
crossref_primary_10_1155_2022_7954333
crossref_primary_10_1002_mp_14732
crossref_primary_10_1007_s00330_019_06407_1
crossref_primary_10_48175_IJARSCT_18821
crossref_primary_10_1016_j_mri_2019_12_008
crossref_primary_10_1007_s12072_021_10229_z
crossref_primary_10_1016_j_neucom_2018_10_099
crossref_primary_10_1016_j_compbiomed_2024_108870
crossref_primary_10_1016_j_mehy_2019_109431
crossref_primary_10_1186_s12938_021_00890_8
crossref_primary_10_2139_ssrn_4122019
crossref_primary_10_1088_1361_6560_abf2f8
crossref_primary_10_1364_BOE_8_004061
crossref_primary_10_1088_1361_6560_ab28a1
crossref_primary_10_1088_1742_6596_1922_1_012010
crossref_primary_10_1016_j_ejrad_2019_02_038
crossref_primary_10_1016_j_compmedimag_2019_05_003
crossref_primary_10_23838_pfm_2018_00030
crossref_primary_10_3934_mbe_2022066
crossref_primary_10_1016_j_semcancer_2023_02_005
crossref_primary_10_1016_j_ceh_2023_09_001
crossref_primary_10_1016_j_media_2022_102680
crossref_primary_10_1109_TMRB_2021_3054326
crossref_primary_10_1007_s00432_023_05564_7
crossref_primary_10_1002_mp_16375
crossref_primary_10_1007_s11042_024_18388_5
crossref_primary_10_1016_j_cmpb_2021_106439
crossref_primary_10_1109_ACCESS_2020_3006362
crossref_primary_10_1109_TRPMS_2020_3030611
crossref_primary_10_47164_ijngc_v13i5_902
crossref_primary_10_1002_mp_13264
crossref_primary_10_1007_s00521_017_2856_4
crossref_primary_10_1016_j_compeleceng_2021_107118
crossref_primary_10_1002_mp_12204
crossref_primary_10_1109_TMI_2021_3089702
crossref_primary_10_1146_annurev_control_062420_090543
crossref_primary_10_3390_app14125144
crossref_primary_10_1109_TMI_2017_2722237
crossref_primary_10_1016_j_media_2021_102156
crossref_primary_10_1002_aisy_202000063
crossref_primary_10_1007_s40477_022_00726_8
crossref_primary_10_1155_2018_8536854
crossref_primary_10_4240_wjgs_v15_i11_2382
crossref_primary_10_1200_CCI_23_00136
crossref_primary_10_1155_2020_1645479
crossref_primary_10_1158_1078_0432_CCR_19_0374
crossref_primary_10_1016_j_media_2017_11_005
crossref_primary_10_1002_mp_15275
crossref_primary_10_1007_s11548_019_02085_y
crossref_primary_10_1002_ima_22663
crossref_primary_10_1016_j_measurement_2019_107086
crossref_primary_10_1007_s00330_023_09613_0
crossref_primary_10_1002_cac2_12215
crossref_primary_10_1038_s41598_021_85436_7
crossref_primary_10_3233_THC_191718
crossref_primary_10_1016_j_media_2021_102161
crossref_primary_10_1088_1742_6596_1631_1_012060
crossref_primary_10_3348_kjr_2020_0237
crossref_primary_10_1109_TMI_2019_2948320
crossref_primary_10_1007_s11517_023_02849_4
crossref_primary_10_1016_j_ejmp_2023_102653
crossref_primary_10_1016_j_artmed_2022_102331
crossref_primary_10_1109_JBHI_2020_2998146
Cites_doi 10.1016/j.media.2014.10.003
10.1016/j.media.2015.06.012
10.1007/978-3-642-41083-3_27
10.1109/TPAMI.2002.1017623
10.1007/978-3-642-40763-5_31
10.1155/2014/182909
10.1118/1.3284530
10.1016/j.neuroimage.2014.12.061
10.1109/iccv.2015.123
10.1088/0031-9155/60/19/7461
10.1137/060660709
10.3322/caac.21262
10.1007/978-3-642-04271-3_4
10.1109/5.726791
10.1002/9781119196037
10.1109/cvpr.2008.4587393
10.1118/1.4823765
10.1109/CVPR.2015.7298965
10.1109/TMI.2009.2013851
10.1118/1.4866837
10.1186/1475-925X-10-30
10.1118/1.4934834
10.1016/j.artmed.2008.07.020
10.1016/j.patrec.2013.07.010
10.1007/978-3-319-24553-9_68
10.1118/1.4819824
10.1214/aoms/1177704472
10.1007/11539087_135
10.1016/j.patcog.2015.09.001
10.1007/s11263-008-0153-5
10.1016/j.compbiomed.2015.10.007
10.1016/j.media.2009.05.004
10.1109/TBME.2010.2056369
10.1109/CVPR.2010.5539903
10.1007/978-3-642-33418-4_49
10.1109/TIP.2015.2481326
10.1007/978-3-642-28557-8_25
ContentType Journal Article
Copyright 2016 Institute of Physics and Engineering in Medicine
Copyright_xml – notice: 2016 Institute of Physics and Engineering in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1361-6560/61/24/8676
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
DocumentTitleAlternate Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution
EISSN 1361-6560
EndPage 8698
ExternalDocumentID 27880735
10_1088_1361_6560_61_24_8676
pmbaa445d
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LZ13A010002
– fundername: National Natural Science Foundation of China
  grantid: 11271323; 91330105; 11401231
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID ---
-DZ
-~X
123
1JI
4.4
5B3
5RE
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
XPP
AAYXX
ADEQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AEINN
ID FETCH-LOGICAL-c414t-f540169f455f4a5fb3a08c40812e6bce8069db0fb8efcadc897bef9a5435f0743
IEDL.DBID IOP
ISSN 0031-9155
1361-6560
IngestDate Wed Jul 30 11:14:35 EDT 2025
Wed Feb 19 02:42:59 EST 2025
Tue Jul 01 00:25:15 EDT 2025
Thu Apr 24 23:04:17 EDT 2025
Wed Aug 21 03:40:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-f540169f455f4a5fb3a08c40812e6bce8069db0fb8efcadc897bef9a5435f0743
Notes Institute of Physics and Engineering in Medicine
PMB-103775.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27880735
PQID 1843968148
PQPubID 23479
PageCount 23
ParticipantIDs proquest_miscellaneous_1843968148
crossref_citationtrail_10_1088_1361_6560_61_24_8676
pubmed_primary_27880735
crossref_primary_10_1088_1361_6560_61_24_8676
iop_journals_10_1088_1361_6560_61_24_8676
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-21
PublicationDateYYYYMMDD 2016-12-21
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAbbrev PMB
PublicationTitleAlternate Phys. Med. Biol
PublicationYear 2016
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Li D (15) 2015; 60
22
van Rikxoort E (38) 2007
44
23
45
24
25
26
27
28
29
Kainmüller D (12) 2007
Al-Shaikhli S D S (2) 2015
30
31
10
11
34
Krizhevsky A (13) 2012
35
14
36
Lu F (21) 2016
37
16
17
39
18
19
Rusko L (32) 2007; 2
Saddi K A (33) 2007
1
3
4
5
6
7
8
9
40
41
20
42
Yuan J (43) 2012
References_xml – volume: 2
  year: 2007
  ident: 32
  publication-title: Proc. MICCAI Workshop 3D Segmentation in the Clinic: a Grand Challenge
– ident: 39
  doi: 10.1016/j.media.2014.10.003
– ident: 11
  doi: 10.1016/j.media.2015.06.012
– ident: 6
  doi: 10.1007/978-3-642-41083-3_27
– ident: 23
  doi: 10.1109/TPAMI.2002.1017623
– ident: 30
  doi: 10.1007/978-3-642-40763-5_31
– ident: 29
  doi: 10.1155/2014/182909
– ident: 19
  doi: 10.1118/1.3284530
– ident: 44
  doi: 10.1016/j.neuroimage.2014.12.061
– ident: 7
  doi: 10.1109/iccv.2015.123
– volume: 60
  start-page: 7461
  issn: 0031-9155
  year: 2015
  ident: 15
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/19/7461
– ident: 42
  doi: 10.1137/060660709
– ident: 37
  doi: 10.3322/caac.21262
– year: 2015
  ident: 2
– start-page: 101
  year: 2007
  ident: 38
  publication-title: Proc. MICCAI Workshop 3D Segmentation in the Clinic: a Grand Challenge (Brisbane, Australia, 2007)
– ident: 40
  doi: 10.1007/978-3-642-04271-3_4
– ident: 14
  doi: 10.1109/5.726791
– start-page: 207
  year: 2007
  ident: 33
  publication-title: Proc. MICCAI Workshop 3D Segmentation in the Clinic: a Grand Challenge (Brisbane, Australia, 2007)
– ident: 10
  doi: 10.1002/9781119196037
– ident: 17
  doi: 10.1109/cvpr.2008.4587393
– ident: 22
  doi: 10.1118/1.4823765
– ident: 20
  doi: 10.1109/CVPR.2015.7298965
– ident: 9
  doi: 10.1109/TMI.2009.2013851
– ident: 26
  doi: 10.1118/1.4866837
– start-page: 1097
  year: 2012
  ident: 13
  publication-title: Advances in Neural Information Processing Systems 25 (NIPS2012)
– ident: 24
  doi: 10.1186/1475-925X-10-30
– ident: 27
  doi: 10.1118/1.4934834
– ident: 4
  doi: 10.1016/j.artmed.2008.07.020
– ident: 28
  doi: 10.1016/j.patrec.2013.07.010
– ident: 31
  doi: 10.1007/978-3-319-24553-9_68
– ident: 36
  doi: 10.1118/1.4819824
– ident: 25
  doi: 10.1214/aoms/1177704472
– year: 2016
  ident: 21
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– ident: 34
  doi: 10.1007/11539087_135
– ident: 35
  doi: 10.1016/j.patcog.2015.09.001
– ident: 3
  doi: 10.1007/s11263-008-0153-5
– ident: 5
  doi: 10.1016/j.compbiomed.2015.10.007
– ident: 8
  doi: 10.1016/j.media.2009.05.004
– ident: 45
  doi: 10.1109/TBME.2010.2056369
– start-page: 109
  year: 2007
  ident: 12
  publication-title: Proc. MICCAI Workshop 3D Segmentation in the Clinic: a Grand Challenge (Brisbane, Australia, 2007)
– ident: 41
  doi: 10.1109/CVPR.2010.5539903
– ident: 1
  doi: 10.1007/978-3-642-33418-4_49
– ident: 16
  doi: 10.1109/TIP.2015.2481326
– year: 2012
  ident: 43
– ident: 18
  doi: 10.1007/978-3-642-28557-8_25
SSID ssj0011824
Score 2.5790071
Snippet The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning....
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8676
SubjectTerms 3D convolutional neural network
3D liver segmentation
Abdominal Neoplasms - diagnostic imaging
Algorithms
Automation
convex optimization
Databases, Factual
Humans
Imaging, Three-Dimensional - methods
Liver Neoplasms - diagnostic imaging
local prior
Neural Networks (Computer)
surface evolution
Tomography, X-Ray Computed - methods
Title Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution
URI https://iopscience.iop.org/article/10.1088/1361-6560/61/24/8676
https://www.ncbi.nlm.nih.gov/pubmed/27880735
https://www.proquest.com/docview/1843968148
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xUBEXSikt2wdypV44ZDeJHcc5orYIkGh7AImbsR0bVV2SFZsgwa_vOPauVCSEqp5iRePYGXvsz5rxNwCfuVZpkTqeCIdG7vlJksopnaTU1FVmapsPB8Wz7_z4gp1eFpcxz-lwF6adxaV_jMVAFBxUGAPixCSjPEs8Z8yEZ5OcTQQv-SqsU8G5T2Fw8uPn0o2A4DnQMFPsAu6ci7tzT3zlr71pFdt_GnYO28_RS7hadDxEnfwe950em4dHnI7_8WfbsBWhKTkM4q9gxTY78CIkq7zfgY2z6IbHl0PcqJm_BnnYd-3A-kroVzL1QR5kbq9v4o2mhvhdsiZYqK2dkZij4pqopiaBi2R6T1pctm5-PaDcvL91ylhi76JF7MLF0bfzL8dJzNmQGJaxLnGIADNeOVYUjqnCaapSYRgCj9xybaxIeVXr1GlhnVG1EVWpratUgbDNeTjzBtaatrF7QFSuTa6Vy7gumXOpxgE2nFtHETSJshwBXYyWNJHQ3OfVmMrBsS6E9PqUXp8SnzmTXp8jSJa1ZoHQ4xn5AxwuGS17_ozsp8V0kWil3vWiGtv2WEsg8OMCz54jeBvm0bL1vMQ1tKTFu39o6T1sInIbMijl2QdY6257-xHRUaf3Bwv4A0Ar_-w
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RVRceBQKy9NIXDhk83DiOMeqZdUCLT1QqTfLzwqxTVbdBKn99Yxj70ogVRXiFCuyY2fs8XzWjL8B-MCUzKrMsYQ7VHLPT5I0Tqoko9o0uTa2GA-Kxyfs8Kz8fF6db8D--i5Mt4hb_xSLgSg4iDAGxPE0pyxPPGdMyvK0KFPOapYujNuEexVl1BPoH307XbsSEEAHKmaKw0Drubo_d8uX_rBPmziG26HnaIJmj8CsBh8iT35Oh15N9c1fvI7_-XeP4WGEqGQvNHkCG7bdgfshaeX1DmwfR3c8vhzjR_XyKYi9oe9G9ldCD8jcB3uQpb24jDebWuKtpSFYMNYuSMxVcUFka0jgJJlfkw63r8sfN1hvOVw5qS2xv6JmPIOz2afv-4dJzN2Q6DIv-8QhEsxZ48qqcqWsnKIy47pEAFJYprTlGWuMypzi1mlpNG9qZV0jK4RvzsOaXdhqu9a-ACILpQslXc5UXTqXKc6YZsw6iuCJ1_UE6GrGhI7E5j6_xlyMDnbOhZep8DIV-CxK4WU6gWTdahGIPe6o_xGnTEQNX95R9_1qyQjUVu-Cka3tBmzFEQAyjmfQCTwPa2nde1HjXlrT6uU_9PQOtk8PZuLr0cmXV_AAwdyYVKnIX8NWfzXYNwiYevV2VIjf1u0FXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+3D+liver+segmentation+based+on+deep+learning+and+globally+optimized+surface+evolution&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Hu%2C+Peijun&rft.au=Wu%2C+Fa&rft.au=Peng%2C+Jialin&rft.au=Liang%2C+Ping&rft.date=2016-12-21&rft.issn=0031-9155&rft.eissn=1361-6560&rft.volume=61&rft.issue=24&rft.spage=8676&rft.epage=8698&rft_id=info:doi/10.1088%2F1361-6560%2F61%2F24%2F8676&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6560_61_24_8676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon