The numerical simulation of nanoparticle size and thermal radiation with the magnetic field effect based on tangent hyperbolic nanofluid flow

Tiny particles have extraordinary thermal conductivity due to their unusual characteristics, making them crucial in materials science, nanotechnology, heat exchangers, and electronics. When there is the inclusion of thermal radiation, a heat source, and a convective boundary, magnetohydrodynamic (MH...

Full description

Saved in:
Bibliographic Details
Published inCase studies in thermal engineering Vol. 37; p. 102247
Main Authors Kumar, Pardeep, Poonia, Hemant, Ali, Liaqat, Areekara, Sujesh
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tiny particles have extraordinary thermal conductivity due to their unusual characteristics, making them crucial in materials science, nanotechnology, heat exchangers, and electronics. When there is the inclusion of thermal radiation, a heat source, and a convective boundary, magnetohydrodynamic (MHD) micropolar, tangent hyperbolic flow for water-based Al2O3 nanofluid over a stretching sheet, this work intends to investigate the significance of a nanoparticle's radius. The mathematically described ordinary differential system is created by transforming a set of partial differential equations via similarity transformations. The bvp4c approach is used to solve the problem numerically (MATLAB built-in function). In this comprehensive study, the main objective is to improve heat transformation under the impact of various parameters. The velocity profiles, temperature distribution, micro-rotation distribution, and the local skin friction factor, along with the rate of heat transfer, have been displayed with several physical parameters. It is observed that the variation in velocity and the temperature profiles is the cause of increasing the size of the nanoparticles and the involving parameters that caused an increase in the rate of heat transfer. Graphs and tables have then been used to demonstrate the consequences of these physical parameters. The enhancement in the radius of nanoparticles causes a decrease in the skin friction factor, thermal layer, and micro-rotation. As the Biot number increased, the thermal layer became thicker. The impact of influential parameters on physical quantities is illustrated using three-dimensional graphs.
AbstractList Tiny particles have extraordinary thermal conductivity due to their unusual characteristics, making them crucial in materials science, nanotechnology, heat exchangers, and electronics. When there is the inclusion of thermal radiation, a heat source, and a convective boundary, magnetohydrodynamic (MHD) micropolar, tangent hyperbolic flow for water-based Al2O3 nanofluid over a stretching sheet, this work intends to investigate the significance of a nanoparticle's radius. The mathematically described ordinary differential system is created by transforming a set of partial differential equations via similarity transformations. The bvp4c approach is used to solve the problem numerically (MATLAB built-in function). In this comprehensive study, the main objective is to improve heat transformation under the impact of various parameters. The velocity profiles, temperature distribution, micro-rotation distribution, and the local skin friction factor, along with the rate of heat transfer, have been displayed with several physical parameters. It is observed that the variation in velocity and the temperature profiles is the cause of increasing the size of the nanoparticles and the involving parameters that caused an increase in the rate of heat transfer. Graphs and tables have then been used to demonstrate the consequences of these physical parameters. The enhancement in the radius of nanoparticles causes a decrease in the skin friction factor, thermal layer, and micro-rotation. As the Biot number increased, the thermal layer became thicker. The impact of influential parameters on physical quantities is illustrated using three-dimensional graphs.
ArticleNumber 102247
Author Poonia, Hemant
Ali, Liaqat
Areekara, Sujesh
Kumar, Pardeep
Author_xml – sequence: 1
  givenname: Pardeep
  orcidid: 0000-0001-6876-8276
  surname: Kumar
  fullname: Kumar, Pardeep
  organization: Department of Mathematics and Statistics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
– sequence: 2
  givenname: Hemant
  orcidid: 0000-0002-0945-8793
  surname: Poonia
  fullname: Poonia, Hemant
  organization: Department of Mathematics and Statistics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
– sequence: 3
  givenname: Liaqat
  surname: Ali
  fullname: Ali, Liaqat
  email: math1234@stu.xjtu.edu.cn
  organization: School of Sciences, Xi'an Technological University, Xi'an, 710021, China
– sequence: 4
  givenname: Sujesh
  orcidid: 0000-0001-7860-8268
  surname: Areekara
  fullname: Areekara, Sujesh
  organization: Department of Mathematics, St. Thomas College(Autonomous), Thrissur, 680001, Kerala, India
BookMark eNqFUctuFDEQHKEgEUK-gIt_YBc_Z3YOHFDEI1IkLkHiZvXY7V2vPPbK9hKFf-Cf492JEOIAp26Vq8rqqtfdRUwRu-4to2tGWf9uvzbFV1xzynlDOJfDi-6ScyZXTA3fL_7YX3XXpewppWwQGyblZffrfockHmfM3kAgxc_HANWnSJIjEWI6QK7eBGxPP5FAtKTuMM-Nm8H6hfrg6-4Ekxm2ERudOI_BEnQOTSUTFLSk8SrELcZKdo8HzFMKjXj6woWjt8SF9PCme-kgFLx-nlfdt08f72--rO6-fr69-XC3MpLJurLgJim5NTj1Qz_2DDbWKo5uAC6BjkwIZikVo6MjlT0qBT1Vik1g1OQYF1fd7eJrE-z1IfsZ8qNO4PUZSHmrn8_WSK0DYTh14yQN34zAJ2F6IZVybGBj8xKLl8mplIzutx-j-lSQ3utzQfpUkF4KaqrxL5Xx9ZxmzeDDf7TvFy22iH54zLoYj9Gg9bnl3W7w_9Q_AUCOsh8
CitedBy_id crossref_primary_10_1080_16583655_2023_2300851
crossref_primary_10_1142_S0217979223502843
crossref_primary_10_3390_math10193520
crossref_primary_10_1080_10407782_2023_2269475
crossref_primary_10_1142_S0217979223500662
crossref_primary_10_1515_jnet_2022_0064
crossref_primary_10_3934_math_2023353
crossref_primary_10_1515_phys_2022_0244
crossref_primary_10_1007_s10973_023_12105_4
crossref_primary_10_1080_10407782_2023_2212130
crossref_primary_10_1002_zamm_202400225
crossref_primary_10_1016_j_ijhydene_2024_05_425
crossref_primary_10_1142_S0217984924501744
crossref_primary_10_1142_S0217984924501549
crossref_primary_10_3390_sym15040946
crossref_primary_10_1021_acsomega_2c07750
crossref_primary_10_3390_sym15061148
crossref_primary_10_1007_s10973_023_12288_w
crossref_primary_10_1515_ntrev_2023_0169
crossref_primary_10_3390_nano12193453
crossref_primary_10_1016_j_jrras_2024_101253
crossref_primary_10_3390_math11071685
crossref_primary_10_1016_j_rineng_2024_103031
crossref_primary_10_1016_j_csite_2023_102985
crossref_primary_10_1080_02286203_2024_2315534
crossref_primary_10_3390_en16031220
crossref_primary_10_1080_17455030_2023_2172962
crossref_primary_10_1007_s41939_024_00648_4
crossref_primary_10_1016_j_rinp_2024_108031
crossref_primary_10_1038_s41598_023_47853_8
crossref_primary_10_1142_S0217979224501145
crossref_primary_10_1038_s41598_024_57532_x
crossref_primary_10_1142_S0217984923502159
crossref_primary_10_3390_nano12213872
crossref_primary_10_1142_S0217979223501497
crossref_primary_10_1142_S0217979223502466
crossref_primary_10_1016_j_hybadv_2024_100343
crossref_primary_10_1016_j_padiff_2024_100761
crossref_primary_10_3934_math_2023567
crossref_primary_10_3390_math11020326
crossref_primary_10_1142_S0217984924503305
crossref_primary_10_1007_s12668_024_01346_8
crossref_primary_10_1007_s10973_023_12874_y
crossref_primary_10_1016_j_csite_2023_102995
crossref_primary_10_3390_pr11102842
crossref_primary_10_1016_j_csite_2025_106049
crossref_primary_10_1080_10407790_2023_2252598
crossref_primary_10_1088_1361_6528_ad3c46
crossref_primary_10_1080_10407782_2024_2360652
crossref_primary_10_1142_S0217984923501257
crossref_primary_10_1016_j_rineng_2023_100955
crossref_primary_10_1002_eng2_12999
crossref_primary_10_1142_S0217979223503149
crossref_primary_10_1080_10407790_2024_2345697
crossref_primary_10_1080_10407790_2023_2235077
crossref_primary_10_1108_HFF_05_2024_0372
crossref_primary_10_3390_sym15091794
crossref_primary_10_1080_10407782_2023_2212861
crossref_primary_10_1007_s12043_023_02672_4
crossref_primary_10_1016_j_csite_2024_104448
crossref_primary_10_1080_17455030_2023_2186772
crossref_primary_10_1007_s10973_024_13055_1
crossref_primary_10_1016_j_csite_2022_102389
Cites_doi 10.1007/BF00853952
10.1016/j.icheatmasstransfer.2021.105800
10.1016/j.physe.2016.10.015
10.3390/coatings10020170
10.1016/j.camwa.2022.01.009
10.3390/app9235217
10.1016/j.icheatmasstransfer.2010.12.042
10.1155/2021/5471813
10.1016/j.ijthermalsci.2011.02.019
10.1016/j.molliq.2016.08.102
10.1016/j.ijheatmasstransfer.2006.09.034
10.1016/j.ijengsci.2003.09.008
10.1016/j.proeng.2015.11.359
10.1007/s10483-015-2003-6
10.3390/sym12040520
10.1007/BF00951252
10.1016/j.ijheatmasstransfer.2010.01.032
10.1016/j.jnnms.2016.02.003
10.1371/journal.pone.0260854
10.1080/01430750.2022.2063387
10.1016/0020-7225(64)90005-9
10.1016/j.csite.2021.100870
10.1016/j.cjph.2021.10.045
10.1007/s42452-019-1831-3
10.1016/j.ijheatmasstransfer.2018.05.076
10.3934/dcdss.2020142
10.1002/mma.5997
10.1016/j.csite.2021.101392
10.1016/j.euromechflu.2019.04.008
10.1016/j.cma.2018.09.042
10.1016/j.icheatmasstransfer.2022.105982
10.1063/1.4937366
10.1016/S0924-4247(98)00261-1
10.1063/1.1454184
10.1016/j.molliq.2018.04.095
10.1016/j.molliq.2018.03.079
10.1016/j.cjph.2020.12.022
10.1007/s00521-019-04100-4
10.1007/s10973-020-09488-z
10.1016/j.molliq.2016.05.091
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2022.102247
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_e0dfa3c20f9b4c289a2b3c63455f1719
10_1016_j_csite_2022_102247
S2214157X22004932
GroupedDBID 0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-dafb442dceb676961a8dd52ef7a24a091331d0039f09046e55a60551bac5bf123
IEDL.DBID DOA
ISSN 2214-157X
IngestDate Wed Aug 27 01:13:28 EDT 2025
Tue Jul 01 02:28:34 EDT 2025
Thu Apr 24 22:52:17 EDT 2025
Tue Jul 25 20:58:18 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Thermal radiation
Tangent hyperbolic
Magnetohydrodynamic
Nanofluid
Nanoparticle
Micropolar fluid
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-dafb442dceb676961a8dd52ef7a24a091331d0039f09046e55a60551bac5bf123
ORCID 0000-0002-0945-8793
0000-0001-6876-8276
0000-0001-7860-8268
OpenAccessLink https://doaj.org/article/e0dfa3c20f9b4c289a2b3c63455f1719
ParticipantIDs doaj_primary_oai_doaj_org_article_e0dfa3c20f9b4c289a2b3c63455f1719
crossref_primary_10_1016_j_csite_2022_102247
crossref_citationtrail_10_1016_j_csite_2022_102247
elsevier_sciencedirect_doi_10_1016_j_csite_2022_102247
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ali, Naqvi, Ali, Abdal, Hussain (bib39) 2021; 70
Ali, Liu, Ali, Mujeed, Abdal, Mutahir (bib20) 2020; 12
Xie, Wang (bib2) 2002
Dawar, Wakif, Saeed, Shah, Muhammad, Kumam (bib29) 2022; 9
Ali, Liu, Ali, Mujeed, Abdal (bib21) 2019; 9
Aziz, Jamshed, Ali, Shams (bib40) 2020; 13
Mahanthesh, Gireesha, Gorla (bib24) 2016; 35
Hamid, Khan (bib27) 2018; 260
Hamid, Khan, Hafeez (bib13) 2018; 126
Makinde, Aziz (bib28) 2011; 50
Gosukonda, Gorti, Baluguri, Sakam (bib9) 2015; 127
Ali, Liu, Ali, Din, Al Mdallal (bib5) 2021
Reddy Gorla, Sidawi (bib47) 1994; 52
Dawar, Wakif, Thumma, Shah (bib7) 2022; 130
Graham (bib42) 1981; 37
Garnett (bib44) 1904; 203
Ali, Liu, Ali, Mujeed, Abdal, Khan (bib3) 2020; 10
Dawar, Saeed, Kumam (bib33) 2022; 133
Das, Chakraborty, Jana, Makinde (bib30) 2015; 36
Sheikholeslami (bib10) 2019; 344
Shampine, Gladwell, Thompson (bib46) 2003
Ramzan, Dawar, Saeed, Kumam, Watthayu, Kumam (bib34) 2021; 16
Eringen (bib17) 1966
Shampine, Kierzenka, Reichelt (bib45) 2000; 2000
Makinde, Mutuku (bib31) 2014; 76
Hamid, Khan (bib26) 2018; 262
Wakif, Chamkha, Thumma, Animasaun, Sehaqui (bib4) 2021; 143
Qayyum, Hayat, Jabeen, Alsaedi (bib12) 2020; 43
Tiwari, Das (bib36) 2007; 50
Papautsky, Brazzle, Ameel, Frazier (bib19) 1999; 73
Hamid, Hafeez, Khan, Alshomrani, Alghamdi (bib6) 2019; 76
Choi, Eastman (bib1) 1995
Brewster (bib37) 1992
Dawar, Islam, Shah (bib41) 2022
Ali, Ali, Ghori (bib35) 2022; 109
Dawar, Shah, Tassaddiq, Islam, Kumam (bib14) 2021; 25
Dawar, Bonyah, Islam, Alshehri, Shah (bib22) 2021; 2021
Karimipour, D'Orazio, Shadloo (bib11) 2017; 86
Salahuddin, Malik, Hussain, Bilal, Awais (bib16) 2015; 5
Hayat, Qayyum, Alsaedi, Shehzad (bib15) 2016; 223
Ali, Ali, Liu, Iqbal, Zulqarnain, Javid (bib23) 2022; 77
Datti, Prasad, Abel, Joshi (bib38) 2004; 42
Ramzan, Farooq, Hayat, Chung (bib43) 2016; 221
Hamad (bib49) 2011; 38
Khan, Pop (bib48) 2010; 53
Khan, Nie, Ali (bib32) 2020; 2
Ali, Ali, Liu, Ahmed, Shah (bib25) 2021
Eringen (bib18) 1964; 2
Hamid, Khan (bib8) 2020; 32
Hamid (10.1016/j.csite.2022.102247_bib26) 2018; 262
Gosukonda (10.1016/j.csite.2022.102247_bib9) 2015; 127
Dawar (10.1016/j.csite.2022.102247_bib7) 2022; 130
Qayyum (10.1016/j.csite.2022.102247_bib12) 2020; 43
Aziz (10.1016/j.csite.2022.102247_bib40) 2020; 13
Sheikholeslami (10.1016/j.csite.2022.102247_bib10) 2019; 344
Ali (10.1016/j.csite.2022.102247_bib20) 2020; 12
Hayat (10.1016/j.csite.2022.102247_bib15) 2016; 223
Dawar (10.1016/j.csite.2022.102247_bib29) 2022; 9
Datti (10.1016/j.csite.2022.102247_bib38) 2004; 42
Hamad (10.1016/j.csite.2022.102247_bib49) 2011; 38
Ali (10.1016/j.csite.2022.102247_bib39) 2021; 70
Brewster (10.1016/j.csite.2022.102247_bib37) 1992
Dawar (10.1016/j.csite.2022.102247_bib41) 2022
Hamid (10.1016/j.csite.2022.102247_bib6) 2019; 76
Ramzan (10.1016/j.csite.2022.102247_bib43) 2016; 221
Choi (10.1016/j.csite.2022.102247_bib1) 1995
Dawar (10.1016/j.csite.2022.102247_bib14) 2021; 25
Das (10.1016/j.csite.2022.102247_bib30) 2015; 36
Hamid (10.1016/j.csite.2022.102247_bib8) 2020; 32
Mahanthesh (10.1016/j.csite.2022.102247_bib24) 2016; 35
Khan (10.1016/j.csite.2022.102247_bib32) 2020; 2
Shampine (10.1016/j.csite.2022.102247_bib46) 2003
Wakif (10.1016/j.csite.2022.102247_bib4) 2021; 143
Hamid (10.1016/j.csite.2022.102247_bib13) 2018; 126
Ali (10.1016/j.csite.2022.102247_bib3) 2020; 10
Ali (10.1016/j.csite.2022.102247_bib23) 2022; 77
Eringen (10.1016/j.csite.2022.102247_bib17) 1966
Karimipour (10.1016/j.csite.2022.102247_bib11) 2017; 86
Reddy Gorla (10.1016/j.csite.2022.102247_bib47) 1994; 52
Xie (10.1016/j.csite.2022.102247_bib2) 2002
Makinde (10.1016/j.csite.2022.102247_bib31) 2014; 76
Dawar (10.1016/j.csite.2022.102247_bib22) 2021; 2021
Tiwari (10.1016/j.csite.2022.102247_bib36) 2007; 50
Graham (10.1016/j.csite.2022.102247_bib42) 1981; 37
Shampine (10.1016/j.csite.2022.102247_bib45) 2000; 2000
Ali (10.1016/j.csite.2022.102247_bib21) 2019; 9
Garnett (10.1016/j.csite.2022.102247_bib44) 1904; 203
Eringen (10.1016/j.csite.2022.102247_bib18) 1964; 2
Ali (10.1016/j.csite.2022.102247_bib5) 2021
Makinde (10.1016/j.csite.2022.102247_bib28) 2011; 50
Ali (10.1016/j.csite.2022.102247_bib25) 2021
Khan (10.1016/j.csite.2022.102247_bib48) 2010; 53
Hamid (10.1016/j.csite.2022.102247_bib27) 2018; 260
Papautsky (10.1016/j.csite.2022.102247_bib19) 1999; 73
Dawar (10.1016/j.csite.2022.102247_bib33) 2022; 133
Ali (10.1016/j.csite.2022.102247_bib35) 2022; 109
Ramzan (10.1016/j.csite.2022.102247_bib34) 2021; 16
Salahuddin (10.1016/j.csite.2022.102247_bib16) 2015; 5
References_xml – volume: 25
  year: 2021
  ident: bib14
  article-title: Joule heating in magnetohydrodynamic micropolar boundary layer flow past a stretching sheet with chemical reaction and microstructural slip
  publication-title: Case Stud. Therm. Eng.
– volume: 203
  start-page: 385
  year: 1904
  end-page: 420
  ident: bib44
  article-title: Xii. colours in metal glasses and in metallic films
  publication-title: Philos. Trans. R. Soc. Lond. - Ser. A Contain. Pap. a Math. or Phys. Character
– volume: 52
  start-page: 247
  year: 1994
  end-page: 257
  ident: bib47
  article-title: Free convection on a vertical stretching surface with suction and blowing
  publication-title: Appl. Sci. Res.
– volume: 2
  start-page: 205
  year: 1964
  end-page: 217
  ident: bib18
  article-title: Simple microfluids
  publication-title: Int. J. Eng. Sci.
– volume: 221
  start-page: 394
  year: 2016
  end-page: 400
  ident: bib43
  article-title: Radiative and joule heating effects in the mhd flow of a micropolar fluid with partial slip and convective boundary condition
  publication-title: J. Mol. Liq.
– volume: 133
  year: 2022
  ident: bib33
  article-title: Magneto-hydrothermal analysis of copper and copper oxide nanoparticles between two parallel plates with brownian motion and thermophoresis effects
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 344
  start-page: 306
  year: 2019
  end-page: 318
  ident: bib10
  article-title: Numerical approach for mhd al2o3-water nanofluid transportation inside a permeable medium using innovative computer method
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 2000
  start-page: 1
  year: 2000
  end-page: 27
  ident: bib45
  article-title: Solving boundary value problems for ordinary differential equations in matlab with bvp4c
  publication-title: Tutorial notes
– volume: 76
  start-page: 434
  year: 2019
  end-page: 441
  ident: bib6
  article-title: Heat transport features of magnetic water–graphene oxide nanofluid flow with thermal radiation: stability test
  publication-title: Eur. J. Mech. B Fluid
– volume: 2021
  year: 2021
  ident: bib22
  article-title: Theoretical analysis of cu-h2o, al2o3-h2o, and tio2-h2o nanofluid flow past a rotating disk with velocity slip and convective conditions
  publication-title: J. Nanomater.
– year: 2003
  ident: bib46
  article-title: Odes with Matlab
– volume: 9
  start-page: 5217
  year: 2019
  ident: bib21
  article-title: Finite element analysis of thermo-diffusion and multi-slip effects on mhd unsteady flow of casson nano-fluid over a shrinking/stretching sheet with radiation and heat source
  publication-title: Appl. Sci.
– year: 1995
  ident: bib1
  article-title: Enhancing Thermal Conductivity of Fluids with Nanoparticles
– volume: 16
  year: 2021
  ident: bib34
  article-title: Heat transfer analysis of the mixed convective flow of magnetohydrodynamic hybrid nanofluid past a stretching sheet with velocity and thermal slip conditions
  publication-title: PLoS One
– volume: 43
  start-page: 5657
  year: 2020
  end-page: 5672
  ident: bib12
  article-title: Entropy generation in nanofluid flow of walters-b fluid with homogeneous-heterogeneous reactions
  publication-title: Math. Methods Appl. Sci.
– volume: 32
  start-page: 3253
  year: 2020
  end-page: 3263
  ident: bib8
  article-title: Heat and mass transport phenomena of nanoparticles on time-dependent flow of williamson fluid towards heated surface
  publication-title: Neural Comput. Appl.
– start-page: 1
  year: 1966
  end-page: 18
  ident: bib17
  article-title: Theory of micropolar fluids
  publication-title: J. Math. Mech.
– volume: 37
  start-page: 275
  year: 1981
  end-page: 286
  ident: bib42
  article-title: On the viscosity of suspensions of solid spheres
  publication-title: Appl. Sci. Res.
– volume: 76
  start-page: 181
  year: 2014
  end-page: 192
  ident: bib31
  article-title: Hydromagnetic thermal boundary layer of nanofluids over a convectively heated flat plate with viscous dissipation and ohmic heating
  publication-title: UPB Sci Bull Ser A
– volume: 86
  start-page: 146
  year: 2017
  end-page: 153
  ident: bib11
  article-title: The effects of different nano particles of al2o3 and ag on the mhd nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
– volume: 38
  start-page: 487
  year: 2011
  end-page: 492
  ident: bib49
  article-title: Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 109
  start-page: 260
  year: 2022
  end-page: 269
  ident: bib35
  article-title: Melting effect on cattaneo–christov and thermal radiation features for aligned mhd nanofluid flow comprising microorganisms to leading edge: Fem approach
  publication-title: Comput. Math. Appl.
– volume: 70
  start-page: 125
  year: 2021
  end-page: 139
  ident: bib39
  article-title: A comparative description on time-dependent rotating magnetic transport of a water base liquid h2o with hybrid nano-materials al2o3-cu and al2o3-tio2 over an extending sheet using buongiorno model: finite element approach
  publication-title: Chin. J. Phys.
– year: 2021
  ident: bib5
  article-title: The function of nanoparticle's diameter and darcy-forchheimer flow over a cylinder with effect of magnetic field and thermal radiation
  publication-title: Case Stud. Therm. Eng.
– start-page: 211
  year: 2021
  end-page: 230
  ident: bib25
  article-title: Analysis of bio-convective mhd blasius and sakiadis flow with cattaneo-christov heat flux model and chemical reaction
  publication-title: Chin. J. Phys.
– volume: 42
  start-page: 935
  year: 2004
  end-page: 946
  ident: bib38
  article-title: Mhd visco-elastic fluid flow over a non-isothermal stretching sheet
  publication-title: Int. J. Eng. Sci.
– volume: 260
  start-page: 436
  year: 2018
  end-page: 446
  ident: bib27
  article-title: Unsteady mixed convective flow of williamson nanofluid with heat transfer in the presence of variable thermal conductivity and magnetic field
  publication-title: J. Mol. Liq.
– volume: 36
  start-page: 1593
  year: 2015
  end-page: 1610
  ident: bib30
  article-title: Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition
  publication-title: Appl. Math. Mech.
– volume: 35
  start-page: 178
  year: 2016
  end-page: 198
  ident: bib24
  article-title: Nonlinear radiative heat transfer in mhd three-dimensional flow of water based nanofluid over a non-linearly stretching sheet with convective boundary condition
  publication-title: J. Nigerian Math. Soc.
– volume: 13
  start-page: 2667
  year: 2020
  ident: bib40
  article-title: Heat transfer and entropy analysis of maxwell hybrid nanofluid including effects of inclined magnetic field, joule heating and thermal radiation
  publication-title: Discrete Continuous Dynam. Syst.-S
– volume: 10
  start-page: 170
  year: 2020
  ident: bib3
  article-title: Analysis of magnetic properties of nano-particles due to a magnetic dipole in micropolar fluid flow over a stretching sheet
  publication-title: Coatings
– volume: 143
  start-page: 1201
  year: 2021
  end-page: 1220
  ident: bib4
  article-title: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized buongiorno's nanofluid model
  publication-title: J. Therm. Anal. Calorim.
– volume: 262
  start-page: 435
  year: 2018
  end-page: 442
  ident: bib26
  article-title: Impacts of binary chemical reaction with activation energy on unsteady flow of magneto-williamson nanofluid
  publication-title: J. Mol. Liq.
– start-page: 4568
  year: 2002
  ident: bib2
  article-title: Tonggen xi, yan liu, fei ai, and qingren Wu
  publication-title: J. Appl. Phys.
– start-page: 1
  year: 2022
  end-page: 19
  ident: bib41
  article-title: A comparative analysis of the performance of magnetised copper–copper oxide/water and copper–copper oxide/kerosene oil hybrid nanofluids flowing through an extending surface with velocity slips and thermal convective conditions
  publication-title: Int. J. Ambient Energy
– volume: 126
  start-page: 933
  year: 2018
  end-page: 940
  ident: bib13
  article-title: Unsteady stagnation-point flow of williamson fluid generated by stretching/shrinking sheet with ohmic heating
  publication-title: Int. J. Heat Mass Tran.
– volume: 2
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib32
  article-title: Multiple slip effects on mhd unsteady viscoelastic nano-fluid flow over a permeable stretching sheet with radiation using the finite element method
  publication-title: SN Appl. Sci.
– year: 1992
  ident: bib37
  article-title: Thermal Radiative Transfer and Properties
– volume: 50
  start-page: 1326
  year: 2011
  end-page: 1332
  ident: bib28
  article-title: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition
  publication-title: Int. J. Therm. Sci.
– volume: 50
  start-page: 2002
  year: 2007
  end-page: 2018
  ident: bib36
  article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids
  publication-title: Int. J. Heat Mass Tran.
– volume: 77
  start-page: 1625
  year: 2022
  end-page: 1638
  ident: bib23
  article-title: A comparative study of unsteady mhd falkner-skan wedge flow for non-Newtonian nanofluids considering thermal radiation and activation energy
  publication-title: Chin. J. Phys.
– volume: 130
  year: 2022
  ident: bib7
  article-title: Towards a new mhd non-homogeneous convective nanofluid flow model for simulating a rotating inclined thin layer of sodium alginate-based iron oxide exposed to incident solar energy
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 9
  start-page: 564
  year: 2022
  end-page: 582
  ident: bib29
  article-title: Significance of lorentz forces on jeffrey nanofluid flows over a convectively heated flat surface featured by multiple velocity slips and dual stretching constraint: a homotopy analysis approach
  publication-title: J. Comput. Des. Eng.
– volume: 53
  start-page: 2477
  year: 2010
  end-page: 2483
  ident: bib48
  article-title: Boundary-layer flow of a nanofluid past a stretching sheet
  publication-title: Int. J. Heat Mass Tran.
– volume: 223
  start-page: 969
  year: 2016
  end-page: 978
  ident: bib15
  article-title: Nonlinear thermal radiation aspects in stagnation point flow of tangent hyperbolic nanofluid with double diffusive convection
  publication-title: J. Mol. Liq.
– volume: 127
  start-page: 263
  year: 2015
  end-page: 270
  ident: bib9
  article-title: Particle spacing and chemical reaction effects on convective heat transfer through a nano-fluid in cylindrical annulus
  publication-title: Procedia Eng.
– volume: 5
  year: 2015
  ident: bib16
  article-title: Effects of transverse magnetic field with variable thermal conductivity on tangent hyperbolic fluid with exponentially varying viscosity
  publication-title: AIP Adv.
– volume: 12
  start-page: 520
  year: 2020
  ident: bib20
  article-title: The impact of nanoparticles due to applied magnetic dipole in micropolar fluid flow using the finite element method
  publication-title: Symmetry
– volume: 73
  start-page: 101
  year: 1999
  end-page: 108
  ident: bib19
  article-title: Laminar fluid behavior in microchannels using micropolar fluid theory
  publication-title: Sensors Actuators A: Phys.
– volume: 52
  start-page: 247
  issue: 3
  year: 1994
  ident: 10.1016/j.csite.2022.102247_bib47
  article-title: Free convection on a vertical stretching surface with suction and blowing
  publication-title: Appl. Sci. Res.
  doi: 10.1007/BF00853952
– volume: 130
  year: 2022
  ident: 10.1016/j.csite.2022.102247_bib7
  article-title: Towards a new mhd non-homogeneous convective nanofluid flow model for simulating a rotating inclined thin layer of sodium alginate-based iron oxide exposed to incident solar energy
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2021.105800
– volume: 86
  start-page: 146
  year: 2017
  ident: 10.1016/j.csite.2022.102247_bib11
  article-title: The effects of different nano particles of al2o3 and ag on the mhd nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2016.10.015
– volume: 10
  start-page: 170
  issue: 2
  year: 2020
  ident: 10.1016/j.csite.2022.102247_bib3
  article-title: Analysis of magnetic properties of nano-particles due to a magnetic dipole in micropolar fluid flow over a stretching sheet
  publication-title: Coatings
  doi: 10.3390/coatings10020170
– volume: 109
  start-page: 260
  year: 2022
  ident: 10.1016/j.csite.2022.102247_bib35
  article-title: Melting effect on cattaneo–christov and thermal radiation features for aligned mhd nanofluid flow comprising microorganisms to leading edge: Fem approach
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2022.01.009
– volume: 9
  start-page: 5217
  issue: 23
  year: 2019
  ident: 10.1016/j.csite.2022.102247_bib21
  article-title: Finite element analysis of thermo-diffusion and multi-slip effects on mhd unsteady flow of casson nano-fluid over a shrinking/stretching sheet with radiation and heat source
  publication-title: Appl. Sci.
  doi: 10.3390/app9235217
– volume: 38
  start-page: 487
  issue: 4
  year: 2011
  ident: 10.1016/j.csite.2022.102247_bib49
  article-title: Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2010.12.042
– volume: 2021
  year: 2021
  ident: 10.1016/j.csite.2022.102247_bib22
  article-title: Theoretical analysis of cu-h2o, al2o3-h2o, and tio2-h2o nanofluid flow past a rotating disk with velocity slip and convective conditions
  publication-title: J. Nanomater.
  doi: 10.1155/2021/5471813
– volume: 2000
  start-page: 1
  year: 2000
  ident: 10.1016/j.csite.2022.102247_bib45
  article-title: Solving boundary value problems for ordinary differential equations in matlab with bvp4c
  publication-title: Tutorial notes
– start-page: 211
  year: 2021
  ident: 10.1016/j.csite.2022.102247_bib25
  article-title: Analysis of bio-convective mhd blasius and sakiadis flow with cattaneo-christov heat flux model and chemical reaction
  publication-title: Chin. J. Phys.
– volume: 50
  start-page: 1326
  issue: 7
  year: 2011
  ident: 10.1016/j.csite.2022.102247_bib28
  article-title: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.02.019
– volume: 223
  start-page: 969
  year: 2016
  ident: 10.1016/j.csite.2022.102247_bib15
  article-title: Nonlinear thermal radiation aspects in stagnation point flow of tangent hyperbolic nanofluid with double diffusive convection
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.08.102
– volume: 50
  start-page: 2002
  issue: 9–10
  year: 2007
  ident: 10.1016/j.csite.2022.102247_bib36
  article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2006.09.034
– volume: 42
  start-page: 935
  issue: 8–9
  year: 2004
  ident: 10.1016/j.csite.2022.102247_bib38
  article-title: Mhd visco-elastic fluid flow over a non-isothermal stretching sheet
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2003.09.008
– volume: 127
  start-page: 263
  year: 2015
  ident: 10.1016/j.csite.2022.102247_bib9
  article-title: Particle spacing and chemical reaction effects on convective heat transfer through a nano-fluid in cylindrical annulus
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2015.11.359
– year: 2003
  ident: 10.1016/j.csite.2022.102247_bib46
– volume: 36
  start-page: 1593
  issue: 12
  year: 2015
  ident: 10.1016/j.csite.2022.102247_bib30
  article-title: Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-015-2003-6
– volume: 12
  start-page: 520
  issue: 4
  year: 2020
  ident: 10.1016/j.csite.2022.102247_bib20
  article-title: The impact of nanoparticles due to applied magnetic dipole in micropolar fluid flow using the finite element method
  publication-title: Symmetry
  doi: 10.3390/sym12040520
– volume: 37
  start-page: 275
  issue: 3
  year: 1981
  ident: 10.1016/j.csite.2022.102247_bib42
  article-title: On the viscosity of suspensions of solid spheres
  publication-title: Appl. Sci. Res.
  doi: 10.1007/BF00951252
– volume: 53
  start-page: 2477
  issue: 11–12
  year: 2010
  ident: 10.1016/j.csite.2022.102247_bib48
  article-title: Boundary-layer flow of a nanofluid past a stretching sheet
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2010.01.032
– volume: 35
  start-page: 178
  issue: 1
  year: 2016
  ident: 10.1016/j.csite.2022.102247_bib24
  article-title: Nonlinear radiative heat transfer in mhd three-dimensional flow of water based nanofluid over a non-linearly stretching sheet with convective boundary condition
  publication-title: J. Nigerian Math. Soc.
  doi: 10.1016/j.jnnms.2016.02.003
– volume: 16
  issue: 12
  year: 2021
  ident: 10.1016/j.csite.2022.102247_bib34
  article-title: Heat transfer analysis of the mixed convective flow of magnetohydrodynamic hybrid nanofluid past a stretching sheet with velocity and thermal slip conditions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0260854
– start-page: 1
  year: 2022
  ident: 10.1016/j.csite.2022.102247_bib41
  article-title: A comparative analysis of the performance of magnetised copper–copper oxide/water and copper–copper oxide/kerosene oil hybrid nanofluids flowing through an extending surface with velocity slips and thermal convective conditions
  publication-title: Int. J. Ambient Energy
  doi: 10.1080/01430750.2022.2063387
– volume: 2
  start-page: 205
  issue: 2
  year: 1964
  ident: 10.1016/j.csite.2022.102247_bib18
  article-title: Simple microfluids
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/0020-7225(64)90005-9
– volume: 25
  year: 2021
  ident: 10.1016/j.csite.2022.102247_bib14
  article-title: Joule heating in magnetohydrodynamic micropolar boundary layer flow past a stretching sheet with chemical reaction and microstructural slip
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.100870
– volume: 77
  start-page: 1625
  year: 2022
  ident: 10.1016/j.csite.2022.102247_bib23
  article-title: A comparative study of unsteady mhd falkner-skan wedge flow for non-Newtonian nanofluids considering thermal radiation and activation energy
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2021.10.045
– year: 1995
  ident: 10.1016/j.csite.2022.102247_bib1
– volume: 2
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.csite.2022.102247_bib32
  article-title: Multiple slip effects on mhd unsteady viscoelastic nano-fluid flow over a permeable stretching sheet with radiation using the finite element method
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-1831-3
– volume: 126
  start-page: 933
  year: 2018
  ident: 10.1016/j.csite.2022.102247_bib13
  article-title: Unsteady stagnation-point flow of williamson fluid generated by stretching/shrinking sheet with ohmic heating
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2018.05.076
– start-page: 1
  year: 1966
  ident: 10.1016/j.csite.2022.102247_bib17
  article-title: Theory of micropolar fluids
  publication-title: J. Math. Mech.
– volume: 13
  start-page: 2667
  issue: 10
  year: 2020
  ident: 10.1016/j.csite.2022.102247_bib40
  article-title: Heat transfer and entropy analysis of maxwell hybrid nanofluid including effects of inclined magnetic field, joule heating and thermal radiation
  publication-title: Discrete Continuous Dynam. Syst.-S
  doi: 10.3934/dcdss.2020142
– volume: 43
  start-page: 5657
  issue: 9
  year: 2020
  ident: 10.1016/j.csite.2022.102247_bib12
  article-title: Entropy generation in nanofluid flow of walters-b fluid with homogeneous-heterogeneous reactions
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.5997
– volume: 9
  start-page: 564
  issue: 2
  year: 2022
  ident: 10.1016/j.csite.2022.102247_bib29
  article-title: Significance of lorentz forces on jeffrey nanofluid flows over a convectively heated flat surface featured by multiple velocity slips and dual stretching constraint: a homotopy analysis approach
  publication-title: J. Comput. Des. Eng.
– year: 2021
  ident: 10.1016/j.csite.2022.102247_bib5
  article-title: The function of nanoparticle's diameter and darcy-forchheimer flow over a cylinder with effect of magnetic field and thermal radiation
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101392
– volume: 203
  start-page: 385
  issue: 359–371
  year: 1904
  ident: 10.1016/j.csite.2022.102247_bib44
  article-title: Xii. colours in metal glasses and in metallic films
  publication-title: Philos. Trans. R. Soc. Lond. - Ser. A Contain. Pap. a Math. or Phys. Character
– volume: 76
  start-page: 434
  year: 2019
  ident: 10.1016/j.csite.2022.102247_bib6
  article-title: Heat transport features of magnetic water–graphene oxide nanofluid flow with thermal radiation: stability test
  publication-title: Eur. J. Mech. B Fluid
  doi: 10.1016/j.euromechflu.2019.04.008
– volume: 76
  start-page: 181
  issue: 2
  year: 2014
  ident: 10.1016/j.csite.2022.102247_bib31
  article-title: Hydromagnetic thermal boundary layer of nanofluids over a convectively heated flat plate with viscous dissipation and ohmic heating
  publication-title: UPB Sci Bull Ser A
– volume: 344
  start-page: 306
  year: 2019
  ident: 10.1016/j.csite.2022.102247_bib10
  article-title: Numerical approach for mhd al2o3-water nanofluid transportation inside a permeable medium using innovative computer method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.09.042
– volume: 133
  year: 2022
  ident: 10.1016/j.csite.2022.102247_bib33
  article-title: Magneto-hydrothermal analysis of copper and copper oxide nanoparticles between two parallel plates with brownian motion and thermophoresis effects
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2022.105982
– volume: 5
  issue: 12
  year: 2015
  ident: 10.1016/j.csite.2022.102247_bib16
  article-title: Effects of transverse magnetic field with variable thermal conductivity on tangent hyperbolic fluid with exponentially varying viscosity
  publication-title: AIP Adv.
  doi: 10.1063/1.4937366
– volume: 73
  start-page: 101
  issue: 1–2
  year: 1999
  ident: 10.1016/j.csite.2022.102247_bib19
  article-title: Laminar fluid behavior in microchannels using micropolar fluid theory
  publication-title: Sensors Actuators A: Phys.
  doi: 10.1016/S0924-4247(98)00261-1
– start-page: 4568
  year: 2002
  ident: 10.1016/j.csite.2022.102247_bib2
  article-title: Tonggen xi, yan liu, fei ai, and qingren Wu
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1454184
– volume: 262
  start-page: 435
  year: 2018
  ident: 10.1016/j.csite.2022.102247_bib26
  article-title: Impacts of binary chemical reaction with activation energy on unsteady flow of magneto-williamson nanofluid
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.04.095
– year: 1992
  ident: 10.1016/j.csite.2022.102247_bib37
– volume: 260
  start-page: 436
  year: 2018
  ident: 10.1016/j.csite.2022.102247_bib27
  article-title: Unsteady mixed convective flow of williamson nanofluid with heat transfer in the presence of variable thermal conductivity and magnetic field
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.03.079
– volume: 70
  start-page: 125
  year: 2021
  ident: 10.1016/j.csite.2022.102247_bib39
  article-title: A comparative description on time-dependent rotating magnetic transport of a water base liquid h2o with hybrid nano-materials al2o3-cu and al2o3-tio2 over an extending sheet using buongiorno model: finite element approach
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2020.12.022
– volume: 32
  start-page: 3253
  issue: 8
  year: 2020
  ident: 10.1016/j.csite.2022.102247_bib8
  article-title: Heat and mass transport phenomena of nanoparticles on time-dependent flow of williamson fluid towards heated surface
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04100-4
– volume: 143
  start-page: 1201
  issue: 2
  year: 2021
  ident: 10.1016/j.csite.2022.102247_bib4
  article-title: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized buongiorno's nanofluid model
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-09488-z
– volume: 221
  start-page: 394
  year: 2016
  ident: 10.1016/j.csite.2022.102247_bib43
  article-title: Radiative and joule heating effects in the mhd flow of a micropolar fluid with partial slip and convective boundary condition
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.05.091
SSID ssj0001738144
Score 2.480781
Snippet Tiny particles have extraordinary thermal conductivity due to their unusual characteristics, making them crucial in materials science, nanotechnology, heat...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 102247
SubjectTerms Magnetohydrodynamic
Micropolar fluid
Nanofluid
Nanoparticle
Tangent hyperbolic
Thermal radiation
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQEwyIpygveWAkNHHspBkBgRASLIDULTq_IKhNUWmFxH_gP3PnJFAWBsY4d4nls-5h333H2LEdxM7oXEbSWjqtAhEBqsqoACls5gFcQNe_vcuuH-XNUA2X2EVXC0Npla3ub3R60NbtSL9dzf5rVfXvhUjQ-uRDQYJGNwT1cCoHoYhveP5zzpKjTQo9XYk-IoYOfCikeZlwSSvQlJ0GdLX8l4EKOP4LdmrB9lyts7XWaeRnzbw22JKrN9nqApTgFvtEefN63ty_jPhbNW77cvGJ5zXUGBs33Pjqw3GoLSfXb4y0U4InCKR0KEvDfAxPNVU38pDgxpukD04Wz3Kkm0GoyOLPGMRONSELh1_40byy3I8m79vs8ery4eI6alstREYmchZZ8FqidIzTlPOaJTCwVgnncxASCDs0TSzV8fq4wIjaKQUYB6lEg1Hao_XbYcv1pHa7jBuQsTceUmPRO8sLnSslYqOtV-h7ge0x0a1vaVoccmqHMSq7hLOXMgilJKGUjVB67OSb6bWB4fib_JwE901KGNphYDJ9KtvlLl1saZYi9oWWBgNPEDo1WSqV8kmeFD2WdWIvf21J_FT119_3_su4z1boqUlhO2DLs-ncHaLPM9NHYVN_AUlSAe4
  priority: 102
  providerName: Elsevier
Title The numerical simulation of nanoparticle size and thermal radiation with the magnetic field effect based on tangent hyperbolic nanofluid flow
URI https://dx.doi.org/10.1016/j.csite.2022.102247
https://doaj.org/article/e0dfa3c20f9b4c289a2b3c63455f1719
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBIIHHtpB0pAgESTCB1i84vKGpTVFoh8R_4z9zZKQpLWVgyOGc78mfl7uy77xg7sd3UGV3IRFpLp1UgEsBfZdIDKWzuAVxg179_yG-e5N1ADRqlvigmLNIDx4U7d6n10DEi9T0tDboHIHTH5B2plM-KQPgpUOc1nKlwulKgJgqVXIXIZJKpYrCgHArBXSZczaLjL84Cp1rxSy0F9v6GdmponOsNtl6bivwifuImW3HVFltrEAhusy9EmVfzeOsy4u_DcV2Ni088r6BCjzj2xlefjkNlORl8Y5SdEilBEKWjWGrmY3iuKKeRh7A2HkM9OOk5y1FuBiEPi7-g6zrVxCccpvCj-dByP5p87LCn66vHy5ukLrCQGJnJWWLBa4mYGKcp0jXPoGutEs4XICQQY2gns5S969Me-tFOKUDvR2UajNIedd4ua1WTyu0xbkCm3hBSFm2yoqcLpURqtPUKLS6wbSYW61uamn2cimCMykWY2WsZQCkJlDKC0manP53eIvnGcvE-AfcjSszZoQH3U1kvd_nXfmqzfAF7WRsh0bjAoYbLZt__j9kP2CoNGYPYDllrNp27I7R6Zvo4bHB83g76307IAj4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbSZGgzFOkLcR8ph45VLdGkGI1N0MB5Lk0Ab8Txlaqw5cC1ESD_of-5d5SUOkuGrOSdKPCIe5B33zH2xe_nwVktM-k93VaByABVZVaBFL6MACGh659flOMreTJRkw122NfCUFplp_tbnZ60dTcy7HZzeFPXw59CFGh99ESQoNENeca20BvQ1L_heHLw_6JFo1FKTV2JISOOHn0o5Xm59Eor0JZ9S_Bq-oGFSkD-a4Zqzfgc7bCXndfIv7c_9opthOY1217DEnzD_qLAebNqH2Cm_E896xpz8XnkDTQYHLfcOHUXODSek-83Q9oF4RMkUrqVpWE-g-uGyht5ynDjbdYHJ5PnOdItIZVk8V8YxS4sQQunJeJ0VXsep_Pbt-zq6Mfl4Tjrei1kThZymXmIVqJ4XLCU9FoWsO-9EiFqEBIIPHRUeCrkjXmFIXVQCjAQUoUFp2xE8_eObTbzJuwy7kDm0UUYOY_uma6sVkrkzvqo0PkCP2Ci31_jOiBy6ocxNX3G2W-ThGJIKKYVyoB9vWe6aXE4Hic_IMHdkxKIdhqYL65Nt90m5J7-UuSxstJh5AnCjlw5kkrFQhfVgJW92M2DM4mfqh9b_f1TGT-z5-PL8zNzdnxx-oG9oJk2n-0j21wuVuETOkBLu5cO-D8_jwUN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+numerical+simulation+of+nanoparticle+size+and+thermal+radiation+with+the+magnetic+field+effect+based+on+tangent+hyperbolic+nanofluid+flow&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Pardeep+Kumar&rft.au=Hemant+Poonia&rft.au=Liaqat+Ali&rft.au=Sujesh+Areekara&rft.date=2022-09-01&rft.pub=Elsevier&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=37&rft.spage=102247&rft_id=info:doi/10.1016%2Fj.csite.2022.102247&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e0dfa3c20f9b4c289a2b3c63455f1719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon