Point2Roof: End-to-end 3D building roof modeling from airborne LiDAR point clouds

Three-dimensional (3D) building roof reconstruction from airborne LiDAR point clouds is an important task in photogrammetry and computer vision. To automatically reconstruct the 3D building models at Level of Detail 2 (LoD-2) from airborne LiDAR point clouds, the data-driven approaches usually need...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 193; pp. 17 - 28
Main Authors Li, Li, Song, Nan, Sun, Fei, Liu, Xinyi, Wang, Ruisheng, Yao, Jian, Cao, Shaosheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Three-dimensional (3D) building roof reconstruction from airborne LiDAR point clouds is an important task in photogrammetry and computer vision. To automatically reconstruct the 3D building models at Level of Detail 2 (LoD-2) from airborne LiDAR point clouds, the data-driven approaches usually need to be performed in two steps: geometric primitive extraction and roof structure inference. Obviously, the traditional approaches are not end-to-end, the accumulated errors in different stages cannot be avoided and the final 3D roof models may not be optimal. In addition, the results of 3D roof models largely depend on the accuracy of geometric primitives (planes, lines, etc.). To solve these problems, we present a deep learning-based approach to directly reconstruct building roofs from airborne LiDAR point clouds, named Point2Roof. In our method, we start by extracting the deep features for each input point using PointNet++. Then, we identify a set of candidate corner points from the input point clouds using the extracted deep features. In addition, we also regress the offset for each candidate corner point to refine their locations. After that, these candidates are clustered into a set of initial vertices, and we further refine their locations to obtain the final accurate vertices. Finally, we propose a Paired Point Attention (PPA) module to predict the true model edges from an exhaustive set of candidate edges between the vertices. Unlike traditional roof modeling approaches, the proposed Point2Roof is end-to-end. However, due to the lack of a building reconstruction dataset, we construct a large-scale synthetic dataset to verify the effectiveness and robustness of the proposed Point2Roof. The experimental results conducted on the synthetic benchmark demonstrate that the proposed Point2Roof significantly outperforms the traditional roof modeling approaches. The experiments also show that the network trained on the synthetic dataset can be applied to the real point clouds after fine-tuning the trained model on a small real dataset. The large-scale synthetic dataset, the small real dataset and the source code of our approach are publicly available in https://github.com/Li-Li-Whu/Point2Roof.
AbstractList Three-dimensional (3D) building roof reconstruction from airborne LiDAR point clouds is an important task in photogrammetry and computer vision. To automatically reconstruct the 3D building models at Level of Detail 2 (LoD-2) from airborne LiDAR point clouds, the data-driven approaches usually need to be performed in two steps: geometric primitive extraction and roof structure inference. Obviously, the traditional approaches are not end-to-end, the accumulated errors in different stages cannot be avoided and the final 3D roof models may not be optimal. In addition, the results of 3D roof models largely depend on the accuracy of geometric primitives (planes, lines, etc.). To solve these problems, we present a deep learning-based approach to directly reconstruct building roofs from airborne LiDAR point clouds, named Point2Roof. In our method, we start by extracting the deep features for each input point using PointNet++. Then, we identify a set of candidate corner points from the input point clouds using the extracted deep features. In addition, we also regress the offset for each candidate corner point to refine their locations. After that, these candidates are clustered into a set of initial vertices, and we further refine their locations to obtain the final accurate vertices. Finally, we propose a Paired Point Attention (PPA) module to predict the true model edges from an exhaustive set of candidate edges between the vertices. Unlike traditional roof modeling approaches, the proposed Point2Roof is end-to-end. However, due to the lack of a building reconstruction dataset, we construct a large-scale synthetic dataset to verify the effectiveness and robustness of the proposed Point2Roof. The experimental results conducted on the synthetic benchmark demonstrate that the proposed Point2Roof significantly outperforms the traditional roof modeling approaches. The experiments also show that the network trained on the synthetic dataset can be applied to the real point clouds after fine-tuning the trained model on a small real dataset. The large-scale synthetic dataset, the small real dataset and the source code of our approach are publicly available in https://github.com/Li-Li-Whu/Point2Roof.
Author Sun, Fei
Li, Li
Cao, Shaosheng
Song, Nan
Wang, Ruisheng
Yao, Jian
Liu, Xinyi
Author_xml – sequence: 1
  givenname: Li
  surname: Li
  fullname: Li, Li
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, PR China
– sequence: 2
  givenname: Nan
  surname: Song
  fullname: Song, Nan
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, PR China
– sequence: 3
  givenname: Fei
  surname: Sun
  fullname: Sun, Fei
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, PR China
– sequence: 4
  givenname: Xinyi
  orcidid: 0000-0001-5333-8054
  surname: Liu
  fullname: Liu, Xinyi
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, PR China
– sequence: 5
  givenname: Ruisheng
  orcidid: 0000-0003-0745-5158
  surname: Wang
  fullname: Wang, Ruisheng
  organization: Department of Geomatics Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
– sequence: 6
  givenname: Jian
  surname: Yao
  fullname: Yao, Jian
  email: jian.yao@whu.edu.cn
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, PR China
– sequence: 7
  givenname: Shaosheng
  orcidid: 0000-0002-3795-8824
  surname: Cao
  fullname: Cao, Shaosheng
  email: shelsoncao@didiglobal.com
  organization: DiDi Chuxing, Beijing, PR China
BookMark eNqNkMtKAzEUhoMoWC_PYJZuZsytMxPBRdF6gYJadB0yyYmkTJOaTAXf3hkqLtzo4nA4nP_7F98R2g8xAEJnlJSU0OpiVfq8SXk1TMkIYyVpSsLqPTShTc2KhvHpPpoQyUTBalodoqOcV4QQOq2aCXp-ij70bBmju8TzYIs-FhAs5je43frO-vCG0_DE62ihGy-X4hprn9qYAuCFv5kt8WYswaaLW5tP0IHTXYbT732MXm_nL9f3xeLx7uF6tiiMoKIvHIMGCIhaVtzJSrZTJ42RmggBgjvWSNvKVlBJhdbcCsatNK4ytmpaZoHzY3S-692k-L6F3Ku1zwa6TgeI26xYzTilNaFsiF7toibFnBM4ZXyvex9Dn7TvFCVqVKlW6kelGlUq0qhB5cDXv_hN8mudPv9BznYkDCY-PCSVjYdgwPoEplc2-j87vgBpqJZj
CitedBy_id crossref_primary_10_3390_ijgi13010019
crossref_primary_10_3390_buildings15050691
crossref_primary_10_1109_LGRS_2024_3362733
crossref_primary_10_3390_rs16224324
crossref_primary_10_1109_TCSVT_2024_3447113
crossref_primary_10_1016_j_jag_2024_103685
crossref_primary_10_1109_LGRS_2024_3514514
crossref_primary_10_1016_j_optlaseng_2024_108602
crossref_primary_10_3390_rs16162969
crossref_primary_10_3390_rs15051269
crossref_primary_10_1088_1361_6501_ad044d
crossref_primary_10_1016_j_isprsjprs_2024_04_009
crossref_primary_10_1016_j_isprsjprs_2024_07_012
crossref_primary_10_1080_07038992_2023_2236243
crossref_primary_10_1080_17538947_2023_2283486
crossref_primary_10_1109_LGRS_2023_3277717
crossref_primary_10_3390_s24175723
crossref_primary_10_1111_mice_13277
crossref_primary_10_3390_rs15020400
crossref_primary_10_3390_rs15092432
crossref_primary_10_1016_j_isprsjprs_2024_01_020
crossref_primary_10_3390_rs17030496
crossref_primary_10_3390_rs16010190
crossref_primary_10_3390_rs15235493
crossref_primary_10_1016_j_jobe_2025_112145
crossref_primary_10_3130_aijt_30_506
crossref_primary_10_1016_j_cag_2024_104022
crossref_primary_10_1016_j_scs_2024_106103
crossref_primary_10_1080_17538947_2024_2375112
crossref_primary_10_3788_CJL240529
crossref_primary_10_1109_JSTARS_2023_3329773
crossref_primary_10_1109_TGRS_2024_3477423
crossref_primary_10_3390_ijgi14010006
crossref_primary_10_1080_10095020_2024_2381592
crossref_primary_10_1016_j_isprsjprs_2024_09_030
crossref_primary_10_1016_j_neucom_2024_127481
crossref_primary_10_1016_j_heliyon_2024_e38833
Cites_doi 10.1109/ICCV.2019.00779
10.1109/TGRS.2009.2030180
10.1016/j.isprsjprs.2018.01.013
10.1016/j.isprsjprs.2013.02.004
10.1109/CVPR.2006.12
10.1016/j.isprsjprs.2019.01.003
10.1109/TGRS.2020.2995732
10.3390/rs11141660
10.1109/CVPRW53098.2021.00118
10.1016/j.isprsjprs.2015.01.002
10.3390/rs8010005
10.1109/ICCV.2019.00937
10.1109/JSTARS.2021.3113083
10.1016/j.isprsjprs.2020.09.004
10.1007/978-3-642-15558-1_9
10.1109/CVPR42600.2020.00052
10.1109/JSTARS.2021.3060568
10.1016/j.isprsjprs.2020.11.011
10.1109/CVPR.2019.00727
10.3390/rs11111372
10.1016/j.isprsjprs.2012.11.004
10.1016/j.isprsjprs.2021.12.012
10.3390/rs13101946
10.1109/CVPR.2018.00745
10.1016/j.isprsjprs.2021.03.006
10.3390/rs14081912
10.1109/CVPR.2019.00572
10.5194/isprsannals-I-3-233-2012
10.5194/isprs-archives-XLVI-4-W4-2021-85-2021
10.3390/rs11192219
10.1111/phor.12296
10.1109/TGRS.2017.2738439
10.1111/j.1467-8659.2007.01016.x
10.1007/978-3-030-01252-6_4
10.1109/JSTARS.2014.2349003
10.1109/TPAMI.2020.3005434
10.5194/isprs-archives-XLII-2-1191-2018
10.1109/ICCV.2015.169
10.1109/CVPR42600.2020.00287
10.1016/j.isprsjprs.2013.05.006
10.1109/ICCV.2017.258
10.5194/isprs-archives-XLIII-B2-2022-359-2022
10.14358/PERS.85.6.435
10.3390/rs13061107
10.1109/JSTARS.2021.3110429
10.3390/rs12091363
10.1109/ICCV.2017.324
10.1016/j.isprsjprs.2014.04.022
10.1109/ICCV.2019.00105
10.1109/JSTARS.2017.2781132
ContentType Journal Article
Copyright 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2022.08.027
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 28
ExternalDocumentID 10_1016_j_isprsjprs_2022_08_027
S0924271622002362
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c414t-f2e8e0e47963f969b5f9cc9a044e43f289db9b41914aa3d423d9cf6cd68b2de33
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Tue Aug 05 11:34:28 EDT 2025
Tue Jul 01 03:46:48 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Fri Feb 23 02:39:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Airborne LiDAR
Roof modeling
Building reconstruction
Point clouds
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-f2e8e0e47963f969b5f9cc9a044e43f289db9b41914aa3d423d9cf6cd68b2de33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5333-8054
0000-0003-0745-5158
0000-0002-3795-8824
PQID 2723117012
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2723117012
crossref_citationtrail_10_1016_j_isprsjprs_2022_08_027
crossref_primary_10_1016_j_isprsjprs_2022_08_027
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2022_08_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017b. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems. NIPS, pp. 5099–5108.
Zhou, Q., Neumann, U., 2010. 2.5D dual contouring: A robust approach to creating building models from aerial LiDAR point clouds. In: European Conference on Computer Vision. ECCV, pp. 115–128.
Zhou, Y., Qi, H., Zhai, Y., Sun, Q., Chen, Z., Wei, L., Ma, Y., 2019b. Learning to reconstruct 3D manhattan wireframes from a single image. In: IEEE International Conference on Computer Vision. ICCV, pp. 7698–7707.
Buyukdemircioglu, M., Kocaman, S., Kada, M., 2022. Deep learning for 3D building reconstruction: A review. In: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. 43. pp. 359–366.
Schnabel, Wahl, Klein (b37) 2007; 26
Hensel, Goebbels, Kada (b15) 2021; I-4
Wang, Peethambaran, Chen (b42) 2018; 11
Li, Yao, Tu, Liu, Li, Guo (b23) 2020; 12
Xu, Hu, Zhu, Ge, Jin, Yu, Zhong (b49) 2021; 175
Awrangjeb, Zhang, Fraser (b2) 2013; 83
Mahmud, J., Price, T., Bapat, A., Frahm, J.M., 2020. Boundary-aware 3D building reconstruction from a single overhead image. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 441–451.
Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 7132–7141.
Jung, Sohn (b19) 2019; 149
Wang, Ji (b41) 2021; 14
Qi, C.R., Litany, O., He, K., Guibas, L.J., 2019. Deep Hough voting for 3D object detection in point clouds. In: IEEE International Conference on Computer Vision. ICCV, pp. 9277–9286.
Canaz Sevgen, Karsli (b5) 2020; 35
Chen, Zhang, Mathiopoulos, Huang (b7) 2014; 7
Ester, M., Kriegel, H.P., Sander, J., Xu, X., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining. Vol. 96. KDD, (34), pp. 226–231.
Dong, Yang, Hu, Scherer (b9) 2018; 137
Henn, Gröger, Stroh, Plümer (b14) 2013; 76
Dai, A., Nießner, M., 2019. Scan2Mesh: From unstructured range scans to 3D meshes. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 5574–5583.
Kada, Wichmann (b20) 2012; I-3
Yu, Ji, Liu, Wei (b54) 2021; 171
Zhang, F., Nauata, N., Furukawa, Y., 2020. Conv-MPN: Convolutional message passing neural network for structured outdoor architecture reconstruction. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 2798–2807.
Xu, Jiang, Shan, Zhang, Li (b50) 2016; 8
Guo, Wang, Hu, Liu, Liu, Bennamoun (b12) 2020; 43
Xu, Stilla (b51) 2021; 14
Yan, Shan, Jiang (b53) 2014; 94
Xu, Zhang, Li, Leotta, Chang, Shan (b52) 2020
Zhang, Li, Shan (b56) 2021; 14
Song, Xia, Wang, Chen (b38) 2020; 59
Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2017a. PointNet: Deep learning on point sets for 3D classification and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 652–660.
Chen, Wang, Peethambaran (b6) 2017; 55
Xiong, Jancosek, Elberink, Vosselman (b48) 2015; 101
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection. In: IEEE International Conference on Computer Vision. ICCV, pp. 2980–2988.
Liu, Zhang, Ling, Wan, Liu, Li (b26) 2019; 11
Meng, Chen, Liu, Li, Zhang, Ke, Hu (b28) 2022; 14
Partovi, Fraundorfer, Bahmanyar, Huang, Reinartz (b32) 2019; 11
Girshick, R., 2015. Fast R-CNN. In: IEEE International Conference on Computer Vision. ICCV, pp. 1440–1448.
Alidoost, Arefi, Tombari (b1) 2019; 11
Hu, Miao, Hou (b16) 2021; 13
Nan, L., Wonka, P., 2017. Polyfit: Polygonal surface reconstruction from point clouds. In: IEEE International Conference on Computer Vision. ICCV, pp. 2353–2361.
Li, Shan (b22) 2022; 185
Xie, Hu, Zhu, Li, Tang, Li, Guo, Zhang, Wang (b47) 2021; 13
Kingma, Ba (b21) 2014
Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y., 2018b. Pixel2Mesh: Generating 3D mesh models from single RGB images. In: European Conference on Computer Vision. ECCV, pp. 52–67.
Zhou, Y., Qi, H., Ma, Y., 2019a. End-to-end wireframe parsing. In: IEEE International Conference on Computer Vision. ICCV, pp. 962–971.
Haala, Brenner (b13) 1999; 65
Brenner (b3) 2005; 6
Huang, Brenner, Sester (b18) 2013; 79
Verma, V., Kumar, R., Hsu, S., 2006. 3D building detection and modeling from aerial LiDAR data. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 2213–2220.
Wichmann, Agoub, Kada (b45) 2018; 42
Wichmann, Agoub, Schmidt, Kada (b46) 2019; 85
Milde, J., Brenner, C., 2009. Graph-based modeling of building roofs. In: AGILE Conference on GIScience.
Wang, Cai, Cheng, Junior, Huang, Wang, Su, Li (b40) 2020; 170
Nash, C., Ganin, Y., Eslami, S.A., Battaglia, P., 2020. PolyGen: An autoregressive generative model of 3D meshes. In: International Conference on Machine Learning. ICML, pp. 7220–7229.
Sampath, Shan (b36) 2009; 48
Wang, Y., Zorzi, S., Bittner, K., 2021. Machine-learned 3D building vectorization from satellite imagery. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops. CVPRW, pp. 1072–1081.
Liu, Y., D’Aronco, S., Schindler, K., Wegner, J.D., 2021. PC2WF: 3D wireframe reconstruction from raw point clouds. In: International Conference on Learning Representations. ICLR.
Zhang, Z., Li, Z., Bi, N., Zheng, J., Wang, J., Huang, K., Luo, W., Xu, Y., Gao, S., 2019. PPGNet: Learning point-pair graph for line segment detection. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 7105–7114.
Li (10.1016/j.isprsjprs.2022.08.027_b22) 2022; 185
Awrangjeb (10.1016/j.isprsjprs.2022.08.027_b2) 2013; 83
10.1016/j.isprsjprs.2022.08.027_b30
Canaz Sevgen (10.1016/j.isprsjprs.2022.08.027_b5) 2020; 35
10.1016/j.isprsjprs.2022.08.027_b25
10.1016/j.isprsjprs.2022.08.027_b24
10.1016/j.isprsjprs.2022.08.027_b27
Kingma (10.1016/j.isprsjprs.2022.08.027_b21) 2014
Hensel (10.1016/j.isprsjprs.2022.08.027_b15) 2021; I-4
Meng (10.1016/j.isprsjprs.2022.08.027_b28) 2022; 14
Partovi (10.1016/j.isprsjprs.2022.08.027_b32) 2019; 11
Wichmann (10.1016/j.isprsjprs.2022.08.027_b45) 2018; 42
Li (10.1016/j.isprsjprs.2022.08.027_b23) 2020; 12
Henn (10.1016/j.isprsjprs.2022.08.027_b14) 2013; 76
10.1016/j.isprsjprs.2022.08.027_b29
Guo (10.1016/j.isprsjprs.2022.08.027_b12) 2020; 43
Hu (10.1016/j.isprsjprs.2022.08.027_b16) 2021; 13
10.1016/j.isprsjprs.2022.08.027_b60
Yan (10.1016/j.isprsjprs.2022.08.027_b53) 2014; 94
Chen (10.1016/j.isprsjprs.2022.08.027_b6) 2017; 55
Haala (10.1016/j.isprsjprs.2022.08.027_b13) 1999; 65
Brenner (10.1016/j.isprsjprs.2022.08.027_b3) 2005; 6
10.1016/j.isprsjprs.2022.08.027_b58
10.1016/j.isprsjprs.2022.08.027_b57
10.1016/j.isprsjprs.2022.08.027_b59
10.1016/j.isprsjprs.2022.08.027_b10
Jung (10.1016/j.isprsjprs.2022.08.027_b19) 2019; 149
Song (10.1016/j.isprsjprs.2022.08.027_b38) 2020; 59
10.1016/j.isprsjprs.2022.08.027_b11
10.1016/j.isprsjprs.2022.08.027_b55
Kada (10.1016/j.isprsjprs.2022.08.027_b20) 2012; I-3
Wang (10.1016/j.isprsjprs.2022.08.027_b42) 2018; 11
10.1016/j.isprsjprs.2022.08.027_b17
Chen (10.1016/j.isprsjprs.2022.08.027_b7) 2014; 7
Xiong (10.1016/j.isprsjprs.2022.08.027_b48) 2015; 101
Dong (10.1016/j.isprsjprs.2022.08.027_b9) 2018; 137
Schnabel (10.1016/j.isprsjprs.2022.08.027_b37) 2007; 26
Xu (10.1016/j.isprsjprs.2022.08.027_b52) 2020
10.1016/j.isprsjprs.2022.08.027_b43
Alidoost (10.1016/j.isprsjprs.2022.08.027_b1) 2019; 11
10.1016/j.isprsjprs.2022.08.027_b44
Xu (10.1016/j.isprsjprs.2022.08.027_b50) 2016; 8
Wichmann (10.1016/j.isprsjprs.2022.08.027_b46) 2019; 85
Xu (10.1016/j.isprsjprs.2022.08.027_b49) 2021; 175
10.1016/j.isprsjprs.2022.08.027_b4
10.1016/j.isprsjprs.2022.08.027_b8
Wang (10.1016/j.isprsjprs.2022.08.027_b40) 2020; 170
Wang (10.1016/j.isprsjprs.2022.08.027_b41) 2021; 14
Yu (10.1016/j.isprsjprs.2022.08.027_b54) 2021; 171
Xu (10.1016/j.isprsjprs.2022.08.027_b51) 2021; 14
Zhang (10.1016/j.isprsjprs.2022.08.027_b56) 2021; 14
Huang (10.1016/j.isprsjprs.2022.08.027_b18) 2013; 79
10.1016/j.isprsjprs.2022.08.027_b35
Liu (10.1016/j.isprsjprs.2022.08.027_b26) 2019; 11
Xie (10.1016/j.isprsjprs.2022.08.027_b47) 2021; 13
10.1016/j.isprsjprs.2022.08.027_b31
10.1016/j.isprsjprs.2022.08.027_b34
10.1016/j.isprsjprs.2022.08.027_b33
10.1016/j.isprsjprs.2022.08.027_b39
Sampath (10.1016/j.isprsjprs.2022.08.027_b36) 2009; 48
References_xml – reference: Ester, M., Kriegel, H.P., Sander, J., Xu, X., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining. Vol. 96. KDD, (34), pp. 226–231.
– volume: 48
  start-page: 1554
  year: 2009
  end-page: 1567
  ident: b36
  article-title: Segmentation and reconstruction of polyhedral building roofs from aerial LiDAR point clouds
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 76
  start-page: 17
  year: 2013
  end-page: 29
  ident: b14
  article-title: Model driven reconstruction of roofs from sparse LiDAR point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: I-4
  start-page: 85
  year: 2021
  end-page: 90
  ident: b15
  article-title: Building roof vectorization with ppgnet
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci.
– reference: Mahmud, J., Price, T., Bapat, A., Frahm, J.M., 2020. Boundary-aware 3D building reconstruction from a single overhead image. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 441–451.
– volume: 175
  start-page: 416
  year: 2021
  end-page: 430
  ident: b49
  article-title: Efficient interactions for reconstructing complex buildings via joint photometric and geometric saliency segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Qi, C.R., Litany, O., He, K., Guibas, L.J., 2019. Deep Hough voting for 3D object detection in point clouds. In: IEEE International Conference on Computer Vision. ICCV, pp. 9277–9286.
– volume: 185
  start-page: 247
  year: 2022
  end-page: 260
  ident: b22
  article-title: RANSAC-based multi primitive building reconstruction from 3D point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 11
  start-page: 1372
  year: 2019
  ident: b26
  article-title: TopoLAP: Topology recovery for building reconstruction by deducing the relationships between linear and planar primitives
  publication-title: Remote Sens.
– volume: 94
  start-page: 183
  year: 2014
  end-page: 193
  ident: b53
  article-title: A global optimization approach to roof segmentation from airborne LiDAR point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Zhou, Y., Qi, H., Ma, Y., 2019a. End-to-end wireframe parsing. In: IEEE International Conference on Computer Vision. ICCV, pp. 962–971.
– reference: Buyukdemircioglu, M., Kocaman, S., Kada, M., 2022. Deep learning for 3D building reconstruction: A review. In: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. 43. pp. 359–366.
– volume: 101
  start-page: 275
  year: 2015
  end-page: 290
  ident: b48
  article-title: Flexible building primitives for 3D building modeling
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 12
  start-page: 1363
  year: 2020
  ident: b23
  article-title: Roof plane segmentation from airborne LiDAR data using hierarchical clustering and boundary relabeling
  publication-title: Remote Sens.
– volume: 59
  start-page: 1660
  year: 2020
  end-page: 1674
  ident: b38
  article-title: Curved buildings reconstruction from airborne LiDAR data by matching and deforming geometric primitives
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 42
  start-page: 1191
  year: 2018
  end-page: 1198
  ident: b45
  article-title: ROOFN3D: Deep learning training data for 3D building reconstruction
  publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
– volume: 170
  start-page: 29
  year: 2020
  end-page: 44
  ident: b40
  article-title: Robust 3D reconstruction of building surfaces from point clouds based on structural and closed constraints
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 14
  start-page: 9636
  year: 2021
  end-page: 9650
  ident: b56
  article-title: Optimal model fitting for building reconstruction from point clouds
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– reference: Verma, V., Kumar, R., Hsu, S., 2006. 3D building detection and modeling from aerial LiDAR data. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 2213–2220.
– reference: Zhou, Y., Qi, H., Zhai, Y., Sun, Q., Chen, Z., Wei, L., Ma, Y., 2019b. Learning to reconstruct 3D manhattan wireframes from a single image. In: IEEE International Conference on Computer Vision. ICCV, pp. 7698–7707.
– reference: Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection. In: IEEE International Conference on Computer Vision. ICCV, pp. 2980–2988.
– reference: Nash, C., Ganin, Y., Eslami, S.A., Battaglia, P., 2020. PolyGen: An autoregressive generative model of 3D meshes. In: International Conference on Machine Learning. ICML, pp. 7220–7229.
– volume: 6
  start-page: 187
  year: 2005
  end-page: 198
  ident: b3
  article-title: Building reconstruction from images and laser scanning
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 171
  start-page: 155
  year: 2021
  end-page: 170
  ident: b54
  article-title: Automatic 3D building reconstruction from multi-view aerial images with deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 55
  start-page: 7032
  year: 2017
  end-page: 7052
  ident: b6
  article-title: Topologically aware building rooftop reconstruction from airborne laser scanning point clouds
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y., 2018b. Pixel2Mesh: Generating 3D mesh models from single RGB images. In: European Conference on Computer Vision. ECCV, pp. 52–67.
– volume: 11
  start-page: 2219
  year: 2019
  ident: b1
  article-title: 2D image-to-3D model: Knowledge-based 3D building reconstruction (3DBR) using single aerial images and convolutional neural networks (CNNs)
  publication-title: Remote Sens.
– volume: 14
  start-page: 10101
  year: 2021
  end-page: 10116
  ident: b41
  article-title: Roof plane segmentation from LiDAR point cloud data using region expansion based L0 gradient minimization and graph cut
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– reference: Girshick, R., 2015. Fast R-CNN. In: IEEE International Conference on Computer Vision. ICCV, pp. 1440–1448.
– reference: Wang, Y., Zorzi, S., Bittner, K., 2021. Machine-learned 3D building vectorization from satellite imagery. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops. CVPRW, pp. 1072–1081.
– volume: 7
  start-page: 4199
  year: 2014
  end-page: 4217
  ident: b7
  article-title: A methodology for automated segmentation and reconstruction of urban 3-D buildings from ALS point clouds
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 26
  start-page: 214
  year: 2007
  end-page: 226
  ident: b37
  article-title: Efficient RANSAC for point-cloud shape detection
  publication-title: Comput. Graph. Forum
– volume: 65
  start-page: 787
  year: 1999
  end-page: 795
  ident: b13
  article-title: Virtual city models from laser altimeter and 2D map data
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 11
  start-page: 606
  year: 2018
  end-page: 627
  ident: b42
  article-title: Lidar point clouds to 3-D urban models
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 43
  start-page: 4338
  year: 2020
  end-page: 4364
  ident: b12
  article-title: Deep learning for 3D point clouds: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: I-3
  start-page: 233
  year: 2012
  end-page: 238
  ident: b20
  article-title: Sub-surface growing and boundary generalization for 3D building reconstruction
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci.
– volume: 83
  start-page: 1
  year: 2013
  end-page: 18
  ident: b2
  article-title: Automatic extraction of building roofs using LiDAR data and multispectral imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Zhang, F., Nauata, N., Furukawa, Y., 2020. Conv-MPN: Convolutional message passing neural network for structured outdoor architecture reconstruction. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 2798–2807.
– reference: Zhang, Z., Li, Z., Bi, N., Zheng, J., Wang, J., Huang, K., Luo, W., Xu, Y., Gao, S., 2019. PPGNet: Learning point-pair graph for line segment detection. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 7105–7114.
– volume: 137
  start-page: 112
  year: 2018
  end-page: 133
  ident: b9
  article-title: An efficient global energy optimization approach for robust 3D plane segmentation of point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 11
  start-page: 1660
  year: 2019
  ident: b32
  article-title: Automatic 3-D building model reconstruction from very high resolution stereo satellite imagery
  publication-title: Remote Sens.
– volume: 14
  start-page: 2857
  year: 2021
  end-page: 2885
  ident: b51
  article-title: Towards building and civil infrastructure reconstruction from point clouds: A review on data and key techniques
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 79
  start-page: 29
  year: 2013
  end-page: 43
  ident: b18
  article-title: A generative statistical approach to automatic 3D building roof reconstruction from laser scanning data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Liu, Y., D’Aronco, S., Schindler, K., Wegner, J.D., 2021. PC2WF: 3D wireframe reconstruction from raw point clouds. In: International Conference on Learning Representations. ICLR.
– volume: 8
  start-page: 5
  year: 2016
  ident: b50
  article-title: Investigation on the weighted RANSAC approaches for building roof plane segmentation from LiDAR point clouds
  publication-title: Remote Sens.
– reference: Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017b. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems. NIPS, pp. 5099–5108.
– year: 2020
  ident: b52
  article-title: Deep learning guided building reconstruction from satellite imagery-derived point clouds
– volume: 13
  start-page: 1946
  year: 2021
  ident: b16
  article-title: Reconstruction of complex roof semantic structures from 3D point clouds using local convexity and consistency
  publication-title: Remote Sens.
– volume: 35
  start-page: 40
  year: 2020
  end-page: 57
  ident: b5
  article-title: An improved RANSAC algorithm for extracting roof planes from airborne LiDAR data
  publication-title: Photogramm. Rec.
– reference: Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2017a. PointNet: Deep learning on point sets for 3D classification and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 652–660.
– reference: Dai, A., Nießner, M., 2019. Scan2Mesh: From unstructured range scans to 3D meshes. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 5574–5583.
– volume: 149
  start-page: 157
  year: 2019
  end-page: 175
  ident: b19
  article-title: A line-based progressive refinement of 3D rooftop models using airborne LiDAR data with single view imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2014
  ident: b21
  article-title: Adam: A method for stochastic optimization
– reference: Milde, J., Brenner, C., 2009. Graph-based modeling of building roofs. In: AGILE Conference on GIScience.
– reference: Zhou, Q., Neumann, U., 2010. 2.5D dual contouring: A robust approach to creating building models from aerial LiDAR point clouds. In: European Conference on Computer Vision. ECCV, pp. 115–128.
– volume: 85
  start-page: 435
  year: 2019
  end-page: 443
  ident: b46
  article-title: RoofN3D: A database for 3D building reconstruction with deep learning
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 13
  start-page: 1107
  year: 2021
  ident: b47
  article-title: Combined rule-based and hypothesis-based method for building model reconstruction from photogrammetric point clouds
  publication-title: Remote Sens.
– volume: 14
  start-page: 1912
  year: 2022
  ident: b28
  article-title: Unsupervised building extraction from multimodal aerial data based on accurate vegetation removal and image feature consistency constraint
  publication-title: Remote Sens.
– reference: Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 7132–7141.
– reference: Nan, L., Wonka, P., 2017. Polyfit: Polygonal surface reconstruction from point clouds. In: IEEE International Conference on Computer Vision. ICCV, pp. 2353–2361.
– ident: 10.1016/j.isprsjprs.2022.08.027_b60
  doi: 10.1109/ICCV.2019.00779
– volume: 48
  start-page: 1554
  issue: 3
  year: 2009
  ident: 10.1016/j.isprsjprs.2022.08.027_b36
  article-title: Segmentation and reconstruction of polyhedral building roofs from aerial LiDAR point clouds
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2030180
– volume: 137
  start-page: 112
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.08.027_b9
  article-title: An efficient global energy optimization approach for robust 3D plane segmentation of point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.01.013
– volume: 79
  start-page: 29
  year: 2013
  ident: 10.1016/j.isprsjprs.2022.08.027_b18
  article-title: A generative statistical approach to automatic 3D building roof reconstruction from laser scanning data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.02.004
– ident: 10.1016/j.isprsjprs.2022.08.027_b39
  doi: 10.1109/CVPR.2006.12
– volume: 149
  start-page: 157
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.08.027_b19
  article-title: A line-based progressive refinement of 3D rooftop models using airborne LiDAR data with single view imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.01.003
– volume: 59
  start-page: 1660
  issue: 2
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.08.027_b38
  article-title: Curved buildings reconstruction from airborne LiDAR data by matching and deforming geometric primitives
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2995732
– volume: 11
  start-page: 1660
  issue: 14
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.08.027_b32
  article-title: Automatic 3-D building model reconstruction from very high resolution stereo satellite imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs11141660
– ident: 10.1016/j.isprsjprs.2022.08.027_b44
  doi: 10.1109/CVPRW53098.2021.00118
– volume: 101
  start-page: 275
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.08.027_b48
  article-title: Flexible building primitives for 3D building modeling
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.01.002
– volume: 8
  start-page: 5
  issue: 1
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.08.027_b50
  article-title: Investigation on the weighted RANSAC approaches for building roof plane segmentation from LiDAR point clouds
  publication-title: Remote Sens.
  doi: 10.3390/rs8010005
– ident: 10.1016/j.isprsjprs.2022.08.027_b33
  doi: 10.1109/ICCV.2019.00937
– volume: 14
  start-page: 10101
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.08.027_b41
  article-title: Roof plane segmentation from LiDAR point cloud data using region expansion based L0 gradient minimization and graph cut
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3113083
– ident: 10.1016/j.isprsjprs.2022.08.027_b29
– volume: 170
  start-page: 29
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.08.027_b40
  article-title: Robust 3D reconstruction of building surfaces from point clouds based on structural and closed constraints
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.09.004
– ident: 10.1016/j.isprsjprs.2022.08.027_b58
  doi: 10.1007/978-3-642-15558-1_9
– ident: 10.1016/j.isprsjprs.2022.08.027_b27
  doi: 10.1109/CVPR42600.2020.00052
– volume: 14
  start-page: 2857
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.08.027_b51
  article-title: Towards building and civil infrastructure reconstruction from point clouds: A review on data and key techniques
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3060568
– volume: 171
  start-page: 155
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.08.027_b54
  article-title: Automatic 3D building reconstruction from multi-view aerial images with deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.11.011
– ident: 10.1016/j.isprsjprs.2022.08.027_b55
  doi: 10.1109/CVPR.2019.00727
– ident: 10.1016/j.isprsjprs.2022.08.027_b10
– volume: 65
  start-page: 787
  issue: 7
  year: 1999
  ident: 10.1016/j.isprsjprs.2022.08.027_b13
  article-title: Virtual city models from laser altimeter and 2D map data
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 11
  start-page: 1372
  issue: 11
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.08.027_b26
  article-title: TopoLAP: Topology recovery for building reconstruction by deducing the relationships between linear and planar primitives
  publication-title: Remote Sens.
  doi: 10.3390/rs11111372
– volume: 76
  start-page: 17
  year: 2013
  ident: 10.1016/j.isprsjprs.2022.08.027_b14
  article-title: Model driven reconstruction of roofs from sparse LiDAR point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2012.11.004
– ident: 10.1016/j.isprsjprs.2022.08.027_b35
– ident: 10.1016/j.isprsjprs.2022.08.027_b31
– volume: 185
  start-page: 247
  year: 2022
  ident: 10.1016/j.isprsjprs.2022.08.027_b22
  article-title: RANSAC-based multi primitive building reconstruction from 3D point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.12.012
– volume: 13
  start-page: 1946
  issue: 10
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.08.027_b16
  article-title: Reconstruction of complex roof semantic structures from 3D point clouds using local convexity and consistency
  publication-title: Remote Sens.
  doi: 10.3390/rs13101946
– ident: 10.1016/j.isprsjprs.2022.08.027_b17
  doi: 10.1109/CVPR.2018.00745
– volume: 175
  start-page: 416
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.08.027_b49
  article-title: Efficient interactions for reconstructing complex buildings via joint photometric and geometric saliency segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.03.006
– volume: 14
  start-page: 1912
  issue: 8
  year: 2022
  ident: 10.1016/j.isprsjprs.2022.08.027_b28
  article-title: Unsupervised building extraction from multimodal aerial data based on accurate vegetation removal and image feature consistency constraint
  publication-title: Remote Sens.
  doi: 10.3390/rs14081912
– ident: 10.1016/j.isprsjprs.2022.08.027_b25
– ident: 10.1016/j.isprsjprs.2022.08.027_b8
  doi: 10.1109/CVPR.2019.00572
– volume: I-3
  start-page: 233
  year: 2012
  ident: 10.1016/j.isprsjprs.2022.08.027_b20
  article-title: Sub-surface growing and boundary generalization for 3D building reconstruction
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci.
  doi: 10.5194/isprsannals-I-3-233-2012
– volume: I-4
  start-page: 85
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.08.027_b15
  article-title: Building roof vectorization with ppgnet
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci.
  doi: 10.5194/isprs-archives-XLVI-4-W4-2021-85-2021
– ident: 10.1016/j.isprsjprs.2022.08.027_b34
– volume: 11
  start-page: 2219
  issue: 19
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.08.027_b1
  article-title: 2D image-to-3D model: Knowledge-based 3D building reconstruction (3DBR) using single aerial images and convolutional neural networks (CNNs)
  publication-title: Remote Sens.
  doi: 10.3390/rs11192219
– volume: 35
  start-page: 40
  issue: 169
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.08.027_b5
  article-title: An improved RANSAC algorithm for extracting roof planes from airborne LiDAR data
  publication-title: Photogramm. Rec.
  doi: 10.1111/phor.12296
– volume: 55
  start-page: 7032
  issue: 12
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.08.027_b6
  article-title: Topologically aware building rooftop reconstruction from airborne laser scanning point clouds
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2738439
– volume: 26
  start-page: 214
  issue: 2
  year: 2007
  ident: 10.1016/j.isprsjprs.2022.08.027_b37
  article-title: Efficient RANSAC for point-cloud shape detection
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2007.01016.x
– ident: 10.1016/j.isprsjprs.2022.08.027_b43
  doi: 10.1007/978-3-030-01252-6_4
– volume: 7
  start-page: 4199
  issue: 10
  year: 2014
  ident: 10.1016/j.isprsjprs.2022.08.027_b7
  article-title: A methodology for automated segmentation and reconstruction of urban 3-D buildings from ALS point clouds
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2349003
– volume: 43
  start-page: 4338
  issue: 12
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.08.027_b12
  article-title: Deep learning for 3D point clouds: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3005434
– volume: 42
  start-page: 1191
  issue: 2
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.08.027_b45
  article-title: ROOFN3D: Deep learning training data for 3D building reconstruction
  publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-2-1191-2018
– ident: 10.1016/j.isprsjprs.2022.08.027_b11
  doi: 10.1109/ICCV.2015.169
– ident: 10.1016/j.isprsjprs.2022.08.027_b57
  doi: 10.1109/CVPR42600.2020.00287
– volume: 83
  start-page: 1
  year: 2013
  ident: 10.1016/j.isprsjprs.2022.08.027_b2
  article-title: Automatic extraction of building roofs using LiDAR data and multispectral imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.05.006
– ident: 10.1016/j.isprsjprs.2022.08.027_b30
  doi: 10.1109/ICCV.2017.258
– ident: 10.1016/j.isprsjprs.2022.08.027_b4
  doi: 10.5194/isprs-archives-XLIII-B2-2022-359-2022
– volume: 85
  start-page: 435
  issue: 6
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.08.027_b46
  article-title: RoofN3D: A database for 3D building reconstruction with deep learning
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.85.6.435
– volume: 13
  start-page: 1107
  issue: 6
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.08.027_b47
  article-title: Combined rule-based and hypothesis-based method for building model reconstruction from photogrammetric point clouds
  publication-title: Remote Sens.
  doi: 10.3390/rs13061107
– volume: 14
  start-page: 9636
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.08.027_b56
  article-title: Optimal model fitting for building reconstruction from point clouds
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3110429
– volume: 12
  start-page: 1363
  issue: 9
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.08.027_b23
  article-title: Roof plane segmentation from airborne LiDAR data using hierarchical clustering and boundary relabeling
  publication-title: Remote Sens.
  doi: 10.3390/rs12091363
– ident: 10.1016/j.isprsjprs.2022.08.027_b24
  doi: 10.1109/ICCV.2017.324
– volume: 94
  start-page: 183
  year: 2014
  ident: 10.1016/j.isprsjprs.2022.08.027_b53
  article-title: A global optimization approach to roof segmentation from airborne LiDAR point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.04.022
– ident: 10.1016/j.isprsjprs.2022.08.027_b59
  doi: 10.1109/ICCV.2019.00105
– volume: 11
  start-page: 606
  issue: 2
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.08.027_b42
  article-title: Lidar point clouds to 3-D urban models : A review
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2781132
– year: 2020
  ident: 10.1016/j.isprsjprs.2022.08.027_b52
– volume: 6
  start-page: 187
  issue: 3–4
  year: 2005
  ident: 10.1016/j.isprsjprs.2022.08.027_b3
  article-title: Building reconstruction from images and laser scanning
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2014
  ident: 10.1016/j.isprsjprs.2022.08.027_b21
SSID ssj0001568
Score 2.5776978
Snippet Three-dimensional (3D) building roof reconstruction from airborne LiDAR point clouds is an important task in photogrammetry and computer vision. To...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17
SubjectTerms Airborne LiDAR
Building reconstruction
computer vision
data collection
Deep learning
geometry
lidar
photogrammetry
Point clouds
Roof modeling
Title Point2Roof: End-to-end 3D building roof modeling from airborne LiDAR point clouds
URI https://dx.doi.org/10.1016/j.isprsjprs.2022.08.027
https://www.proquest.com/docview/2723117012
Volume 193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iB_Uguiq-ieA1bk3TduNt0ZX1iU_wVpoXVqRddrsHL_52Z_pYXRE8eOghJWnLZDIPOvN9hBxI7kwoXcAgFtJM-CJgSijLnA01V0EHPCj2Dl_fhP0ncfEcPM-Qk6YXBssqa9tf2fTSWtd32rU024M0bT94kDpwBEDiJQw62mEhItTyw4-vMo-jqh0OJzOcPVXjlY4Gw9ErXJAocl5ieSK9zO8e6oetLh3Q2TJZqiNH2q0-boXM2KxFFr_hCbbIfE1p_vK-Su5u8zQr-H2eu2PaywwrcmYzQ_1TqmoqbApRs6MlFw6OsNOEJukQtCKz9Co97d7TAT6E6rd8bEZr5Oms93jSZzV_AtPiSBTMcduxnhURHDInQ6kCJ7WWiSeEFb6DVMsoqQQivCWJbyCwMlK7UJuwo7ixvr9OZrM8sxuEOs8qSJat9A0XnTBJjDIQq3mw0xE8UW6SsJFZrGtwceS4eIubKrLXeCLsGIUdI_sljzaJN1k4qPA1_l5y3GxKPKUqMXiBvxfvN9sYw0HCvyNJZvMxTIog1EV0er71nxdskwUcVe2KO2S2GI7tLsQthdorFXOPzHXPL_s3n03N7xU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5VA4ICggytNIcDSbOk52XYlDxbba0m0FpZV6M_FLTVUlq92sUC_8Kf4gM4lTKELqAfWQQx5OrPFkHsnM9wG8VSK4XIWMYyxkuUxlxo00ngefW2GyEXpQ6h0-OMwnJ_LTaXa6Aj_7Xhgqq4y2v7PprbWORwZRmoNZWQ6-Jpg6CAJAEi0MuoiVlfv-8jvmbYsPe2Nc5HdC7O4cf5zwSC3ArdyUDQ_Cj3zi5RD1L6hcmSwoa1WRSOllGjALcUYZSeBnRZE6jDmcsiG3Lh8Z4Tx9BUW7f0eiuSDahPc_fteVbHb9dzQ7TtO7VlRWLmbzxTlumJkK0YKHEp_Nv13iX86h9Xi7D-B-DFXZdieNh7Diq3W49weA4TqsRQ71s8tH8OVzXVaNOKrrsMV2KsebmvvKsXTMTOTeZhimB9aS79AetbawopyjGlaeTcvx9hGb0U2YvaiXbvEYTm5Fqk9gtaor_xRYSLzB7Nyr1Ak5yovCGYfBYYKqNcQ7qg3Ie5lpG9HMiVTjQvdla-f6StiahK2JblMMNyC5GjjrAD1uHrLVL4q-ppsa3c7Ng9_0y6jxzaXfMUXl6yVeNMTYmuDwxbP_ecBrWJscH0z1dO9w_zncpTNdr-QLWG3mS_8Sg6bGvGqVlMG3234rfgFkiSuC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Point2Roof%3A+End-to-end+3D+building+roof+modeling+from+airborne+LiDAR+point+clouds&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Li%2C+Li&rft.au=Song%2C+Nan&rft.au=Sun%2C+Fei&rft.au=Liu%2C+Xinyi&rft.date=2022-11-01&rft.issn=0924-2716&rft.volume=193+p.17-28&rft.spage=17&rft.epage=28&rft_id=info:doi/10.1016%2Fj.isprsjprs.2022.08.027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon