A Detection Algorithm for Citrus Huanglongbing Disease Based on an Improved YOLOv8n

Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural environments, due to factors such as varying light intensities, mutual occlusion of citrus leaves, the extremely small size of Huanglongbing leave...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 14; p. 4448
Main Authors Xie, Wu, Feng, Feihong, Zhang, Huimin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural environments, due to factors such as varying light intensities, mutual occlusion of citrus leaves, the extremely small size of Huanglongbing leaves, and the high similarity between Huanglongbing and other citrus diseases, there remains an issue of low detection accuracy when using existing mainstream object detection models for the detection of citrus Huanglongbing. To address this issue, we propose YOLO-EAF (You Only Look Once–Efficient Asymptotic Fusion), an improved model based on YOLOv8n. Firstly, the Efficient Multi-Scale Attention Module with cross-spatial learning (EMA) is integrated into the backbone feature extraction network to enhance the feature extraction and integration capabilities of the model. Secondly, the adaptive spatial feature fusion (ASFF) module is used to enhance the feature fusion ability of different levels of the model so as to improve the generalization ability of the model. Finally, the focal and efficient intersection over union (Focal–EIOU) is utilized as the loss function, which accelerates the convergence process of the model and improves the regression precision and robustness of the model. In order to verify the performance of the YOLO-EAF method, we tested it on the self-built citrus Huanglongbing image dataset. The experimental results showed that YOLO-EAF achieved an 8.4% higher precision than YOLOv8n on the self-built dataset, reaching 82.7%. The F1-score increased by 3.33% to 77.83%, and the mAP (0.5) increased by 3.3% to 84.7%. Through experimental comparisons, the YOLO-EAF model proposed in this paper offers a new technical route for the monitoring and management of Huanglongbing in smart orange orchards.
AbstractList Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural environments, due to factors such as varying light intensities, mutual occlusion of citrus leaves, the extremely small size of Huanglongbing leaves, and the high similarity between Huanglongbing and other citrus diseases, there remains an issue of low detection accuracy when using existing mainstream object detection models for the detection of citrus Huanglongbing. To address this issue, we propose YOLO-EAF (You Only Look Once-Efficient Asymptotic Fusion), an improved model based on YOLOv8n. Firstly, the Efficient Multi-Scale Attention Module with cross-spatial learning (EMA) is integrated into the backbone feature extraction network to enhance the feature extraction and integration capabilities of the model. Secondly, the adaptive spatial feature fusion (ASFF) module is used to enhance the feature fusion ability of different levels of the model so as to improve the generalization ability of the model. Finally, the focal and efficient intersection over union (Focal-EIOU) is utilized as the loss function, which accelerates the convergence process of the model and improves the regression precision and robustness of the model. In order to verify the performance of the YOLO-EAF method, we tested it on the self-built citrus Huanglongbing image dataset. The experimental results showed that YOLO-EAF achieved an 8.4% higher precision than YOLOv8n on the self-built dataset, reaching 82.7%. The F1-score increased by 3.33% to 77.83%, and the mAP (0.5) increased by 3.3% to 84.7%. Through experimental comparisons, the YOLO-EAF model proposed in this paper offers a new technical route for the monitoring and management of Huanglongbing in smart orange orchards.Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural environments, due to factors such as varying light intensities, mutual occlusion of citrus leaves, the extremely small size of Huanglongbing leaves, and the high similarity between Huanglongbing and other citrus diseases, there remains an issue of low detection accuracy when using existing mainstream object detection models for the detection of citrus Huanglongbing. To address this issue, we propose YOLO-EAF (You Only Look Once-Efficient Asymptotic Fusion), an improved model based on YOLOv8n. Firstly, the Efficient Multi-Scale Attention Module with cross-spatial learning (EMA) is integrated into the backbone feature extraction network to enhance the feature extraction and integration capabilities of the model. Secondly, the adaptive spatial feature fusion (ASFF) module is used to enhance the feature fusion ability of different levels of the model so as to improve the generalization ability of the model. Finally, the focal and efficient intersection over union (Focal-EIOU) is utilized as the loss function, which accelerates the convergence process of the model and improves the regression precision and robustness of the model. In order to verify the performance of the YOLO-EAF method, we tested it on the self-built citrus Huanglongbing image dataset. The experimental results showed that YOLO-EAF achieved an 8.4% higher precision than YOLOv8n on the self-built dataset, reaching 82.7%. The F1-score increased by 3.33% to 77.83%, and the mAP (0.5) increased by 3.3% to 84.7%. Through experimental comparisons, the YOLO-EAF model proposed in this paper offers a new technical route for the monitoring and management of Huanglongbing in smart orange orchards.
Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural environments, due to factors such as varying light intensities, mutual occlusion of citrus leaves, the extremely small size of Huanglongbing leaves, and the high similarity between Huanglongbing and other citrus diseases, there remains an issue of low detection accuracy when using existing mainstream object detection models for the detection of citrus Huanglongbing. To address this issue, we propose YOLO-EAF (You Only Look Once-Efficient Asymptotic Fusion), an improved model based on YOLOv8n. Firstly, the Efficient Multi-Scale Attention Module with cross-spatial learning (EMA) is integrated into the backbone feature extraction network to enhance the feature extraction and integration capabilities of the model. Secondly, the adaptive spatial feature fusion (ASFF) module is used to enhance the feature fusion ability of different levels of the model so as to improve the generalization ability of the model. Finally, the focal and efficient intersection over union (Focal-EIOU) is utilized as the loss function, which accelerates the convergence process of the model and improves the regression precision and robustness of the model. In order to verify the performance of the YOLO-EAF method, we tested it on the self-built citrus Huanglongbing image dataset. The experimental results showed that YOLO-EAF achieved an 8.4% higher precision than YOLOv8n on the self-built dataset, reaching 82.7%. The F1-score increased by 3.33% to 77.83%, and the mAP (0.5) increased by 3.3% to 84.7%. Through experimental comparisons, the YOLO-EAF model proposed in this paper offers a new technical route for the monitoring and management of Huanglongbing in smart orange orchards.
Author Feng, Feihong
Zhang, Huimin
Xie, Wu
Author_xml – sequence: 1
  givenname: Wu
  orcidid: 0009-0004-6232-0998
  surname: Xie
  fullname: Xie, Wu
– sequence: 2
  givenname: Feihong
  surname: Feng
  fullname: Feng, Feihong
– sequence: 3
  givenname: Huimin
  surname: Zhang
  fullname: Zhang, Huimin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39065846$$D View this record in MEDLINE/PubMed
BookMark eNptkUtvEzEUhS3Uij5gwR9AltjQRVo_ZzzLkBYaKVIWhQUry68ZHM3YxfZU4t_jNiVCVb2wr63vHN3rcwaOQgwOgA8YXVLaoatMGGZ1iTfgFDPCFoIQdPRffQLOct4hRCil4i04qaKGC9acgrslvHbFmeJjgMtxiMmXXxPsY4IrX9Kc4e2swjDGMGgfBnjts1PZwS91s7BqVIDr6T7Fh3r9ud1sH0R4B457NWb3_vk8Bz--3nxf3S4222_r1XKzMLXdsrDMYIwVVsho3nIlLGk059y2DUIKdwJR1DWsJxorwlvFhe20ENYyyltCBD0H672vjWon75OfVPojo_Ly6SGmQapUvBmd5K1hyFlreaOZboTodW9VYxjtcUOErl6f9151lN-zy0VOPhs3jiq4OGdJkeCYoJayin56ge7inEKd9IlCbYdaXKmPz9SsJ2cP7f37-gpc7AGTYs7J9QcEI_kYqzzEWtmrF6zxRT1mVpLy4yuKv-jmn8g
CitedBy_id crossref_primary_10_3390_agronomy14091934
crossref_primary_10_3390_app142110004
crossref_primary_10_3390_s25071971
Cites_doi 10.1109/CVPR.2018.00745
10.3390/agronomy12020391
10.3390/agronomy13030896
10.1109/ICCV.2017.322
10.3390/agriculture14030353
10.1007/11744023_34
10.1007/978-3-030-01234-2_1
10.1109/CVPR.2018.00474
10.1016/j.neucom.2022.07.042
10.1109/ICCV.2017.74
10.3390/agriculture14010114
10.1109/CVPR46437.2021.01350
10.1109/TPAMI.2016.2577031
10.1007/978-3-319-46448-0_2
10.1109/ICASSP49357.2023.10096516
10.1109/CVPR.2017.106
10.3390/s23146530
10.3390/s23010030
10.3390/s23125587
10.3390/agriculture13081643
10.1016/j.compag.2023.108357
10.1109/CVPR.2016.98
10.1007/978-3-030-17795-9_10
10.3390/s22228911
10.3390/agriculture13051023
10.3390/s24123783
10.1109/CVPR.2016.91
10.1109/SMC53992.2023.10394415
10.1007/11744023_32
10.1109/CVPR.2018.00913
10.3390/agriculture12020248
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/s24144448
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_57c40eddd56b4b688fbfda6c43f1628b
39065846
10_3390_s24144448
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: Grant No. 61966008
– fundername: Guangdong Natural Science Foundation
  grantid: Grant No. 2023A1515011230
– fundername: Guangxi Science and Technology Program
  grantid: Grant No. AD19110137
– fundername: Guangxi Science and Technology Program
  grantid: Grant No. AB18126063
– fundername: National Natural Science Foundation of China
  grantid: Grant No. 62103114
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c414t-d4c111a1a0cb575a8d26b555d7600a198030964f2b1a257a58d9b88dd43572283
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:29:30 EDT 2025
Thu Jul 10 19:22:14 EDT 2025
Sat Jul 26 00:20:45 EDT 2025
Thu Apr 03 07:04:17 EDT 2025
Tue Jul 01 03:51:06 EDT 2025
Thu Apr 24 23:00:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Citrus Huanglongbing
deep learning
object detection
YOLOv8n
orchard management
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-d4c111a1a0cb575a8d26b555d7600a198030964f2b1a257a58d9b88dd43572283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0004-6232-0998
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24144448
PMID 39065846
PQID 3085079071
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_57c40eddd56b4b688fbfda6c43f1628b
proquest_miscellaneous_3085120734
proquest_journals_3085079071
pubmed_primary_39065846
crossref_primary_10_3390_s24144448
crossref_citationtrail_10_3390_s24144448
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Jul-10
PublicationDateYYYYMMDD 2024-07-10
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-Jul-10
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ren (ref_10) 2017; 39
ref_14
ref_36
ref_13
ref_35
ref_12
ref_34
ref_11
ref_33
ref_32
Wang (ref_4) 2023; 54
ref_31
ref_30
ref_19
ref_18
ref_17
ref_39
ref_16
ref_38
ref_15
Zhu (ref_27) 2023; 39
ref_37
ref_25
Chen (ref_2) 2023; 215
ref_24
ref_23
ref_45
ref_22
ref_44
ref_21
ref_43
ref_20
ref_42
ref_41
ref_40
ref_1
ref_3
ref_29
ref_28
ref_26
ref_9
ref_8
ref_5
ref_7
ref_6
References_xml – ident: ref_28
– ident: ref_23
  doi: 10.1109/CVPR.2018.00745
– volume: 39
  start-page: 274
  year: 2023
  ident: ref_27
  article-title: Recognition and location of duck eggs in complex environment based on improved YOLOv7 model
  publication-title: J. Agric. Eng.
– ident: ref_9
  doi: 10.3390/agronomy12020391
– ident: ref_5
– ident: ref_22
  doi: 10.3390/agronomy13030896
– ident: ref_11
  doi: 10.1109/ICCV.2017.322
– ident: ref_38
  doi: 10.3390/agriculture14030353
– ident: ref_7
  doi: 10.1007/11744023_34
– ident: ref_18
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref_16
– ident: ref_39
– ident: ref_40
– ident: ref_19
  doi: 10.1109/CVPR.2018.00474
– ident: ref_41
  doi: 10.1016/j.neucom.2022.07.042
– ident: ref_43
  doi: 10.1109/ICCV.2017.74
– ident: ref_42
– ident: ref_44
– ident: ref_20
  doi: 10.3390/agriculture14010114
– ident: ref_21
– ident: ref_36
  doi: 10.1109/CVPR46437.2021.01350
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_10
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref_13
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_31
– ident: ref_29
– ident: ref_37
  doi: 10.1109/ICASSP49357.2023.10096516
– ident: ref_26
  doi: 10.1109/CVPR.2017.106
– ident: ref_3
  doi: 10.3390/s23146530
– ident: ref_34
  doi: 10.3390/s23010030
– ident: ref_17
  doi: 10.3390/s23125587
– ident: ref_30
  doi: 10.3390/agriculture13081643
– volume: 215
  start-page: 0168
  year: 2023
  ident: ref_2
  article-title: Early diagnosis and mechanistic understanding of citrus Huanglongbing via sun-induced chlorophyll fluorescence
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108357
– ident: ref_12
  doi: 10.1109/CVPR.2016.98
– volume: 54
  start-page: 236
  year: 2023
  ident: ref_4
  article-title: Recognition algorithm of sweet pepper malformed fruit based on improved YOLO v7-tiny
  publication-title: Agric. Mach. J.
– ident: ref_8
  doi: 10.1007/978-3-030-17795-9_10
– ident: ref_1
  doi: 10.3390/s22228911
– ident: ref_15
– ident: ref_24
  doi: 10.3390/agriculture13051023
– ident: ref_32
  doi: 10.3390/s24123783
– ident: ref_45
– ident: ref_14
  doi: 10.1109/CVPR.2016.91
– ident: ref_33
  doi: 10.1109/SMC53992.2023.10394415
– ident: ref_6
  doi: 10.1007/11744023_32
– ident: ref_35
  doi: 10.1109/CVPR.2018.00913
– ident: ref_25
  doi: 10.3390/agriculture12020248
SSID ssj0023338
Score 2.4450548
Snippet Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 4448
SubjectTerms Artificial intelligence
Citrus fruits
Citrus Huanglongbing
deep learning
Neural networks
object detection
orchard management
Telematics
YOLOv8n
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_oiigcvxW2aZrPH9cUiPg4q6Knk1fWwZoVd_f1-abpFQfFiD4W2U5jMNJlvMs0XQo4sB4boOpFWqpunPDMmRS9iKcAy0wixiCFhvfPNrRg88qun4unLVl_hn7BIDxwNh4Td8I6z1hZCcy2krHRllTA8rzLBpA6jL2LeLJlqUq0cmVfkEcqR1J9MEKc4Dvkt-tQk_b8jyzrCXC6TpQYa0n5UaYXMOb9KFr8QBq6R-z49d9P67ylP-6PhGKn9yysF8KRn9fIJOnhXfjga-yEy3iE9j-UXeoqTpXhHeRqnEXD5fHd99yH9Onm8vHg4G6TNtgipQSumqeUGA5TKVMdogC0lLRO6KAobamwq68lQNRG8YjpT6JCqkLanpbQWyKgb2G42yLwfe7dFqOuFtahAgZVgXDquJOcOwh3TE5bJIiHHM3OVpuEMD1tXjErkDsGyZWvZhBy2om-RKOMnodNg81YgcFvXN-DxsvF4-ZfHE7I781jZdLhJmQfqPTSlmyXkoH2MrhLqH8q78XuUyRjGNJ6QzejpVhOoWWOx7f_QcIcsMGCfMAWcdXbJPPzv9oBdpnq__kw_Af5T6gw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB6V5VIOiFchLa0M4sAlYu04jveEdqHbVcXjAEj0FPmVcFichV36-ztOsilIpTlESjKJnBmP55sZewxwZDliiMyJuFBZEnNqTIxaxGIEy0yjiUUbEtY7X16JyR3_eZ_etwG3eTutcjkm1gO1rUyIkZ8kobZahq4cPZ09xWHXqJBdbbfQWIFVipYmTOmS4x-dw5Wg_9VUE0rQtT-Zo7XieMg3Nqgu1f8-vqztzHgD1luASIaNRDfhg_NbsPaqbOA23AzJuVvUc6g8GU5LbObi4ZEg_CRn9SIKMnlRvpxWvkS_tyTnTRKGjPBkCb6jPGmCCXj56_ri-rf0O3A3_n57NonbzRFig3-xiC03OEwpqvpGI-RS0jKh0zS1IdOm6ECG3IngBdNUoVqqVNqBltJaxEdZqHnzCXq-8m4PiBuEFamIBQvBuHRcSc4dEvfNQFgm0wiOl-zKTVs5PGxgMc3RgwiczTvORnDYkc6achn_IhoFnncEocJ1faN6LvNWYfI0M7zvrLWp0FwLKQtdWCUMTwoqmNQR7C8llrdqN8__dpIIDrrHqDAhC6K8q14aGspwZOMR7DaS7lqCzawR2ef_f_wLfGSIbUKIl_b3oYeSdV8Rmyz0t7oD_gEu6uBC
  priority: 102
  providerName: ProQuest
Title A Detection Algorithm for Citrus Huanglongbing Disease Based on an Improved YOLOv8n
URI https://www.ncbi.nlm.nih.gov/pubmed/39065846
https://www.proquest.com/docview/3085079071
https://www.proquest.com/docview/3085120734
https://doaj.org/article/57c40eddd56b4b688fbfda6c43f1628b
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYEDKs-mLSuDeuASSBzH8R4qtNt2WaE-ELDScor8SjhsnT62iP57xk42olKRyMHKYyzZY4_nG088A7BvGGKIwvK4kkUWs1TrGKWIxgiWqUIVizrEn3c-PePTGfs8z-drsMqx2THw5kHTzueTml0v3v--uvuIAn_gLU402T_coBZieIl12MTbwicyOGW9M4FmWUho7c90xagPkzbA0P2q99RSiN7_b8gZVM9kC550mJGM2kF-CmvWPYPHf0USfA7fRuTILsNvVY6MFnWDNv_PC4KIlByGcxVkeitdvWhcjaZwTY5avwwZY2EI1pGOtPsL-Pjj_OT8l3AvYDY5_n44jbt8CbHGXixjwzSuXDKViVaIwqQwlKs8z413vsl0KLw7hbOKqlSipMpcmKESwhiETIUPg_MSNlzj7DYQO_SHVBEeVpwyYZkUjFkkTvSQGyryCN6t2FXqLpi4z2mxKNGo8Jwte85G8LYnvWwjaDxENPY87wl80Ovwormuy06GyrzQLLHGmJwrprgQlaqM5JplVcqpUBHsrUasXE2kMvMx-bArRRrBm_4zypB3jEhnm9uWJqW42LEIXrUj3bcEmxlA2s7_dGMXHlEEPX7vN032YAPH175G0LJUA1gv5gWWYvJpAJvj47MvXwdhA2AQJusfaFXpVw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9VAEJ8gHtSDUVSsoq4GEi8N7Xa73Xcw5sHz8ZAHHIQETmW_Wg6PLfoeGv8p_0Zn-6Uk6I0emrSdbprZmZ3f7HRmANYNQwyRWR4WMktCFmsdohbREMEyVWhi0Yb4fOf9Az45Zp9P0pMl-NXlwvjfKrs1sV6oTaX9Hvlm4murZejKxR8vv4a-a5SPrnYtNBqx2LM_f6DLNv-wO8L53aB0_OloexK2XQVCzWK2CA3TqN8ylpFWiFWkMJSrNE2ND1FJ9MF90IGzgqpYojzLVJiBEsIYBBaZLxaD496BuyxBS-4z08c7vYOXoL_XVC_Ch9HmHK0jw0Ncs3l1a4B_49naro0fwcMWkJJhI0GPYcm6FXjwV5nCJ_BlSEZ2Uf-z5chwViJbFucXBOEu2a6TNsjkSrpyVrkS_eySjJqgD9nCkyH4jnSk2bzAy9PD6eF34Z7C8a2w7Rksu8rZ50DswGfAIvYsOGXCMikYs0gc6QE3VKQBvO_Yleu2UrlvmDHL0WPxnM17zgbwrie9bMpz3ES05XneE_iK2vWN6luZtwqap5lmkTXGpFwxxYUoVGEk1ywpYk6FCmCtm7G8VfN5_kcoA3jbP0YF9VEX6Wx11dDEFFdSFsBqM9P9l-Bn1gjwxf8HfwP3Jkf703y6e7D3Eu5TxFV-ezmO1mAZZ9m-Qly0UK9rYSRwdtvS_xvPvBr3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKGAQSFyiTRzH8R4Q2u12taVlWwGV2lPwK-lh6xR2C-Kv8esY5wVIwK05REoysazxjOcbjz0D8MIwxBCZ5WEhsyRksdYhahENESxThSYWbYg_7_xuwedH7O1xerwBP7qzMH5bZTcn1hO1qbRfIx8mPrdahq5cPCzabRGH09mb88-hryDlI61dOY1GRPbs92_ovq1e705xrF9SOtv5uD0P2woDoWYxW4eGadR1GctIK8QtUhjKVZqmxoerJPrjPgDBWUFVLFG2ZSrMSAlhDIKMzCeOwXavwGbmvaIBbE52Fofve3cvQe-vyWWUJKNouEJbyfASf1jAulDAv9FtbeVmN-FGC0_JuJGnW7Bh3W24_lvSwjvwYUymdl3v4HJkvCyRMevTM4Lgl2zXRzjI_EK6clm5Er3ukkybEBCZ4M0Q_Ec60ixl4OPJwf7BV-HuwtGlMO4eDFzl7AMgduTPwyISLThlwjIpGLNIHOkRN1SkAbzq2JXrNm-5L5-xzNF_8ZzNe84G8LwnPW-SdfyNaOJ53hP4_Nr1i-pLmbfqmqeZZpE1xqRcMcWFKFRhJNcsKWJOhQpgqxuxvFX6Vf5LRAN41n9GdfUxGOlsddHQxBTnVRbA_Wak-55gN2s8-PD_jT-Fqyj5-f7uYu8RXKMIsvxacxxtwQAH2T5GkLRWT1ppJPDpshXgJ9_8IIk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Detection+Algorithm+for+Citrus+Huanglongbing+Disease+Based+on+an+Improved+YOLOv8n&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xie%2C+Wu&rft.au=Feng%2C+Feihong&rft.au=Zhang%2C+Huimin&rft.date=2024-07-10&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=14&rft.spage=4448&rft_id=info:doi/10.3390%2Fs24144448&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24144448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon