The numerical simulation of nanoparticle size and thermal radiation with the magnetic field effect based on tangent hyperbolic nanofluid flow
Tiny particles have extraordinary thermal conductivity due to their unusual characteristics, making them crucial in materials science, nanotechnology, heat exchangers, and electronics. When there is the inclusion of thermal radiation, a heat source, and a convective boundary, magnetohydrodynamic (MH...
Saved in:
Published in | Case studies in thermal engineering Vol. 37; p. 102247 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tiny particles have extraordinary thermal conductivity due to their unusual characteristics, making them crucial in materials science, nanotechnology, heat exchangers, and electronics. When there is the inclusion of thermal radiation, a heat source, and a convective boundary, magnetohydrodynamic (MHD) micropolar, tangent hyperbolic flow for water-based Al2O3 nanofluid over a stretching sheet, this work intends to investigate the significance of a nanoparticle's radius. The mathematically described ordinary differential system is created by transforming a set of partial differential equations via similarity transformations. The bvp4c approach is used to solve the problem numerically (MATLAB built-in function). In this comprehensive study, the main objective is to improve heat transformation under the impact of various parameters. The velocity profiles, temperature distribution, micro-rotation distribution, and the local skin friction factor, along with the rate of heat transfer, have been displayed with several physical parameters. It is observed that the variation in velocity and the temperature profiles is the cause of increasing the size of the nanoparticles and the involving parameters that caused an increase in the rate of heat transfer. Graphs and tables have then been used to demonstrate the consequences of these physical parameters. The enhancement in the radius of nanoparticles causes a decrease in the skin friction factor, thermal layer, and micro-rotation. As the Biot number increased, the thermal layer became thicker. The impact of influential parameters on physical quantities is illustrated using three-dimensional graphs. |
---|---|
AbstractList | Tiny particles have extraordinary thermal conductivity due to their unusual characteristics, making them crucial in materials science, nanotechnology, heat exchangers, and electronics. When there is the inclusion of thermal radiation, a heat source, and a convective boundary, magnetohydrodynamic (MHD) micropolar, tangent hyperbolic flow for water-based Al2O3 nanofluid over a stretching sheet, this work intends to investigate the significance of a nanoparticle's radius. The mathematically described ordinary differential system is created by transforming a set of partial differential equations via similarity transformations. The bvp4c approach is used to solve the problem numerically (MATLAB built-in function). In this comprehensive study, the main objective is to improve heat transformation under the impact of various parameters. The velocity profiles, temperature distribution, micro-rotation distribution, and the local skin friction factor, along with the rate of heat transfer, have been displayed with several physical parameters. It is observed that the variation in velocity and the temperature profiles is the cause of increasing the size of the nanoparticles and the involving parameters that caused an increase in the rate of heat transfer. Graphs and tables have then been used to demonstrate the consequences of these physical parameters. The enhancement in the radius of nanoparticles causes a decrease in the skin friction factor, thermal layer, and micro-rotation. As the Biot number increased, the thermal layer became thicker. The impact of influential parameters on physical quantities is illustrated using three-dimensional graphs. |
ArticleNumber | 102247 |
Author | Poonia, Hemant Ali, Liaqat Areekara, Sujesh Kumar, Pardeep |
Author_xml | – sequence: 1 givenname: Pardeep orcidid: 0000-0001-6876-8276 surname: Kumar fullname: Kumar, Pardeep organization: Department of Mathematics and Statistics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India – sequence: 2 givenname: Hemant orcidid: 0000-0002-0945-8793 surname: Poonia fullname: Poonia, Hemant organization: Department of Mathematics and Statistics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India – sequence: 3 givenname: Liaqat surname: Ali fullname: Ali, Liaqat email: math1234@stu.xjtu.edu.cn organization: School of Sciences, Xi'an Technological University, Xi'an, 710021, China – sequence: 4 givenname: Sujesh orcidid: 0000-0001-7860-8268 surname: Areekara fullname: Areekara, Sujesh organization: Department of Mathematics, St. Thomas College(Autonomous), Thrissur, 680001, Kerala, India |
BookMark | eNqFUctuFDEQHKEgEUK-gIt_YBc_Z3YOHFDEI1IkLkHiZvXY7V2vPPbK9hKFf-Cf492JEOIAp26Vq8rqqtfdRUwRu-4to2tGWf9uvzbFV1xzynlDOJfDi-6ScyZXTA3fL_7YX3XXpewppWwQGyblZffrfockHmfM3kAgxc_HANWnSJIjEWI6QK7eBGxPP5FAtKTuMM-Nm8H6hfrg6-4Ekxm2ERudOI_BEnQOTSUTFLSk8SrELcZKdo8HzFMKjXj6woWjt8SF9PCme-kgFLx-nlfdt08f72--rO6-fr69-XC3MpLJurLgJim5NTj1Qz_2DDbWKo5uAC6BjkwIZikVo6MjlT0qBT1Vik1g1OQYF1fd7eJrE-z1IfsZ8qNO4PUZSHmrn8_WSK0DYTh14yQN34zAJ2F6IZVybGBj8xKLl8mplIzutx-j-lSQ3utzQfpUkF4KaqrxL5Xx9ZxmzeDDf7TvFy22iH54zLoYj9Gg9bnl3W7w_9Q_AUCOsh8 |
CitedBy_id | crossref_primary_10_1080_16583655_2023_2300851 crossref_primary_10_1142_S0217979223502843 crossref_primary_10_3390_math10193520 crossref_primary_10_1080_10407782_2023_2269475 crossref_primary_10_1142_S0217979223500662 crossref_primary_10_1515_jnet_2022_0064 crossref_primary_10_3934_math_2023353 crossref_primary_10_1515_phys_2022_0244 crossref_primary_10_1007_s10973_023_12105_4 crossref_primary_10_1080_10407782_2023_2212130 crossref_primary_10_1002_zamm_202400225 crossref_primary_10_1016_j_ijhydene_2024_05_425 crossref_primary_10_1142_S0217984924501744 crossref_primary_10_1142_S0217984924501549 crossref_primary_10_3390_sym15040946 crossref_primary_10_1021_acsomega_2c07750 crossref_primary_10_3390_sym15061148 crossref_primary_10_1007_s10973_023_12288_w crossref_primary_10_1515_ntrev_2023_0169 crossref_primary_10_3390_nano12193453 crossref_primary_10_1016_j_jrras_2024_101253 crossref_primary_10_3390_math11071685 crossref_primary_10_1016_j_rineng_2024_103031 crossref_primary_10_1016_j_csite_2023_102985 crossref_primary_10_1080_02286203_2024_2315534 crossref_primary_10_3390_en16031220 crossref_primary_10_1080_17455030_2023_2172962 crossref_primary_10_1007_s41939_024_00648_4 crossref_primary_10_1016_j_rinp_2024_108031 crossref_primary_10_1038_s41598_023_47853_8 crossref_primary_10_1142_S0217979224501145 crossref_primary_10_1038_s41598_024_57532_x crossref_primary_10_1142_S0217984923502159 crossref_primary_10_3390_nano12213872 crossref_primary_10_1142_S0217979223501497 crossref_primary_10_1142_S0217979223502466 crossref_primary_10_1016_j_hybadv_2024_100343 crossref_primary_10_1016_j_padiff_2024_100761 crossref_primary_10_3934_math_2023567 crossref_primary_10_3390_math11020326 crossref_primary_10_1142_S0217984924503305 crossref_primary_10_1007_s12668_024_01346_8 crossref_primary_10_1007_s10973_023_12874_y crossref_primary_10_1016_j_csite_2023_102995 crossref_primary_10_3390_pr11102842 crossref_primary_10_1016_j_csite_2025_106049 crossref_primary_10_1080_10407790_2023_2252598 crossref_primary_10_1088_1361_6528_ad3c46 crossref_primary_10_1080_10407782_2024_2360652 crossref_primary_10_1142_S0217984923501257 crossref_primary_10_1016_j_rineng_2023_100955 crossref_primary_10_1002_eng2_12999 crossref_primary_10_1142_S0217979223503149 crossref_primary_10_1080_10407790_2024_2345697 crossref_primary_10_1080_10407790_2023_2235077 crossref_primary_10_1108_HFF_05_2024_0372 crossref_primary_10_3390_sym15091794 crossref_primary_10_1080_10407782_2023_2212861 crossref_primary_10_1007_s12043_023_02672_4 crossref_primary_10_1016_j_csite_2024_104448 crossref_primary_10_1080_17455030_2023_2186772 crossref_primary_10_1007_s10973_024_13055_1 crossref_primary_10_1016_j_csite_2022_102389 |
Cites_doi | 10.1007/BF00853952 10.1016/j.icheatmasstransfer.2021.105800 10.1016/j.physe.2016.10.015 10.3390/coatings10020170 10.1016/j.camwa.2022.01.009 10.3390/app9235217 10.1016/j.icheatmasstransfer.2010.12.042 10.1155/2021/5471813 10.1016/j.ijthermalsci.2011.02.019 10.1016/j.molliq.2016.08.102 10.1016/j.ijheatmasstransfer.2006.09.034 10.1016/j.ijengsci.2003.09.008 10.1016/j.proeng.2015.11.359 10.1007/s10483-015-2003-6 10.3390/sym12040520 10.1007/BF00951252 10.1016/j.ijheatmasstransfer.2010.01.032 10.1016/j.jnnms.2016.02.003 10.1371/journal.pone.0260854 10.1080/01430750.2022.2063387 10.1016/0020-7225(64)90005-9 10.1016/j.csite.2021.100870 10.1016/j.cjph.2021.10.045 10.1007/s42452-019-1831-3 10.1016/j.ijheatmasstransfer.2018.05.076 10.3934/dcdss.2020142 10.1002/mma.5997 10.1016/j.csite.2021.101392 10.1016/j.euromechflu.2019.04.008 10.1016/j.cma.2018.09.042 10.1016/j.icheatmasstransfer.2022.105982 10.1063/1.4937366 10.1016/S0924-4247(98)00261-1 10.1063/1.1454184 10.1016/j.molliq.2018.04.095 10.1016/j.molliq.2018.03.079 10.1016/j.cjph.2020.12.022 10.1007/s00521-019-04100-4 10.1007/s10973-020-09488-z 10.1016/j.molliq.2016.05.091 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2022.102247 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_e0dfa3c20f9b4c289a2b3c63455f1719 10_1016_j_csite_2022_102247 S2214157X22004932 |
GroupedDBID | 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c414t-dafb442dceb676961a8dd52ef7a24a091331d0039f09046e55a60551bac5bf123 |
IEDL.DBID | DOA |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:13:28 EDT 2025 Tue Jul 01 02:28:34 EDT 2025 Thu Apr 24 22:52:17 EDT 2025 Tue Jul 25 20:58:18 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal radiation Tangent hyperbolic Magnetohydrodynamic Nanofluid Nanoparticle Micropolar fluid |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-dafb442dceb676961a8dd52ef7a24a091331d0039f09046e55a60551bac5bf123 |
ORCID | 0000-0002-0945-8793 0000-0001-6876-8276 0000-0001-7860-8268 |
OpenAccessLink | https://doaj.org/article/e0dfa3c20f9b4c289a2b3c63455f1719 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e0dfa3c20f9b4c289a2b3c63455f1719 crossref_primary_10_1016_j_csite_2022_102247 crossref_citationtrail_10_1016_j_csite_2022_102247 elsevier_sciencedirect_doi_10_1016_j_csite_2022_102247 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Ali, Naqvi, Ali, Abdal, Hussain (bib39) 2021; 70 Ali, Liu, Ali, Mujeed, Abdal, Mutahir (bib20) 2020; 12 Xie, Wang (bib2) 2002 Dawar, Wakif, Saeed, Shah, Muhammad, Kumam (bib29) 2022; 9 Ali, Liu, Ali, Mujeed, Abdal (bib21) 2019; 9 Aziz, Jamshed, Ali, Shams (bib40) 2020; 13 Mahanthesh, Gireesha, Gorla (bib24) 2016; 35 Hamid, Khan (bib27) 2018; 260 Hamid, Khan, Hafeez (bib13) 2018; 126 Makinde, Aziz (bib28) 2011; 50 Gosukonda, Gorti, Baluguri, Sakam (bib9) 2015; 127 Ali, Liu, Ali, Din, Al Mdallal (bib5) 2021 Reddy Gorla, Sidawi (bib47) 1994; 52 Dawar, Wakif, Thumma, Shah (bib7) 2022; 130 Graham (bib42) 1981; 37 Garnett (bib44) 1904; 203 Ali, Liu, Ali, Mujeed, Abdal, Khan (bib3) 2020; 10 Dawar, Saeed, Kumam (bib33) 2022; 133 Das, Chakraborty, Jana, Makinde (bib30) 2015; 36 Sheikholeslami (bib10) 2019; 344 Shampine, Gladwell, Thompson (bib46) 2003 Ramzan, Dawar, Saeed, Kumam, Watthayu, Kumam (bib34) 2021; 16 Eringen (bib17) 1966 Shampine, Kierzenka, Reichelt (bib45) 2000; 2000 Makinde, Mutuku (bib31) 2014; 76 Hamid, Khan (bib26) 2018; 262 Wakif, Chamkha, Thumma, Animasaun, Sehaqui (bib4) 2021; 143 Qayyum, Hayat, Jabeen, Alsaedi (bib12) 2020; 43 Tiwari, Das (bib36) 2007; 50 Papautsky, Brazzle, Ameel, Frazier (bib19) 1999; 73 Hamid, Hafeez, Khan, Alshomrani, Alghamdi (bib6) 2019; 76 Choi, Eastman (bib1) 1995 Brewster (bib37) 1992 Dawar, Islam, Shah (bib41) 2022 Ali, Ali, Ghori (bib35) 2022; 109 Dawar, Shah, Tassaddiq, Islam, Kumam (bib14) 2021; 25 Dawar, Bonyah, Islam, Alshehri, Shah (bib22) 2021; 2021 Karimipour, D'Orazio, Shadloo (bib11) 2017; 86 Salahuddin, Malik, Hussain, Bilal, Awais (bib16) 2015; 5 Hayat, Qayyum, Alsaedi, Shehzad (bib15) 2016; 223 Ali, Ali, Liu, Iqbal, Zulqarnain, Javid (bib23) 2022; 77 Datti, Prasad, Abel, Joshi (bib38) 2004; 42 Ramzan, Farooq, Hayat, Chung (bib43) 2016; 221 Hamad (bib49) 2011; 38 Khan, Pop (bib48) 2010; 53 Khan, Nie, Ali (bib32) 2020; 2 Ali, Ali, Liu, Ahmed, Shah (bib25) 2021 Eringen (bib18) 1964; 2 Hamid, Khan (bib8) 2020; 32 Hamid (10.1016/j.csite.2022.102247_bib26) 2018; 262 Gosukonda (10.1016/j.csite.2022.102247_bib9) 2015; 127 Dawar (10.1016/j.csite.2022.102247_bib7) 2022; 130 Qayyum (10.1016/j.csite.2022.102247_bib12) 2020; 43 Aziz (10.1016/j.csite.2022.102247_bib40) 2020; 13 Sheikholeslami (10.1016/j.csite.2022.102247_bib10) 2019; 344 Ali (10.1016/j.csite.2022.102247_bib20) 2020; 12 Hayat (10.1016/j.csite.2022.102247_bib15) 2016; 223 Dawar (10.1016/j.csite.2022.102247_bib29) 2022; 9 Datti (10.1016/j.csite.2022.102247_bib38) 2004; 42 Hamad (10.1016/j.csite.2022.102247_bib49) 2011; 38 Ali (10.1016/j.csite.2022.102247_bib39) 2021; 70 Brewster (10.1016/j.csite.2022.102247_bib37) 1992 Dawar (10.1016/j.csite.2022.102247_bib41) 2022 Hamid (10.1016/j.csite.2022.102247_bib6) 2019; 76 Ramzan (10.1016/j.csite.2022.102247_bib43) 2016; 221 Choi (10.1016/j.csite.2022.102247_bib1) 1995 Dawar (10.1016/j.csite.2022.102247_bib14) 2021; 25 Das (10.1016/j.csite.2022.102247_bib30) 2015; 36 Hamid (10.1016/j.csite.2022.102247_bib8) 2020; 32 Mahanthesh (10.1016/j.csite.2022.102247_bib24) 2016; 35 Khan (10.1016/j.csite.2022.102247_bib32) 2020; 2 Shampine (10.1016/j.csite.2022.102247_bib46) 2003 Wakif (10.1016/j.csite.2022.102247_bib4) 2021; 143 Hamid (10.1016/j.csite.2022.102247_bib13) 2018; 126 Ali (10.1016/j.csite.2022.102247_bib3) 2020; 10 Ali (10.1016/j.csite.2022.102247_bib23) 2022; 77 Eringen (10.1016/j.csite.2022.102247_bib17) 1966 Karimipour (10.1016/j.csite.2022.102247_bib11) 2017; 86 Reddy Gorla (10.1016/j.csite.2022.102247_bib47) 1994; 52 Xie (10.1016/j.csite.2022.102247_bib2) 2002 Makinde (10.1016/j.csite.2022.102247_bib31) 2014; 76 Dawar (10.1016/j.csite.2022.102247_bib22) 2021; 2021 Tiwari (10.1016/j.csite.2022.102247_bib36) 2007; 50 Graham (10.1016/j.csite.2022.102247_bib42) 1981; 37 Shampine (10.1016/j.csite.2022.102247_bib45) 2000; 2000 Ali (10.1016/j.csite.2022.102247_bib21) 2019; 9 Garnett (10.1016/j.csite.2022.102247_bib44) 1904; 203 Eringen (10.1016/j.csite.2022.102247_bib18) 1964; 2 Ali (10.1016/j.csite.2022.102247_bib5) 2021 Makinde (10.1016/j.csite.2022.102247_bib28) 2011; 50 Ali (10.1016/j.csite.2022.102247_bib25) 2021 Khan (10.1016/j.csite.2022.102247_bib48) 2010; 53 Hamid (10.1016/j.csite.2022.102247_bib27) 2018; 260 Papautsky (10.1016/j.csite.2022.102247_bib19) 1999; 73 Dawar (10.1016/j.csite.2022.102247_bib33) 2022; 133 Ali (10.1016/j.csite.2022.102247_bib35) 2022; 109 Ramzan (10.1016/j.csite.2022.102247_bib34) 2021; 16 Salahuddin (10.1016/j.csite.2022.102247_bib16) 2015; 5 |
References_xml | – volume: 25 year: 2021 ident: bib14 article-title: Joule heating in magnetohydrodynamic micropolar boundary layer flow past a stretching sheet with chemical reaction and microstructural slip publication-title: Case Stud. Therm. Eng. – volume: 203 start-page: 385 year: 1904 end-page: 420 ident: bib44 article-title: Xii. colours in metal glasses and in metallic films publication-title: Philos. Trans. R. Soc. Lond. - Ser. A Contain. Pap. a Math. or Phys. Character – volume: 52 start-page: 247 year: 1994 end-page: 257 ident: bib47 article-title: Free convection on a vertical stretching surface with suction and blowing publication-title: Appl. Sci. Res. – volume: 2 start-page: 205 year: 1964 end-page: 217 ident: bib18 article-title: Simple microfluids publication-title: Int. J. Eng. Sci. – volume: 221 start-page: 394 year: 2016 end-page: 400 ident: bib43 article-title: Radiative and joule heating effects in the mhd flow of a micropolar fluid with partial slip and convective boundary condition publication-title: J. Mol. Liq. – volume: 133 year: 2022 ident: bib33 article-title: Magneto-hydrothermal analysis of copper and copper oxide nanoparticles between two parallel plates with brownian motion and thermophoresis effects publication-title: Int. Commun. Heat Mass Tran. – volume: 344 start-page: 306 year: 2019 end-page: 318 ident: bib10 article-title: Numerical approach for mhd al2o3-water nanofluid transportation inside a permeable medium using innovative computer method publication-title: Comput. Methods Appl. Mech. Eng. – volume: 2000 start-page: 1 year: 2000 end-page: 27 ident: bib45 article-title: Solving boundary value problems for ordinary differential equations in matlab with bvp4c publication-title: Tutorial notes – volume: 76 start-page: 434 year: 2019 end-page: 441 ident: bib6 article-title: Heat transport features of magnetic water–graphene oxide nanofluid flow with thermal radiation: stability test publication-title: Eur. J. Mech. B Fluid – volume: 2021 year: 2021 ident: bib22 article-title: Theoretical analysis of cu-h2o, al2o3-h2o, and tio2-h2o nanofluid flow past a rotating disk with velocity slip and convective conditions publication-title: J. Nanomater. – year: 2003 ident: bib46 article-title: Odes with Matlab – volume: 9 start-page: 5217 year: 2019 ident: bib21 article-title: Finite element analysis of thermo-diffusion and multi-slip effects on mhd unsteady flow of casson nano-fluid over a shrinking/stretching sheet with radiation and heat source publication-title: Appl. Sci. – year: 1995 ident: bib1 article-title: Enhancing Thermal Conductivity of Fluids with Nanoparticles – volume: 16 year: 2021 ident: bib34 article-title: Heat transfer analysis of the mixed convective flow of magnetohydrodynamic hybrid nanofluid past a stretching sheet with velocity and thermal slip conditions publication-title: PLoS One – volume: 43 start-page: 5657 year: 2020 end-page: 5672 ident: bib12 article-title: Entropy generation in nanofluid flow of walters-b fluid with homogeneous-heterogeneous reactions publication-title: Math. Methods Appl. Sci. – volume: 32 start-page: 3253 year: 2020 end-page: 3263 ident: bib8 article-title: Heat and mass transport phenomena of nanoparticles on time-dependent flow of williamson fluid towards heated surface publication-title: Neural Comput. Appl. – start-page: 1 year: 1966 end-page: 18 ident: bib17 article-title: Theory of micropolar fluids publication-title: J. Math. Mech. – volume: 37 start-page: 275 year: 1981 end-page: 286 ident: bib42 article-title: On the viscosity of suspensions of solid spheres publication-title: Appl. Sci. Res. – volume: 76 start-page: 181 year: 2014 end-page: 192 ident: bib31 article-title: Hydromagnetic thermal boundary layer of nanofluids over a convectively heated flat plate with viscous dissipation and ohmic heating publication-title: UPB Sci Bull Ser A – volume: 86 start-page: 146 year: 2017 end-page: 153 ident: bib11 article-title: The effects of different nano particles of al2o3 and ag on the mhd nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump publication-title: Phys. E Low-dimens. Syst. Nanostruct. – volume: 38 start-page: 487 year: 2011 end-page: 492 ident: bib49 article-title: Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field publication-title: Int. Commun. Heat Mass Tran. – volume: 109 start-page: 260 year: 2022 end-page: 269 ident: bib35 article-title: Melting effect on cattaneo–christov and thermal radiation features for aligned mhd nanofluid flow comprising microorganisms to leading edge: Fem approach publication-title: Comput. Math. Appl. – volume: 70 start-page: 125 year: 2021 end-page: 139 ident: bib39 article-title: A comparative description on time-dependent rotating magnetic transport of a water base liquid h2o with hybrid nano-materials al2o3-cu and al2o3-tio2 over an extending sheet using buongiorno model: finite element approach publication-title: Chin. J. Phys. – year: 2021 ident: bib5 article-title: The function of nanoparticle's diameter and darcy-forchheimer flow over a cylinder with effect of magnetic field and thermal radiation publication-title: Case Stud. Therm. Eng. – start-page: 211 year: 2021 end-page: 230 ident: bib25 article-title: Analysis of bio-convective mhd blasius and sakiadis flow with cattaneo-christov heat flux model and chemical reaction publication-title: Chin. J. Phys. – volume: 42 start-page: 935 year: 2004 end-page: 946 ident: bib38 article-title: Mhd visco-elastic fluid flow over a non-isothermal stretching sheet publication-title: Int. J. Eng. Sci. – volume: 260 start-page: 436 year: 2018 end-page: 446 ident: bib27 article-title: Unsteady mixed convective flow of williamson nanofluid with heat transfer in the presence of variable thermal conductivity and magnetic field publication-title: J. Mol. Liq. – volume: 36 start-page: 1593 year: 2015 end-page: 1610 ident: bib30 article-title: Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition publication-title: Appl. Math. Mech. – volume: 35 start-page: 178 year: 2016 end-page: 198 ident: bib24 article-title: Nonlinear radiative heat transfer in mhd three-dimensional flow of water based nanofluid over a non-linearly stretching sheet with convective boundary condition publication-title: J. Nigerian Math. Soc. – volume: 13 start-page: 2667 year: 2020 ident: bib40 article-title: Heat transfer and entropy analysis of maxwell hybrid nanofluid including effects of inclined magnetic field, joule heating and thermal radiation publication-title: Discrete Continuous Dynam. Syst.-S – volume: 10 start-page: 170 year: 2020 ident: bib3 article-title: Analysis of magnetic properties of nano-particles due to a magnetic dipole in micropolar fluid flow over a stretching sheet publication-title: Coatings – volume: 143 start-page: 1201 year: 2021 end-page: 1220 ident: bib4 article-title: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized buongiorno's nanofluid model publication-title: J. Therm. Anal. Calorim. – volume: 262 start-page: 435 year: 2018 end-page: 442 ident: bib26 article-title: Impacts of binary chemical reaction with activation energy on unsteady flow of magneto-williamson nanofluid publication-title: J. Mol. Liq. – start-page: 4568 year: 2002 ident: bib2 article-title: Tonggen xi, yan liu, fei ai, and qingren Wu publication-title: J. Appl. Phys. – start-page: 1 year: 2022 end-page: 19 ident: bib41 article-title: A comparative analysis of the performance of magnetised copper–copper oxide/water and copper–copper oxide/kerosene oil hybrid nanofluids flowing through an extending surface with velocity slips and thermal convective conditions publication-title: Int. J. Ambient Energy – volume: 126 start-page: 933 year: 2018 end-page: 940 ident: bib13 article-title: Unsteady stagnation-point flow of williamson fluid generated by stretching/shrinking sheet with ohmic heating publication-title: Int. J. Heat Mass Tran. – volume: 2 start-page: 1 year: 2020 end-page: 14 ident: bib32 article-title: Multiple slip effects on mhd unsteady viscoelastic nano-fluid flow over a permeable stretching sheet with radiation using the finite element method publication-title: SN Appl. Sci. – year: 1992 ident: bib37 article-title: Thermal Radiative Transfer and Properties – volume: 50 start-page: 1326 year: 2011 end-page: 1332 ident: bib28 article-title: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition publication-title: Int. J. Therm. Sci. – volume: 50 start-page: 2002 year: 2007 end-page: 2018 ident: bib36 article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids publication-title: Int. J. Heat Mass Tran. – volume: 77 start-page: 1625 year: 2022 end-page: 1638 ident: bib23 article-title: A comparative study of unsteady mhd falkner-skan wedge flow for non-Newtonian nanofluids considering thermal radiation and activation energy publication-title: Chin. J. Phys. – volume: 130 year: 2022 ident: bib7 article-title: Towards a new mhd non-homogeneous convective nanofluid flow model for simulating a rotating inclined thin layer of sodium alginate-based iron oxide exposed to incident solar energy publication-title: Int. Commun. Heat Mass Tran. – volume: 9 start-page: 564 year: 2022 end-page: 582 ident: bib29 article-title: Significance of lorentz forces on jeffrey nanofluid flows over a convectively heated flat surface featured by multiple velocity slips and dual stretching constraint: a homotopy analysis approach publication-title: J. Comput. Des. Eng. – volume: 53 start-page: 2477 year: 2010 end-page: 2483 ident: bib48 article-title: Boundary-layer flow of a nanofluid past a stretching sheet publication-title: Int. J. Heat Mass Tran. – volume: 223 start-page: 969 year: 2016 end-page: 978 ident: bib15 article-title: Nonlinear thermal radiation aspects in stagnation point flow of tangent hyperbolic nanofluid with double diffusive convection publication-title: J. Mol. Liq. – volume: 127 start-page: 263 year: 2015 end-page: 270 ident: bib9 article-title: Particle spacing and chemical reaction effects on convective heat transfer through a nano-fluid in cylindrical annulus publication-title: Procedia Eng. – volume: 5 year: 2015 ident: bib16 article-title: Effects of transverse magnetic field with variable thermal conductivity on tangent hyperbolic fluid with exponentially varying viscosity publication-title: AIP Adv. – volume: 12 start-page: 520 year: 2020 ident: bib20 article-title: The impact of nanoparticles due to applied magnetic dipole in micropolar fluid flow using the finite element method publication-title: Symmetry – volume: 73 start-page: 101 year: 1999 end-page: 108 ident: bib19 article-title: Laminar fluid behavior in microchannels using micropolar fluid theory publication-title: Sensors Actuators A: Phys. – volume: 52 start-page: 247 issue: 3 year: 1994 ident: 10.1016/j.csite.2022.102247_bib47 article-title: Free convection on a vertical stretching surface with suction and blowing publication-title: Appl. Sci. Res. doi: 10.1007/BF00853952 – volume: 130 year: 2022 ident: 10.1016/j.csite.2022.102247_bib7 article-title: Towards a new mhd non-homogeneous convective nanofluid flow model for simulating a rotating inclined thin layer of sodium alginate-based iron oxide exposed to incident solar energy publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2021.105800 – volume: 86 start-page: 146 year: 2017 ident: 10.1016/j.csite.2022.102247_bib11 article-title: The effects of different nano particles of al2o3 and ag on the mhd nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump publication-title: Phys. E Low-dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2016.10.015 – volume: 10 start-page: 170 issue: 2 year: 2020 ident: 10.1016/j.csite.2022.102247_bib3 article-title: Analysis of magnetic properties of nano-particles due to a magnetic dipole in micropolar fluid flow over a stretching sheet publication-title: Coatings doi: 10.3390/coatings10020170 – volume: 109 start-page: 260 year: 2022 ident: 10.1016/j.csite.2022.102247_bib35 article-title: Melting effect on cattaneo–christov and thermal radiation features for aligned mhd nanofluid flow comprising microorganisms to leading edge: Fem approach publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2022.01.009 – volume: 9 start-page: 5217 issue: 23 year: 2019 ident: 10.1016/j.csite.2022.102247_bib21 article-title: Finite element analysis of thermo-diffusion and multi-slip effects on mhd unsteady flow of casson nano-fluid over a shrinking/stretching sheet with radiation and heat source publication-title: Appl. Sci. doi: 10.3390/app9235217 – volume: 38 start-page: 487 issue: 4 year: 2011 ident: 10.1016/j.csite.2022.102247_bib49 article-title: Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2010.12.042 – volume: 2021 year: 2021 ident: 10.1016/j.csite.2022.102247_bib22 article-title: Theoretical analysis of cu-h2o, al2o3-h2o, and tio2-h2o nanofluid flow past a rotating disk with velocity slip and convective conditions publication-title: J. Nanomater. doi: 10.1155/2021/5471813 – volume: 2000 start-page: 1 year: 2000 ident: 10.1016/j.csite.2022.102247_bib45 article-title: Solving boundary value problems for ordinary differential equations in matlab with bvp4c publication-title: Tutorial notes – start-page: 211 year: 2021 ident: 10.1016/j.csite.2022.102247_bib25 article-title: Analysis of bio-convective mhd blasius and sakiadis flow with cattaneo-christov heat flux model and chemical reaction publication-title: Chin. J. Phys. – volume: 50 start-page: 1326 issue: 7 year: 2011 ident: 10.1016/j.csite.2022.102247_bib28 article-title: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.02.019 – volume: 223 start-page: 969 year: 2016 ident: 10.1016/j.csite.2022.102247_bib15 article-title: Nonlinear thermal radiation aspects in stagnation point flow of tangent hyperbolic nanofluid with double diffusive convection publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.08.102 – volume: 50 start-page: 2002 issue: 9–10 year: 2007 ident: 10.1016/j.csite.2022.102247_bib36 article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2006.09.034 – volume: 42 start-page: 935 issue: 8–9 year: 2004 ident: 10.1016/j.csite.2022.102247_bib38 article-title: Mhd visco-elastic fluid flow over a non-isothermal stretching sheet publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2003.09.008 – volume: 127 start-page: 263 year: 2015 ident: 10.1016/j.csite.2022.102247_bib9 article-title: Particle spacing and chemical reaction effects on convective heat transfer through a nano-fluid in cylindrical annulus publication-title: Procedia Eng. doi: 10.1016/j.proeng.2015.11.359 – year: 2003 ident: 10.1016/j.csite.2022.102247_bib46 – volume: 36 start-page: 1593 issue: 12 year: 2015 ident: 10.1016/j.csite.2022.102247_bib30 article-title: Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition publication-title: Appl. Math. Mech. doi: 10.1007/s10483-015-2003-6 – volume: 12 start-page: 520 issue: 4 year: 2020 ident: 10.1016/j.csite.2022.102247_bib20 article-title: The impact of nanoparticles due to applied magnetic dipole in micropolar fluid flow using the finite element method publication-title: Symmetry doi: 10.3390/sym12040520 – volume: 37 start-page: 275 issue: 3 year: 1981 ident: 10.1016/j.csite.2022.102247_bib42 article-title: On the viscosity of suspensions of solid spheres publication-title: Appl. Sci. Res. doi: 10.1007/BF00951252 – volume: 53 start-page: 2477 issue: 11–12 year: 2010 ident: 10.1016/j.csite.2022.102247_bib48 article-title: Boundary-layer flow of a nanofluid past a stretching sheet publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2010.01.032 – volume: 35 start-page: 178 issue: 1 year: 2016 ident: 10.1016/j.csite.2022.102247_bib24 article-title: Nonlinear radiative heat transfer in mhd three-dimensional flow of water based nanofluid over a non-linearly stretching sheet with convective boundary condition publication-title: J. Nigerian Math. Soc. doi: 10.1016/j.jnnms.2016.02.003 – volume: 16 issue: 12 year: 2021 ident: 10.1016/j.csite.2022.102247_bib34 article-title: Heat transfer analysis of the mixed convective flow of magnetohydrodynamic hybrid nanofluid past a stretching sheet with velocity and thermal slip conditions publication-title: PLoS One doi: 10.1371/journal.pone.0260854 – start-page: 1 year: 2022 ident: 10.1016/j.csite.2022.102247_bib41 article-title: A comparative analysis of the performance of magnetised copper–copper oxide/water and copper–copper oxide/kerosene oil hybrid nanofluids flowing through an extending surface with velocity slips and thermal convective conditions publication-title: Int. J. Ambient Energy doi: 10.1080/01430750.2022.2063387 – volume: 2 start-page: 205 issue: 2 year: 1964 ident: 10.1016/j.csite.2022.102247_bib18 article-title: Simple microfluids publication-title: Int. J. Eng. Sci. doi: 10.1016/0020-7225(64)90005-9 – volume: 25 year: 2021 ident: 10.1016/j.csite.2022.102247_bib14 article-title: Joule heating in magnetohydrodynamic micropolar boundary layer flow past a stretching sheet with chemical reaction and microstructural slip publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.100870 – volume: 77 start-page: 1625 year: 2022 ident: 10.1016/j.csite.2022.102247_bib23 article-title: A comparative study of unsteady mhd falkner-skan wedge flow for non-Newtonian nanofluids considering thermal radiation and activation energy publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2021.10.045 – year: 1995 ident: 10.1016/j.csite.2022.102247_bib1 – volume: 2 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.csite.2022.102247_bib32 article-title: Multiple slip effects on mhd unsteady viscoelastic nano-fluid flow over a permeable stretching sheet with radiation using the finite element method publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-1831-3 – volume: 126 start-page: 933 year: 2018 ident: 10.1016/j.csite.2022.102247_bib13 article-title: Unsteady stagnation-point flow of williamson fluid generated by stretching/shrinking sheet with ohmic heating publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.05.076 – start-page: 1 year: 1966 ident: 10.1016/j.csite.2022.102247_bib17 article-title: Theory of micropolar fluids publication-title: J. Math. Mech. – volume: 13 start-page: 2667 issue: 10 year: 2020 ident: 10.1016/j.csite.2022.102247_bib40 article-title: Heat transfer and entropy analysis of maxwell hybrid nanofluid including effects of inclined magnetic field, joule heating and thermal radiation publication-title: Discrete Continuous Dynam. Syst.-S doi: 10.3934/dcdss.2020142 – volume: 43 start-page: 5657 issue: 9 year: 2020 ident: 10.1016/j.csite.2022.102247_bib12 article-title: Entropy generation in nanofluid flow of walters-b fluid with homogeneous-heterogeneous reactions publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5997 – volume: 9 start-page: 564 issue: 2 year: 2022 ident: 10.1016/j.csite.2022.102247_bib29 article-title: Significance of lorentz forces on jeffrey nanofluid flows over a convectively heated flat surface featured by multiple velocity slips and dual stretching constraint: a homotopy analysis approach publication-title: J. Comput. Des. Eng. – year: 2021 ident: 10.1016/j.csite.2022.102247_bib5 article-title: The function of nanoparticle's diameter and darcy-forchheimer flow over a cylinder with effect of magnetic field and thermal radiation publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101392 – volume: 203 start-page: 385 issue: 359–371 year: 1904 ident: 10.1016/j.csite.2022.102247_bib44 article-title: Xii. colours in metal glasses and in metallic films publication-title: Philos. Trans. R. Soc. Lond. - Ser. A Contain. Pap. a Math. or Phys. Character – volume: 76 start-page: 434 year: 2019 ident: 10.1016/j.csite.2022.102247_bib6 article-title: Heat transport features of magnetic water–graphene oxide nanofluid flow with thermal radiation: stability test publication-title: Eur. J. Mech. B Fluid doi: 10.1016/j.euromechflu.2019.04.008 – volume: 76 start-page: 181 issue: 2 year: 2014 ident: 10.1016/j.csite.2022.102247_bib31 article-title: Hydromagnetic thermal boundary layer of nanofluids over a convectively heated flat plate with viscous dissipation and ohmic heating publication-title: UPB Sci Bull Ser A – volume: 344 start-page: 306 year: 2019 ident: 10.1016/j.csite.2022.102247_bib10 article-title: Numerical approach for mhd al2o3-water nanofluid transportation inside a permeable medium using innovative computer method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.09.042 – volume: 133 year: 2022 ident: 10.1016/j.csite.2022.102247_bib33 article-title: Magneto-hydrothermal analysis of copper and copper oxide nanoparticles between two parallel plates with brownian motion and thermophoresis effects publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2022.105982 – volume: 5 issue: 12 year: 2015 ident: 10.1016/j.csite.2022.102247_bib16 article-title: Effects of transverse magnetic field with variable thermal conductivity on tangent hyperbolic fluid with exponentially varying viscosity publication-title: AIP Adv. doi: 10.1063/1.4937366 – volume: 73 start-page: 101 issue: 1–2 year: 1999 ident: 10.1016/j.csite.2022.102247_bib19 article-title: Laminar fluid behavior in microchannels using micropolar fluid theory publication-title: Sensors Actuators A: Phys. doi: 10.1016/S0924-4247(98)00261-1 – start-page: 4568 year: 2002 ident: 10.1016/j.csite.2022.102247_bib2 article-title: Tonggen xi, yan liu, fei ai, and qingren Wu publication-title: J. Appl. Phys. doi: 10.1063/1.1454184 – volume: 262 start-page: 435 year: 2018 ident: 10.1016/j.csite.2022.102247_bib26 article-title: Impacts of binary chemical reaction with activation energy on unsteady flow of magneto-williamson nanofluid publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.04.095 – year: 1992 ident: 10.1016/j.csite.2022.102247_bib37 – volume: 260 start-page: 436 year: 2018 ident: 10.1016/j.csite.2022.102247_bib27 article-title: Unsteady mixed convective flow of williamson nanofluid with heat transfer in the presence of variable thermal conductivity and magnetic field publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.03.079 – volume: 70 start-page: 125 year: 2021 ident: 10.1016/j.csite.2022.102247_bib39 article-title: A comparative description on time-dependent rotating magnetic transport of a water base liquid h2o with hybrid nano-materials al2o3-cu and al2o3-tio2 over an extending sheet using buongiorno model: finite element approach publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2020.12.022 – volume: 32 start-page: 3253 issue: 8 year: 2020 ident: 10.1016/j.csite.2022.102247_bib8 article-title: Heat and mass transport phenomena of nanoparticles on time-dependent flow of williamson fluid towards heated surface publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04100-4 – volume: 143 start-page: 1201 issue: 2 year: 2021 ident: 10.1016/j.csite.2022.102247_bib4 article-title: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized buongiorno's nanofluid model publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09488-z – volume: 221 start-page: 394 year: 2016 ident: 10.1016/j.csite.2022.102247_bib43 article-title: Radiative and joule heating effects in the mhd flow of a micropolar fluid with partial slip and convective boundary condition publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.05.091 |
SSID | ssj0001738144 |
Score | 2.480781 |
Snippet | Tiny particles have extraordinary thermal conductivity due to their unusual characteristics, making them crucial in materials science, nanotechnology, heat... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 102247 |
SubjectTerms | Magnetohydrodynamic Micropolar fluid Nanofluid Nanoparticle Tangent hyperbolic Thermal radiation |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQEwyIpygveWAkNHHspBkBgRASLIDULTq_IKhNUWmFxH_gP3PnJFAWBsY4d4nls-5h333H2LEdxM7oXEbSWjqtAhEBqsqoACls5gFcQNe_vcuuH-XNUA2X2EVXC0Npla3ub3R60NbtSL9dzf5rVfXvhUjQ-uRDQYJGNwT1cCoHoYhveP5zzpKjTQo9XYk-IoYOfCikeZlwSSvQlJ0GdLX8l4EKOP4LdmrB9lyts7XWaeRnzbw22JKrN9nqApTgFvtEefN63ty_jPhbNW77cvGJ5zXUGBs33Pjqw3GoLSfXb4y0U4InCKR0KEvDfAxPNVU38pDgxpukD04Wz3Kkm0GoyOLPGMRONSELh1_40byy3I8m79vs8ery4eI6alstREYmchZZ8FqidIzTlPOaJTCwVgnncxASCDs0TSzV8fq4wIjaKQUYB6lEg1Hao_XbYcv1pHa7jBuQsTceUmPRO8sLnSslYqOtV-h7ge0x0a1vaVoccmqHMSq7hLOXMgilJKGUjVB67OSb6bWB4fib_JwE901KGNphYDJ9KtvlLl1saZYi9oWWBgNPEDo1WSqV8kmeFD2WdWIvf21J_FT119_3_su4z1boqUlhO2DLs-ncHaLPM9NHYVN_AUlSAe4 priority: 102 providerName: Elsevier |
Title | The numerical simulation of nanoparticle size and thermal radiation with the magnetic field effect based on tangent hyperbolic nanofluid flow |
URI | https://dx.doi.org/10.1016/j.csite.2022.102247 https://doaj.org/article/e0dfa3c20f9b4c289a2b3c63455f1719 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBIIHHtpB0pAgESTCB1i84vKGpTVFoh8R_4z9zZKQpLWVgyOGc78mfl7uy77xg7sd3UGV3IRFpLp1UgEsBfZdIDKWzuAVxg179_yG-e5N1ADRqlvigmLNIDx4U7d6n10DEi9T0tDboHIHTH5B2plM-KQPgpUOc1nKlwulKgJgqVXIXIZJKpYrCgHArBXSZczaLjL84Cp1rxSy0F9v6GdmponOsNtl6bivwifuImW3HVFltrEAhusy9EmVfzeOsy4u_DcV2Ni088r6BCjzj2xlefjkNlORl8Y5SdEilBEKWjWGrmY3iuKKeRh7A2HkM9OOk5y1FuBiEPi7-g6zrVxCccpvCj-dByP5p87LCn66vHy5ukLrCQGJnJWWLBa4mYGKcp0jXPoGutEs4XICQQY2gns5S969Me-tFOKUDvR2UajNIedd4ua1WTyu0xbkCm3hBSFm2yoqcLpURqtPUKLS6wbSYW61uamn2cimCMykWY2WsZQCkJlDKC0manP53eIvnGcvE-AfcjSszZoQH3U1kvd_nXfmqzfAF7WRsh0bjAoYbLZt__j9kP2CoNGYPYDllrNp27I7R6Zvo4bHB83g76307IAj4 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbSZGgzFOkLcR8ph45VLdGkGI1N0MB5Lk0Ab8Txlaqw5cC1ESD_of-5d5SUOkuGrOSdKPCIe5B33zH2xe_nwVktM-k93VaByABVZVaBFL6MACGh659flOMreTJRkw122NfCUFplp_tbnZ60dTcy7HZzeFPXw59CFGh99ESQoNENeca20BvQ1L_heHLw_6JFo1FKTV2JISOOHn0o5Xm59Eor0JZ9S_Bq-oGFSkD-a4Zqzfgc7bCXndfIv7c_9opthOY1217DEnzD_qLAebNqH2Cm_E896xpz8XnkDTQYHLfcOHUXODSek-83Q9oF4RMkUrqVpWE-g-uGyht5ynDjbdYHJ5PnOdItIZVk8V8YxS4sQQunJeJ0VXsep_Pbt-zq6Mfl4Tjrei1kThZymXmIVqJ4XLCU9FoWsO-9EiFqEBIIPHRUeCrkjXmFIXVQCjAQUoUFp2xE8_eObTbzJuwy7kDm0UUYOY_uma6sVkrkzvqo0PkCP2Ci31_jOiBy6ocxNX3G2W-ThGJIKKYVyoB9vWe6aXE4Hic_IMHdkxKIdhqYL65Nt90m5J7-UuSxstJh5AnCjlw5kkrFQhfVgJW92M2DM4mfqh9b_f1TGT-z5-PL8zNzdnxx-oG9oJk2n-0j21wuVuETOkBLu5cO-D8_jwUN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+numerical+simulation+of+nanoparticle+size+and+thermal+radiation+with+the+magnetic+field+effect+based+on+tangent+hyperbolic+nanofluid+flow&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Pardeep+Kumar&rft.au=Hemant+Poonia&rft.au=Liaqat+Ali&rft.au=Sujesh+Areekara&rft.date=2022-09-01&rft.pub=Elsevier&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=37&rft.spage=102247&rft_id=info:doi/10.1016%2Fj.csite.2022.102247&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e0dfa3c20f9b4c289a2b3c63455f1719 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |