Quantifying methane emissions from coal mining ventilation shafts using an unmanned aerial vehicle (UAV)-based active AirCore system

A large quantity of CH4 is emitted to the atmosphere via ventilation shafts of underground coal mines. According to the European Pollutant Release and Transfer Register (E-PRTR), hard coal mines in the Upper Silesia Coal Basin (USCB) are a strong contributor (447 kt CH4 in 2017) to the annual Europe...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric Environment: X Vol. 12; p. 100135
Main Authors Andersen, Truls, Vinkovic, Katarina, de Vries, Marcel, Kers, Bert, Necki, Jaroslaw, Swolkien, Justyna, Roiger, Anke, Peters, Wouter, Chen, Huilin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2590-1621
2590-1621
DOI10.1016/j.aeaoa.2021.100135

Cover

Loading…
Abstract A large quantity of CH4 is emitted to the atmosphere via ventilation shafts of underground coal mines. According to the European Pollutant Release and Transfer Register (E-PRTR), hard coal mines in the Upper Silesia Coal Basin (USCB) are a strong contributor (447 kt CH4 in 2017) to the annual European CH4 emissions. However, atmospheric emissions of CH4 from coal mines are poorly characterized, as they are dispersed over large areas. As part of the Carbon Dioxide and CH4 Mission (CoMet) pre-campaign, a study of the USCB's regional CH4 emissions took place in August 2017. We flew a recently developed active AirCore system aboard an unmanned aerial vehicle (UAV) to obtain CH4 mole fractions downwind of a single coal mining ventilation shaft. Besides CH4, we also measured CO2, CO, atmospheric temperature, pressure, and relative humidity. Wind-speed and wind-direction measurements were made using a lightweight balloon-borne radiosonde. Fifteen UAV flights were performed flying perpendicular to the wind direction at several altitude levels, to effectively build a ‘curtain’ of CH4 mole fractions in a two-dimensional plane at a distance between 150 and 350 m downwind of a single ventilation shaft. Furthermore, we have developed an inverse Gaussian approach for quantifying CH4 emissions from a point source using the UAV-based observations, and have applied it as well as the mass balance approach to both simulated data and actual flight data to quantify CH4 emissions. The simulated data experiments revealed the importance of having multiple transects at different altitudes, appropriate vertical spacing between the individual transects, and proper distance between the center height of the plume and the center flight transect. They also showed that the inverse Gaussian approach performed better than the mass balance approach. Our estimate of the CH4 emission rates from the sampled shaft ranges from 0.5 to 14.5 kt/year using a mass balance approach, and between 1.1 and 9.0 kt/year using an inverse Gaussian method. The average difference between the mass balance and the inverse Gaussian approach was 2.3 kt/year. Based on the observed correlation between CO2 and CH4 (R-squared > 0.69), the CO2 emissions from the shaft were estimated to be between 0.3 and 9.8 kt/year. This study demonstrates that the UAV-based active AirCore system provides an effective way of quantifying coal mining shaft emissions of CH4 and CO2. •The UAV-based active AirCore is an effective sampling tool of quantifying point source emissions of greenhouse gases.•Inverse Gaussian Approach outperforms Mass Balance Approach in estimating point source emissions.•To achieve optimal performance of the Inverse Gaussian Approach, vertical spacing of UAV-based sampling is required to be smaller than 2.5 times the vertical distribution (σz) of the plume.•Continuous and accurate wind measurements are essential to reduce the uncertainties of the quantifications.
AbstractList A large quantity of CH4 is emitted to the atmosphere via ventilation shafts of underground coal mines. According to the European Pollutant Release and Transfer Register (E-PRTR), hard coal mines in the Upper Silesia Coal Basin (USCB) are a strong contributor (447 kt CH4 in 2017) to the annual European CH4 emissions. However, atmospheric emissions of CH4 from coal mines are poorly characterized, as they are dispersed over large areas. As part of the Carbon Dioxide and CH4 Mission (CoMet) pre-campaign, a study of the USCB's regional CH4 emissions took place in August 2017. We flew a recently developed active AirCore system aboard an unmanned aerial vehicle (UAV) to obtain CH4 mole fractions downwind of a single coal mining ventilation shaft. Besides CH4, we also measured CO2, CO, atmospheric temperature, pressure, and relative humidity. Wind-speed and wind-direction measurements were made using a lightweight balloon-borne radiosonde. Fifteen UAV flights were performed flying perpendicular to the wind direction at several altitude levels, to effectively build a ‘curtain’ of CH4 mole fractions in a two-dimensional plane at a distance between 150 and 350 m downwind of a single ventilation shaft. Furthermore, we have developed an inverse Gaussian approach for quantifying CH4 emissions from a point source using the UAV-based observations, and have applied it as well as the mass balance approach to both simulated data and actual flight data to quantify CH4 emissions. The simulated data experiments revealed the importance of having multiple transects at different altitudes, appropriate vertical spacing between the individual transects, and proper distance between the center height of the plume and the center flight transect. They also showed that the inverse Gaussian approach performed better than the mass balance approach. Our estimate of the CH4 emission rates from the sampled shaft ranges from 0.5 to 14.5 kt/year using a mass balance approach, and between 1.1 and 9.0 kt/year using an inverse Gaussian method. The average difference between the mass balance and the inverse Gaussian approach was 2.3 kt/year. Based on the observed correlation between CO2 and CH4 (R-squared > 0.69), the CO2 emissions from the shaft were estimated to be between 0.3 and 9.8 kt/year. This study demonstrates that the UAV-based active AirCore system provides an effective way of quantifying coal mining shaft emissions of CH4 and CO2. •The UAV-based active AirCore is an effective sampling tool of quantifying point source emissions of greenhouse gases.•Inverse Gaussian Approach outperforms Mass Balance Approach in estimating point source emissions.•To achieve optimal performance of the Inverse Gaussian Approach, vertical spacing of UAV-based sampling is required to be smaller than 2.5 times the vertical distribution (σz) of the plume.•Continuous and accurate wind measurements are essential to reduce the uncertainties of the quantifications.
A large quantity of CH4 is emitted to the atmosphere via ventilation shafts of underground coal mines. According to the European Pollutant Release and Transfer Register (E-PRTR), hard coal mines in the Upper Silesia Coal Basin (USCB) are a strong contributor (447 kt CH4 in 2017) to the annual European CH4 emissions. However, atmospheric emissions of CH4 from coal mines are poorly characterized, as they are dispersed over large areas. As part of the Carbon Dioxide and CH4 Mission (CoMet) pre-campaign, a study of the USCB's regional CH4 emissions took place in August 2017. We flew a recently developed active AirCore system aboard an unmanned aerial vehicle (UAV) to obtain CH4 mole fractions downwind of a single coal mining ventilation shaft. Besides CH4, we also measured CO2, CO, atmospheric temperature, pressure, and relative humidity. Wind-speed and wind-direction measurements were made using a lightweight balloon-borne radiosonde. Fifteen UAV flights were performed flying perpendicular to the wind direction at several altitude levels, to effectively build a ‘curtain’ of CH4 mole fractions in a two-dimensional plane at a distance between 150 and 350 m downwind of a single ventilation shaft. Furthermore, we have developed an inverse Gaussian approach for quantifying CH4 emissions from a point source using the UAV-based observations, and have applied it as well as the mass balance approach to both simulated data and actual flight data to quantify CH4 emissions. The simulated data experiments revealed the importance of having multiple transects at different altitudes, appropriate vertical spacing between the individual transects, and proper distance between the center height of the plume and the center flight transect. They also showed that the inverse Gaussian approach performed better than the mass balance approach. Our estimate of the CH4 emission rates from the sampled shaft ranges from 0.5 to 14.5 kt/year using a mass balance approach, and between 1.1 and 9.0 kt/year using an inverse Gaussian method. The average difference between the mass balance and the inverse Gaussian approach was 2.3 kt/year. Based on the observed correlation between CO2 and CH4 (R-squared > 0.69), the CO2 emissions from the shaft were estimated to be between 0.3 and 9.8 kt/year. This study demonstrates that the UAV-based active AirCore system provides an effective way of quantifying coal mining shaft emissions of CH4 and CO2.
ArticleNumber 100135
Author Andersen, Truls
Swolkien, Justyna
Chen, Huilin
de Vries, Marcel
Kers, Bert
Vinkovic, Katarina
Necki, Jaroslaw
Roiger, Anke
Peters, Wouter
Author_xml – sequence: 1
  givenname: Truls
  orcidid: 0000-0001-6260-9661
  surname: Andersen
  fullname: Andersen, Truls
  organization: Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, Netherlands
– sequence: 2
  givenname: Katarina
  orcidid: 0000-0002-0445-5462
  surname: Vinkovic
  fullname: Vinkovic, Katarina
  organization: Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, Netherlands
– sequence: 3
  givenname: Marcel
  surname: de Vries
  fullname: de Vries, Marcel
  organization: Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, Netherlands
– sequence: 4
  givenname: Bert
  surname: Kers
  fullname: Kers, Bert
  organization: Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, Netherlands
– sequence: 5
  givenname: Jaroslaw
  surname: Necki
  fullname: Necki, Jaroslaw
  organization: Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
– sequence: 6
  givenname: Justyna
  orcidid: 0000-0003-4332-9415
  surname: Swolkien
  fullname: Swolkien, Justyna
  organization: Faculty of Mining and Geoengineering, AGH University of Science and Technology, Kraków, Poland
– sequence: 7
  givenname: Anke
  surname: Roiger
  fullname: Roiger, Anke
  organization: Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
– sequence: 8
  givenname: Wouter
  orcidid: 0000-0001-8166-2070
  surname: Peters
  fullname: Peters, Wouter
  organization: Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, Netherlands
– sequence: 9
  givenname: Huilin
  orcidid: 0000-0002-1573-6673
  surname: Chen
  fullname: Chen, Huilin
  email: huilin.chen@rug.nl
  organization: Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, Netherlands
BookMark eNqFkU1rGzEQhkVJoGmSX5CLju1hXUn7qUMPxvQjECiFJlcxK41imV2pSLLB9_zwau1SSg_taYZ553mR5n1DLnzwSMgdZyvOePd-twKEACvBBC8Txuv2FbkSrWQV7wS_-KN_TW5T2jHGhGiajvEr8vJtDz47e3T-mc6Yt-CR4uxScsEnamOYqQ4w0dn5ZeWAZXuCXFSatmBzovu0CODp3s_gPRoKGF1BDrh1ekL69nH99K4aIS2Szu6AdO3iJkSk6Zgyzjfk0sKU8PZXvSaPnz5-33ypHr5-vt-sHyrd8CZXxg6gpTUce2iga8wgOZcwMmNa5GbEorUCrRk1a1gvxDCaoaCadTUMfVdfk_uzrwmwUz-imyEeVQCnToMQnxXEvLxZ1YOUWEM7jpI3aK3U2Pcts8yMA0Jni1d99tIxpBTR_vbjTC25qJ065aKWXNQ5l0LJvyjt8umaOYKb_sN-OLNYTnRwGFXSDr1G4yLqXP7g_sn_BAXzrwo
CitedBy_id crossref_primary_10_5194_acp_22_13881_2022
crossref_primary_10_5194_acp_22_9747_2022
crossref_primary_10_5194_acp_23_15749_2023
crossref_primary_10_5194_acp_23_5191_2023
crossref_primary_10_5194_amt_17_677_2024
crossref_primary_10_26599_TST_2023_9010110
crossref_primary_10_1088_1748_9326_acc346
crossref_primary_10_5194_amt_17_4471_2024
crossref_primary_10_1088_1748_9326_acbce7
crossref_primary_10_2478_acee_2022_0031
crossref_primary_10_5194_acp_22_16031_2022
Cites_doi 10.5194/acp-20-12675-2020
10.5194/amt-6-151-2013
10.5194/amt-13-4715-2020
10.3390/rs4051355
10.5194/acp-14-5001-2014
10.5194/amt-4-1735-2011
10.5194/amt-11-2683-2018
10.1007/s00340-017-6735-6
10.5194/acp-16-13669-2016
10.5194/amt-11-6169-2018
10.5194/amt-11-1833-2018
10.5194/acp-21-8791-2021
10.5194/amt-14-71-2021
10.5194/amt-11-721-2018
10.5194/amt-12-5217-2019
10.5194/amt-10-2773-2017
10.1175/BAMS-D-15-00277.1
10.1038/ngeo1955
10.1016/j.chemosphere.2015.08.028
10.5194/essd-12-1561-2020
10.1051/epjconf/201817602003
10.1016/j.wasman.2017.12.024
10.1246/cl.2006.292
10.5194/amt-13-1467-2020
10.5194/acp-21-17345-2021
10.5194/acp-19-8931-2019
10.1016/j.ijggc.2019.102921
10.1021/acs.est.5b00217
10.1002/grl.50811
10.1016/j.snb.2012.04.036
10.1002/2016GL071930
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.aeaoa.2021.100135
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2590-1621
ExternalDocumentID oai_doaj_org_article_3899e3a5bb914eff9ce7750f0db8ea6f
10_1016_j_aeaoa_2021_100135
S2590162121000356
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M41
NCXOZ
OK1
ROL
SSZ
0R~
AAHBH
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-df8ac9fd1e7a4a64d89119ab0dd5e1dbe9fd52efdbc0407228bd8c41c063a8763
IEDL.DBID DOA
ISSN 2590-1621
IngestDate Wed Aug 27 00:24:56 EDT 2025
Thu Apr 24 22:56:23 EDT 2025
Tue Jul 01 04:16:25 EDT 2025
Tue Jul 25 21:01:28 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Point sources
Coal mining
UAV
Inverse Gaussian
Methane emissions
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-df8ac9fd1e7a4a64d89119ab0dd5e1dbe9fd52efdbc0407228bd8c41c063a8763
ORCID 0000-0001-8166-2070
0000-0002-1573-6673
0000-0001-6260-9661
0000-0003-4332-9415
0000-0002-0445-5462
OpenAccessLink https://doaj.org/article/3899e3a5bb914eff9ce7750f0db8ea6f
ParticipantIDs doaj_primary_oai_doaj_org_article_3899e3a5bb914eff9ce7750f0db8ea6f
crossref_primary_10_1016_j_aeaoa_2021_100135
crossref_citationtrail_10_1016_j_aeaoa_2021_100135
elsevier_sciencedirect_doi_10_1016_j_aeaoa_2021_100135
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Atmospheric Environment: X
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Etminan, Myhre, Highwood, Shine (bib9) 2016; 43
Shah, Pitt, Ricketts, Kabbabe, Gallagher, Allen, Leen, Williams (bib37) 2020; 13
Kunz, Lavric, Gerbig, Tans, Neff, Hummelgård, Martin, Rödjegård, Wrenger, Heimann (bib27) 2018; 11
Turnbull, Keller, Baisden, Brailsford, Bromley, Norris, van (bib41) 2014; 14
Krings, Gerilowski, Buchwitz, Reuter, Tretner, Erzinger, Heinze, Pflüger, Burrows, Bovensmann (bib25) 2011; 4
Greatwood, Richardson, Freer, Thomas, Mackenzie, Brownlow, Lowry, Fisher, Nisbet (bib14) 2017; 17
Karion, Sweeney, Pétron, Frost, Hardesty, Kofler, Miller, Newberger, Wolter, Banta, Brewer, Dlugokencky, Lang, Montzka, Schnell, Tans, Trainer, Zamora, Conley (bib17) 2013; 40
Lagzi, Meszaros, Gelybo, Leelossy (bib28) 2013
Dinger, Stebel, Cassiani, Ardeshiri, Bernardo, Kylling, Park, Pisso, Schmidbauer, Wasseng, Stohl (bib48) 2018; 11
Nathan, Golston, Brien, Ross, Harrison, Tao, Lary, Johnson, Covington, Clark, Zondlo (bib30) 2015
Berman, Fladeland, Liem, Kolyer, Gupta (bib4) 2012; 169
Fix, Amediek, Bovensmann, Ehret, Gerbig, Gerilowski, Pfeilsticker, Roiger, Zöger (bib10) 2018; 176
Golston, Tao, Brosy, Schäfer, Wolf, Mcspiritt, Buchholz, Caulton, Pan, Zondlo, Yoel, Kunstmann, Mcgregor (bib13) 2017; 123
Chang, Wang, Chang, Liang, Lin (bib7) 2016; 144
Karion, Sweeney, Kort, Shepson, Brewer, Cambaliza, Conley, Davis, Deng, Hardesty, Scott, Lauvaux, Lavoie, Lyon, Newberger, Pétron, Rella, Smith, Wolter, Yacovitch, Tans (bib18) 2015; 49
Andersen, Scheeren, Peters, Chen (bib2) 2018; 11
Luther, Kleinschek, Scheidweiler, Defratyka, Stanisavljevic, Forstmaier, Dandocsi, Wolff, Dubravica, Wildmann, Kostinek, Jöckel, Nickl, Klausner, Hase, Frey, Chen, Dietrich, Nȩcki, Swolkień, Fix, Roiger, Butz (bib29) 2019; 12
Ipcc (bib16) 2014
Kirschke, Bousquet, Ciais, Saunois, Canadell, Dlugokencky, Bergamaschi, Bergmann, Blake, Bruhwiler, Cameron-smith, Castaldi, Chevallier, Feng, Fraser, Heimann, Hodson, Houweling, Josse, Zeng (bib20) 2013; 6
Thoma, Squier (bib40) 2014
Brosy, Krampf, Zeeman, Wolf, Junkermann, Schäfer, Emeis, Kunstmann (bib5) 2017; 10
Zazzeri, Lowry, Fisher, France, Lanoisellé, Kelly, Necki, Iverach, Ginty, Zimnoch, Jasek, Nisbet (bib47) 2016; 16
Shah, Allen, Pitt, Ricketts, Williams, Helmore, Finlayson, Robinson, Kabbabe, Hollingsworth, Rees-white, Beaven, Scheutz, Bourn (bib36) 2019
Krautwurst, Gerilowski, Borchardt, Wildmann, Galkowski, Swolkien, Marshall, Fiehn, Roiger, Ruhtz, Gerbig, Necki, Burrows, Fix, Bovensmann (bib22) 2021
Villa, Gonzalez, Miljievic, Ristovski, Morawska (bib44) 2016
Krautwurst, Gerilowski, Jonsson, Thompson, Kolyer, Thorpe, Horstjann, Eastwood, Leifer, Vigil, Krings, Borchardt, Buchwitz, Fladeland, Burrows, Bovensmann (bib23) 2017
Swolkień (bib38) 2020; 94
France, Bateson, Dominutti, Allen, Andrews, Bauguitte, Coleman, Lachlan-Cope, Fisher, Huang, Jones, Lee, Lowry, Pitt, Purvis, Pyle, Shaw, Warwick, Weiss, Wilde, Witherstone, Young (bib11) 2021; 14
Pasquill (bib31) 1961; 90
Tuzson, Graf, Ravelid, Scheidegger, Kupferschmid, Looser, Morales, Emmenegger (bib42) 2020; 13
Kostinek, Roiger, Eckl, Fiehn, Luther, Wildmann, Klausner, Fix, Knote, Stohl, Butz (bib21) 2021; 21
Fiehn, Kostinek, Eckl, Klausner, Gałkowski, Chen, Gerbig, Röckmann, Maazallahi, Schmidt, Korbeń, Neçki, Jagoda, Wildmann, Mallaun, Bun, Nickl, Jöckel, Fix, Roiger (bib12) 2020; 20
Krings, Gerilowski, Buchwitz, Hartmann, Sachs, Erzinger, Burrows, Bovensmann (bib24) 2013; 6
Rawlings, Pantula, Dickey (bib33) 1998
Higaki, Oya, Makide (bib15) 2006; 35
Krings, Neininger, Gerilowski, Krautwurst, Buchwitz, Burrows, Lindemann, Ruhtz, Schüttemeyer, Bovensmann (bib26) 2018; 11
Pitt, Allen, Bauguitte, Gallagher, Lee, Drysdale, Nelson, Manning, Palmer (bib32) 2019; 19
Saunois, Stavert, Poulter, Bousquet, Canadell, Jackson, Raymond, Dlugokencky, Houweling, Patra, Ciais, Arora, Bastviken, Bergamaschi, Blake, Brailsford, Bruhwiler, Carlson, Carrol, Castaldi, Chandra, Crevoisier, Crill, Covey, Curry, Etiope, Frankenberg, Gedney, Hegglin, Höglund-Isaksson, Hugelius, Ishizawa, Ito, Janssens-Maenhout, Jensen, Joos, Kleinen, Krummel, Langenfelds, Laruelle, Liu, Machida, Maksyutov, McDonald, McNorton, Miller, Melton, Morino, Müller, Murguia-Flores, Naik, Niwa, Noce, O'Doherty, Parker, Peng, Peng, Peters, Prigent, Prinn, Ramonet, Regnier, Riley, Rosentreter, Segers, Simpson, Shi, Smith, Steele, Thornton, Tian, Tohjima, Tubiello, Tsuruta, Viovy, Voulgarakis, Weber, van Weele, van der Werf, Weiss, Worthy, Wunch, Yin, Yoshida, Zhang, Zhang, Zhao, Zheng, Zhu, Zhu, Zhuang (bib35) 2020; 12
Khan, Schaefer, Tao, Miller, Sun, Zondlo, Harrison, Roscoe, Lary (bib19) 2012; 4
Wolf, Chwala, Fersch, Garvelmann, Junkermann, Zeeman, Angerer, Adler, Beck, Brosy, Brugger, Emeis, Dannenmann, De Roo, Diaz-Pines, Haas, Hagen, Hajnsek, Jacobeit, Schmid (bib46) 2017
Cambaliza, Shepson, Bogner, Caulton, Stirm, Sweeney, Montzka, Gurney, Spokas, Salmon, Lavoie, Hendricks, Mays, Turnbull, Miller, Lauvaux, Davis, Karion, Moser, Miller, Obermeyer, Whetstone, Prasad, Miles, Richardson (bib6) 2015; 3
Vinkovic, Andersen, de Vries, Kers, van Heuven, Peters, Hensen, Chen (bib45) 2021
The MathWorks (bib39) 2019
E-Rptr (bib8) 2017
Allen, Hollingsworth, Kabbabe, Pitt, Mead, Illingworth, Roberts, Bourn, Shallcross, Percival (bib1) 2019; 87
Allen (10.1016/j.aeaoa.2021.100135_bib1) 2019; 87
Krings (10.1016/j.aeaoa.2021.100135_bib24) 2013; 6
Kunz (10.1016/j.aeaoa.2021.100135_bib27) 2018; 11
Brosy (10.1016/j.aeaoa.2021.100135_bib5) 2017; 10
E-Rptr (10.1016/j.aeaoa.2021.100135_bib8) 2017
Fix (10.1016/j.aeaoa.2021.100135_bib10) 2018; 176
Nathan (10.1016/j.aeaoa.2021.100135_bib30) 2015
Berman (10.1016/j.aeaoa.2021.100135_bib4) 2012; 169
Fiehn (10.1016/j.aeaoa.2021.100135_bib12) 2020; 20
Ipcc (10.1016/j.aeaoa.2021.100135_bib16) 2014
Turnbull (10.1016/j.aeaoa.2021.100135_bib41) 2014; 14
Saunois (10.1016/j.aeaoa.2021.100135_bib35) 2020; 12
Karion (10.1016/j.aeaoa.2021.100135_bib17) 2013; 40
Wolf (10.1016/j.aeaoa.2021.100135_bib46) 2017
Dinger (10.1016/j.aeaoa.2021.100135_bib48) 2018; 11
Khan (10.1016/j.aeaoa.2021.100135_bib19) 2012; 4
Tuzson (10.1016/j.aeaoa.2021.100135_bib42) 2020; 13
Villa (10.1016/j.aeaoa.2021.100135_bib44) 2016
Greatwood (10.1016/j.aeaoa.2021.100135_bib14) 2017; 17
Karion (10.1016/j.aeaoa.2021.100135_bib18) 2015; 49
Shah (10.1016/j.aeaoa.2021.100135_bib36) 2019
The MathWorks (10.1016/j.aeaoa.2021.100135_bib39) 2019
Luther (10.1016/j.aeaoa.2021.100135_bib29) 2019; 12
Andersen (10.1016/j.aeaoa.2021.100135_bib2) 2018; 11
Cambaliza (10.1016/j.aeaoa.2021.100135_bib6) 2015; 3
Higaki (10.1016/j.aeaoa.2021.100135_bib15) 2006; 35
Krings (10.1016/j.aeaoa.2021.100135_bib26) 2018; 11
Golston (10.1016/j.aeaoa.2021.100135_bib13) 2017; 123
Swolkień (10.1016/j.aeaoa.2021.100135_bib38) 2020; 94
Vinkovic (10.1016/j.aeaoa.2021.100135_bib45) 2021
Chang (10.1016/j.aeaoa.2021.100135_bib7) 2016; 144
Kirschke (10.1016/j.aeaoa.2021.100135_bib20) 2013; 6
Etminan (10.1016/j.aeaoa.2021.100135_bib9) 2016; 43
Krings (10.1016/j.aeaoa.2021.100135_bib25) 2011; 4
Zazzeri (10.1016/j.aeaoa.2021.100135_bib47) 2016; 16
Krautwurst (10.1016/j.aeaoa.2021.100135_bib23) 2017
Pasquill (10.1016/j.aeaoa.2021.100135_bib31) 1961; 90
Rawlings (10.1016/j.aeaoa.2021.100135_bib33) 1998
Krautwurst (10.1016/j.aeaoa.2021.100135_bib22) 2021
France (10.1016/j.aeaoa.2021.100135_bib11) 2021; 14
Kostinek (10.1016/j.aeaoa.2021.100135_bib21) 2021; 21
Pitt (10.1016/j.aeaoa.2021.100135_bib32) 2019; 19
Lagzi (10.1016/j.aeaoa.2021.100135_bib28) 2013
Shah (10.1016/j.aeaoa.2021.100135_bib37) 2020; 13
Thoma (10.1016/j.aeaoa.2021.100135_bib40) 2014
References_xml – volume: 35
  start-page: 292
  year: 2006
  end-page: 293
  ident: bib15
  article-title: Emission of methane from stainless steel surface investigated by using tritium as a radioactive tracer
  publication-title: Chem. Lett.
– start-page: 1217
  year: 2017
  end-page: 1234
  ident: bib46
  article-title: The SCALEX campaign scale-crossing land surface and boundary layer processes in the TERENO-preAlpine observatory
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 6
  start-page: 813
  year: 2013
  ident: bib20
  article-title: Three decades of global methane sources and sinks
  publication-title: Nat. Geosci.
– volume: 3
  year: 2015
  ident: bib6
  article-title: Quantification and source apportionment of the methane emission flux from the city of Indianapolis
  publication-title: Elementa: Science of the Anthropocene
– year: 2021
  ident: bib22
  article-title: Quantification of CH4 coal mining emissions in Upper Silesia by passive airborne remote sensing observations with the MAMAP instrument during CoMet
  publication-title: Atmos. Chem. Phys. Discuss.
– volume: 14
  start-page: 71
  year: 2021
  end-page: 88
  ident: bib11
  article-title: Facility level measurement of offshore oil and gas installations from a medium-sized airborne platform: method development for quantification and source identification of methane emissions
  publication-title: Atmos. Meas. Tech.
– year: 2013
  ident: bib28
  article-title: Atmospheric Chemistry
– year: 2019
  ident: bib36
  article-title: A Near-Field Gaussian Plume Inversion Flux Quantification Method , Applied to Unmanned Aerial Vehicle Sampling. 2018
– volume: 17
  start-page: 1
  year: 2017
  end-page: 24
  ident: bib14
  article-title: Atmospheric sampling on ascension island using multirotor UAVs
  publication-title: Sensors
– volume: 90
  start-page: 33
  year: 1961
  end-page: 49
  ident: bib31
  article-title: The estimation of the dispersion of windborne material
  publication-title: Meteorol. Mag.
– volume: 11
  start-page: 6169
  year: 2018
  end-page: 6188
  ident: bib48
  article-title: Observation of turbulent dispersion of artificially released SO
  publication-title: Atmos. Meas. Tech.
– start-page: 1
  year: 2017
  end-page: 33
  ident: bib23
  article-title: Methane emissions from a Californian landfill, determined from airborne remote sensing and in-situ measurements
  publication-title: Atmospheric Measurement Techniques
– year: 2017
  ident: bib8
  article-title: European Pollutant Release and Transfer Register - Greenhouse Gas Overview 2017
– volume: 11
  year: 2018
  ident: bib2
  article-title: A UAV-based active AirCore system for measurements of greenhouse gases
  publication-title: Atmospheric Measurement Techniques
– volume: 14
  start-page: 5001
  year: 2014
  end-page: 5014
  ident: bib41
  article-title: Atmospheric measurement of point source fossil CO2 emissions
  publication-title: Atmos. Chem. Phys.
– volume: 11
  start-page: 1833
  year: 2018
  end-page: 1849
  ident: bib27
  article-title: COCAP: a carbon dioxide analyser for small unmanned aircraft systems
  publication-title: Atmospheric Measurement Techniques
– volume: 43
  start-page: 614
  year: 2016
  end-page: 623
  ident: bib9
  article-title: Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing
  publication-title: Geophys. Res. Lett.
– volume: 20
  start-page: 12675
  year: 2020
  end-page: 12695
  ident: bib12
  article-title: Estimating CH
  publication-title: Atmos. Chem. Phys.
– volume: 169
  start-page: 128
  year: 2012
  end-page: 135
  ident: bib4
  article-title: Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle
  publication-title: Sensor. Actuator. B Chem.
– volume: 21
  start-page: 8791
  year: 2021
  end-page: 8807
  ident: bib21
  article-title: Estimating Upper Silesian coal mine methane emissions from airborne in situ observations and dispersion modeling
  publication-title: Atmos. Chem. Phys.
– volume: 49
  start-page: 8124
  year: 2015
  end-page: 8131
  ident: bib18
  article-title: Aircraft-based estimate of total methane emissions from the barnett shale region
  publication-title: Environ. Sci. Technol.
– year: 2021
  ident: bib45
  article-title: Quantification of methane emissions from dairy cows using an unmanned aerial vehicle (UAV)-based active AirCore system
  publication-title: Prep
– volume: 16
  start-page: 13669
  year: 2016
  end-page: 13680
  ident: bib47
  article-title: Carbon isotopic signature of coal-derived methane emissions to the atmosphere: from coalification to alteration
  publication-title: Atmos. Chem. Phys.
– volume: 19
  start-page: 8931
  year: 2019
  end-page: 8945
  ident: bib32
  article-title: Assessing London CO
  publication-title: Atmos. Chem. Phys.
– start-page: 12
  year: 2016
  end-page: 20
  ident: bib44
  article-title: An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements : Present Applications and Future Prospectives
– volume: 11
  start-page: 721
  year: 2018
  end-page: 739
  ident: bib26
  article-title: Airborne remote sensing and in situ measurements of atmospheric CO2 to quantify point source emissions
  publication-title: Atmospheric Measurement Techniques
– year: 2014
  ident: bib40
  article-title: OTM 33 geospatial measurement of air pollution, remote emissions quantification (GMAP-REQ) and OTM33A geospatial measurement of air pollution-remote emissions quantification-direct assessment (GMAP-REQ-DA)
  publication-title: US Environmental Protection Agency
– volume: 40
  start-page: 4393
  year: 2013
  end-page: 4397
  ident: bib17
  article-title: Methane emissions estimate from airborne measurements over a western United States natural gas field
  publication-title: Geophys. Res. Lett.
– volume: 4
  start-page: 1355
  year: 2012
  end-page: 1368
  ident: bib19
  article-title: Low power greenhouse gas sensors for unmanned aerial vehicles
  publication-title: Rem. Sens.
– volume: 13
  start-page: 1467
  year: 2020
  end-page: 1484
  ident: bib37
  article-title: Testing the near-field Gaussian plume inversion flux quantification technique using unmanned aerial vehicle sampling
  publication-title: Atmos. Meas. Tech.
– volume: 4
  start-page: 1735
  year: 2011
  end-page: 1758
  ident: bib25
  article-title: Mamap - a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates
  publication-title: Atmospheric Measurement Techniques
– volume: 94
  year: 2020
  ident: bib38
  article-title: Polish underground coal mines as point sources of methane emission to the atmosphere
  publication-title: International Journal of Greenhouse Gas Control
– volume: 87
  start-page: 883
  year: 2019
  end-page: 892
  ident: bib1
  article-title: The development and trial of an unmanned aerial system for the measurement of methane flux from landfill and greenhouse gas emission hotspots
  publication-title: Waste Manag.
– year: 2019
  ident: bib39
– year: 2015
  ident: bib30
  article-title: Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft
– year: 2014
  ident: bib16
  article-title: Climate change 2014: synthesis report
  publication-title: Contribution of working groups I, II, and III to the fifth assessment report of the international panel on climate change
– volume: 10
  start-page: 2773
  year: 2017
  end-page: 2784
  ident: bib5
  article-title: Simultaneous multicopter-based air sampling and sensing of meteorological variables
  publication-title: Atmos. Meas. Tech.
– volume: 176
  start-page: 2
  year: 2018
  end-page: 5
  ident: bib10
  article-title: CoMet: an airborne mission to simultaneously measure CO2 and CH4 using lidar, passive remote sensing, and in-situ techniques
  publication-title: The European Physical Journal Conferences
– volume: 13
  start-page: 4715
  year: 2020
  end-page: 4726
  ident: bib42
  article-title: A compact QCL spectrometer for mobile, high-precision methane sensing aboard drones
  publication-title: Atmos. Meas. Tech.
– year: 1998
  ident: bib33
  article-title: Applied regression analysis: a research tool
  publication-title: Technometrics
– volume: 12
  start-page: 1561
  year: 2020
  end-page: 1623
  ident: bib35
  article-title: The global methane budget 2000–2017
  publication-title: Earth Syst. Sci. Data
– volume: 6
  start-page: 151
  year: 2013
  end-page: 166
  ident: bib24
  article-title: Quantification of methane emission rates from coal mine ventilation shafts using airborne remote sensing data
  publication-title: Atmospheric Measurement Techniques
– volume: 12
  start-page: 5217
  year: 2019
  end-page: 5230
  ident: bib29
  article-title: Quantifying CH4 emissions from hard coal mines using mobile sun-viewing Fourier transform spectrometry
  publication-title: Atmos. Meas. Tech.
– volume: 123
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib13
  article-title: Lightweight mid - infrared methane sensor for unmanned aerial systems
  publication-title: Appl. Phys. B
– volume: 144
  start-page: 484
  year: 2016
  end-page: 492
  ident: bib7
  article-title: Chemosphere Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies
  publication-title: Chemosphere
– volume: 20
  start-page: 12675
  year: 2020
  ident: 10.1016/j.aeaoa.2021.100135_bib12
  article-title: Estimating CH4, CO2 and CO emissions from coal mining and industrial activities in the Upper Silesian Coal Basin using an aircraft-based mass balance approach
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-20-12675-2020
– volume: 6
  start-page: 151
  issue: 1
  year: 2013
  ident: 10.1016/j.aeaoa.2021.100135_bib24
  article-title: Quantification of methane emission rates from coal mine ventilation shafts using airborne remote sensing data
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-6-151-2013
– volume: 13
  start-page: 4715
  year: 2020
  ident: 10.1016/j.aeaoa.2021.100135_bib42
  article-title: A compact QCL spectrometer for mobile, high-precision methane sensing aboard drones
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-13-4715-2020
– year: 2014
  ident: 10.1016/j.aeaoa.2021.100135_bib16
  article-title: Climate change 2014: synthesis report
– year: 2017
  ident: 10.1016/j.aeaoa.2021.100135_bib8
– volume: 4
  start-page: 1355
  issue: 12
  year: 2012
  ident: 10.1016/j.aeaoa.2021.100135_bib19
  article-title: Low power greenhouse gas sensors for unmanned aerial vehicles
  publication-title: Rem. Sens.
  doi: 10.3390/rs4051355
– year: 1998
  ident: 10.1016/j.aeaoa.2021.100135_bib33
  article-title: Applied regression analysis: a research tool
– volume: 14
  start-page: 5001
  issue: 10
  year: 2014
  ident: 10.1016/j.aeaoa.2021.100135_bib41
  article-title: Atmospheric measurement of point source fossil CO2 emissions
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-5001-2014
– volume: 4
  start-page: 1735
  issue: 9
  year: 2011
  ident: 10.1016/j.aeaoa.2021.100135_bib25
  article-title: Mamap - a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-4-1735-2011
– volume: 11
  issue: 5
  year: 2018
  ident: 10.1016/j.aeaoa.2021.100135_bib2
  article-title: A UAV-based active AirCore system for measurements of greenhouse gases
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-11-2683-2018
– volume: 123
  start-page: 1
  issue: 6
  year: 2017
  ident: 10.1016/j.aeaoa.2021.100135_bib13
  article-title: Lightweight mid - infrared methane sensor for unmanned aerial systems
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-017-6735-6
– volume: 16
  start-page: 13669
  issue: 21
  year: 2016
  ident: 10.1016/j.aeaoa.2021.100135_bib47
  article-title: Carbon isotopic signature of coal-derived methane emissions to the atmosphere: from coalification to alteration
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-13669-2016
– volume: 11
  start-page: 6169
  year: 2018
  ident: 10.1016/j.aeaoa.2021.100135_bib48
  article-title: Observation of turbulent dispersion of artificially released SO2 puffs with UV cameras
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-11-6169-2018
– year: 2019
  ident: 10.1016/j.aeaoa.2021.100135_bib39
– year: 2015
  ident: 10.1016/j.aeaoa.2021.100135_bib30
– volume: 11
  start-page: 1833
  issue: 3
  year: 2018
  ident: 10.1016/j.aeaoa.2021.100135_bib27
  article-title: COCAP: a carbon dioxide analyser for small unmanned aircraft systems
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-11-1833-2018
– volume: 21
  start-page: 8791
  year: 2021
  ident: 10.1016/j.aeaoa.2021.100135_bib21
  article-title: Estimating Upper Silesian coal mine methane emissions from airborne in situ observations and dispersion modeling
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-21-8791-2021
– volume: 14
  start-page: 71
  year: 2021
  ident: 10.1016/j.aeaoa.2021.100135_bib11
  article-title: Facility level measurement of offshore oil and gas installations from a medium-sized airborne platform: method development for quantification and source identification of methane emissions
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-14-71-2021
– start-page: 1
  year: 2017
  ident: 10.1016/j.aeaoa.2021.100135_bib23
  article-title: Methane emissions from a Californian landfill, determined from airborne remote sensing and in-situ measurements
  publication-title: Atmospheric Measurement Techniques
– volume: 11
  start-page: 721
  issue: 2
  year: 2018
  ident: 10.1016/j.aeaoa.2021.100135_bib26
  article-title: Airborne remote sensing and in situ measurements of atmospheric CO2 to quantify point source emissions
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-11-721-2018
– volume: 12
  start-page: 5217
  year: 2019
  ident: 10.1016/j.aeaoa.2021.100135_bib29
  article-title: Quantifying CH4 emissions from hard coal mines using mobile sun-viewing Fourier transform spectrometry
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-12-5217-2019
– volume: 10
  start-page: 2773
  year: 2017
  ident: 10.1016/j.aeaoa.2021.100135_bib5
  article-title: Simultaneous multicopter-based air sampling and sensing of meteorological variables
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-10-2773-2017
– year: 2014
  ident: 10.1016/j.aeaoa.2021.100135_bib40
  article-title: OTM 33 geospatial measurement of air pollution, remote emissions quantification (GMAP-REQ) and OTM33A geospatial measurement of air pollution-remote emissions quantification-direct assessment (GMAP-REQ-DA)
– start-page: 1217
  year: 2017
  ident: 10.1016/j.aeaoa.2021.100135_bib46
  article-title: The SCALEX campaign scale-crossing land surface and boundary layer processes in the TERENO-preAlpine observatory
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-15-00277.1
– volume: 6
  start-page: 813
  issue: 10
  year: 2013
  ident: 10.1016/j.aeaoa.2021.100135_bib20
  article-title: Three decades of global methane sources and sinks
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1955
– volume: 144
  start-page: 484
  year: 2016
  ident: 10.1016/j.aeaoa.2021.100135_bib7
  article-title: Chemosphere Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.08.028
– start-page: 12
  year: 2016
  ident: 10.1016/j.aeaoa.2021.100135_bib44
– volume: 12
  start-page: 1561
  year: 2020
  ident: 10.1016/j.aeaoa.2021.100135_bib35
  article-title: The global methane budget 2000–2017
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-12-1561-2020
– year: 2021
  ident: 10.1016/j.aeaoa.2021.100135_bib45
  article-title: Quantification of methane emissions from dairy cows using an unmanned aerial vehicle (UAV)-based active AirCore system
– year: 2013
  ident: 10.1016/j.aeaoa.2021.100135_bib28
– year: 2019
  ident: 10.1016/j.aeaoa.2021.100135_bib36
– volume: 176
  start-page: 2
  year: 2018
  ident: 10.1016/j.aeaoa.2021.100135_bib10
  article-title: CoMet: an airborne mission to simultaneously measure CO2 and CH4 using lidar, passive remote sensing, and in-situ techniques
  publication-title: The European Physical Journal Conferences
  doi: 10.1051/epjconf/201817602003
– volume: 87
  start-page: 883
  year: 2019
  ident: 10.1016/j.aeaoa.2021.100135_bib1
  article-title: The development and trial of an unmanned aerial system for the measurement of methane flux from landfill and greenhouse gas emission hotspots
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.12.024
– volume: 35
  start-page: 292
  issue: 3
  year: 2006
  ident: 10.1016/j.aeaoa.2021.100135_bib15
  article-title: Emission of methane from stainless steel surface investigated by using tritium as a radioactive tracer
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2006.292
– volume: 13
  start-page: 1467
  year: 2020
  ident: 10.1016/j.aeaoa.2021.100135_bib37
  article-title: Testing the near-field Gaussian plume inversion flux quantification technique using unmanned aerial vehicle sampling
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-13-1467-2020
– year: 2021
  ident: 10.1016/j.aeaoa.2021.100135_bib22
  article-title: Quantification of CH4 coal mining emissions in Upper Silesia by passive airborne remote sensing observations with the MAMAP instrument during CoMet
  publication-title: Atmos. Chem. Phys. Discuss.
  doi: 10.5194/acp-21-17345-2021
– volume: 19
  start-page: 8931
  year: 2019
  ident: 10.1016/j.aeaoa.2021.100135_bib32
  article-title: Assessing London CO2, CH4 and CO emissions using aircraft measurements and dispersion modelling
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-19-8931-2019
– volume: 94
  year: 2020
  ident: 10.1016/j.aeaoa.2021.100135_bib38
  article-title: Polish underground coal mines as point sources of methane emission to the atmosphere
  publication-title: International Journal of Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2019.102921
– volume: 49
  start-page: 8124
  issue: 13
  year: 2015
  ident: 10.1016/j.aeaoa.2021.100135_bib18
  article-title: Aircraft-based estimate of total methane emissions from the barnett shale region
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00217
– volume: 40
  start-page: 4393
  issue: 16
  year: 2013
  ident: 10.1016/j.aeaoa.2021.100135_bib17
  article-title: Methane emissions estimate from airborne measurements over a western United States natural gas field
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50811
– volume: 169
  start-page: 128
  year: 2012
  ident: 10.1016/j.aeaoa.2021.100135_bib4
  article-title: Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2012.04.036
– volume: 17
  start-page: 1
  issue: 1189
  year: 2017
  ident: 10.1016/j.aeaoa.2021.100135_bib14
  article-title: Atmospheric sampling on ascension island using multirotor UAVs
  publication-title: Sensors
– volume: 90
  start-page: 33
  issue: 1161
  year: 1961
  ident: 10.1016/j.aeaoa.2021.100135_bib31
  article-title: The estimation of the dispersion of windborne material
  publication-title: Meteorol. Mag.
– volume: 3
  year: 2015
  ident: 10.1016/j.aeaoa.2021.100135_bib6
  article-title: Quantification and source apportionment of the methane emission flux from the city of Indianapolis
  publication-title: Elementa: Science of the Anthropocene
– volume: 43
  start-page: 614
  issue: 24
  year: 2016
  ident: 10.1016/j.aeaoa.2021.100135_bib9
  article-title: Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL071930
SSID ssj0002244601
Score 2.3146174
Snippet A large quantity of CH4 is emitted to the atmosphere via ventilation shafts of underground coal mines. According to the European Pollutant Release and Transfer...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100135
SubjectTerms Coal mining
Inverse Gaussian
Methane emissions
Point sources
UAV
Title Quantifying methane emissions from coal mining ventilation shafts using an unmanned aerial vehicle (UAV)-based active AirCore system
URI https://dx.doi.org/10.1016/j.aeaoa.2021.100135
https://doaj.org/article/3899e3a5bb914eff9ce7750f0db8ea6f
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYsoKtYXOXhQMLjZZl_HWpQiKAhWvC2TTWJb7Fb6-Af-cGeSXe1JL143mWSZzGa-LJPvY-xcOUgy0KnoAhQCv8RIQB5LgWBD4WNs8loED4_pYKjuX5PXNakvqgkL9MDBcdfE_2a7kGhdSGWdKyqbYZZzkdG5hdTR7hsV0dphauJJXfCY47WPEd5HQqaxbCmHfHEXWJgR61AsPQmRF3v7SUuevX8tO61lnLsdtt1ARd4Lr7jLNmy9xz6fVkD1PXQ7iZP8M9SWk2Yb_fVacLotwqsZmk298gP35Yyh3o0vRuCWC06l7m8car6qp0DbLAcfhth3RDPxi2Hv5VJQfsMmvx_y3njen80tD8TP-2x4d_vcH4hGSUFUSqqlMC6HqnBG2gwUpMrkuMcVoCNjEiuNttiWxNYZXUXEmBbn2uRoWiGAAeKsO2Cb9ay2h4wjxEikVWiUKQVFpos8TQBXRFYpogvTYXHryLJqaMZJ7eK9bOvJJqX3fkneL4P3O-zq2-gjsGz83v2GVui7K1Fk-wcYOGUTOOVfgdNhabu-ZYM2AorAoca_zX70H7Mfsy0aMhTGnLDN5XxlTxHeLPWZj-Qvb6n5Iw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+methane+emissions+from+coal+mining+ventilation+shafts+using+an+unmanned+aerial+vehicle+%28UAV%29-based+active+AirCore+system&rft.jtitle=Atmospheric+Environment%3A+X&rft.au=Andersen%2C+Truls&rft.au=Vinkovic%2C+Katarina&rft.au=de+Vries%2C+Marcel&rft.au=Kers%2C+Bert&rft.date=2021-12-01&rft.issn=2590-1621&rft.eissn=2590-1621&rft.volume=12&rft.spage=100135&rft_id=info:doi/10.1016%2Fj.aeaoa.2021.100135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aeaoa_2021_100135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1621&client=summon