Metal/mold thermal conductance affecting ultrafine scale microstructures in aluminum eutectic alloys
Ultra-thin microstructures of eutectic aluminum alloys have attracted attention due to their excellent mechanical properties. In this context, it is known that the massive production of industrial components may require adaptations in the processing routes with severe thermal control. Considering th...
Saved in:
Published in | Case studies in thermal engineering Vol. 26; p. 101144 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultra-thin microstructures of eutectic aluminum alloys have attracted attention due to their excellent mechanical properties. In this context, it is known that the massive production of industrial components may require adaptations in the processing routes with severe thermal control. Considering the benefits of molding applications, knowledge of proper conditions of the metal/mold interface is essential. The interfacial heat transfer efficiency controls the solidification kinetics and so the microstructure evolution. Furthermore, much of the existing work in this field involves the use of either water-cooled or massive copper molds. The goal is achieving moderate or fast cooling conditions and produce refined structures. In this sense, the association of the interfacial heat transfer coefficient, h, with desired microstructures can expand the application to other types of mold and process conditions. In this respect, the present research work applies a numerical mathematical model based on an inverse heat conduction problem (IHCP) for the solidification of relevant binary eutectic alloys, considered as priority for the production of ultrafine eutectics. It was demonstrated the compromise existing between the overall interfacial coefficient hg and the eutectic spacing for the Al-6.3 wt% Ni, Al-33 wt% Cu, Al-wt.12% Si and Al-1.0 wt% Co eutectic alloys. Expressions relating hg as a function of time (t) and hg versus the representative eutectic microstructural spacing (λ) of each alloy are proposed. The hg vs λ expressions allow inferring hg values necessary to induce the formation of ultrafine λ values. |
---|---|
AbstractList | Ultra-thin microstructures of eutectic aluminum alloys have attracted attention due to their excellent mechanical properties. In this context, it is known that the massive production of industrial components may require adaptations in the processing routes with severe thermal control. Considering the benefits of molding applications, knowledge of proper conditions of the metal/mold interface is essential. The interfacial heat transfer efficiency controls the solidification kinetics and so the microstructure evolution. Furthermore, much of the existing work in this field involves the use of either water-cooled or massive copper molds. The goal is achieving moderate or fast cooling conditions and produce refined structures. In this sense, the association of the interfacial heat transfer coefficient, h, with desired microstructures can expand the application to other types of mold and process conditions. In this respect, the present research work applies a numerical mathematical model based on an inverse heat conduction problem (IHCP) for the solidification of relevant binary eutectic alloys, considered as priority for the production of ultrafine eutectics. It was demonstrated the compromise existing between the overall interfacial coefficient hg and the eutectic spacing for the Al-6.3 wt% Ni, Al-33 wt% Cu, Al-wt.12% Si and Al-1.0 wt% Co eutectic alloys. Expressions relating hg as a function of time (t) and hg versus the representative eutectic microstructural spacing (λ) of each alloy are proposed. The hg vs λ expressions allow inferring hg values necessary to induce the formation of ultrafine λ values. |
ArticleNumber | 101144 |
Author | Bertelli, Felipe Cheung, Noé Rodrigues, Adilson V. Reyes, Rodrigo V. Kakitani, Rafael Garcia, Amauri Spinelli, José E. Oliveira, Ricardo |
Author_xml | – sequence: 1 givenname: Rafael orcidid: 0000-0002-9120-9461 surname: Kakitani fullname: Kakitani, Rafael organization: Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083860, Campinas, SP, Brazil – sequence: 2 givenname: Ricardo orcidid: 0000-0001-5947-7928 surname: Oliveira fullname: Oliveira, Ricardo organization: Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083860, Campinas, SP, Brazil – sequence: 3 givenname: Rodrigo V. surname: Reyes fullname: Reyes, Rodrigo V. organization: Federal University of São Carlos, Graduate Program in Materials Science and Engineering, 13565905, São Carlos, SP, Brazil – sequence: 4 givenname: Adilson V. orcidid: 0000-0003-2647-6384 surname: Rodrigues fullname: Rodrigues, Adilson V. organization: Federal Institute of Education, Science and Technology of São Paulo, IFSP, 12903000, Bragança Paulista, SP, Brazil – sequence: 5 givenname: Felipe orcidid: 0000-0002-9372-167X surname: Bertelli fullname: Bertelli, Felipe organization: Marine Sciences Institute, Federal University of São Paulo – UNIFESP, 11070100, Santos, SP, Brazil – sequence: 6 givenname: Amauri orcidid: 0000-0002-3834-3258 surname: Garcia fullname: Garcia, Amauri organization: Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083860, Campinas, SP, Brazil – sequence: 7 givenname: José E. orcidid: 0000-0003-0611-1038 surname: Spinelli fullname: Spinelli, José E. email: spinelli@ufscar.br organization: Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565905, São Carlos, SP, Brazil – sequence: 8 givenname: Noé surname: Cheung fullname: Cheung, Noé organization: Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083860, Campinas, SP, Brazil |
BookMark | eNqFkcFqHSEUhqWk0CTNE3TjC9wbdcZxZtFFCW0SSMimhe7kXD2mXhwN6hTy9nFySyhZJCvl53w_ns8TchRTREK-cLbljA_n-60pvuJWMMHXhPf9B3IsBO83XKrfR__dP5GzUvaMMa66sc0dE3uLFcL5nIKl9Q_mGQI1KdrFVIgGKTiHpvp4T5dQMzgfkRYDAensTU6l5ja5ZCzURwphmX1cZopLXSnTkpAey2fy0UEoePbvPCW_fnz_eXG1ubm7vL74drMxPe_rxu5wJ6TCcRhHmAZlrTRKOuQopVMKrGFCobMjN73bqdExO0yTQ2adAYmiOyXXh16bYK8fsp8hP-oEXj8HKd9ryO1ZATWblGhNcuoG2_fAJ85AdVJ2aNAK0bWu7tC1blkyupc-zvTqXe_1s3e9etcH742aXlHGV6g-xSbPh3fYrwcWm6K_HrMuxmP7BOtzs9l28G_yTxBlpGw |
CitedBy_id | crossref_primary_10_3390_su142113859 crossref_primary_10_3390_met12061040 crossref_primary_10_1007_s11669_022_01003_1 crossref_primary_10_1007_s13632_024_01112_y crossref_primary_10_1007_s11665_023_08429_9 crossref_primary_10_1007_s40962_023_01145_z |
Cites_doi | 10.1557/jmr.2018.495 10.1007/s10973-018-07992-x 10.1016/j.matdes.2011.05.030 10.1016/j.jmapro.2019.10.029 10.1016/j.ijthermalsci.2011.08.014 10.1016/S0017-9310(98)00333-0 10.1557/jmr.2009.0297 10.1115/1.3250621 10.1080/14786435.2020.1785646 10.1016/j.jallcom.2019.153607 10.1016/j.matchar.2010.08.007 10.1007/s10853-009-3747-6 10.1016/j.jallcom.2015.09.009 10.1007/s11661-008-9536-z 10.1007/BF02650266 10.1016/j.matdes.2015.12.080 10.1016/S1359-6462(03)00394-4 10.1007/BF00550086 10.1016/j.msea.2010.09.008 10.1007/s11661-019-05518-0 10.1007/s11661-000-0096-0 10.1016/j.intermet.2010.02.042 10.1007/s40831-019-00248-4 10.1016/0022-0248(75)90233-X 10.1179/imr.1978.23.1.286 10.1002/cnm.903 10.1016/0273-1177(88)90020-8 10.1016/j.applthermaleng.2016.06.177 10.1016/j.matlet.2019.02.112 10.1007/BF02647722 10.1016/j.msea.2015.05.024 10.1016/j.ijheatmasstransfer.2008.07.003 10.1016/j.matchar.2019.06.010 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2021.101144 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Open Access Full Text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_0972fd85936d44a1910a73553eced223 10_1016_j_csite_2021_101144 S2214157X21003075 |
GroupedDBID | 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c414t-dbeb257e8688a967dd5c75fe1e55f77adc027efd81c4fb78f0d699fe0dfca5e23 |
IEDL.DBID | IXB |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:20:48 EDT 2025 Tue Jul 01 02:28:28 EDT 2025 Thu Apr 24 23:08:24 EDT 2025 Tue Jul 25 20:58:37 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal control Aluminum alloys Interfacial heat transfer Modelling Thermal analysis Solidification |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-dbeb257e8688a967dd5c75fe1e55f77adc027efd81c4fb78f0d699fe0dfca5e23 |
ORCID | 0000-0003-2647-6384 0000-0002-9372-167X 0000-0002-3834-3258 0000-0002-9120-9461 0000-0003-0611-1038 0000-0001-5947-7928 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2214157X21003075 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0972fd85936d44a1910a73553eced223 crossref_primary_10_1016_j_csite_2021_101144 crossref_citationtrail_10_1016_j_csite_2021_101144 elsevier_sciencedirect_doi_10_1016_j_csite_2021_101144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Mirbagheri (bib25) 2006; 23 Kakitani, Gouveia, Garcia, Cheung, Spinelli (bib4) 2019; 137 Farag, Taha (bib42) 1973 Rocha, Costa, Oliveira, Costa, Ferreira, Rocha (bib31) 2020; 100 Stoichev, Yaneva, Regel, Videnskiy (bib40) 1988; 8 Kim, Lee, Hong, Park, Park, Lee, Seo, Wang, Park, Kim (bib7) 2016; 92 Maity, Chanda, Ramasamy, Show, Eckert, Bera (bib8) 2020; 51 Loulou, Artyukhin, Bardon (bib24) 1999; 42 Tiwary, Kashyap, Kim, Chattopadhyay (bib14) 2015; 639 Koch (bib12) 2003; 49 Smithells, Brandes, Brandes, Brook (bib28) 1992 Ruddle (bib22) 1957 Samarasekera, Brimacombe (bib26) 1978; 23 Hosch, England, Napolitano (bib35) 2009; 44 Park, Kim, Kim, Mattern, Li, Liu, Eckert (bib11) 2010; 18 Quaresma, Santos, Garcia (bib33) 2000; 31 Jenkinson, Hogan (bib34) 1975; 28 Bergman, Incropera, DeWitt, Lavine (bib21) 2011 Oliveira, Kakitani, Ramos, Gonçalves, Garcia, Cheung (bib18) 2019; 5 Hosch, Napolitano (bib3) 2010; 528 Santos, Silva, Bertelli, Spinelli, Cheung, Garcia (bib17) 2016; 107 Costa, Freitas, Dias, Brito, Cheung, Garcia (bib19) 2015; 653 Sun, Hung, Hebert, Fennessy, Tulyani, Aindow (bib6) 2019; 154 Park, Mattern, Kühn, Eckert, Kim, Kim, Chattopadhyay, Kim (bib2) 2009; 24 Canté, Spinelli, Ferreira, Cheung, Garcia (bib32) 2008; 39 Awe (bib43) 2020 Kurz, Fisher (bib38) 1998 Spinelli, Cheung, Goulart, Quaresma, Garcia (bib16) 2012; 51 Callister, Rethwisch (bib30) 2009 Kaya, Böyük, Çadırlı, Maraşlı (bib5) 2012; 34 Kreith, Manglik, Bohn (bib23) 2012 Cheung, Santos, Quaresma, Dulikravich, Garcia (bib27) 2009; 52 Kurz, Trivedi (bib36) 1991; 22 Day, Hellawell (bib37) 1968; 305 Seetharaman, Trivedi (bib41) 1988; 19 Gan, Wu, Sun, Su, Wang, Wu, Liu (bib10) 2020; 822 Curtulo, Dias, Bertelli, Silva, Spinelli, Garcia, Cheung (bib15) 2019; 48 Thermocalc Software: TCAL5, TCS Al-Based Alloy Database, (n.d.). Glicksman (bib1) 2010 Viskanta (bib44) 1988; 110 Akopyan, Belov, Naumova, Letyagin (bib9) 2019; 245 Böyük, Engin, Kaya, Maraşlı (bib20) 2010; 61 Gouveia, Kakitani, Gomes, Afonso, Cheung, Spinelli (bib13) 2019; 34 Barclay, Kerr, Niessen (bib39) 1971; 6 Rocha (10.1016/j.csite.2021.101144_bib31) 2020; 100 Kurz (10.1016/j.csite.2021.101144_bib36) 1991; 22 Sun (10.1016/j.csite.2021.101144_bib6) 2019; 154 Samarasekera (10.1016/j.csite.2021.101144_bib26) 1978; 23 Gouveia (10.1016/j.csite.2021.101144_bib13) 2019; 34 Quaresma (10.1016/j.csite.2021.101144_bib33) 2000; 31 Hosch (10.1016/j.csite.2021.101144_bib35) 2009; 44 Day (10.1016/j.csite.2021.101144_bib37) 1968; 305 Callister (10.1016/j.csite.2021.101144_bib30) 2009 Canté (10.1016/j.csite.2021.101144_bib32) 2008; 39 Koch (10.1016/j.csite.2021.101144_bib12) 2003; 49 Cheung (10.1016/j.csite.2021.101144_bib27) 2009; 52 Barclay (10.1016/j.csite.2021.101144_bib39) 1971; 6 Kaya (10.1016/j.csite.2021.101144_bib5) 2012; 34 Smithells (10.1016/j.csite.2021.101144_bib28) 1992 Curtulo (10.1016/j.csite.2021.101144_bib15) 2019; 48 Bergman (10.1016/j.csite.2021.101144_bib21) 2011 Hosch (10.1016/j.csite.2021.101144_bib3) 2010; 528 Maity (10.1016/j.csite.2021.101144_bib8) 2020; 51 Santos (10.1016/j.csite.2021.101144_bib17) 2016; 107 Böyük (10.1016/j.csite.2021.101144_bib20) 2010; 61 Awe (10.1016/j.csite.2021.101144_bib43) 2020 Kakitani (10.1016/j.csite.2021.101144_bib4) 2019; 137 Glicksman (10.1016/j.csite.2021.101144_bib1) 2010 Seetharaman (10.1016/j.csite.2021.101144_bib41) 1988; 19 Loulou (10.1016/j.csite.2021.101144_bib24) 1999; 42 Viskanta (10.1016/j.csite.2021.101144_bib44) 1988; 110 Kim (10.1016/j.csite.2021.101144_bib7) 2016; 92 Kreith (10.1016/j.csite.2021.101144_bib23) 2012 Mirbagheri (10.1016/j.csite.2021.101144_bib25) 2006; 23 Akopyan (10.1016/j.csite.2021.101144_bib9) 2019; 245 Spinelli (10.1016/j.csite.2021.101144_bib16) 2012; 51 10.1016/j.csite.2021.101144_bib29 Ruddle (10.1016/j.csite.2021.101144_bib22) 1957 Park (10.1016/j.csite.2021.101144_bib2) 2009; 24 Costa (10.1016/j.csite.2021.101144_bib19) 2015; 653 Stoichev (10.1016/j.csite.2021.101144_bib40) 1988; 8 Gan (10.1016/j.csite.2021.101144_bib10) 2020; 822 Park (10.1016/j.csite.2021.101144_bib11) 2010; 18 Tiwary (10.1016/j.csite.2021.101144_bib14) 2015; 639 Oliveira (10.1016/j.csite.2021.101144_bib18) 2019; 5 Jenkinson (10.1016/j.csite.2021.101144_bib34) 1975; 28 Kurz (10.1016/j.csite.2021.101144_bib38) 1998 Farag (10.1016/j.csite.2021.101144_bib42) 1973 |
References_xml | – year: 2010 ident: bib1 article-title: Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts – volume: 24 start-page: 2605 year: 2009 end-page: 2609 ident: bib2 article-title: High-strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity publication-title: J. Mater. Res. – volume: 34 start-page: 707 year: 2012 end-page: 712 ident: bib5 article-title: Measurements of the microhardness, electrical and thermal properties of the Al–Ni eutectic alloy publication-title: Mater. Des. – volume: 44 start-page: 4892 year: 2009 end-page: 4899 ident: bib35 article-title: Analysis of the high growth-rate transition in Al–Si eutectic solidification publication-title: J. Mater. Sci. – volume: 137 start-page: 983 year: 2019 end-page: 996 ident: bib4 article-title: Thermal analysis during solidification of an Al–Cu eutectic alloy: interrelation of thermal parameters, microstructure and hardness publication-title: J. Therm. Anal. Calorim. – volume: 34 start-page: 1381 year: 2019 end-page: 1394 ident: bib13 article-title: Slow and rapid cooling of Al–Cu–Si ultrafine eutectic composites: interplay of cooling rate and microstructure in mechanical properties publication-title: J. Mater. Res. – volume: 61 start-page: 1260 year: 2010 end-page: 1267 ident: bib20 article-title: Effect of solidification parameters on the microstructure of Sn-3.7Ag-0.9Zn solder publication-title: Mater. Char. – volume: 23 start-page: 295 year: 2006 end-page: 312 ident: bib25 article-title: Modelling of metal-mold interface resistance in the A356 Aluminium alloy casting process publication-title: Commun. Numer. Methods Eng. – volume: 48 start-page: 164 year: 2019 end-page: 173 ident: bib15 article-title: The application of an analytical model to solve an inverse heat conduction problem: transient solidification of a Sn-Sb peritectic solder alloy on distinct substrates publication-title: J. Manuf. Process. – year: 1992 ident: bib28 article-title: Smithells Metals Reference Book – year: 2020 ident: bib43 article-title: Solidification and microstructural formation of a ternary eutectic Al-Cu-Si cast alloy publication-title: J. King Saud Univ. - Eng. Sci. – volume: 100 start-page: 2659 year: 2020 end-page: 2676 ident: bib31 article-title: Transient heat flow parameters and microstructure of the upward solidified eutectic Al–Si alloy: a theoretical and experimental study publication-title: Philos. Mag. A – volume: 18 start-page: 1829 year: 2010 end-page: 1833 ident: bib11 article-title: Multi-phase Al-based ultrafine composite with multi-scale microstructure publication-title: Intermetallics – volume: 653 start-page: 243 year: 2015 end-page: 254 ident: bib19 article-title: Monotectic Al–Bi–Sn alloys directionally solidified: effects of Bi content, growth rate and cooling rate on the microstructural evolution and hardness publication-title: J. Alloys Compd. – volume: 39 start-page: 1712 year: 2008 end-page: 1726 ident: bib32 article-title: Microstructural development in Al-Ni alloys directionally solidified under unsteady-state conditions publication-title: Metall. Mater. Trans. – volume: 51 start-page: 109 year: 2020 end-page: 115 ident: bib8 article-title: Evolution of bimodal microstructure and high-temperature wear resistance of Al-Cu-Ni alloys publication-title: Metall. Mater. Trans. – year: 2012 ident: bib23 article-title: Principles of Heat Transfer – volume: 245 start-page: 110 year: 2019 end-page: 113 ident: bib9 article-title: New in-situ Al matrix composites based on Al-Ni-La eutectic publication-title: Mater. Lett. – year: 1998 ident: bib38 article-title: Fundamentals of Solidification – volume: 31 start-page: 3167 year: 2000 end-page: 3178 ident: bib33 article-title: Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al-Cu alloys publication-title: Metall. Mater. Trans. – volume: 42 start-page: 2119 year: 1999 end-page: 2127 ident: bib24 article-title: Estimation of thermal contact resistance during the first stages