Point2Roof: End-to-end 3D building roof modeling from airborne LiDAR point clouds
Three-dimensional (3D) building roof reconstruction from airborne LiDAR point clouds is an important task in photogrammetry and computer vision. To automatically reconstruct the 3D building models at Level of Detail 2 (LoD-2) from airborne LiDAR point clouds, the data-driven approaches usually need...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 193; pp. 17 - 28 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Three-dimensional (3D) building roof reconstruction from airborne LiDAR point clouds is an important task in photogrammetry and computer vision. To automatically reconstruct the 3D building models at Level of Detail 2 (LoD-2) from airborne LiDAR point clouds, the data-driven approaches usually need to be performed in two steps: geometric primitive extraction and roof structure inference. Obviously, the traditional approaches are not end-to-end, the accumulated errors in different stages cannot be avoided and the final 3D roof models may not be optimal. In addition, the results of 3D roof models largely depend on the accuracy of geometric primitives (planes, lines, etc.). To solve these problems, we present a deep learning-based approach to directly reconstruct building roofs from airborne LiDAR point clouds, named Point2Roof. In our method, we start by extracting the deep features for each input point using PointNet++. Then, we identify a set of candidate corner points from the input point clouds using the extracted deep features. In addition, we also regress the offset for each candidate corner point to refine their locations. After that, these candidates are clustered into a set of initial vertices, and we further refine their locations to obtain the final accurate vertices. Finally, we propose a Paired Point Attention (PPA) module to predict the true model edges from an exhaustive set of candidate edges between the vertices. Unlike traditional roof modeling approaches, the proposed Point2Roof is end-to-end. However, due to the lack of a building reconstruction dataset, we construct a large-scale synthetic dataset to verify the effectiveness and robustness of the proposed Point2Roof. The experimental results conducted on the synthetic benchmark demonstrate that the proposed Point2Roof significantly outperforms the traditional roof modeling approaches. The experiments also show that the network trained on the synthetic dataset can be applied to the real point clouds after fine-tuning the trained model on a small real dataset. The large-scale synthetic dataset, the small real dataset and the source code of our approach are publicly available in https://github.com/Li-Li-Whu/Point2Roof. |
---|---|
AbstractList | Three-dimensional (3D) building roof reconstruction from airborne LiDAR point clouds is an important task in photogrammetry and computer vision. To automatically reconstruct the 3D building models at Level of Detail 2 (LoD-2) from airborne LiDAR point clouds, the data-driven approaches usually need to be performed in two steps: geometric primitive extraction and roof structure inference. Obviously, the traditional approaches are not end-to-end, the accumulated errors in different stages cannot be avoided and the final 3D roof models may not be optimal. In addition, the results of 3D roof models largely depend on the accuracy of geometric primitives (planes, lines, etc.). To solve these problems, we present a deep learning-based approach to directly reconstruct building roofs from airborne LiDAR point clouds, named Point2Roof. In our method, we start by extracting the deep features for each input point using PointNet++. Then, we identify a set of candidate corner points from the input point clouds using the extracted deep features. In addition, we also regress the offset for each candidate corner point to refine their locations. After that, these candidates are clustered into a set of initial vertices, and we further refine their locations to obtain the final accurate vertices. Finally, we propose a Paired Point Attention (PPA) module to predict the true model edges from an exhaustive set of candidate edges between the vertices. Unlike traditional roof modeling approaches, the proposed Point2Roof is end-to-end. However, due to the lack of a building reconstruction dataset, we construct a large-scale synthetic dataset to verify the effectiveness and robustness of the proposed Point2Roof. The experimental results conducted on the synthetic benchmark demonstrate that the proposed Point2Roof significantly outperforms the traditional roof modeling approaches. The experiments also show that the network trained on the synthetic dataset can be applied to the real point clouds after fine-tuning the trained model on a small real dataset. The large-scale synthetic dataset, the small real dataset and the source code of our approach are publicly available in https://github.com/Li-Li-Whu/Point2Roof. |
Author | Sun, Fei Li, Li Cao, Shaosheng Song, Nan Wang, Ruisheng Yao, Jian Liu, Xinyi |
Author_xml | – sequence: 1 givenname: Li surname: Li fullname: Li, Li organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, PR China – sequence: 2 givenname: Nan surname: Song fullname: Song, Nan organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, PR China – sequence: 3 givenname: Fei surname: Sun fullname: Sun, Fei organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, PR China – sequence: 4 givenname: Xinyi orcidid: 0000-0001-5333-8054 surname: Liu fullname: Liu, Xinyi organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, PR China – sequence: 5 givenname: Ruisheng orcidid: 0000-0003-0745-5158 surname: Wang fullname: Wang, Ruisheng organization: Department of Geomatics Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada – sequence: 6 givenname: Jian surname: Yao fullname: Yao, Jian email: jian.yao@whu.edu.cn organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, PR China – sequence: 7 givenname: Shaosheng orcidid: 0000-0002-3795-8824 surname: Cao fullname: Cao, Shaosheng email: shelsoncao@didiglobal.com organization: DiDi Chuxing, Beijing, PR China |
BookMark | eNqNkMtKAzEUhoMoWC_PYJZuZsytMxPBRdF6gYJadB0yyYmkTJOaTAXf3hkqLtzo4nA4nP_7F98R2g8xAEJnlJSU0OpiVfq8SXk1TMkIYyVpSsLqPTShTc2KhvHpPpoQyUTBalodoqOcV4QQOq2aCXp-ij70bBmju8TzYIs-FhAs5je43frO-vCG0_DE62ihGy-X4hprn9qYAuCFv5kt8WYswaaLW5tP0IHTXYbT732MXm_nL9f3xeLx7uF6tiiMoKIvHIMGCIhaVtzJSrZTJ42RmggBgjvWSNvKVlBJhdbcCsatNK4ytmpaZoHzY3S-692k-L6F3Ku1zwa6TgeI26xYzTilNaFsiF7toibFnBM4ZXyvex9Dn7TvFCVqVKlW6kelGlUq0qhB5cDXv_hN8mudPv9BznYkDCY-PCSVjYdgwPoEplc2-j87vgBpqJZj |
CitedBy_id | crossref_primary_10_3390_ijgi13010019 crossref_primary_10_3390_buildings15050691 crossref_primary_10_1109_LGRS_2024_3362733 crossref_primary_10_3390_rs16224324 crossref_primary_10_1109_TCSVT_2024_3447113 crossref_primary_10_1016_j_jag_2024_103685 crossref_primary_10_1109_LGRS_2024_3514514 crossref_primary_10_1016_j_optlaseng_2024_108602 crossref_primary_10_3390_rs16162969 crossref_primary_10_3390_rs15051269 crossref_primary_10_1088_1361_6501_ad044d crossref_primary_10_1016_j_isprsjprs_2024_04_009 crossref_primary_10_1016_j_isprsjprs_2024_07_012 crossref_primary_10_1080_07038992_2023_2236243 crossref_primary_10_1080_17538947_2023_2283486 crossref_primary_10_1109_LGRS_2023_3277717 crossref_primary_10_3390_s24175723 crossref_primary_10_1111_mice_13277 crossref_primary_10_3390_rs15020400 crossref_primary_10_3390_rs15092432 crossref_primary_10_1016_j_isprsjprs_2024_01_020 crossref_primary_10_3390_rs17030496 crossref_primary_10_3390_rs16010190 crossref_primary_10_3390_rs15235493 crossref_primary_10_1016_j_jobe_2025_112145 crossref_primary_10_3130_aijt_30_506 crossref_primary_10_1016_j_cag_2024_104022 crossref_primary_10_1016_j_scs_2024_106103 crossref_primary_10_1080_17538947_2024_2375112 crossref_primary_10_3788_CJL240529 crossref_primary_10_1109_JSTARS_2023_3329773 crossref_primary_10_1109_TGRS_2024_3477423 crossref_primary_10_3390_ijgi14010006 crossref_primary_10_1080_10095020_2024_2381592 crossref_primary_10_1016_j_isprsjprs_2024_09_030 crossref_primary_10_1016_j_neucom_2024_127481 crossref_primary_10_1016_j_heliyon_2024_e38833 |
Cites_doi | 10.1109/ICCV.2019.00779 10.1109/TGRS.2009.2030180 10.1016/j.isprsjprs.2018.01.013 10.1016/j.isprsjprs.2013.02.004 10.1109/CVPR.2006.12 10.1016/j.isprsjprs.2019.01.003 10.1109/TGRS.2020.2995732 10.3390/rs11141660 10.1109/CVPRW53098.2021.00118 10.1016/j.isprsjprs.2015.01.002 10.3390/rs8010005 10.1109/ICCV.2019.00937 10.1109/JSTARS.2021.3113083 10.1016/j.isprsjprs.2020.09.004 10.1007/978-3-642-15558-1_9 10.1109/CVPR42600.2020.00052 10.1109/JSTARS.2021.3060568 10.1016/j.isprsjprs.2020.11.011 10.1109/CVPR.2019.00727 10.3390/rs11111372 10.1016/j.isprsjprs.2012.11.004 10.1016/j.isprsjprs.2021.12.012 10.3390/rs13101946 10.1109/CVPR.2018.00745 10.1016/j.isprsjprs.2021.03.006 10.3390/rs14081912 10.1109/CVPR.2019.00572 10.5194/isprsannals-I-3-233-2012 10.5194/isprs-archives-XLVI-4-W4-2021-85-2021 10.3390/rs11192219 10.1111/phor.12296 10.1109/TGRS.2017.2738439 10.1111/j.1467-8659.2007.01016.x 10.1007/978-3-030-01252-6_4 10.1109/JSTARS.2014.2349003 10.1109/TPAMI.2020.3005434 10.5194/isprs-archives-XLII-2-1191-2018 10.1109/ICCV.2015.169 10.1109/CVPR42600.2020.00287 10.1016/j.isprsjprs.2013.05.006 10.1109/ICCV.2017.258 10.5194/isprs-archives-XLIII-B2-2022-359-2022 10.14358/PERS.85.6.435 10.3390/rs13061107 10.1109/JSTARS.2021.3110429 10.3390/rs12091363 10.1109/ICCV.2017.324 10.1016/j.isprsjprs.2014.04.022 10.1109/ICCV.2019.00105 10.1109/JSTARS.2017.2781132 |
ContentType | Journal Article |
Copyright | 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2022.08.027 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 28 |
ExternalDocumentID | 10_1016_j_isprsjprs_2022_08_027 S0924271622002362 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c414t-f2e8e0e47963f969b5f9cc9a044e43f289db9b41914aa3d423d9cf6cd68b2de33 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Tue Aug 05 11:34:28 EDT 2025 Tue Jul 01 03:46:48 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 Fri Feb 23 02:39:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Airborne LiDAR Roof modeling Building reconstruction Point clouds |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-f2e8e0e47963f969b5f9cc9a044e43f289db9b41914aa3d423d9cf6cd68b2de33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5333-8054 0000-0003-0745-5158 0000-0002-3795-8824 |
PQID | 2723117012 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2723117012 crossref_citationtrail_10_1016_j_isprsjprs_2022_08_027 crossref_primary_10_1016_j_isprsjprs_2022_08_027 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2022_08_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017b. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems. NIPS, pp. 5099–5108. Zhou, Q., Neumann, U., 2010. 2.5D dual contouring: A robust approach to creating building models from aerial LiDAR point clouds. In: European Conference on Computer Vision. ECCV, pp. 115–128. Zhou, Y., Qi, H., Zhai, Y., Sun, Q., Chen, Z., Wei, L., Ma, Y., 2019b. Learning to reconstruct 3D manhattan wireframes from a single image. In: IEEE International Conference on Computer Vision. ICCV, pp. 7698–7707. Buyukdemircioglu, M., Kocaman, S., Kada, M., 2022. Deep learning for 3D building reconstruction: A review. In: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. 43. pp. 359–366. Schnabel, Wahl, Klein (b37) 2007; 26 Hensel, Goebbels, Kada (b15) 2021; I-4 Wang, Peethambaran, Chen (b42) 2018; 11 Li, Yao, Tu, Liu, Li, Guo (b23) 2020; 12 Xu, Hu, Zhu, Ge, Jin, Yu, Zhong (b49) 2021; 175 Awrangjeb, Zhang, Fraser (b2) 2013; 83 Mahmud, J., Price, T., Bapat, A., Frahm, J.M., 2020. Boundary-aware 3D building reconstruction from a single overhead image. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 441–451. Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 7132–7141. Jung, Sohn (b19) 2019; 149 Wang, Ji (b41) 2021; 14 Qi, C.R., Litany, O., He, K., Guibas, L.J., 2019. Deep Hough voting for 3D object detection in point clouds. In: IEEE International Conference on Computer Vision. ICCV, pp. 9277–9286. Canaz Sevgen, Karsli (b5) 2020; 35 Chen, Zhang, Mathiopoulos, Huang (b7) 2014; 7 Ester, M., Kriegel, H.P., Sander, J., Xu, X., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining. Vol. 96. KDD, (34), pp. 226–231. Dong, Yang, Hu, Scherer (b9) 2018; 137 Henn, Gröger, Stroh, Plümer (b14) 2013; 76 Dai, A., Nießner, M., 2019. Scan2Mesh: From unstructured range scans to 3D meshes. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 5574–5583. Kada, Wichmann (b20) 2012; I-3 Yu, Ji, Liu, Wei (b54) 2021; 171 Zhang, F., Nauata, N., Furukawa, Y., 2020. Conv-MPN: Convolutional message passing neural network for structured outdoor architecture reconstruction. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 2798–2807. Xu, Jiang, Shan, Zhang, Li (b50) 2016; 8 Guo, Wang, Hu, Liu, Liu, Bennamoun (b12) 2020; 43 Xu, Stilla (b51) 2021; 14 Yan, Shan, Jiang (b53) 2014; 94 Xu, Zhang, Li, Leotta, Chang, Shan (b52) 2020 Zhang, Li, Shan (b56) 2021; 14 Song, Xia, Wang, Chen (b38) 2020; 59 Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2017a. PointNet: Deep learning on point sets for 3D classification and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 652–660. Chen, Wang, Peethambaran (b6) 2017; 55 Xiong, Jancosek, Elberink, Vosselman (b48) 2015; 101 Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection. In: IEEE International Conference on Computer Vision. ICCV, pp. 2980–2988. Liu, Zhang, Ling, Wan, Liu, Li (b26) 2019; 11 Meng, Chen, Liu, Li, Zhang, Ke, Hu (b28) 2022; 14 Partovi, Fraundorfer, Bahmanyar, Huang, Reinartz (b32) 2019; 11 Girshick, R., 2015. Fast R-CNN. In: IEEE International Conference on Computer Vision. ICCV, pp. 1440–1448. Alidoost, Arefi, Tombari (b1) 2019; 11 Hu, Miao, Hou (b16) 2021; 13 Nan, L., Wonka, P., 2017. Polyfit: Polygonal surface reconstruction from point clouds. In: IEEE International Conference on Computer Vision. ICCV, pp. 2353–2361. Li, Shan (b22) 2022; 185 Xie, Hu, Zhu, Li, Tang, Li, Guo, Zhang, Wang (b47) 2021; 13 Kingma, Ba (b21) 2014 Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y., 2018b. Pixel2Mesh: Generating 3D mesh models from single RGB images. In: European Conference on Computer Vision. ECCV, pp. 52–67. Zhou, Y., Qi, H., Ma, Y., 2019a. End-to-end wireframe parsing. In: IEEE International Conference on Computer Vision. ICCV, pp. 962–971. Haala, Brenner (b13) 1999; 65 Brenner (b3) 2005; 6 Huang, Brenner, Sester (b18) 2013; 79 Verma, V., Kumar, R., Hsu, S., 2006. 3D building detection and modeling from aerial LiDAR data. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 2213–2220. Wichmann, Agoub, Kada (b45) 2018; 42 Wichmann, Agoub, Schmidt, Kada (b46) 2019; 85 Milde, J., Brenner, C., 2009. Graph-based modeling of building roofs. In: AGILE Conference on GIScience. Wang, Cai, Cheng, Junior, Huang, Wang, Su, Li (b40) 2020; 170 Nash, C., Ganin, Y., Eslami, S.A., Battaglia, P., 2020. PolyGen: An autoregressive generative model of 3D meshes. In: International Conference on Machine Learning. ICML, pp. 7220–7229. Sampath, Shan (b36) 2009; 48 Wang, Y., Zorzi, S., Bittner, K., 2021. Machine-learned 3D building vectorization from satellite imagery. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops. CVPRW, pp. 1072–1081. Liu, Y., D’Aronco, S., Schindler, K., Wegner, J.D., 2021. PC2WF: 3D wireframe reconstruction from raw point clouds. In: International Conference on Learning Representations. ICLR. Zhang, Z., Li, Z., Bi, N., Zheng, J., Wang, J., Huang, K., Luo, W., Xu, Y., Gao, S., 2019. PPGNet: Learning point-pair graph for line segment detection. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 7105–7114. Li (10.1016/j.isprsjprs.2022.08.027_b22) 2022; 185 Awrangjeb (10.1016/j.isprsjprs.2022.08.027_b2) 2013; 83 10.1016/j.isprsjprs.2022.08.027_b30 Canaz Sevgen (10.1016/j.isprsjprs.2022.08.027_b5) 2020; 35 10.1016/j.isprsjprs.2022.08.027_b25 10.1016/j.isprsjprs.2022.08.027_b24 10.1016/j.isprsjprs.2022.08.027_b27 Kingma (10.1016/j.isprsjprs.2022.08.027_b21) 2014 Hensel (10.1016/j.isprsjprs.2022.08.027_b15) 2021; I-4 Meng (10.1016/j.isprsjprs.2022.08.027_b28) 2022; 14 Partovi (10.1016/j.isprsjprs.2022.08.027_b32) 2019; 11 Wichmann (10.1016/j.isprsjprs.2022.08.027_b45) 2018; 42 Li (10.1016/j.isprsjprs.2022.08.027_b23) 2020; 12 Henn (10.1016/j.isprsjprs.2022.08.027_b14) 2013; 76 10.1016/j.isprsjprs.2022.08.027_b29 Guo (10.1016/j.isprsjprs.2022.08.027_b12) 2020; 43 Hu (10.1016/j.isprsjprs.2022.08.027_b16) 2021; 13 10.1016/j.isprsjprs.2022.08.027_b60 Yan (10.1016/j.isprsjprs.2022.08.027_b53) 2014; 94 Chen (10.1016/j.isprsjprs.2022.08.027_b6) 2017; 55 Haala (10.1016/j.isprsjprs.2022.08.027_b13) 1999; 65 Brenner (10.1016/j.isprsjprs.2022.08.027_b3) 2005; 6 10.1016/j.isprsjprs.2022.08.027_b58 10.1016/j.isprsjprs.2022.08.027_b57 10.1016/j.isprsjprs.2022.08.027_b59 10.1016/j.isprsjprs.2022.08.027_b10 Jung (10.1016/j.isprsjprs.2022.08.027_b19) 2019; 149 Song (10.1016/j.isprsjprs.2022.08.027_b38) 2020; 59 10.1016/j.isprsjprs.2022.08.027_b11 10.1016/j.isprsjprs.2022.08.027_b55 Kada (10.1016/j.isprsjprs.2022.08.027_b20) 2012; I-3 Wang (10.1016/j.isprsjprs.2022.08.027_b42) 2018; 11 10.1016/j.isprsjprs.2022.08.027_b17 Chen (10.1016/j.isprsjprs.2022.08.027_b7) 2014; 7 Xiong (10.1016/j.isprsjprs.2022.08.027_b48) 2015; 101 Dong (10.1016/j.isprsjprs.2022.08.027_b9) 2018; 137 Schnabel (10.1016/j.isprsjprs.2022.08.027_b37) 2007; 26 Xu (10.1016/j.isprsjprs.2022.08.027_b52) 2020 10.1016/j.isprsjprs.2022.08.027_b43 Alidoost (10.1016/j.isprsjprs.2022.08.027_b1) 2019; 11 10.1016/j.isprsjprs.2022.08.027_b44 Xu (10.1016/j.isprsjprs.2022.08.027_b50) 2016; 8 Wichmann (10.1016/j.isprsjprs.2022.08.027_b46) 2019; 85 Xu (10.1016/j.isprsjprs.2022.08.027_b49) 2021; 175 10.1016/j.isprsjprs.2022.08.027_b4 10.1016/j.isprsjprs.2022.08.027_b8 Wang (10.1016/j.isprsjprs.2022.08.027_b40) 2020; 170 Wang (10.1016/j.isprsjprs.2022.08.027_b41) 2021; 14 Yu (10.1016/j.isprsjprs.2022.08.027_b54) 2021; 171 Xu (10.1016/j.isprsjprs.2022.08.027_b51) 2021; 14 Zhang (10.1016/j.isprsjprs.2022.08.027_b56) 2021; 14 Huang (10.1016/j.isprsjprs.2022.08.027_b18) 2013; 79 10.1016/j.isprsjprs.2022.08.027_b35 Liu (10.1016/j.isprsjprs.2022.08.027_b26) 2019; 11 Xie (10.1016/j.isprsjprs.2022.08.027_b47) 2021; 13 10.1016/j.isprsjprs.2022.08.027_b31 10.1016/j.isprsjprs.2022.08.027_b34 10.1016/j.isprsjprs.2022.08.027_b33 10.1016/j.isprsjprs.2022.08.027_b39 Sampath (10.1016/j.isprsjprs.2022.08.027_b36) 2009; 48 |
References_xml | – reference: Ester, M., Kriegel, H.P., Sander, J., Xu, X., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining. Vol. 96. KDD, (34), pp. 226–231. – volume: 48 start-page: 1554 year: 2009 end-page: 1567 ident: b36 article-title: Segmentation and reconstruction of polyhedral building roofs from aerial LiDAR point clouds publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 76 start-page: 17 year: 2013 end-page: 29 ident: b14 article-title: Model driven reconstruction of roofs from sparse LiDAR point clouds publication-title: ISPRS J. Photogramm. Remote Sens. – volume: I-4 start-page: 85 year: 2021 end-page: 90 ident: b15 article-title: Building roof vectorization with ppgnet publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. – reference: Mahmud, J., Price, T., Bapat, A., Frahm, J.M., 2020. Boundary-aware 3D building reconstruction from a single overhead image. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 441–451. – volume: 175 start-page: 416 year: 2021 end-page: 430 ident: b49 article-title: Efficient interactions for reconstructing complex buildings via joint photometric and geometric saliency segmentation publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Qi, C.R., Litany, O., He, K., Guibas, L.J., 2019. Deep Hough voting for 3D object detection in point clouds. In: IEEE International Conference on Computer Vision. ICCV, pp. 9277–9286. – volume: 185 start-page: 247 year: 2022 end-page: 260 ident: b22 article-title: RANSAC-based multi primitive building reconstruction from 3D point clouds publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 11 start-page: 1372 year: 2019 ident: b26 article-title: TopoLAP: Topology recovery for building reconstruction by deducing the relationships between linear and planar primitives publication-title: Remote Sens. – volume: 94 start-page: 183 year: 2014 end-page: 193 ident: b53 article-title: A global optimization approach to roof segmentation from airborne LiDAR point clouds publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Zhou, Y., Qi, H., Ma, Y., 2019a. End-to-end wireframe parsing. In: IEEE International Conference on Computer Vision. ICCV, pp. 962–971. – reference: Buyukdemircioglu, M., Kocaman, S., Kada, M., 2022. Deep learning for 3D building reconstruction: A review. In: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. 43. pp. 359–366. – volume: 101 start-page: 275 year: 2015 end-page: 290 ident: b48 article-title: Flexible building primitives for 3D building modeling publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 12 start-page: 1363 year: 2020 ident: b23 article-title: Roof plane segmentation from airborne LiDAR data using hierarchical clustering and boundary relabeling publication-title: Remote Sens. – volume: 59 start-page: 1660 year: 2020 end-page: 1674 ident: b38 article-title: Curved buildings reconstruction from airborne LiDAR data by matching and deforming geometric primitives publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 42 start-page: 1191 year: 2018 end-page: 1198 ident: b45 article-title: ROOFN3D: Deep learning training data for 3D building reconstruction publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. – volume: 170 start-page: 29 year: 2020 end-page: 44 ident: b40 article-title: Robust 3D reconstruction of building surfaces from point clouds based on structural and closed constraints publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 14 start-page: 9636 year: 2021 end-page: 9650 ident: b56 article-title: Optimal model fitting for building reconstruction from point clouds publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – reference: Verma, V., Kumar, R., Hsu, S., 2006. 3D building detection and modeling from aerial LiDAR data. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 2213–2220. – reference: Zhou, Y., Qi, H., Zhai, Y., Sun, Q., Chen, Z., Wei, L., Ma, Y., 2019b. Learning to reconstruct 3D manhattan wireframes from a single image. In: IEEE International Conference on Computer Vision. ICCV, pp. 7698–7707. – reference: Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection. In: IEEE International Conference on Computer Vision. ICCV, pp. 2980–2988. – reference: Nash, C., Ganin, Y., Eslami, S.A., Battaglia, P., 2020. PolyGen: An autoregressive generative model of 3D meshes. In: International Conference on Machine Learning. ICML, pp. 7220–7229. – volume: 6 start-page: 187 year: 2005 end-page: 198 ident: b3 article-title: Building reconstruction from images and laser scanning publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 171 start-page: 155 year: 2021 end-page: 170 ident: b54 article-title: Automatic 3D building reconstruction from multi-view aerial images with deep learning publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 55 start-page: 7032 year: 2017 end-page: 7052 ident: b6 article-title: Topologically aware building rooftop reconstruction from airborne laser scanning point clouds publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y., 2018b. Pixel2Mesh: Generating 3D mesh models from single RGB images. In: European Conference on Computer Vision. ECCV, pp. 52–67. – volume: 11 start-page: 2219 year: 2019 ident: b1 article-title: 2D image-to-3D model: Knowledge-based 3D building reconstruction (3DBR) using single aerial images and convolutional neural networks (CNNs) publication-title: Remote Sens. – volume: 14 start-page: 10101 year: 2021 end-page: 10116 ident: b41 article-title: Roof plane segmentation from LiDAR point cloud data using region expansion based L0 gradient minimization and graph cut publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – reference: Girshick, R., 2015. Fast R-CNN. In: IEEE International Conference on Computer Vision. ICCV, pp. 1440–1448. – reference: Wang, Y., Zorzi, S., Bittner, K., 2021. Machine-learned 3D building vectorization from satellite imagery. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops. CVPRW, pp. 1072–1081. – volume: 7 start-page: 4199 year: 2014 end-page: 4217 ident: b7 article-title: A methodology for automated segmentation and reconstruction of urban 3-D buildings from ALS point clouds publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 26 start-page: 214 year: 2007 end-page: 226 ident: b37 article-title: Efficient RANSAC for point-cloud shape detection publication-title: Comput. Graph. Forum – volume: 65 start-page: 787 year: 1999 end-page: 795 ident: b13 article-title: Virtual city models from laser altimeter and 2D map data publication-title: Photogramm. Eng. Remote Sens. – volume: 11 start-page: 606 year: 2018 end-page: 627 ident: b42 article-title: Lidar point clouds to 3-D urban models publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 43 start-page: 4338 year: 2020 end-page: 4364 ident: b12 article-title: Deep learning for 3D point clouds: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: I-3 start-page: 233 year: 2012 end-page: 238 ident: b20 article-title: Sub-surface growing and boundary generalization for 3D building reconstruction publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. – volume: 83 start-page: 1 year: 2013 end-page: 18 ident: b2 article-title: Automatic extraction of building roofs using LiDAR data and multispectral imagery publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Zhang, F., Nauata, N., Furukawa, Y., 2020. Conv-MPN: Convolutional message passing neural network for structured outdoor architecture reconstruction. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 2798–2807. – reference: Zhang, Z., Li, Z., Bi, N., Zheng, J., Wang, J., Huang, K., Luo, W., Xu, Y., Gao, S., 2019. PPGNet: Learning point-pair graph for line segment detection. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 7105–7114. – volume: 137 start-page: 112 year: 2018 end-page: 133 ident: b9 article-title: An efficient global energy optimization approach for robust 3D plane segmentation of point clouds publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 11 start-page: 1660 year: 2019 ident: b32 article-title: Automatic 3-D building model reconstruction from very high resolution stereo satellite imagery publication-title: Remote Sens. – volume: 14 start-page: 2857 year: 2021 end-page: 2885 ident: b51 article-title: Towards building and civil infrastructure reconstruction from point clouds: A review on data and key techniques publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 79 start-page: 29 year: 2013 end-page: 43 ident: b18 article-title: A generative statistical approach to automatic 3D building roof reconstruction from laser scanning data publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Liu, Y., D’Aronco, S., Schindler, K., Wegner, J.D., 2021. PC2WF: 3D wireframe reconstruction from raw point clouds. In: International Conference on Learning Representations. ICLR. – volume: 8 start-page: 5 year: 2016 ident: b50 article-title: Investigation on the weighted RANSAC approaches for building roof plane segmentation from LiDAR point clouds publication-title: Remote Sens. – reference: Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017b. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems. NIPS, pp. 5099–5108. – year: 2020 ident: b52 article-title: Deep learning guided building reconstruction from satellite imagery-derived point clouds – volume: 13 start-page: 1946 year: 2021 ident: b16 article-title: Reconstruction of complex roof semantic structures from 3D point clouds using local convexity and consistency publication-title: Remote Sens. – volume: 35 start-page: 40 year: 2020 end-page: 57 ident: b5 article-title: An improved RANSAC algorithm for extracting roof planes from airborne LiDAR data publication-title: Photogramm. Rec. – reference: Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2017a. PointNet: Deep learning on point sets for 3D classification and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 652–660. – reference: Dai, A., Nießner, M., 2019. Scan2Mesh: From unstructured range scans to 3D meshes. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 5574–5583. – volume: 149 start-page: 157 year: 2019 end-page: 175 ident: b19 article-title: A line-based progressive refinement of 3D rooftop models using airborne LiDAR data with single view imagery publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2014 ident: b21 article-title: Adam: A method for stochastic optimization – reference: Milde, J., Brenner, C., 2009. Graph-based modeling of building roofs. In: AGILE Conference on GIScience. – reference: Zhou, Q., Neumann, U., 2010. 2.5D dual contouring: A robust approach to creating building models from aerial LiDAR point clouds. In: European Conference on Computer Vision. ECCV, pp. 115–128. – volume: 85 start-page: 435 year: 2019 end-page: 443 ident: b46 article-title: RoofN3D: A database for 3D building reconstruction with deep learning publication-title: Photogramm. Eng. Remote Sens. – volume: 13 start-page: 1107 year: 2021 ident: b47 article-title: Combined rule-based and hypothesis-based method for building model reconstruction from photogrammetric point clouds publication-title: Remote Sens. – volume: 14 start-page: 1912 year: 2022 ident: b28 article-title: Unsupervised building extraction from multimodal aerial data based on accurate vegetation removal and image feature consistency constraint publication-title: Remote Sens. – reference: Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 7132–7141. – reference: Nan, L., Wonka, P., 2017. Polyfit: Polygonal surface reconstruction from point clouds. In: IEEE International Conference on Computer Vision. ICCV, pp. 2353–2361. – ident: 10.1016/j.isprsjprs.2022.08.027_b60 doi: 10.1109/ICCV.2019.00779 – volume: 48 start-page: 1554 issue: 3 year: 2009 ident: 10.1016/j.isprsjprs.2022.08.027_b36 article-title: Segmentation and reconstruction of polyhedral building roofs from aerial LiDAR point clouds publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2030180 – volume: 137 start-page: 112 year: 2018 ident: 10.1016/j.isprsjprs.2022.08.027_b9 article-title: An efficient global energy optimization approach for robust 3D plane segmentation of point clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.01.013 – volume: 79 start-page: 29 year: 2013 ident: 10.1016/j.isprsjprs.2022.08.027_b18 article-title: A generative statistical approach to automatic 3D building roof reconstruction from laser scanning data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.02.004 – ident: 10.1016/j.isprsjprs.2022.08.027_b39 doi: 10.1109/CVPR.2006.12 – volume: 149 start-page: 157 year: 2019 ident: 10.1016/j.isprsjprs.2022.08.027_b19 article-title: A line-based progressive refinement of 3D rooftop models using airborne LiDAR data with single view imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.01.003 – volume: 59 start-page: 1660 issue: 2 year: 2020 ident: 10.1016/j.isprsjprs.2022.08.027_b38 article-title: Curved buildings reconstruction from airborne LiDAR data by matching and deforming geometric primitives publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2995732 – volume: 11 start-page: 1660 issue: 14 year: 2019 ident: 10.1016/j.isprsjprs.2022.08.027_b32 article-title: Automatic 3-D building model reconstruction from very high resolution stereo satellite imagery publication-title: Remote Sens. doi: 10.3390/rs11141660 – ident: 10.1016/j.isprsjprs.2022.08.027_b44 doi: 10.1109/CVPRW53098.2021.00118 – volume: 101 start-page: 275 year: 2015 ident: 10.1016/j.isprsjprs.2022.08.027_b48 article-title: Flexible building primitives for 3D building modeling publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.01.002 – volume: 8 start-page: 5 issue: 1 year: 2016 ident: 10.1016/j.isprsjprs.2022.08.027_b50 article-title: Investigation on the weighted RANSAC approaches for building roof plane segmentation from LiDAR point clouds publication-title: Remote Sens. doi: 10.3390/rs8010005 – ident: 10.1016/j.isprsjprs.2022.08.027_b33 doi: 10.1109/ICCV.2019.00937 – volume: 14 start-page: 10101 year: 2021 ident: 10.1016/j.isprsjprs.2022.08.027_b41 article-title: Roof plane segmentation from LiDAR point cloud data using region expansion based L0 gradient minimization and graph cut publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3113083 – ident: 10.1016/j.isprsjprs.2022.08.027_b29 – volume: 170 start-page: 29 year: 2020 ident: 10.1016/j.isprsjprs.2022.08.027_b40 article-title: Robust 3D reconstruction of building surfaces from point clouds based on structural and closed constraints publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.09.004 – ident: 10.1016/j.isprsjprs.2022.08.027_b58 doi: 10.1007/978-3-642-15558-1_9 – ident: 10.1016/j.isprsjprs.2022.08.027_b27 doi: 10.1109/CVPR42600.2020.00052 – volume: 14 start-page: 2857 year: 2021 ident: 10.1016/j.isprsjprs.2022.08.027_b51 article-title: Towards building and civil infrastructure reconstruction from point clouds: A review on data and key techniques publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3060568 – volume: 171 start-page: 155 year: 2021 ident: 10.1016/j.isprsjprs.2022.08.027_b54 article-title: Automatic 3D building reconstruction from multi-view aerial images with deep learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.11.011 – ident: 10.1016/j.isprsjprs.2022.08.027_b55 doi: 10.1109/CVPR.2019.00727 – ident: 10.1016/j.isprsjprs.2022.08.027_b10 – volume: 65 start-page: 787 issue: 7 year: 1999 ident: 10.1016/j.isprsjprs.2022.08.027_b13 article-title: Virtual city models from laser altimeter and 2D map data publication-title: Photogramm. Eng. Remote Sens. – volume: 11 start-page: 1372 issue: 11 year: 2019 ident: 10.1016/j.isprsjprs.2022.08.027_b26 article-title: TopoLAP: Topology recovery for building reconstruction by deducing the relationships between linear and planar primitives publication-title: Remote Sens. doi: 10.3390/rs11111372 – volume: 76 start-page: 17 year: 2013 ident: 10.1016/j.isprsjprs.2022.08.027_b14 article-title: Model driven reconstruction of roofs from sparse LiDAR point clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2012.11.004 – ident: 10.1016/j.isprsjprs.2022.08.027_b35 – ident: 10.1016/j.isprsjprs.2022.08.027_b31 – volume: 185 start-page: 247 year: 2022 ident: 10.1016/j.isprsjprs.2022.08.027_b22 article-title: RANSAC-based multi primitive building reconstruction from 3D point clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.12.012 – volume: 13 start-page: 1946 issue: 10 year: 2021 ident: 10.1016/j.isprsjprs.2022.08.027_b16 article-title: Reconstruction of complex roof semantic structures from 3D point clouds using local convexity and consistency publication-title: Remote Sens. doi: 10.3390/rs13101946 – ident: 10.1016/j.isprsjprs.2022.08.027_b17 doi: 10.1109/CVPR.2018.00745 – volume: 175 start-page: 416 year: 2021 ident: 10.1016/j.isprsjprs.2022.08.027_b49 article-title: Efficient interactions for reconstructing complex buildings via joint photometric and geometric saliency segmentation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.03.006 – volume: 14 start-page: 1912 issue: 8 year: 2022 ident: 10.1016/j.isprsjprs.2022.08.027_b28 article-title: Unsupervised building extraction from multimodal aerial data based on accurate vegetation removal and image feature consistency constraint publication-title: Remote Sens. doi: 10.3390/rs14081912 – ident: 10.1016/j.isprsjprs.2022.08.027_b25 – ident: 10.1016/j.isprsjprs.2022.08.027_b8 doi: 10.1109/CVPR.2019.00572 – volume: I-3 start-page: 233 year: 2012 ident: 10.1016/j.isprsjprs.2022.08.027_b20 article-title: Sub-surface growing and boundary generalization for 3D building reconstruction publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. doi: 10.5194/isprsannals-I-3-233-2012 – volume: I-4 start-page: 85 year: 2021 ident: 10.1016/j.isprsjprs.2022.08.027_b15 article-title: Building roof vectorization with ppgnet publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci. doi: 10.5194/isprs-archives-XLVI-4-W4-2021-85-2021 – ident: 10.1016/j.isprsjprs.2022.08.027_b34 – volume: 11 start-page: 2219 issue: 19 year: 2019 ident: 10.1016/j.isprsjprs.2022.08.027_b1 article-title: 2D image-to-3D model: Knowledge-based 3D building reconstruction (3DBR) using single aerial images and convolutional neural networks (CNNs) publication-title: Remote Sens. doi: 10.3390/rs11192219 – volume: 35 start-page: 40 issue: 169 year: 2020 ident: 10.1016/j.isprsjprs.2022.08.027_b5 article-title: An improved RANSAC algorithm for extracting roof planes from airborne LiDAR data publication-title: Photogramm. Rec. doi: 10.1111/phor.12296 – volume: 55 start-page: 7032 issue: 12 year: 2017 ident: 10.1016/j.isprsjprs.2022.08.027_b6 article-title: Topologically aware building rooftop reconstruction from airborne laser scanning point clouds publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2738439 – volume: 26 start-page: 214 issue: 2 year: 2007 ident: 10.1016/j.isprsjprs.2022.08.027_b37 article-title: Efficient RANSAC for point-cloud shape detection publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2007.01016.x – ident: 10.1016/j.isprsjprs.2022.08.027_b43 doi: 10.1007/978-3-030-01252-6_4 – volume: 7 start-page: 4199 issue: 10 year: 2014 ident: 10.1016/j.isprsjprs.2022.08.027_b7 article-title: A methodology for automated segmentation and reconstruction of urban 3-D buildings from ALS point clouds publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2349003 – volume: 43 start-page: 4338 issue: 12 year: 2020 ident: 10.1016/j.isprsjprs.2022.08.027_b12 article-title: Deep learning for 3D point clouds: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3005434 – volume: 42 start-page: 1191 issue: 2 year: 2018 ident: 10.1016/j.isprsjprs.2022.08.027_b45 article-title: ROOFN3D: Deep learning training data for 3D building reconstruction publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. doi: 10.5194/isprs-archives-XLII-2-1191-2018 – ident: 10.1016/j.isprsjprs.2022.08.027_b11 doi: 10.1109/ICCV.2015.169 – ident: 10.1016/j.isprsjprs.2022.08.027_b57 doi: 10.1109/CVPR42600.2020.00287 – volume: 83 start-page: 1 year: 2013 ident: 10.1016/j.isprsjprs.2022.08.027_b2 article-title: Automatic extraction of building roofs using LiDAR data and multispectral imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.05.006 – ident: 10.1016/j.isprsjprs.2022.08.027_b30 doi: 10.1109/ICCV.2017.258 – ident: 10.1016/j.isprsjprs.2022.08.027_b4 doi: 10.5194/isprs-archives-XLIII-B2-2022-359-2022 – volume: 85 start-page: 435 issue: 6 year: 2019 ident: 10.1016/j.isprsjprs.2022.08.027_b46 article-title: RoofN3D: A database for 3D building reconstruction with deep learning publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.85.6.435 – volume: 13 start-page: 1107 issue: 6 year: 2021 ident: 10.1016/j.isprsjprs.2022.08.027_b47 article-title: Combined rule-based and hypothesis-based method for building model reconstruction from photogrammetric point clouds publication-title: Remote Sens. doi: 10.3390/rs13061107 – volume: 14 start-page: 9636 year: 2021 ident: 10.1016/j.isprsjprs.2022.08.027_b56 article-title: Optimal model fitting for building reconstruction from point clouds publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3110429 – volume: 12 start-page: 1363 issue: 9 year: 2020 ident: 10.1016/j.isprsjprs.2022.08.027_b23 article-title: Roof plane segmentation from airborne LiDAR data using hierarchical clustering and boundary relabeling publication-title: Remote Sens. doi: 10.3390/rs12091363 – ident: 10.1016/j.isprsjprs.2022.08.027_b24 doi: 10.1109/ICCV.2017.324 – volume: 94 start-page: 183 year: 2014 ident: 10.1016/j.isprsjprs.2022.08.027_b53 article-title: A global optimization approach to roof segmentation from airborne LiDAR point clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.04.022 – ident: 10.1016/j.isprsjprs.2022.08.027_b59 doi: 10.1109/ICCV.2019.00105 – volume: 11 start-page: 606 issue: 2 year: 2018 ident: 10.1016/j.isprsjprs.2022.08.027_b42 article-title: Lidar point clouds to 3-D urban models : A review publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2781132 – year: 2020 ident: 10.1016/j.isprsjprs.2022.08.027_b52 – volume: 6 start-page: 187 issue: 3–4 year: 2005 ident: 10.1016/j.isprsjprs.2022.08.027_b3 article-title: Building reconstruction from images and laser scanning publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2014 ident: 10.1016/j.isprsjprs.2022.08.027_b21 |
SSID | ssj0001568 |
Score | 2.5776978 |
Snippet | Three-dimensional (3D) building roof reconstruction from airborne LiDAR point clouds is an important task in photogrammetry and computer vision. To... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17 |
SubjectTerms | Airborne LiDAR Building reconstruction computer vision data collection Deep learning geometry lidar photogrammetry Point clouds Roof modeling |
Title | Point2Roof: End-to-end 3D building roof modeling from airborne LiDAR point clouds |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2022.08.027 https://www.proquest.com/docview/2723117012 |
Volume | 193 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iB_Uguiq-ieA1bk3TduNt0ZX1iU_wVpoXVqRddrsHL_52Z_pYXRE8eOghJWnLZDIPOvN9hBxI7kwoXcAgFtJM-CJgSijLnA01V0EHPCj2Dl_fhP0ncfEcPM-Qk6YXBssqa9tf2fTSWtd32rU024M0bT94kDpwBEDiJQw62mEhItTyw4-vMo-jqh0OJzOcPVXjlY4Gw9ErXJAocl5ieSK9zO8e6oetLh3Q2TJZqiNH2q0-boXM2KxFFr_hCbbIfE1p_vK-Su5u8zQr-H2eu2PaywwrcmYzQ_1TqmoqbApRs6MlFw6OsNOEJukQtCKz9Co97d7TAT6E6rd8bEZr5Oms93jSZzV_AtPiSBTMcduxnhURHDInQ6kCJ7WWiSeEFb6DVMsoqQQivCWJbyCwMlK7UJuwo7ixvr9OZrM8sxuEOs8qSJat9A0XnTBJjDIQq3mw0xE8UW6SsJFZrGtwceS4eIubKrLXeCLsGIUdI_sljzaJN1k4qPA1_l5y3GxKPKUqMXiBvxfvN9sYw0HCvyNJZvMxTIog1EV0er71nxdskwUcVe2KO2S2GI7tLsQthdorFXOPzHXPL_s3n03N7xU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5VA4ICggytNIcDSbOk52XYlDxbba0m0FpZV6M_FLTVUlq92sUC_8Kf4gM4lTKELqAfWQQx5OrPFkHsnM9wG8VSK4XIWMYyxkuUxlxo00ngefW2GyEXpQ6h0-OMwnJ_LTaXa6Aj_7Xhgqq4y2v7PprbWORwZRmoNZWQ6-Jpg6CAJAEi0MuoiVlfv-8jvmbYsPe2Nc5HdC7O4cf5zwSC3ArdyUDQ_Cj3zi5RD1L6hcmSwoa1WRSOllGjALcUYZSeBnRZE6jDmcsiG3Lh8Z4Tx9BUW7f0eiuSDahPc_fteVbHb9dzQ7TtO7VlRWLmbzxTlumJkK0YKHEp_Nv13iX86h9Xi7D-B-DFXZdieNh7Diq3W49weA4TqsRQ71s8tH8OVzXVaNOKrrsMV2KsebmvvKsXTMTOTeZhimB9aS79AetbawopyjGlaeTcvx9hGb0U2YvaiXbvEYTm5Fqk9gtaor_xRYSLzB7Nyr1Ak5yovCGYfBYYKqNcQ7qg3Ie5lpG9HMiVTjQvdla-f6StiahK2JblMMNyC5GjjrAD1uHrLVL4q-ppsa3c7Ng9_0y6jxzaXfMUXl6yVeNMTYmuDwxbP_ecBrWJscH0z1dO9w_zncpTNdr-QLWG3mS_8Sg6bGvGqVlMG3234rfgFkiSuC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Point2Roof%3A+End-to-end+3D+building+roof+modeling+from+airborne+LiDAR+point+clouds&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Li%2C+Li&rft.au=Song%2C+Nan&rft.au=Sun%2C+Fei&rft.au=Liu%2C+Xinyi&rft.date=2022-11-01&rft.issn=0924-2716&rft.volume=193+p.17-28&rft.spage=17&rft.epage=28&rft_id=info:doi/10.1016%2Fj.isprsjprs.2022.08.027&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |