Quantifying methane emissions from coal mining ventilation shafts using an unmanned aerial vehicle (UAV)-based active AirCore system
A large quantity of CH4 is emitted to the atmosphere via ventilation shafts of underground coal mines. According to the European Pollutant Release and Transfer Register (E-PRTR), hard coal mines in the Upper Silesia Coal Basin (USCB) are a strong contributor (447 kt CH4 in 2017) to the annual Europe...
Saved in:
Published in | Atmospheric Environment: X Vol. 12; p. 100135 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2590-1621 2590-1621 |
DOI | 10.1016/j.aeaoa.2021.100135 |
Cover
Loading…
Abstract | A large quantity of CH4 is emitted to the atmosphere via ventilation shafts of underground coal mines. According to the European Pollutant Release and Transfer Register (E-PRTR), hard coal mines in the Upper Silesia Coal Basin (USCB) are a strong contributor (447 kt CH4 in 2017) to the annual European CH4 emissions. However, atmospheric emissions of CH4 from coal mines are poorly characterized, as they are dispersed over large areas. As part of the Carbon Dioxide and CH4 Mission (CoMet) pre-campaign, a study of the USCB's regional CH4 emissions took place in August 2017. We flew a recently developed active AirCore system aboard an unmanned aerial vehicle (UAV) to obtain CH4 mole fractions downwind of a single coal mining ventilation shaft. Besides CH4, we also measured CO2, CO, atmospheric temperature, pressure, and relative humidity. Wind-speed and wind-direction measurements were made using a lightweight balloon-borne radiosonde. Fifteen UAV flights were performed flying perpendicular to the wind direction at several altitude levels, to effectively build a ‘curtain’ of CH4 mole fractions in a two-dimensional plane at a distance between 150 and 350 m downwind of a single ventilation shaft. Furthermore, we have developed an inverse Gaussian approach for quantifying CH4 emissions from a point source using the UAV-based observations, and have applied it as well as the mass balance approach to both simulated data and actual flight data to quantify CH4 emissions. The simulated data experiments revealed the importance of having multiple transects at different altitudes, appropriate vertical spacing between the individual transects, and proper distance between the center height of the plume and the center flight transect. They also showed that the inverse Gaussian approach performed better than the mass balance approach. Our estimate of the CH4 emission rates from the sampled shaft ranges from 0.5 to 14.5 kt/year using a mass balance approach, and between 1.1 and 9.0 kt/year using an inverse Gaussian method. The average difference between the mass balance and the inverse Gaussian approach was 2.3 kt/year. Based on the observed correlation between CO2 and CH4 (R-squared > 0.69), the CO2 emissions from the shaft were estimated to be between 0.3 and 9.8 kt/year. This study demonstrates that the UAV-based active AirCore system provides an effective way of quantifying coal mining shaft emissions of CH4 and CO2.
•The UAV-based active AirCore is an effective sampling tool of quantifying point source emissions of greenhouse gases.•Inverse Gaussian Approach outperforms Mass Balance Approach in estimating point source emissions.•To achieve optimal performance of the Inverse Gaussian Approach, vertical spacing of UAV-based sampling is required to be smaller than 2.5 times the vertical distribution (σz) of the plume.•Continuous and accurate wind measurements are essential to reduce the uncertainties of the quantifications. |
---|---|
AbstractList | A large quantity of CH4 is emitted to the atmosphere via ventilation shafts of underground coal mines. According to the European Pollutant Release and Transfer Register (E-PRTR), hard coal mines in the Upper Silesia Coal Basin (USCB) are a strong contributor (447 kt CH4 in 2017) to the annual European CH4 emissions. However, atmospheric emissions of CH4 from coal mines are poorly characterized, as they are dispersed over large areas. As part of the Carbon Dioxide and CH4 Mission (CoMet) pre-campaign, a study of the USCB's regional CH4 emissions took place in August 2017. We flew a recently developed active AirCore system aboard an unmanned aerial vehicle (UAV) to obtain CH4 mole fractions downwind of a single coal mining ventilation shaft. Besides CH4, we also measured CO2, CO, atmospheric temperature, pressure, and relative humidity. Wind-speed and wind-direction measurements were made using a lightweight balloon-borne radiosonde. Fifteen UAV flights were performed flying perpendicular to the wind direction at several altitude levels, to effectively build a ‘curtain’ of CH4 mole fractions in a two-dimensional plane at a distance between 150 and 350 m downwind of a single ventilation shaft. Furthermore, we have developed an inverse Gaussian approach for quantifying CH4 emissions from a point source using the UAV-based observations, and have applied it as well as the mass balance approach to both simulated data and actual flight data to quantify CH4 emissions. The simulated data experiments revealed the importance of having multiple transects at different altitudes, appropriate vertical spacing between the individual transects, and proper distance between the center height of the plume and the center flight transect. They also showed that the inverse Gaussian approach performed better than the mass balance approach. Our estimate of the CH4 emission rates from the sampled shaft ranges from 0.5 to 14.5 kt/year using a mass balance approach, and between 1.1 and 9.0 kt/year using an inverse Gaussian method. The average difference between the mass balance and the inverse Gaussian approach was 2.3 kt/year. Based on the observed correlation between CO2 and CH4 (R-squared > 0.69), the CO2 emissions from the shaft were estimated to be between 0.3 and 9.8 kt/year. This study demonstrates that the UAV-based active AirCore system provides an effective way of quantifying coal mining shaft emissions of CH4 and CO2.
•The UAV-based active AirCore is an effective sampling tool of quantifying point source emissions of greenhouse gases.•Inverse Gaussian Approach outperforms Mass Balance Approach in estimating point source emissions.•To achieve optimal performance of the Inverse Gaussian Approach, vertical spacing of UAV-based sampling is required to be smaller than 2.5 times the vertical distribution (σz) of the plume.•Continuous and accurate wind measurements are essential to reduce the uncertainties of the quantifications. A large quantity of CH4 is emitted to the atmosphere via ventilation shafts of underground coal mines. According to the European Pollutant Release and Transfer Register (E-PRTR), hard coal mines in the Upper Silesia Coal Basin (USCB) are a strong contributor (447 kt CH4 in 2017) to the annual European CH4 emissions. However, atmospheric emissions of CH4 from coal mines are poorly characterized, as they are dispersed over large areas. As part of the Carbon Dioxide and CH4 Mission (CoMet) pre-campaign, a study of the USCB's regional CH4 emissions took place in August 2017. We flew a recently developed active AirCore system aboard an unmanned aerial vehicle (UAV) to obtain CH4 mole fractions downwind of a single coal mining ventilation shaft. Besides CH4, we also measured CO2, CO, atmospheric temperature, pressure, and relative humidity. Wind-speed and wind-direction measurements were made using a lightweight balloon-borne radiosonde. Fifteen UAV flights were performed flying perpendicular to the wind direction at several altitude levels, to effectively build a ‘curtain’ of CH4 mole fractions in a two-dimensional plane at a distance between 150 and 350 m downwind of a single ventilation shaft. Furthermore, we have developed an inverse Gaussian approach for quantifying CH4 emissions from a point source using the UAV-based observations, and have applied it as well as the mass balance approach to both simulated data and actual flight data to quantify CH4 emissions. The simulated data experiments revealed the importance of having multiple transects at different altitudes, appropriate vertical spacing between the individual transects, and proper distance between the center height of the plume and the center flight transect. They also showed that the inverse Gaussian approach performed better than the mass balance approach. Our estimate of the CH4 emission rates from the sampled shaft ranges from 0.5 to 14.5 kt/year using a mass balance approach, and between 1.1 and 9.0 kt/year using an inverse Gaussian method. The average difference between the mass balance and the inverse Gaussian approach was 2.3 kt/year. Based on the observed correlation between CO2 and CH4 (R-squared > 0.69), the CO2 emissions from the shaft were estimated to be between 0.3 and 9.8 kt/year. This study demonstrates that the UAV-based active AirCore system provides an effective way of quantifying coal mining shaft emissions of CH4 and CO2. |
ArticleNumber | 100135 |
Author | Andersen, Truls Swolkien, Justyna Chen, Huilin de Vries, Marcel Kers, Bert Vinkovic, Katarina Necki, Jaroslaw Roiger, Anke Peters, Wouter |
Author_xml | – sequence: 1 givenname: Truls orcidid: 0000-0001-6260-9661 surname: Andersen fullname: Andersen, Truls organization: Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, Netherlands – sequence: 2 givenname: Katarina orcidid: 0000-0002-0445-5462 surname: Vinkovic fullname: Vinkovic, Katarina organization: Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, Netherlands – sequence: 3 givenname: Marcel surname: de Vries fullname: de Vries, Marcel organization: Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, Netherlands – sequence: 4 givenname: Bert surname: Kers fullname: Kers, Bert organization: Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, Netherlands – sequence: 5 givenname: Jaroslaw surname: Necki fullname: Necki, Jaroslaw organization: Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland – sequence: 6 givenname: Justyna orcidid: 0000-0003-4332-9415 surname: Swolkien fullname: Swolkien, Justyna organization: Faculty of Mining and Geoengineering, AGH University of Science and Technology, Kraków, Poland – sequence: 7 givenname: Anke surname: Roiger fullname: Roiger, Anke organization: Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany – sequence: 8 givenname: Wouter orcidid: 0000-0001-8166-2070 surname: Peters fullname: Peters, Wouter organization: Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, Netherlands – sequence: 9 givenname: Huilin orcidid: 0000-0002-1573-6673 surname: Chen fullname: Chen, Huilin email: huilin.chen@rug.nl organization: Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, Netherlands |
BookMark | eNqFkU1rGzEQhkVJoGmSX5CLju1hXUn7qUMPxvQjECiFJlcxK41imV2pSLLB9_zwau1SSg_taYZ553mR5n1DLnzwSMgdZyvOePd-twKEACvBBC8Txuv2FbkSrWQV7wS_-KN_TW5T2jHGhGiajvEr8vJtDz47e3T-mc6Yt-CR4uxScsEnamOYqQ4w0dn5ZeWAZXuCXFSatmBzovu0CODp3s_gPRoKGF1BDrh1ekL69nH99K4aIS2Szu6AdO3iJkSk6Zgyzjfk0sKU8PZXvSaPnz5-33ypHr5-vt-sHyrd8CZXxg6gpTUce2iga8wgOZcwMmNa5GbEorUCrRk1a1gvxDCaoaCadTUMfVdfk_uzrwmwUz-imyEeVQCnToMQnxXEvLxZ1YOUWEM7jpI3aK3U2Pcts8yMA0Jni1d99tIxpBTR_vbjTC25qJ065aKWXNQ5l0LJvyjt8umaOYKb_sN-OLNYTnRwGFXSDr1G4yLqXP7g_sn_BAXzrwo |
CitedBy_id | crossref_primary_10_5194_acp_22_13881_2022 crossref_primary_10_5194_acp_22_9747_2022 crossref_primary_10_5194_acp_23_15749_2023 crossref_primary_10_5194_acp_23_5191_2023 crossref_primary_10_5194_amt_17_677_2024 crossref_primary_10_26599_TST_2023_9010110 crossref_primary_10_1088_1748_9326_acc346 crossref_primary_10_5194_amt_17_4471_2024 crossref_primary_10_1088_1748_9326_acbce7 crossref_primary_10_2478_acee_2022_0031 crossref_primary_10_5194_acp_22_16031_2022 |
Cites_doi | 10.5194/acp-20-12675-2020 10.5194/amt-6-151-2013 10.5194/amt-13-4715-2020 10.3390/rs4051355 10.5194/acp-14-5001-2014 10.5194/amt-4-1735-2011 10.5194/amt-11-2683-2018 10.1007/s00340-017-6735-6 10.5194/acp-16-13669-2016 10.5194/amt-11-6169-2018 10.5194/amt-11-1833-2018 10.5194/acp-21-8791-2021 10.5194/amt-14-71-2021 10.5194/amt-11-721-2018 10.5194/amt-12-5217-2019 10.5194/amt-10-2773-2017 10.1175/BAMS-D-15-00277.1 10.1038/ngeo1955 10.1016/j.chemosphere.2015.08.028 10.5194/essd-12-1561-2020 10.1051/epjconf/201817602003 10.1016/j.wasman.2017.12.024 10.1246/cl.2006.292 10.5194/amt-13-1467-2020 10.5194/acp-21-17345-2021 10.5194/acp-19-8931-2019 10.1016/j.ijggc.2019.102921 10.1021/acs.est.5b00217 10.1002/grl.50811 10.1016/j.snb.2012.04.036 10.1002/2016GL071930 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.aeaoa.2021.100135 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2590-1621 |
ExternalDocumentID | oai_doaj_org_article_3899e3a5bb914eff9ce7750f0db8ea6f 10_1016_j_aeaoa_2021_100135 S2590162121000356 |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ M41 NCXOZ OK1 ROL SSZ 0R~ AAHBH AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c414t-df8ac9fd1e7a4a64d89119ab0dd5e1dbe9fd52efdbc0407228bd8c41c063a8763 |
IEDL.DBID | DOA |
ISSN | 2590-1621 |
IngestDate | Wed Aug 27 00:24:56 EDT 2025 Thu Apr 24 22:56:23 EDT 2025 Tue Jul 01 04:16:25 EDT 2025 Tue Jul 25 21:01:28 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Point sources Coal mining UAV Inverse Gaussian Methane emissions |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-df8ac9fd1e7a4a64d89119ab0dd5e1dbe9fd52efdbc0407228bd8c41c063a8763 |
ORCID | 0000-0001-8166-2070 0000-0002-1573-6673 0000-0001-6260-9661 0000-0003-4332-9415 0000-0002-0445-5462 |
OpenAccessLink | https://doaj.org/article/3899e3a5bb914eff9ce7750f0db8ea6f |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3899e3a5bb914eff9ce7750f0db8ea6f crossref_primary_10_1016_j_aeaoa_2021_100135 crossref_citationtrail_10_1016_j_aeaoa_2021_100135 elsevier_sciencedirect_doi_10_1016_j_aeaoa_2021_100135 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Atmospheric Environment: X |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Etminan, Myhre, Highwood, Shine (bib9) 2016; 43 Shah, Pitt, Ricketts, Kabbabe, Gallagher, Allen, Leen, Williams (bib37) 2020; 13 Kunz, Lavric, Gerbig, Tans, Neff, Hummelgård, Martin, Rödjegård, Wrenger, Heimann (bib27) 2018; 11 Turnbull, Keller, Baisden, Brailsford, Bromley, Norris, van (bib41) 2014; 14 Krings, Gerilowski, Buchwitz, Reuter, Tretner, Erzinger, Heinze, Pflüger, Burrows, Bovensmann (bib25) 2011; 4 Greatwood, Richardson, Freer, Thomas, Mackenzie, Brownlow, Lowry, Fisher, Nisbet (bib14) 2017; 17 Karion, Sweeney, Pétron, Frost, Hardesty, Kofler, Miller, Newberger, Wolter, Banta, Brewer, Dlugokencky, Lang, Montzka, Schnell, Tans, Trainer, Zamora, Conley (bib17) 2013; 40 Lagzi, Meszaros, Gelybo, Leelossy (bib28) 2013 Dinger, Stebel, Cassiani, Ardeshiri, Bernardo, Kylling, Park, Pisso, Schmidbauer, Wasseng, Stohl (bib48) 2018; 11 Nathan, Golston, Brien, Ross, Harrison, Tao, Lary, Johnson, Covington, Clark, Zondlo (bib30) 2015 Berman, Fladeland, Liem, Kolyer, Gupta (bib4) 2012; 169 Fix, Amediek, Bovensmann, Ehret, Gerbig, Gerilowski, Pfeilsticker, Roiger, Zöger (bib10) 2018; 176 Golston, Tao, Brosy, Schäfer, Wolf, Mcspiritt, Buchholz, Caulton, Pan, Zondlo, Yoel, Kunstmann, Mcgregor (bib13) 2017; 123 Chang, Wang, Chang, Liang, Lin (bib7) 2016; 144 Karion, Sweeney, Kort, Shepson, Brewer, Cambaliza, Conley, Davis, Deng, Hardesty, Scott, Lauvaux, Lavoie, Lyon, Newberger, Pétron, Rella, Smith, Wolter, Yacovitch, Tans (bib18) 2015; 49 Andersen, Scheeren, Peters, Chen (bib2) 2018; 11 Luther, Kleinschek, Scheidweiler, Defratyka, Stanisavljevic, Forstmaier, Dandocsi, Wolff, Dubravica, Wildmann, Kostinek, Jöckel, Nickl, Klausner, Hase, Frey, Chen, Dietrich, Nȩcki, Swolkień, Fix, Roiger, Butz (bib29) 2019; 12 Ipcc (bib16) 2014 Kirschke, Bousquet, Ciais, Saunois, Canadell, Dlugokencky, Bergamaschi, Bergmann, Blake, Bruhwiler, Cameron-smith, Castaldi, Chevallier, Feng, Fraser, Heimann, Hodson, Houweling, Josse, Zeng (bib20) 2013; 6 Thoma, Squier (bib40) 2014 Brosy, Krampf, Zeeman, Wolf, Junkermann, Schäfer, Emeis, Kunstmann (bib5) 2017; 10 Zazzeri, Lowry, Fisher, France, Lanoisellé, Kelly, Necki, Iverach, Ginty, Zimnoch, Jasek, Nisbet (bib47) 2016; 16 Shah, Allen, Pitt, Ricketts, Williams, Helmore, Finlayson, Robinson, Kabbabe, Hollingsworth, Rees-white, Beaven, Scheutz, Bourn (bib36) 2019 Krautwurst, Gerilowski, Borchardt, Wildmann, Galkowski, Swolkien, Marshall, Fiehn, Roiger, Ruhtz, Gerbig, Necki, Burrows, Fix, Bovensmann (bib22) 2021 Villa, Gonzalez, Miljievic, Ristovski, Morawska (bib44) 2016 Krautwurst, Gerilowski, Jonsson, Thompson, Kolyer, Thorpe, Horstjann, Eastwood, Leifer, Vigil, Krings, Borchardt, Buchwitz, Fladeland, Burrows, Bovensmann (bib23) 2017 Swolkień (bib38) 2020; 94 France, Bateson, Dominutti, Allen, Andrews, Bauguitte, Coleman, Lachlan-Cope, Fisher, Huang, Jones, Lee, Lowry, Pitt, Purvis, Pyle, Shaw, Warwick, Weiss, Wilde, Witherstone, Young (bib11) 2021; 14 Pasquill (bib31) 1961; 90 Tuzson, Graf, Ravelid, Scheidegger, Kupferschmid, Looser, Morales, Emmenegger (bib42) 2020; 13 Kostinek, Roiger, Eckl, Fiehn, Luther, Wildmann, Klausner, Fix, Knote, Stohl, Butz (bib21) 2021; 21 Fiehn, Kostinek, Eckl, Klausner, Gałkowski, Chen, Gerbig, Röckmann, Maazallahi, Schmidt, Korbeń, Neçki, Jagoda, Wildmann, Mallaun, Bun, Nickl, Jöckel, Fix, Roiger (bib12) 2020; 20 Krings, Gerilowski, Buchwitz, Hartmann, Sachs, Erzinger, Burrows, Bovensmann (bib24) 2013; 6 Rawlings, Pantula, Dickey (bib33) 1998 Higaki, Oya, Makide (bib15) 2006; 35 Krings, Neininger, Gerilowski, Krautwurst, Buchwitz, Burrows, Lindemann, Ruhtz, Schüttemeyer, Bovensmann (bib26) 2018; 11 Pitt, Allen, Bauguitte, Gallagher, Lee, Drysdale, Nelson, Manning, Palmer (bib32) 2019; 19 Saunois, Stavert, Poulter, Bousquet, Canadell, Jackson, Raymond, Dlugokencky, Houweling, Patra, Ciais, Arora, Bastviken, Bergamaschi, Blake, Brailsford, Bruhwiler, Carlson, Carrol, Castaldi, Chandra, Crevoisier, Crill, Covey, Curry, Etiope, Frankenberg, Gedney, Hegglin, Höglund-Isaksson, Hugelius, Ishizawa, Ito, Janssens-Maenhout, Jensen, Joos, Kleinen, Krummel, Langenfelds, Laruelle, Liu, Machida, Maksyutov, McDonald, McNorton, Miller, Melton, Morino, Müller, Murguia-Flores, Naik, Niwa, Noce, O'Doherty, Parker, Peng, Peng, Peters, Prigent, Prinn, Ramonet, Regnier, Riley, Rosentreter, Segers, Simpson, Shi, Smith, Steele, Thornton, Tian, Tohjima, Tubiello, Tsuruta, Viovy, Voulgarakis, Weber, van Weele, van der Werf, Weiss, Worthy, Wunch, Yin, Yoshida, Zhang, Zhang, Zhao, Zheng, Zhu, Zhu, Zhuang (bib35) 2020; 12 Khan, Schaefer, Tao, Miller, Sun, Zondlo, Harrison, Roscoe, Lary (bib19) 2012; 4 Wolf, Chwala, Fersch, Garvelmann, Junkermann, Zeeman, Angerer, Adler, Beck, Brosy, Brugger, Emeis, Dannenmann, De Roo, Diaz-Pines, Haas, Hagen, Hajnsek, Jacobeit, Schmid (bib46) 2017 Cambaliza, Shepson, Bogner, Caulton, Stirm, Sweeney, Montzka, Gurney, Spokas, Salmon, Lavoie, Hendricks, Mays, Turnbull, Miller, Lauvaux, Davis, Karion, Moser, Miller, Obermeyer, Whetstone, Prasad, Miles, Richardson (bib6) 2015; 3 Vinkovic, Andersen, de Vries, Kers, van Heuven, Peters, Hensen, Chen (bib45) 2021 The MathWorks (bib39) 2019 E-Rptr (bib8) 2017 Allen, Hollingsworth, Kabbabe, Pitt, Mead, Illingworth, Roberts, Bourn, Shallcross, Percival (bib1) 2019; 87 Allen (10.1016/j.aeaoa.2021.100135_bib1) 2019; 87 Krings (10.1016/j.aeaoa.2021.100135_bib24) 2013; 6 Kunz (10.1016/j.aeaoa.2021.100135_bib27) 2018; 11 Brosy (10.1016/j.aeaoa.2021.100135_bib5) 2017; 10 E-Rptr (10.1016/j.aeaoa.2021.100135_bib8) 2017 Fix (10.1016/j.aeaoa.2021.100135_bib10) 2018; 176 Nathan (10.1016/j.aeaoa.2021.100135_bib30) 2015 Berman (10.1016/j.aeaoa.2021.100135_bib4) 2012; 169 Fiehn (10.1016/j.aeaoa.2021.100135_bib12) 2020; 20 Ipcc (10.1016/j.aeaoa.2021.100135_bib16) 2014 Turnbull (10.1016/j.aeaoa.2021.100135_bib41) 2014; 14 Saunois (10.1016/j.aeaoa.2021.100135_bib35) 2020; 12 Karion (10.1016/j.aeaoa.2021.100135_bib17) 2013; 40 Wolf (10.1016/j.aeaoa.2021.100135_bib46) 2017 Dinger (10.1016/j.aeaoa.2021.100135_bib48) 2018; 11 Khan (10.1016/j.aeaoa.2021.100135_bib19) 2012; 4 Tuzson (10.1016/j.aeaoa.2021.100135_bib42) 2020; 13 Villa (10.1016/j.aeaoa.2021.100135_bib44) 2016 Greatwood (10.1016/j.aeaoa.2021.100135_bib14) 2017; 17 Karion (10.1016/j.aeaoa.2021.100135_bib18) 2015; 49 Shah (10.1016/j.aeaoa.2021.100135_bib36) 2019 The MathWorks (10.1016/j.aeaoa.2021.100135_bib39) 2019 Luther (10.1016/j.aeaoa.2021.100135_bib29) 2019; 12 Andersen (10.1016/j.aeaoa.2021.100135_bib2) 2018; 11 Cambaliza (10.1016/j.aeaoa.2021.100135_bib6) 2015; 3 Higaki (10.1016/j.aeaoa.2021.100135_bib15) 2006; 35 Krings (10.1016/j.aeaoa.2021.100135_bib26) 2018; 11 Golston (10.1016/j.aeaoa.2021.100135_bib13) 2017; 123 Swolkień (10.1016/j.aeaoa.2021.100135_bib38) 2020; 94 Vinkovic (10.1016/j.aeaoa.2021.100135_bib45) 2021 Chang (10.1016/j.aeaoa.2021.100135_bib7) 2016; 144 Kirschke (10.1016/j.aeaoa.2021.100135_bib20) 2013; 6 Etminan (10.1016/j.aeaoa.2021.100135_bib9) 2016; 43 Krings (10.1016/j.aeaoa.2021.100135_bib25) 2011; 4 Zazzeri (10.1016/j.aeaoa.2021.100135_bib47) 2016; 16 Krautwurst (10.1016/j.aeaoa.2021.100135_bib23) 2017 Pasquill (10.1016/j.aeaoa.2021.100135_bib31) 1961; 90 Rawlings (10.1016/j.aeaoa.2021.100135_bib33) 1998 Krautwurst (10.1016/j.aeaoa.2021.100135_bib22) 2021 France (10.1016/j.aeaoa.2021.100135_bib11) 2021; 14 Kostinek (10.1016/j.aeaoa.2021.100135_bib21) 2021; 21 Pitt (10.1016/j.aeaoa.2021.100135_bib32) 2019; 19 Lagzi (10.1016/j.aeaoa.2021.100135_bib28) 2013 Shah (10.1016/j.aeaoa.2021.100135_bib37) 2020; 13 Thoma (10.1016/j.aeaoa.2021.100135_bib40) 2014 |
References_xml | – volume: 35 start-page: 292 year: 2006 end-page: 293 ident: bib15 article-title: Emission of methane from stainless steel surface investigated by using tritium as a radioactive tracer publication-title: Chem. Lett. – start-page: 1217 year: 2017 end-page: 1234 ident: bib46 article-title: The SCALEX campaign scale-crossing land surface and boundary layer processes in the TERENO-preAlpine observatory publication-title: Bull. Am. Meteorol. Soc. – volume: 6 start-page: 813 year: 2013 ident: bib20 article-title: Three decades of global methane sources and sinks publication-title: Nat. Geosci. – volume: 3 year: 2015 ident: bib6 article-title: Quantification and source apportionment of the methane emission flux from the city of Indianapolis publication-title: Elementa: Science of the Anthropocene – year: 2021 ident: bib22 article-title: Quantification of CH4 coal mining emissions in Upper Silesia by passive airborne remote sensing observations with the MAMAP instrument during CoMet publication-title: Atmos. Chem. Phys. Discuss. – volume: 14 start-page: 71 year: 2021 end-page: 88 ident: bib11 article-title: Facility level measurement of offshore oil and gas installations from a medium-sized airborne platform: method development for quantification and source identification of methane emissions publication-title: Atmos. Meas. Tech. – year: 2013 ident: bib28 article-title: Atmospheric Chemistry – year: 2019 ident: bib36 article-title: A Near-Field Gaussian Plume Inversion Flux Quantification Method , Applied to Unmanned Aerial Vehicle Sampling. 2018 – volume: 17 start-page: 1 year: 2017 end-page: 24 ident: bib14 article-title: Atmospheric sampling on ascension island using multirotor UAVs publication-title: Sensors – volume: 90 start-page: 33 year: 1961 end-page: 49 ident: bib31 article-title: The estimation of the dispersion of windborne material publication-title: Meteorol. Mag. – volume: 11 start-page: 6169 year: 2018 end-page: 6188 ident: bib48 article-title: Observation of turbulent dispersion of artificially released SO publication-title: Atmos. Meas. Tech. – start-page: 1 year: 2017 end-page: 33 ident: bib23 article-title: Methane emissions from a Californian landfill, determined from airborne remote sensing and in-situ measurements publication-title: Atmospheric Measurement Techniques – year: 2017 ident: bib8 article-title: European Pollutant Release and Transfer Register - Greenhouse Gas Overview 2017 – volume: 11 year: 2018 ident: bib2 article-title: A UAV-based active AirCore system for measurements of greenhouse gases publication-title: Atmospheric Measurement Techniques – volume: 14 start-page: 5001 year: 2014 end-page: 5014 ident: bib41 article-title: Atmospheric measurement of point source fossil CO2 emissions publication-title: Atmos. Chem. Phys. – volume: 11 start-page: 1833 year: 2018 end-page: 1849 ident: bib27 article-title: COCAP: a carbon dioxide analyser for small unmanned aircraft systems publication-title: Atmospheric Measurement Techniques – volume: 43 start-page: 614 year: 2016 end-page: 623 ident: bib9 article-title: Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing publication-title: Geophys. Res. Lett. – volume: 20 start-page: 12675 year: 2020 end-page: 12695 ident: bib12 article-title: Estimating CH publication-title: Atmos. Chem. Phys. – volume: 169 start-page: 128 year: 2012 end-page: 135 ident: bib4 article-title: Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle publication-title: Sensor. Actuator. B Chem. – volume: 21 start-page: 8791 year: 2021 end-page: 8807 ident: bib21 article-title: Estimating Upper Silesian coal mine methane emissions from airborne in situ observations and dispersion modeling publication-title: Atmos. Chem. Phys. – volume: 49 start-page: 8124 year: 2015 end-page: 8131 ident: bib18 article-title: Aircraft-based estimate of total methane emissions from the barnett shale region publication-title: Environ. Sci. Technol. – year: 2021 ident: bib45 article-title: Quantification of methane emissions from dairy cows using an unmanned aerial vehicle (UAV)-based active AirCore system publication-title: Prep – volume: 16 start-page: 13669 year: 2016 end-page: 13680 ident: bib47 article-title: Carbon isotopic signature of coal-derived methane emissions to the atmosphere: from coalification to alteration publication-title: Atmos. Chem. Phys. – volume: 19 start-page: 8931 year: 2019 end-page: 8945 ident: bib32 article-title: Assessing London CO publication-title: Atmos. Chem. Phys. – start-page: 12 year: 2016 end-page: 20 ident: bib44 article-title: An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements : Present Applications and Future Prospectives – volume: 11 start-page: 721 year: 2018 end-page: 739 ident: bib26 article-title: Airborne remote sensing and in situ measurements of atmospheric CO2 to quantify point source emissions publication-title: Atmospheric Measurement Techniques – year: 2014 ident: bib40 article-title: OTM 33 geospatial measurement of air pollution, remote emissions quantification (GMAP-REQ) and OTM33A geospatial measurement of air pollution-remote emissions quantification-direct assessment (GMAP-REQ-DA) publication-title: US Environmental Protection Agency – volume: 40 start-page: 4393 year: 2013 end-page: 4397 ident: bib17 article-title: Methane emissions estimate from airborne measurements over a western United States natural gas field publication-title: Geophys. Res. Lett. – volume: 4 start-page: 1355 year: 2012 end-page: 1368 ident: bib19 article-title: Low power greenhouse gas sensors for unmanned aerial vehicles publication-title: Rem. Sens. – volume: 13 start-page: 1467 year: 2020 end-page: 1484 ident: bib37 article-title: Testing the near-field Gaussian plume inversion flux quantification technique using unmanned aerial vehicle sampling publication-title: Atmos. Meas. Tech. – volume: 4 start-page: 1735 year: 2011 end-page: 1758 ident: bib25 article-title: Mamap - a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates publication-title: Atmospheric Measurement Techniques – volume: 94 year: 2020 ident: bib38 article-title: Polish underground coal mines as point sources of methane emission to the atmosphere publication-title: International Journal of Greenhouse Gas Control – volume: 87 start-page: 883 year: 2019 end-page: 892 ident: bib1 article-title: The development and trial of an unmanned aerial system for the measurement of methane flux from landfill and greenhouse gas emission hotspots publication-title: Waste Manag. – year: 2019 ident: bib39 – year: 2015 ident: bib30 article-title: Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft – year: 2014 ident: bib16 article-title: Climate change 2014: synthesis report publication-title: Contribution of working groups I, II, and III to the fifth assessment report of the international panel on climate change – volume: 10 start-page: 2773 year: 2017 end-page: 2784 ident: bib5 article-title: Simultaneous multicopter-based air sampling and sensing of meteorological variables publication-title: Atmos. Meas. Tech. – volume: 176 start-page: 2 year: 2018 end-page: 5 ident: bib10 article-title: CoMet: an airborne mission to simultaneously measure CO2 and CH4 using lidar, passive remote sensing, and in-situ techniques publication-title: The European Physical Journal Conferences – volume: 13 start-page: 4715 year: 2020 end-page: 4726 ident: bib42 article-title: A compact QCL spectrometer for mobile, high-precision methane sensing aboard drones publication-title: Atmos. Meas. Tech. – year: 1998 ident: bib33 article-title: Applied regression analysis: a research tool publication-title: Technometrics – volume: 12 start-page: 1561 year: 2020 end-page: 1623 ident: bib35 article-title: The global methane budget 2000–2017 publication-title: Earth Syst. Sci. Data – volume: 6 start-page: 151 year: 2013 end-page: 166 ident: bib24 article-title: Quantification of methane emission rates from coal mine ventilation shafts using airborne remote sensing data publication-title: Atmospheric Measurement Techniques – volume: 12 start-page: 5217 year: 2019 end-page: 5230 ident: bib29 article-title: Quantifying CH4 emissions from hard coal mines using mobile sun-viewing Fourier transform spectrometry publication-title: Atmos. Meas. Tech. – volume: 123 start-page: 1 year: 2017 end-page: 9 ident: bib13 article-title: Lightweight mid - infrared methane sensor for unmanned aerial systems publication-title: Appl. Phys. B – volume: 144 start-page: 484 year: 2016 end-page: 492 ident: bib7 article-title: Chemosphere Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies publication-title: Chemosphere – volume: 20 start-page: 12675 year: 2020 ident: 10.1016/j.aeaoa.2021.100135_bib12 article-title: Estimating CH4, CO2 and CO emissions from coal mining and industrial activities in the Upper Silesian Coal Basin using an aircraft-based mass balance approach publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-12675-2020 – volume: 6 start-page: 151 issue: 1 year: 2013 ident: 10.1016/j.aeaoa.2021.100135_bib24 article-title: Quantification of methane emission rates from coal mine ventilation shafts using airborne remote sensing data publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-6-151-2013 – volume: 13 start-page: 4715 year: 2020 ident: 10.1016/j.aeaoa.2021.100135_bib42 article-title: A compact QCL spectrometer for mobile, high-precision methane sensing aboard drones publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-13-4715-2020 – year: 2014 ident: 10.1016/j.aeaoa.2021.100135_bib16 article-title: Climate change 2014: synthesis report – year: 2017 ident: 10.1016/j.aeaoa.2021.100135_bib8 – volume: 4 start-page: 1355 issue: 12 year: 2012 ident: 10.1016/j.aeaoa.2021.100135_bib19 article-title: Low power greenhouse gas sensors for unmanned aerial vehicles publication-title: Rem. Sens. doi: 10.3390/rs4051355 – year: 1998 ident: 10.1016/j.aeaoa.2021.100135_bib33 article-title: Applied regression analysis: a research tool – volume: 14 start-page: 5001 issue: 10 year: 2014 ident: 10.1016/j.aeaoa.2021.100135_bib41 article-title: Atmospheric measurement of point source fossil CO2 emissions publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-14-5001-2014 – volume: 4 start-page: 1735 issue: 9 year: 2011 ident: 10.1016/j.aeaoa.2021.100135_bib25 article-title: Mamap - a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-4-1735-2011 – volume: 11 issue: 5 year: 2018 ident: 10.1016/j.aeaoa.2021.100135_bib2 article-title: A UAV-based active AirCore system for measurements of greenhouse gases publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-11-2683-2018 – volume: 123 start-page: 1 issue: 6 year: 2017 ident: 10.1016/j.aeaoa.2021.100135_bib13 article-title: Lightweight mid - infrared methane sensor for unmanned aerial systems publication-title: Appl. Phys. B doi: 10.1007/s00340-017-6735-6 – volume: 16 start-page: 13669 issue: 21 year: 2016 ident: 10.1016/j.aeaoa.2021.100135_bib47 article-title: Carbon isotopic signature of coal-derived methane emissions to the atmosphere: from coalification to alteration publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-13669-2016 – volume: 11 start-page: 6169 year: 2018 ident: 10.1016/j.aeaoa.2021.100135_bib48 article-title: Observation of turbulent dispersion of artificially released SO2 puffs with UV cameras publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-11-6169-2018 – year: 2019 ident: 10.1016/j.aeaoa.2021.100135_bib39 – year: 2015 ident: 10.1016/j.aeaoa.2021.100135_bib30 – volume: 11 start-page: 1833 issue: 3 year: 2018 ident: 10.1016/j.aeaoa.2021.100135_bib27 article-title: COCAP: a carbon dioxide analyser for small unmanned aircraft systems publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-11-1833-2018 – volume: 21 start-page: 8791 year: 2021 ident: 10.1016/j.aeaoa.2021.100135_bib21 article-title: Estimating Upper Silesian coal mine methane emissions from airborne in situ observations and dispersion modeling publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-8791-2021 – volume: 14 start-page: 71 year: 2021 ident: 10.1016/j.aeaoa.2021.100135_bib11 article-title: Facility level measurement of offshore oil and gas installations from a medium-sized airborne platform: method development for quantification and source identification of methane emissions publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-14-71-2021 – start-page: 1 year: 2017 ident: 10.1016/j.aeaoa.2021.100135_bib23 article-title: Methane emissions from a Californian landfill, determined from airborne remote sensing and in-situ measurements publication-title: Atmospheric Measurement Techniques – volume: 11 start-page: 721 issue: 2 year: 2018 ident: 10.1016/j.aeaoa.2021.100135_bib26 article-title: Airborne remote sensing and in situ measurements of atmospheric CO2 to quantify point source emissions publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-11-721-2018 – volume: 12 start-page: 5217 year: 2019 ident: 10.1016/j.aeaoa.2021.100135_bib29 article-title: Quantifying CH4 emissions from hard coal mines using mobile sun-viewing Fourier transform spectrometry publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-12-5217-2019 – volume: 10 start-page: 2773 year: 2017 ident: 10.1016/j.aeaoa.2021.100135_bib5 article-title: Simultaneous multicopter-based air sampling and sensing of meteorological variables publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-10-2773-2017 – year: 2014 ident: 10.1016/j.aeaoa.2021.100135_bib40 article-title: OTM 33 geospatial measurement of air pollution, remote emissions quantification (GMAP-REQ) and OTM33A geospatial measurement of air pollution-remote emissions quantification-direct assessment (GMAP-REQ-DA) – start-page: 1217 year: 2017 ident: 10.1016/j.aeaoa.2021.100135_bib46 article-title: The SCALEX campaign scale-crossing land surface and boundary layer processes in the TERENO-preAlpine observatory publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-15-00277.1 – volume: 6 start-page: 813 issue: 10 year: 2013 ident: 10.1016/j.aeaoa.2021.100135_bib20 article-title: Three decades of global methane sources and sinks publication-title: Nat. Geosci. doi: 10.1038/ngeo1955 – volume: 144 start-page: 484 year: 2016 ident: 10.1016/j.aeaoa.2021.100135_bib7 article-title: Chemosphere Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.08.028 – start-page: 12 year: 2016 ident: 10.1016/j.aeaoa.2021.100135_bib44 – volume: 12 start-page: 1561 year: 2020 ident: 10.1016/j.aeaoa.2021.100135_bib35 article-title: The global methane budget 2000–2017 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-12-1561-2020 – year: 2021 ident: 10.1016/j.aeaoa.2021.100135_bib45 article-title: Quantification of methane emissions from dairy cows using an unmanned aerial vehicle (UAV)-based active AirCore system – year: 2013 ident: 10.1016/j.aeaoa.2021.100135_bib28 – year: 2019 ident: 10.1016/j.aeaoa.2021.100135_bib36 – volume: 176 start-page: 2 year: 2018 ident: 10.1016/j.aeaoa.2021.100135_bib10 article-title: CoMet: an airborne mission to simultaneously measure CO2 and CH4 using lidar, passive remote sensing, and in-situ techniques publication-title: The European Physical Journal Conferences doi: 10.1051/epjconf/201817602003 – volume: 87 start-page: 883 year: 2019 ident: 10.1016/j.aeaoa.2021.100135_bib1 article-title: The development and trial of an unmanned aerial system for the measurement of methane flux from landfill and greenhouse gas emission hotspots publication-title: Waste Manag. doi: 10.1016/j.wasman.2017.12.024 – volume: 35 start-page: 292 issue: 3 year: 2006 ident: 10.1016/j.aeaoa.2021.100135_bib15 article-title: Emission of methane from stainless steel surface investigated by using tritium as a radioactive tracer publication-title: Chem. Lett. doi: 10.1246/cl.2006.292 – volume: 13 start-page: 1467 year: 2020 ident: 10.1016/j.aeaoa.2021.100135_bib37 article-title: Testing the near-field Gaussian plume inversion flux quantification technique using unmanned aerial vehicle sampling publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-13-1467-2020 – year: 2021 ident: 10.1016/j.aeaoa.2021.100135_bib22 article-title: Quantification of CH4 coal mining emissions in Upper Silesia by passive airborne remote sensing observations with the MAMAP instrument during CoMet publication-title: Atmos. Chem. Phys. Discuss. doi: 10.5194/acp-21-17345-2021 – volume: 19 start-page: 8931 year: 2019 ident: 10.1016/j.aeaoa.2021.100135_bib32 article-title: Assessing London CO2, CH4 and CO emissions using aircraft measurements and dispersion modelling publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-19-8931-2019 – volume: 94 year: 2020 ident: 10.1016/j.aeaoa.2021.100135_bib38 article-title: Polish underground coal mines as point sources of methane emission to the atmosphere publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2019.102921 – volume: 49 start-page: 8124 issue: 13 year: 2015 ident: 10.1016/j.aeaoa.2021.100135_bib18 article-title: Aircraft-based estimate of total methane emissions from the barnett shale region publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00217 – volume: 40 start-page: 4393 issue: 16 year: 2013 ident: 10.1016/j.aeaoa.2021.100135_bib17 article-title: Methane emissions estimate from airborne measurements over a western United States natural gas field publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50811 – volume: 169 start-page: 128 year: 2012 ident: 10.1016/j.aeaoa.2021.100135_bib4 article-title: Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2012.04.036 – volume: 17 start-page: 1 issue: 1189 year: 2017 ident: 10.1016/j.aeaoa.2021.100135_bib14 article-title: Atmospheric sampling on ascension island using multirotor UAVs publication-title: Sensors – volume: 90 start-page: 33 issue: 1161 year: 1961 ident: 10.1016/j.aeaoa.2021.100135_bib31 article-title: The estimation of the dispersion of windborne material publication-title: Meteorol. Mag. – volume: 3 year: 2015 ident: 10.1016/j.aeaoa.2021.100135_bib6 article-title: Quantification and source apportionment of the methane emission flux from the city of Indianapolis publication-title: Elementa: Science of the Anthropocene – volume: 43 start-page: 614 issue: 24 year: 2016 ident: 10.1016/j.aeaoa.2021.100135_bib9 article-title: Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL071930 |
SSID | ssj0002244601 |
Score | 2.3146174 |
Snippet | A large quantity of CH4 is emitted to the atmosphere via ventilation shafts of underground coal mines. According to the European Pollutant Release and Transfer... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100135 |
SubjectTerms | Coal mining Inverse Gaussian Methane emissions Point sources UAV |
Title | Quantifying methane emissions from coal mining ventilation shafts using an unmanned aerial vehicle (UAV)-based active AirCore system |
URI | https://dx.doi.org/10.1016/j.aeaoa.2021.100135 https://doaj.org/article/3899e3a5bb914eff9ce7750f0db8ea6f |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYsoKtYXOXhQMLjZZl_HWpQiKAhWvC2TTWJb7Fb6-Af-cGeSXe1JL143mWSZzGa-LJPvY-xcOUgy0KnoAhQCv8RIQB5LgWBD4WNs8loED4_pYKjuX5PXNakvqgkL9MDBcdfE_2a7kGhdSGWdKyqbYZZzkdG5hdTR7hsV0dphauJJXfCY47WPEd5HQqaxbCmHfHEXWJgR61AsPQmRF3v7SUuevX8tO61lnLsdtt1ARd4Lr7jLNmy9xz6fVkD1PXQ7iZP8M9SWk2Yb_fVacLotwqsZmk298gP35Yyh3o0vRuCWC06l7m8car6qp0DbLAcfhth3RDPxi2Hv5VJQfsMmvx_y3njen80tD8TP-2x4d_vcH4hGSUFUSqqlMC6HqnBG2gwUpMrkuMcVoCNjEiuNttiWxNYZXUXEmBbn2uRoWiGAAeKsO2Cb9ay2h4wjxEikVWiUKQVFpos8TQBXRFYpogvTYXHryLJqaMZJ7eK9bOvJJqX3fkneL4P3O-zq2-gjsGz83v2GVui7K1Fk-wcYOGUTOOVfgdNhabu-ZYM2AorAoca_zX70H7Mfsy0aMhTGnLDN5XxlTxHeLPWZj-Qvb6n5Iw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+methane+emissions+from+coal+mining+ventilation+shafts+using+an+unmanned+aerial+vehicle+%28UAV%29-based+active+AirCore+system&rft.jtitle=Atmospheric+Environment%3A+X&rft.au=Andersen%2C+Truls&rft.au=Vinkovic%2C+Katarina&rft.au=de+Vries%2C+Marcel&rft.au=Kers%2C+Bert&rft.date=2021-12-01&rft.issn=2590-1621&rft.eissn=2590-1621&rft.volume=12&rft.spage=100135&rft_id=info:doi/10.1016%2Fj.aeaoa.2021.100135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aeaoa_2021_100135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1621&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1621&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1621&client=summon |