of metal solidification process: I—experiment principle and modelisation publication-title: Int. J. Heat Mass Tran. – volume: 822 start-page: 153607 year: 2020 ident: bib10 article-title: Influence of Co contents and super-gravity field on refinement of in-situ ultra-fined fibers in Al-2.5Ni eutectic alloys publication-title: J. Alloys Compd. – volume: 51 start-page: 145 year: 2012 end-page: 154 ident: bib16 article-title: Design of mechanical properties of Al-alloys chill castings based on the metal/mold interfacial heat transfer coefficient publication-title: Int. J. Therm. Sci. – volume: 92 start-page: 1038 year: 2016 end-page: 1045 ident: bib7 article-title: Understanding the relationship between microstructure and mechanical properties of Al–Cu–Si ultrafine eutectic composites publication-title: Mater. Des. – volume: 107 start-page: 431 year: 2016 end-page: 440 ident: bib17 article-title: An alternative thermal approach to evaluate the wettability of solder alloys publication-title: Appl. Therm. Eng. – volume: 49 start-page: 657 year: 2003 end-page: 662 ident: bib12 article-title: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals publication-title: Scripta Mater. – volume: 28 start-page: 171 year: 1975 end-page: 187 ident: bib34 article-title: The modification of aluminium-silicon alloys with strontium publication-title: J. Cryst. Growth – volume: 639 start-page: 359 year: 2015 end-page: 369 ident: bib14 article-title: Al based ultra-fine eutectic with high room temperature plasticity and elevated temperature strength publication-title: Mater. Sci. Eng. – volume: 5 start-page: 561 year: 2019 end-page: 580 ident: bib18 article-title: The roles of Mn and Ni additions to Fe-contaminated Al in neutralizing Fe and stabilizing the cellular α-Al microstructure publication-title: J. Sustain. Metall. – volume: 8 start-page: 171 year: 1988 end-page: 174 ident: bib40 article-title: Eutectic solidification of Al-Cu alloys influenced by convection publication-title: Adv. Space Res. – start-page: 297 year: 1973 end-page: 307 ident: bib42 article-title: Structure and strength of unidirectionally solidified commercial purity Al-Ni composites publication-title: Conf. Situ Compos. Sept. 5-8,1972 – volume: 305 start-page: 473 year: 1968 end-page: 491 ident: bib37 article-title: The microstructure and crystallography of aluminium—silicon eutectic alloys publication-title: Proc. R. Soc. London. Ser. A. Math. Phys. Sci. – year: 1957 ident: bib22 article-title: The Solidification of Castings – volume: 52 start-page: 451 year: 2009 end-page: 459 ident: bib27 article-title: Interfacial heat transfer coefficients and solidification of an aluminum alloy in a rotary continuous caster publication-title: Int. J. Heat Mass Tran. – volume: 22 start-page: 3051 year: 1991 end-page: 3057 ident: bib36 article-title: Eutectic growth under rapid solidification conditions publication-title: Metall. Trans. A. – volume: 154 start-page: 269 year: 2019 end-page: 276 ident: bib6 article-title: Eutectic microstructures in dilute Al-Ce and Al-Co alloys publication-title: Mater. Char. – volume: 19 start-page: 2955 year: 1988 end-page: 2964 ident: bib41 article-title: Eutectic growth: selection of interlamellar spacings publication-title: Metall. Trans. A. – reference: Thermocalc Software: TCAL5, TCS Al-Based Alloy Database, (n.d.). – volume: 110 start-page: 1205 year: 1988 end-page: 1219 ident: bib44 article-title: Heat transfer during melting and solidification of metals publication-title: J. Heat Tran. – volume: 6 start-page: 1168 year: 1971 end-page: 1173 ident: bib39 article-title: Off-eutectic composite solidification and properties in Al-Ni and Al-Co alloys publication-title: J. Mater. Sci. – year: 2011 ident: bib21 article-title: Fundamentals of Heat and Mass Transfer – volume: 23 start-page: 286 year: 1978 end-page: 300 ident: bib26 article-title: The continuous–casting mould publication-title: Int. Met. Rev. – year: 2009 ident: bib30 article-title: Materials Science and Engineering: An Introduction – volume: 528 start-page: 226 year: 2010 end-page: 232 ident: bib3 article-title: The effect of the flake to fiber transition in silicon morphology on the tensile properties of Al–Si eutectic alloys publication-title: Mater. Sci. Eng. – volume: 34 start-page: 1381 year: 2019 ident: 10.1016/j.csite.2021.101144_bib13 article-title: Slow and rapid cooling of Al–Cu–Si ultrafine eutectic composites: interplay of cooling rate and microstructure in mechanical properties publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.495 – volume: 137 start-page: 983 year: 2019 ident: 10.1016/j.csite.2021.101144_bib4 article-title: Thermal analysis during solidification of an Al–Cu eutectic alloy: interrelation of thermal parameters, microstructure and hardness publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-018-07992-x – year: 2010 ident: 10.1016/j.csite.2021.101144_bib1 – volume: 34 start-page: 707 year: 2012 ident: 10.1016/j.csite.2021.101144_bib5 article-title: Measurements of the microhardness, electrical and thermal properties of the Al–Ni eutectic alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2011.05.030 – volume: 48 start-page: 164 year: 2019 ident: 10.1016/j.csite.2021.101144_bib15 article-title: The application of an analytical model to solve an inverse heat conduction problem: transient solidification of a Sn-Sb peritectic solder alloy on distinct substrates publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2019.10.029 – year: 2011 ident: 10.1016/j.csite.2021.101144_bib21 – volume: 305 start-page: 473 year: 1968 ident: 10.1016/j.csite.2021.101144_bib37 article-title: The microstructure and crystallography of aluminium—silicon eutectic alloys publication-title: Proc. R. Soc. London. Ser. A. Math. Phys. Sci. – year: 2020 ident: 10.1016/j.csite.2021.101144_bib43 article-title: Solidification and microstructural formation of a ternary eutectic Al-Cu-Si cast alloy publication-title: J. King Saud Univ. - Eng. Sci. – volume: 51 start-page: 145 year: 2012 ident: 10.1016/j.csite.2021.101144_bib16 article-title: Design of mechanical properties of Al-alloys chill castings based on the metal/mold interfacial heat transfer coefficient publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.08.014 – volume: 42 start-page: 2119 year: 1999 ident: 10.1016/j.csite.2021.101144_bib24 article-title: Estimation of thermal contact resistance during the first stages of metal solidification process: I—experiment principle and modelisation publication-title: Int. J. Heat Mass Tran. doi: 10.1016/S0017-9310(98)00333-0 – volume: 24 start-page: 2605 year: 2009 ident: 10.1016/j.csite.2021.101144_bib2 article-title: High-strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity publication-title: J. Mater. Res. doi: 10.1557/jmr.2009.0297 – volume: 110 start-page: 1205 year: 1988 ident: 10.1016/j.csite.2021.101144_bib44 article-title: Heat transfer during melting and solidification of metals publication-title: J. Heat Tran. doi: 10.1115/1.3250621 – volume: 100 start-page: 2659 year: 2020 ident: 10.1016/j.csite.2021.101144_bib31 article-title: Transient heat flow parameters and microstructure of the upward solidified eutectic Al–Si alloy: a theoretical and experimental study publication-title: Philos. Mag. A doi: 10.1080/14786435.2020.1785646 – volume: 822 start-page: 153607 year: 2020 ident: 10.1016/j.csite.2021.101144_bib10 article-title: Influence of Co contents and super-gravity field on refinement of in-situ ultra-fined fibers in Al-2.5Ni eutectic alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.153607 – year: 2009 ident: 10.1016/j.csite.2021.101144_bib30 – year: 1992 ident: 10.1016/j.csite.2021.101144_bib28 – volume: 61 start-page: 1260 year: 2010 ident: 10.1016/j.csite.2021.101144_bib20 article-title: Effect of solidification parameters on the microstructure of Sn-3.7Ag-0.9Zn solder publication-title: Mater. Char. doi: 10.1016/j.matchar.2010.08.007 – year: 2012 ident: 10.1016/j.csite.2021.101144_bib23 – volume: 44 start-page: 4892 year: 2009 ident: 10.1016/j.csite.2021.101144_bib35 article-title: Analysis of the high growth-rate transition in Al–Si eutectic solidification publication-title: J. Mater. Sci. doi: 10.1007/s10853-009-3747-6 – ident: 10.1016/j.csite.2021.101144_bib29 – volume: 653 start-page: 243 year: 2015 ident: 10.1016/j.csite.2021.101144_bib19 article-title: Monotectic Al–Bi–Sn alloys directionally solidified: effects of Bi content, growth rate and cooling rate on the microstructural evolution and hardness publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.09.009 – volume: 39 start-page: 1712 year: 2008 ident: 10.1016/j.csite.2021.101144_bib32 article-title: Microstructural development in Al-Ni alloys directionally solidified under unsteady-state conditions publication-title: Metall. Mater. Trans. doi: 10.1007/s11661-008-9536-z – volume: 22 start-page: 3051 year: 1991 ident: 10.1016/j.csite.2021.101144_bib36 article-title: Eutectic growth under rapid solidification conditions publication-title: Metall. Trans. A. doi: 10.1007/BF02650266 – volume: 92 start-page: 1038 year: 2016 ident: 10.1016/j.csite.2021.101144_bib7 article-title: Understanding the relationship between microstructure and mechanical properties of Al–Cu–Si ultrafine eutectic composites publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.12.080 – volume: 49 start-page: 657 year: 2003 ident: 10.1016/j.csite.2021.101144_bib12 article-title: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals publication-title: Scripta Mater. doi: 10.1016/S1359-6462(03)00394-4 – volume: 6 start-page: 1168 year: 1971 ident: 10.1016/j.csite.2021.101144_bib39 article-title: Off-eutectic composite solidification and properties in Al-Ni and Al-Co alloys publication-title: J. Mater. Sci. doi: 10.1007/BF00550086 – volume: 528 start-page: 226 year: 2010 ident: 10.1016/j.csite.2021.101144_bib3 article-title: The effect of the flake to fiber transition in silicon morphology on the tensile properties of Al–Si eutectic alloys publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2010.09.008 – volume: 51 start-page: 109 year: 2020 ident: 10.1016/j.csite.2021.101144_bib8 article-title: Evolution of bimodal microstructure and high-temperature wear resistance of Al-Cu-Ni alloys publication-title: Metall. Mater. Trans. doi: 10.1007/s11661-019-05518-0 – volume: 31 start-page: 3167 year: 2000 ident: 10.1016/j.csite.2021.101144_bib33 article-title: Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al-Cu alloys publication-title: Metall. Mater. Trans. doi: 10.1007/s11661-000-0096-0 – year: 1998 ident: 10.1016/j.csite.2021.101144_bib38 – volume: 18 start-page: 1829 year: 2010 ident: 10.1016/j.csite.2021.101144_bib11 article-title: Multi-phase Al-based ultrafine composite with multi-scale microstructure publication-title: Intermetallics doi: 10.1016/j.intermet.2010.02.042 – volume: 5 start-page: 561 year: 2019 ident: 10.1016/j.csite.2021.101144_bib18 article-title: The roles of Mn and Ni additions to Fe-contaminated Al in neutralizing Fe and stabilizing the cellular α-Al microstructure publication-title: J. Sustain. Metall. doi: 10.1007/s40831-019-00248-4 – volume: 28 start-page: 171 year: 1975 ident: 10.1016/j.csite.2021.101144_bib34 article-title: The modification of aluminium-silicon alloys with strontium publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(75)90233-X – volume: 23 start-page: 286 year: 1978 ident: 10.1016/j.csite.2021.101144_bib26 article-title: The continuous–casting mould publication-title: Int. Met. Rev. doi: 10.1179/imr.1978.23.1.286 – volume: 23 start-page: 295 year: 2006 ident: 10.1016/j.csite.2021.101144_bib25 article-title: Modelling of metal-mold interface resistance in the A356 Aluminium alloy casting process publication-title: Commun. Numer. Methods Eng. doi: 10.1002/cnm.903 – volume: 8 start-page: 171 year: 1988 ident: 10.1016/j.csite.2021.101144_bib40 article-title: Eutectic solidification of Al-Cu alloys influenced by convection publication-title: Adv. Space Res. doi: 10.1016/0273-1177(88)90020-8 – volume: 107 start-page: 431 year: 2016 ident: 10.1016/j.csite.2021.101144_bib17 article-title: An alternative thermal approach to evaluate the wettability of solder alloys publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.06.177 – volume: 245 start-page: 110 year: 2019 ident: 10.1016/j.csite.2021.101144_bib9 article-title: New in-situ Al matrix composites based on Al-Ni-La eutectic publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.02.112 – volume: 19 start-page: 2955 year: 1988 ident: 10.1016/j.csite.2021.101144_bib41 article-title: Eutectic growth: selection of interlamellar spacings publication-title: Metall. Trans. A. doi: 10.1007/BF02647722 – start-page: 297 year: 1973 ident: 10.1016/j.csite.2021.101144_bib42 article-title: Structure and strength of unidirectionally solidified commercial purity Al-Ni composites – volume: 639 start-page: 359 year: 2015 ident: 10.1016/j.csite.2021.101144_bib14 article-title: Al based ultra-fine eutectic with high room temperature plasticity and elevated temperature strength publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2015.05.024 – year: 1957 ident: 10.1016/j.csite.2021.101144_bib22 – volume: 52 start-page: 451 year: 2009 ident: 10.1016/j.csite.2021.101144_bib27 article-title: Interfacial heat transfer coefficients and solidification of an aluminum alloy in a rotary continuous caster publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2008.07.003 – volume: 154 start-page: 269 year: 2019 ident: 10.1016/j.csite.2021.101144_bib6 article-title: Eutectic microstructures in dilute Al-Ce and Al-Co alloys publication-title: Mater. Char. doi: 10.1016/j.matchar.2019.06.010 |
SSID | ssj0001738144 |
Score | 2.233687 |
Snippet | Ultra-thin microstructures of eutectic aluminum alloys have attracted attention due to their excellent mechanical properties. In this context, it is known that... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 101144 |
SubjectTerms | Aluminum alloys Interfacial heat transfer Modelling Solidification Thermal analysis Thermal control |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBIRNz4kY6AqCqkMlGpW-SnVNSkiDYD_547J63CUhZW62xHdyd_98Wnz4TcGcW1AVhOrGQm4UHIRGuLnEd4wNvQ3uhO3uR4yl9nYtZ56gt7whp54MZxDygvExyqcknHuQZ6kWoFIJl56x1gG56-gHkdMhX_rihAoviS62DAeMKEmm0kh2Jzl41Xs0D8GY6A5S9Yiur9HXTqIM7oiBy2pSJ9bD7xmOz56oQcdAQET4mbeOwDLZcLR7GSK8EeCC5quGI0qY7dGmBK68X6SweYSVcQFU9LbMRrxGNrYNx0XlEN59S8qkvqa7xZmFuKl_LfqzMyHb28P4-T9t2ExHLG14kzQJeF8rnMcz2UyjlhlQieeSGCUtpZ4KIenMosD0blIXVyOAw-dcFq4QfZOelVy8pfEOrzNFNG50NhU-6Y04Fb6zLDjLAWuG2fDDZuK2wrKo5vWyyKTffYRxF9XaCvi8bXfXK_nfTZaGrsNn_CeGxNURA7DkCaFG2aFH-lSZ_ITTSLtrZoagZYar5r98v_2P2K7OOSTePgNelBdP0NFDNrcxvz9gd6hPHB priority: 102 providerName: Directory of Open Access Journals |
Title | Metal/mold thermal conductance affecting ultrafine scale microstructures in aluminum eutectic alloys |
URI | https://dx.doi.org/10.1016/j.csite.2021.101144 https://doaj.org/article/0972fd85936d44a1910a73553eced223 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8NADD6hTjAgnqI8qhsYiZrHXS4ZaQWqkGCBStmie6KgNkW0Gfj32JcEysLAmJOdh22d7dj3mZBrJZhU4JYDnUYqYI6ngZQacx5uwd-6rqL7-JTO5uyh4MUOmfZnYbCtstv72z3d79bdyriT5vi9qsbPcRyB9xEFJC1oqXjQPGGZP8RXTH7-swjwSX6mK9IHyNCDD_k2L-2LtDG4OlwByl8OyuP4b_mpLd9zf0D2u6CR3rbvdUh2bH1E9ragBI-JebTYEbpcLQzFmG4J9JDqIpor6pVK37cBpLRZbD6kA066Bv1YusSWvBZGtoHcm1Y1lbBjVXWzpLbBGkOlKZbnP9cnZH5_9zKdBd0EhUCziG0CoyBx5sJmaZbJPBXGcC24s5Hl3AkhjYas1DqTRZo5JTIXmjTPnQ2N05LbODklg3pV2zNCbRYmQsks5zpkJjLSMa1NoiLFtYYsd0jiXmyl7uDFccrFouz7yN5KL-sSZV22sh6Sm2-m9xZd42_yCerjmxShsf3C6uO17GyjRDwi-CKcVGgYk5CPhlJAVJVYMCkIhoYk7bVZ_rI0uFX119PP_8t4QXbxqm0bvCQD0Ki9glBmo0b-F8DIW-wXxvj0dA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LU9tADNYAPRQODKVlCG3pHjjWE9vZ9TrHhimTtIRLYSa3nX0yZhKHgeTAv0da2xAuHHpdS35I8kqy5E8AZ0ZybdAtJ7bITMKDKBKtLeU8wqO_DW1Fd3pVjG_4n5mYbcF59y8MtVW2e3-zp8fdul3pt9Ls31dV_1-eZ-h95AyTFrJUsQ0fMBqQ9HZOZqPXDy0SnVIc6koMCXF06EOxz8vGKm2Ovo5WkPKNh4pA_huOasP5XBzAfhs1sl_NjX2CLV8fwt4GluBncFNPLaGL5dwxCuoWSI-5LsG5kmKZjo0bSMrW89WDDsjJHlFBni2oJ6_BkV1j8s2qmmncsqp6vWB-TUWGyjKqzz89foGbi9_X5-OkHaGQWJ7xVeIMZs5C-rIoSz0spHPCShF85oUIUmpnMS31wZWZ5cHIMqSuGA6DT12wWvh8cAQ79bL2x8B8mQ6k0eVQ2JS7zOnArXUDkxlhLaa5Pcg7sSnb4ovTmIu56hrJ7lSUtSJZq0bWPfj5wnTfwGu8Tz4ifbyQEjZ2XFg-3KrWOBQBEuET0ahCx7nGhDTVEsOqgUebwmioB0WnTfXG1PBU1XtXP_lfxh_wcXw9vVSXk6u_X2GXjjQ9hN9gB7Xrv2NcszKn0W6fAVMH9p8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%2Fmold+thermal+conductance+affecting+ultrafine+scale+microstructures+in+aluminum+eutectic+alloys&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Kakitani%2C+Rafael&rft.au=Oliveira%2C+Ricardo&rft.au=Reyes%2C+Rodrigo+V.&rft.au=Rodrigues%2C+Adilson+V.&rft.date=2021-08-01&rft.pub=Elsevier+Ltd&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=26&rft_id=info:doi/10.1016%2Fj.csite.2021.101144&rft.externalDocID=S2214157X21003075 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |