A Detection Algorithm for Citrus Huanglongbing Disease Based on an Improved YOLOv8n
Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural environments, due to factors such as varying light intensities, mutual occlusion of citrus leaves, the extremely small size of Huanglongbing leave...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 14; p. 4448 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
10.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural environments, due to factors such as varying light intensities, mutual occlusion of citrus leaves, the extremely small size of Huanglongbing leaves, and the high similarity between Huanglongbing and other citrus diseases, there remains an issue of low detection accuracy when using existing mainstream object detection models for the detection of citrus Huanglongbing. To address this issue, we propose YOLO-EAF (You Only Look Once–Efficient Asymptotic Fusion), an improved model based on YOLOv8n. Firstly, the Efficient Multi-Scale Attention Module with cross-spatial learning (EMA) is integrated into the backbone feature extraction network to enhance the feature extraction and integration capabilities of the model. Secondly, the adaptive spatial feature fusion (ASFF) module is used to enhance the feature fusion ability of different levels of the model so as to improve the generalization ability of the model. Finally, the focal and efficient intersection over union (Focal–EIOU) is utilized as the loss function, which accelerates the convergence process of the model and improves the regression precision and robustness of the model. In order to verify the performance of the YOLO-EAF method, we tested it on the self-built citrus Huanglongbing image dataset. The experimental results showed that YOLO-EAF achieved an 8.4% higher precision than YOLOv8n on the self-built dataset, reaching 82.7%. The F1-score increased by 3.33% to 77.83%, and the mAP (0.5) increased by 3.3% to 84.7%. Through experimental comparisons, the YOLO-EAF model proposed in this paper offers a new technical route for the monitoring and management of Huanglongbing in smart orange orchards. |
---|---|
AbstractList | Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural environments, due to factors such as varying light intensities, mutual occlusion of citrus leaves, the extremely small size of Huanglongbing leaves, and the high similarity between Huanglongbing and other citrus diseases, there remains an issue of low detection accuracy when using existing mainstream object detection models for the detection of citrus Huanglongbing. To address this issue, we propose YOLO-EAF (You Only Look Once-Efficient Asymptotic Fusion), an improved model based on YOLOv8n. Firstly, the Efficient Multi-Scale Attention Module with cross-spatial learning (EMA) is integrated into the backbone feature extraction network to enhance the feature extraction and integration capabilities of the model. Secondly, the adaptive spatial feature fusion (ASFF) module is used to enhance the feature fusion ability of different levels of the model so as to improve the generalization ability of the model. Finally, the focal and efficient intersection over union (Focal-EIOU) is utilized as the loss function, which accelerates the convergence process of the model and improves the regression precision and robustness of the model. In order to verify the performance of the YOLO-EAF method, we tested it on the self-built citrus Huanglongbing image dataset. The experimental results showed that YOLO-EAF achieved an 8.4% higher precision than YOLOv8n on the self-built dataset, reaching 82.7%. The F1-score increased by 3.33% to 77.83%, and the mAP (0.5) increased by 3.3% to 84.7%. Through experimental comparisons, the YOLO-EAF model proposed in this paper offers a new technical route for the monitoring and management of Huanglongbing in smart orange orchards.Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural environments, due to factors such as varying light intensities, mutual occlusion of citrus leaves, the extremely small size of Huanglongbing leaves, and the high similarity between Huanglongbing and other citrus diseases, there remains an issue of low detection accuracy when using existing mainstream object detection models for the detection of citrus Huanglongbing. To address this issue, we propose YOLO-EAF (You Only Look Once-Efficient Asymptotic Fusion), an improved model based on YOLOv8n. Firstly, the Efficient Multi-Scale Attention Module with cross-spatial learning (EMA) is integrated into the backbone feature extraction network to enhance the feature extraction and integration capabilities of the model. Secondly, the adaptive spatial feature fusion (ASFF) module is used to enhance the feature fusion ability of different levels of the model so as to improve the generalization ability of the model. Finally, the focal and efficient intersection over union (Focal-EIOU) is utilized as the loss function, which accelerates the convergence process of the model and improves the regression precision and robustness of the model. In order to verify the performance of the YOLO-EAF method, we tested it on the self-built citrus Huanglongbing image dataset. The experimental results showed that YOLO-EAF achieved an 8.4% higher precision than YOLOv8n on the self-built dataset, reaching 82.7%. The F1-score increased by 3.33% to 77.83%, and the mAP (0.5) increased by 3.3% to 84.7%. Through experimental comparisons, the YOLO-EAF model proposed in this paper offers a new technical route for the monitoring and management of Huanglongbing in smart orange orchards. Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural environments, due to factors such as varying light intensities, mutual occlusion of citrus leaves, the extremely small size of Huanglongbing leaves, and the high similarity between Huanglongbing and other citrus diseases, there remains an issue of low detection accuracy when using existing mainstream object detection models for the detection of citrus Huanglongbing. To address this issue, we propose YOLO-EAF (You Only Look Once-Efficient Asymptotic Fusion), an improved model based on YOLOv8n. Firstly, the Efficient Multi-Scale Attention Module with cross-spatial learning (EMA) is integrated into the backbone feature extraction network to enhance the feature extraction and integration capabilities of the model. Secondly, the adaptive spatial feature fusion (ASFF) module is used to enhance the feature fusion ability of different levels of the model so as to improve the generalization ability of the model. Finally, the focal and efficient intersection over union (Focal-EIOU) is utilized as the loss function, which accelerates the convergence process of the model and improves the regression precision and robustness of the model. In order to verify the performance of the YOLO-EAF method, we tested it on the self-built citrus Huanglongbing image dataset. The experimental results showed that YOLO-EAF achieved an 8.4% higher precision than YOLOv8n on the self-built dataset, reaching 82.7%. The F1-score increased by 3.33% to 77.83%, and the mAP (0.5) increased by 3.3% to 84.7%. Through experimental comparisons, the YOLO-EAF model proposed in this paper offers a new technical route for the monitoring and management of Huanglongbing in smart orange orchards. |
Author | Feng, Feihong Zhang, Huimin Xie, Wu |
Author_xml | – sequence: 1 givenname: Wu orcidid: 0009-0004-6232-0998 surname: Xie fullname: Xie, Wu – sequence: 2 givenname: Feihong surname: Feng fullname: Feng, Feihong – sequence: 3 givenname: Huimin surname: Zhang fullname: Zhang, Huimin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39065846$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtvEzEUhS3Uij5gwR9AltjQRVo_ZzzLkBYaKVIWhQUry68ZHM3YxfZU4t_jNiVCVb2wr63vHN3rcwaOQgwOgA8YXVLaoatMGGZ1iTfgFDPCFoIQdPRffQLOct4hRCil4i04qaKGC9acgrslvHbFmeJjgMtxiMmXXxPsY4IrX9Kc4e2swjDGMGgfBnjts1PZwS91s7BqVIDr6T7Fh3r9ud1sH0R4B457NWb3_vk8Bz--3nxf3S4222_r1XKzMLXdsrDMYIwVVsho3nIlLGk059y2DUIKdwJR1DWsJxorwlvFhe20ENYyyltCBD0H672vjWon75OfVPojo_Ly6SGmQapUvBmd5K1hyFlreaOZboTodW9VYxjtcUOErl6f9151lN-zy0VOPhs3jiq4OGdJkeCYoJayin56ge7inEKd9IlCbYdaXKmPz9SsJ2cP7f37-gpc7AGTYs7J9QcEI_kYqzzEWtmrF6zxRT1mVpLy4yuKv-jmn8g |
CitedBy_id | crossref_primary_10_3390_agronomy14091934 crossref_primary_10_3390_app142110004 crossref_primary_10_3390_s25071971 |
Cites_doi | 10.1109/CVPR.2018.00745 10.3390/agronomy12020391 10.3390/agronomy13030896 10.1109/ICCV.2017.322 10.3390/agriculture14030353 10.1007/11744023_34 10.1007/978-3-030-01234-2_1 10.1109/CVPR.2018.00474 10.1016/j.neucom.2022.07.042 10.1109/ICCV.2017.74 10.3390/agriculture14010114 10.1109/CVPR46437.2021.01350 10.1109/TPAMI.2016.2577031 10.1007/978-3-319-46448-0_2 10.1109/ICASSP49357.2023.10096516 10.1109/CVPR.2017.106 10.3390/s23146530 10.3390/s23010030 10.3390/s23125587 10.3390/agriculture13081643 10.1016/j.compag.2023.108357 10.1109/CVPR.2016.98 10.1007/978-3-030-17795-9_10 10.3390/s22228911 10.3390/agriculture13051023 10.3390/s24123783 10.1109/CVPR.2016.91 10.1109/SMC53992.2023.10394415 10.1007/11744023_32 10.1109/CVPR.2018.00913 10.3390/agriculture12020248 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.3390/s24144448 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_57c40eddd56b4b688fbfda6c43f1628b 39065846 10_3390_s24144448 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: Grant No. 61966008 – fundername: Guangdong Natural Science Foundation grantid: Grant No. 2023A1515011230 – fundername: Guangxi Science and Technology Program grantid: Grant No. AD19110137 – fundername: Guangxi Science and Technology Program grantid: Grant No. AB18126063 – fundername: National Natural Science Foundation of China grantid: Grant No. 62103114 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c414t-d4c111a1a0cb575a8d26b555d7600a198030964f2b1a257a58d9b88dd43572283 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:29:30 EDT 2025 Thu Jul 10 19:22:14 EDT 2025 Sat Jul 26 00:20:45 EDT 2025 Thu Apr 03 07:04:17 EDT 2025 Tue Jul 01 03:51:06 EDT 2025 Thu Apr 24 23:00:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Citrus Huanglongbing deep learning object detection YOLOv8n orchard management |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-d4c111a1a0cb575a8d26b555d7600a198030964f2b1a257a58d9b88dd43572283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0004-6232-0998 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24144448 |
PMID | 39065846 |
PQID | 3085079071 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_57c40eddd56b4b688fbfda6c43f1628b proquest_miscellaneous_3085120734 proquest_journals_3085079071 pubmed_primary_39065846 crossref_primary_10_3390_s24144448 crossref_citationtrail_10_3390_s24144448 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Jul-10 |
PublicationDateYYYYMMDD | 2024-07-10 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-Jul-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ren (ref_10) 2017; 39 ref_14 ref_36 ref_13 ref_35 ref_12 ref_34 ref_11 ref_33 ref_32 Wang (ref_4) 2023; 54 ref_31 ref_30 ref_19 ref_18 ref_17 ref_39 ref_16 ref_38 ref_15 Zhu (ref_27) 2023; 39 ref_37 ref_25 Chen (ref_2) 2023; 215 ref_24 ref_23 ref_45 ref_22 ref_44 ref_21 ref_43 ref_20 ref_42 ref_41 ref_40 ref_1 ref_3 ref_29 ref_28 ref_26 ref_9 ref_8 ref_5 ref_7 ref_6 |
References_xml | – ident: ref_28 – ident: ref_23 doi: 10.1109/CVPR.2018.00745 – volume: 39 start-page: 274 year: 2023 ident: ref_27 article-title: Recognition and location of duck eggs in complex environment based on improved YOLOv7 model publication-title: J. Agric. Eng. – ident: ref_9 doi: 10.3390/agronomy12020391 – ident: ref_5 – ident: ref_22 doi: 10.3390/agronomy13030896 – ident: ref_11 doi: 10.1109/ICCV.2017.322 – ident: ref_38 doi: 10.3390/agriculture14030353 – ident: ref_7 doi: 10.1007/11744023_34 – ident: ref_18 doi: 10.1007/978-3-030-01234-2_1 – ident: ref_16 – ident: ref_39 – ident: ref_40 – ident: ref_19 doi: 10.1109/CVPR.2018.00474 – ident: ref_41 doi: 10.1016/j.neucom.2022.07.042 – ident: ref_43 doi: 10.1109/ICCV.2017.74 – ident: ref_42 – ident: ref_44 – ident: ref_20 doi: 10.3390/agriculture14010114 – ident: ref_21 – ident: ref_36 doi: 10.1109/CVPR46437.2021.01350 – volume: 39 start-page: 1137 year: 2017 ident: ref_10 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – ident: ref_13 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_31 – ident: ref_29 – ident: ref_37 doi: 10.1109/ICASSP49357.2023.10096516 – ident: ref_26 doi: 10.1109/CVPR.2017.106 – ident: ref_3 doi: 10.3390/s23146530 – ident: ref_34 doi: 10.3390/s23010030 – ident: ref_17 doi: 10.3390/s23125587 – ident: ref_30 doi: 10.3390/agriculture13081643 – volume: 215 start-page: 0168 year: 2023 ident: ref_2 article-title: Early diagnosis and mechanistic understanding of citrus Huanglongbing via sun-induced chlorophyll fluorescence publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108357 – ident: ref_12 doi: 10.1109/CVPR.2016.98 – volume: 54 start-page: 236 year: 2023 ident: ref_4 article-title: Recognition algorithm of sweet pepper malformed fruit based on improved YOLO v7-tiny publication-title: Agric. Mach. J. – ident: ref_8 doi: 10.1007/978-3-030-17795-9_10 – ident: ref_1 doi: 10.3390/s22228911 – ident: ref_15 – ident: ref_24 doi: 10.3390/agriculture13051023 – ident: ref_32 doi: 10.3390/s24123783 – ident: ref_45 – ident: ref_14 doi: 10.1109/CVPR.2016.91 – ident: ref_33 doi: 10.1109/SMC53992.2023.10394415 – ident: ref_6 doi: 10.1007/11744023_32 – ident: ref_35 doi: 10.1109/CVPR.2018.00913 – ident: ref_25 doi: 10.3390/agriculture12020248 |
SSID | ssj0023338 |
Score | 2.4450548 |
Snippet | Given the severe impact of Citrus Huanglongbing on orchard production, accurate detection of the disease is crucial in orchard management. In the natural... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 4448 |
SubjectTerms | Artificial intelligence Citrus fruits Citrus Huanglongbing deep learning Neural networks object detection orchard management Telematics YOLOv8n |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_oiigcvxW2aZrPH9cUiPg4q6Knk1fWwZoVd_f1-abpFQfFiD4W2U5jMNJlvMs0XQo4sB4boOpFWqpunPDMmRS9iKcAy0wixiCFhvfPNrRg88qun4unLVl_hn7BIDxwNh4Td8I6z1hZCcy2krHRllTA8rzLBpA6jL2LeLJlqUq0cmVfkEcqR1J9MEKc4Dvkt-tQk_b8jyzrCXC6TpQYa0n5UaYXMOb9KFr8QBq6R-z49d9P67ylP-6PhGKn9yysF8KRn9fIJOnhXfjga-yEy3iE9j-UXeoqTpXhHeRqnEXD5fHd99yH9Onm8vHg4G6TNtgipQSumqeUGA5TKVMdogC0lLRO6KAobamwq68lQNRG8YjpT6JCqkLanpbQWyKgb2G42yLwfe7dFqOuFtahAgZVgXDquJOcOwh3TE5bJIiHHM3OVpuEMD1tXjErkDsGyZWvZhBy2om-RKOMnodNg81YgcFvXN-DxsvF4-ZfHE7I781jZdLhJmQfqPTSlmyXkoH2MrhLqH8q78XuUyRjGNJ6QzejpVhOoWWOx7f_QcIcsMGCfMAWcdXbJPPzv9oBdpnq__kw_Af5T6gw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB6V5VIOiFchLa0M4sAlYu04jveEdqHbVcXjAEj0FPmVcFichV36-ztOsilIpTlESjKJnBmP55sZewxwZDliiMyJuFBZEnNqTIxaxGIEy0yjiUUbEtY7X16JyR3_eZ_etwG3eTutcjkm1gO1rUyIkZ8kobZahq4cPZ09xWHXqJBdbbfQWIFVipYmTOmS4x-dw5Wg_9VUE0rQtT-Zo7XieMg3Nqgu1f8-vqztzHgD1luASIaNRDfhg_NbsPaqbOA23AzJuVvUc6g8GU5LbObi4ZEg_CRn9SIKMnlRvpxWvkS_tyTnTRKGjPBkCb6jPGmCCXj56_ri-rf0O3A3_n57NonbzRFig3-xiC03OEwpqvpGI-RS0jKh0zS1IdOm6ECG3IngBdNUoVqqVNqBltJaxEdZqHnzCXq-8m4PiBuEFamIBQvBuHRcSc4dEvfNQFgm0wiOl-zKTVs5PGxgMc3RgwiczTvORnDYkc6achn_IhoFnncEocJ1faN6LvNWYfI0M7zvrLWp0FwLKQtdWCUMTwoqmNQR7C8llrdqN8__dpIIDrrHqDAhC6K8q14aGspwZOMR7DaS7lqCzawR2ef_f_wLfGSIbUKIl_b3oYeSdV8Rmyz0t7oD_gEu6uBC priority: 102 providerName: ProQuest |
Title | A Detection Algorithm for Citrus Huanglongbing Disease Based on an Improved YOLOv8n |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39065846 https://www.proquest.com/docview/3085079071 https://www.proquest.com/docview/3085120734 https://doaj.org/article/57c40eddd56b4b688fbfda6c43f1628b |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYEDKs-mLSuDeuASSBzH8R4qtNt2WaE-ELDScor8SjhsnT62iP57xk42olKRyMHKYyzZY4_nG088A7BvGGKIwvK4kkUWs1TrGKWIxgiWqUIVizrEn3c-PePTGfs8z-drsMqx2THw5kHTzueTml0v3v--uvuIAn_gLU402T_coBZieIl12MTbwicyOGW9M4FmWUho7c90xagPkzbA0P2q99RSiN7_b8gZVM9kC550mJGM2kF-CmvWPYPHf0USfA7fRuTILsNvVY6MFnWDNv_PC4KIlByGcxVkeitdvWhcjaZwTY5avwwZY2EI1pGOtPsL-Pjj_OT8l3AvYDY5_n44jbt8CbHGXixjwzSuXDKViVaIwqQwlKs8z413vsl0KLw7hbOKqlSipMpcmKESwhiETIUPg_MSNlzj7DYQO_SHVBEeVpwyYZkUjFkkTvSQGyryCN6t2FXqLpi4z2mxKNGo8Jwte85G8LYnvWwjaDxENPY87wl80Ovwormuy06GyrzQLLHGmJwrprgQlaqM5JplVcqpUBHsrUasXE2kMvMx-bArRRrBm_4zypB3jEhnm9uWJqW42LEIXrUj3bcEmxlA2s7_dGMXHlEEPX7vN032YAPH175G0LJUA1gv5gWWYvJpAJvj47MvXwdhA2AQJusfaFXpVw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9VAEJ8gHtSDUVSsoq4GEi8N7Xa73Xcw5sHz8ZAHHIQETmW_Wg6PLfoeGv8p_0Zn-6Uk6I0emrSdbprZmZ3f7HRmANYNQwyRWR4WMktCFmsdohbREMEyVWhi0Yb4fOf9Az45Zp9P0pMl-NXlwvjfKrs1sV6oTaX9Hvlm4murZejKxR8vv4a-a5SPrnYtNBqx2LM_f6DLNv-wO8L53aB0_OloexK2XQVCzWK2CA3TqN8ylpFWiFWkMJSrNE2ND1FJ9MF90IGzgqpYojzLVJiBEsIYBBaZLxaD496BuyxBS-4z08c7vYOXoL_XVC_Ch9HmHK0jw0Ncs3l1a4B_49naro0fwcMWkJJhI0GPYcm6FXjwV5nCJ_BlSEZ2Uf-z5chwViJbFucXBOEu2a6TNsjkSrpyVrkS_eySjJqgD9nCkyH4jnSk2bzAy9PD6eF34Z7C8a2w7Rksu8rZ50DswGfAIvYsOGXCMikYs0gc6QE3VKQBvO_Yleu2UrlvmDHL0WPxnM17zgbwrie9bMpz3ES05XneE_iK2vWN6luZtwqap5lmkTXGpFwxxYUoVGEk1ywpYk6FCmCtm7G8VfN5_kcoA3jbP0YF9VEX6Wx11dDEFFdSFsBqM9P9l-Bn1gjwxf8HfwP3Jkf703y6e7D3Eu5TxFV-ezmO1mAZZ9m-Qly0UK9rYSRwdtvS_xvPvBr3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKGAQSFyiTRzH8R4Q2u12taVlWwGV2lPwK-lh6xR2C-Kv8esY5wVIwK05REoysazxjOcbjz0D8MIwxBCZ5WEhsyRksdYhahENESxThSYWbYg_7_xuwedH7O1xerwBP7qzMH5bZTcn1hO1qbRfIx8mPrdahq5cPCzabRGH09mb88-hryDlI61dOY1GRPbs92_ovq1e705xrF9SOtv5uD0P2woDoWYxW4eGadR1GctIK8QtUhjKVZqmxoerJPrjPgDBWUFVLFG2ZSrMSAlhDIKMzCeOwXavwGbmvaIBbE52Fofve3cvQe-vyWWUJKNouEJbyfASf1jAulDAv9FtbeVmN-FGC0_JuJGnW7Bh3W24_lvSwjvwYUymdl3v4HJkvCyRMevTM4Lgl2zXRzjI_EK6clm5Er3ukkybEBCZ4M0Q_Ec60ixl4OPJwf7BV-HuwtGlMO4eDFzl7AMgduTPwyISLThlwjIpGLNIHOkRN1SkAbzq2JXrNm-5L5-xzNF_8ZzNe84G8LwnPW-SdfyNaOJ53hP4_Nr1i-pLmbfqmqeZZpE1xqRcMcWFKFRhJNcsKWJOhQpgqxuxvFX6Vf5LRAN41n9GdfUxGOlsddHQxBTnVRbA_Wak-55gN2s8-PD_jT-Fqyj5-f7uYu8RXKMIsvxacxxtwQAH2T5GkLRWT1ppJPDpshXgJ9_8IIk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Detection+Algorithm+for+Citrus+Huanglongbing+Disease+Based+on+an+Improved+YOLOv8n&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xie%2C+Wu&rft.au=Feng%2C+Feihong&rft.au=Zhang%2C+Huimin&rft.date=2024-07-10&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=14&rft.spage=4448&rft_id=info:doi/10.3390%2Fs24144448&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24144448 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |