Porphyrin-based metal-organic frameworks for cancer theranostics
Theranostics, integrating diagnostic and therapeutic functionalities, have emerged as advanced systems for timely cancer diagnosis and effective treatment. The development of versatile materials suitable for cancer theranostics is intensifying. Porphyrin-based metal-organic frameworks (MOFs) leverag...
Saved in:
Published in | Advanced Sensor and Energy Materials Vol. 3; no. 4; p. 100123 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2773-045X 2773-045X |
DOI | 10.1016/j.asems.2024.100123 |
Cover
Loading…
Abstract | Theranostics, integrating diagnostic and therapeutic functionalities, have emerged as advanced systems for timely cancer diagnosis and effective treatment. The development of versatile materials suitable for cancer theranostics is intensifying. Porphyrin-based metal-organic frameworks (MOFs) leverage the structural diversity and designability inherent in MOFs, alongside the robust photophysical, catalytic, and biological properties of porphyrins. These materials enhance the solubility and stability of porphyrins and facilitate their stable functionalized assemblies, conferring the potential for multimodal imaging diagnostics and precision therapeutics. In this review, we summarized the potential of porphyrin-based MOFs as cancer theranostics platforms, focusing on recent advancements in porphyrin-based MOFs, and highlighting their functionalized strategies and developments in diagnostic imaging and synergistic therapies. Finally, we proposed the challenges and prospects of these emerging materials in cancer theranostics.
•The advantages of porphyrin-based MOFs in cancer theranostics briefly outlined.•Multifunctional construction strategies of porphyrin-based MOFs for theranostics were summarized.•Various diagnostic imaging strategies involving porphyrin-based MOFs were discussed.•Various therapeutic strategies for cancer using porphyrin-based MOFs were detailed in-depth. |
---|---|
AbstractList | Theranostics, integrating diagnostic and therapeutic functionalities, have emerged as advanced systems for timely cancer diagnosis and effective treatment. The development of versatile materials suitable for cancer theranostics is intensifying. Porphyrin-based metal-organic frameworks (MOFs) leverage the structural diversity and designability inherent in MOFs, alongside the robust photophysical, catalytic, and biological properties of porphyrins. These materials enhance the solubility and stability of porphyrins and facilitate their stable functionalized assemblies, conferring the potential for multimodal imaging diagnostics and precision therapeutics. In this review, we summarized the potential of porphyrin-based MOFs as cancer theranostics platforms, focusing on recent advancements in porphyrin-based MOFs, and highlighting their functionalized strategies and developments in diagnostic imaging and synergistic therapies. Finally, we proposed the challenges and prospects of these emerging materials in cancer theranostics. Theranostics, integrating diagnostic and therapeutic functionalities, have emerged as advanced systems for timely cancer diagnosis and effective treatment. The development of versatile materials suitable for cancer theranostics is intensifying. Porphyrin-based metal-organic frameworks (MOFs) leverage the structural diversity and designability inherent in MOFs, alongside the robust photophysical, catalytic, and biological properties of porphyrins. These materials enhance the solubility and stability of porphyrins and facilitate their stable functionalized assemblies, conferring the potential for multimodal imaging diagnostics and precision therapeutics. In this review, we summarized the potential of porphyrin-based MOFs as cancer theranostics platforms, focusing on recent advancements in porphyrin-based MOFs, and highlighting their functionalized strategies and developments in diagnostic imaging and synergistic therapies. Finally, we proposed the challenges and prospects of these emerging materials in cancer theranostics. •The advantages of porphyrin-based MOFs in cancer theranostics briefly outlined.•Multifunctional construction strategies of porphyrin-based MOFs for theranostics were summarized.•Various diagnostic imaging strategies involving porphyrin-based MOFs were discussed.•Various therapeutic strategies for cancer using porphyrin-based MOFs were detailed in-depth. |
ArticleNumber | 100123 |
Author | Guan, Liandi Zhang, Cun Wang, Wei Liu, Fang Zhang, Jianwei Liang, Qionglin |
Author_xml | – sequence: 1 givenname: Liandi surname: Guan fullname: Guan, Liandi email: guanliandi@qdu.edu.cn organization: School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China – sequence: 2 givenname: Fang surname: Liu fullname: Liu, Fang organization: School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China – sequence: 3 givenname: Cun orcidid: 0009-0008-5779-4506 surname: Zhang fullname: Zhang, Cun organization: School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China – sequence: 4 givenname: Wei surname: Wang fullname: Wang, Wei organization: Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266071, China – sequence: 5 givenname: Jianwei surname: Zhang fullname: Zhang, Jianwei email: zhangjianwei@qdu.edu.cn organization: School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China – sequence: 6 givenname: Qionglin surname: Liang fullname: Liang, Qionglin email: liangql@tsinghua.edu.cn organization: MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China |
BookMark | eNqFkMtKAzEUQINUsGq_wM38wNSbx2QmC0EpPgqCLhTchTtJxqa2k5IMin9vakXEha4SbjiHm3NIRn3oHSEnFKYUqDxdTjG5dZoyYCJPgDK-R8asrnkJonoa_bgfkElKSwBgTSUVhTE5vw9xs3iPvi_brLHF2g24KkN8xt6boou4dm8hvqSiC7Ew2BsXi2HhIvYhDd6kY7Lf4Sq5ydd5RB6vLh9mN-Xt3fV8dnFbGkHFUFoumbRSidpK1yirOqRdW0lOEWgDShkLWIFjRiisLbbccN7kZwaVobTmR2S-89qAS72Jfo3xXQf0-nOQF9YY80Irp1sLklkUXS1b0SiueEMbIRhltVOCQnbxncvEkFJ03bePgt421Uv92VRvm-pd00ypX5TxAw4-9ENEv_qHPduxLid69S7qZLzLMa2Pzgz5D_5P_gNkH5QQ |
CitedBy_id | crossref_primary_10_1080_1061186X_2024_2433551 |
Cites_doi | 10.1039/D1TB02306C 10.1016/j.biomaterials.2017.10.021 10.1080/10717544.2022.2127973 10.1039/D1QI01384J 10.1002/asia.202200161 10.1039/D0TB02725A 10.1021/acsnano.3c01333 10.1007/s12274-018-2242-2 10.1039/D0CS00664E 10.1007/s10103-023-03813-2 10.1002/adtp.202300329 10.2147/IJN.S267321 10.1002/smtd.202200178 10.1016/j.esci.2023.100107 10.1021/acs.chemmater.7b00228 10.7150/thno.79625 10.1016/j.ccr.2020.213615 10.1021/acsabm.1c00174 10.1002/anie.201907388 10.1038/s41573-023-00723-4 10.1039/D3MH01244A 10.1021/acsanm.2c03390 10.1002/adma.201602197 10.1021/acsami.9b14084 10.1016/j.micromeso.2021.111337 10.1002/zaac.201900144 10.1038/s41467-019-14199-7 10.1021/acsami.9b11238 10.1021/acsnano.9b00300 10.3762/bjnano.9.275 10.1039/D0CS00178C 10.1016/j.snb.2022.132694 10.1021/acsami.0c01539 10.1021/acsnano.7b02533 10.1002/adfm.202207410 10.1021/acsami.0c14046 10.1021/ja408084j 10.1039/C9CC01957J 10.1021/acs.inorgchem.9b03719 10.1093/nsr/nwaa221 10.1007/s12274-020-3025-0 10.1016/j.matdes.2023.111861 10.1002/adhm.202101174 10.1021/ja5111317 10.1021/ja00009a065 10.1021/acsnano.9b08133 10.1002/adfm.202110432 10.1002/adfm.202307816 10.1021/acsami.1c17574 10.1002/advs.201903441 10.1021/acsami.2c06873 10.1016/j.esci.2023.100118 10.1021/acsnano.3c00891 10.1016/j.cej.2022.139888 10.1021/acsnano.7b07746 10.1021/acsnano.1c04280 10.1021/acs.chemmater.8b02467 10.1021/acsami.0c01413 10.1021/acsami.9b15083 10.1021/acsami.9b12641 10.1021/acs.nanolett.9b02904 10.1016/j.jcis.2016.12.052 10.1039/D0CC07903K 10.1002/anie.201911477 10.1039/C9TB02597A 10.1016/j.jcis.2024.01.157 10.1002/adfm.201705451 10.1002/adfm.201804634 10.1002/anie.201902714 10.1021/acsami.8b09680 10.1016/j.biomaterials.2016.04.034 10.1021/acsbiomaterials.3c00507 10.1016/j.mattod.2022.05.024 10.1002/anie.201602417 10.1002/adma.202006892 10.1002/smll.202005771 10.1016/j.nantod.2022.101439 10.1002/anie.201909880 10.1021/acsami.0c20617 10.1021/ja510525s 10.1002/slct.202103418 10.1002/advs.202206779 10.1002/smll.201600635 10.1016/j.addr.2022.114496 10.1021/acsnano.8b02400 10.1039/D1NA00610J 10.1021/ja508679h 10.1021/acsami.3c11909 10.1021/acsami.9b14958 10.1002/anbr.202200136 10.1002/smll.201603459 10.1002/smll.201700504 10.3322/caac.21834 10.1021/acsami.9b11607 10.1016/j.colsurfb.2021.112189 10.1016/j.nantod.2023.102089 10.1039/C5CC03028E 10.1039/D3TB00632H 10.1002/adfm.201901417 10.1021/acsami.8b17684 10.1016/j.ccr.2022.214686 10.1021/jacs.0c02129 10.1039/D2TB02789E 10.1002/anie.201913748 10.1007/s12274-019-2610-6 10.7150/thno.4571 10.1002/adma.201901893 10.1039/D2CS00275B 10.1016/j.biomaterials.2020.119792 10.7150/thno.96675 10.1002/advs.202206239 10.1002/adma.202302335 10.1007/s12274-023-5477-5 10.1016/j.ccr.2016.11.011 10.1021/acsanm.2c04301 10.1038/s41427-019-0164-4 10.1021/jacs.7b07302 10.1021/acsami.6b14446 10.1016/j.biomaterials.2021.120782 10.1002/adhm.202101946 10.1002/anie.201902612 10.1016/j.cej.2022.136706 10.1021/jacs.6b00007 10.1039/C9NH00021F 10.1021/acs.chemmater.8b03043 10.1021/acs.analchem.8b01455 10.1021/acs.langmuir.3c00667 10.1002/anie.201602274 10.1021/acsnano.4c00844 10.1021/ja804703w 10.1002/adfm.202108883 10.1021/acs.inorgchem.8b00384 10.1038/s41427-021-00303-1 10.1016/j.ccr.2021.213945 10.1002/smll.202306364 10.1002/adma.202310033 10.1016/j.biomaterials.2022.121472 10.1002/smll.202309026 10.1016/j.cej.2022.135370 10.1021/jacs.5b04069 10.1021/ja406844r 10.1021/acsnano.3c13225 10.7150/thno.80687 10.1039/C7TB02818K 10.7150/thno.38069 10.1021/jacs.6b06663 10.1002/anie.201204475 10.1039/D0BM02225J 10.1002/adfm.202103581 10.1039/D2CC06354A 10.1021/acs.nanolett.9b02253 10.1002/adfm.201801783 10.7150/thno.25433 10.1002/anie.202112128 10.1002/adfm.201808594 10.1016/j.biomaterials.2018.09.004 10.1021/acsnano.2c10310 10.1186/s12951-022-01388-8 10.1021/acsnano.1c04681 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.asems.2024.100123 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2773-045X |
ExternalDocumentID | oai_doaj_org_article_bd062da4f76b489393818442127e9410 10_1016_j_asems_2024_100123 S2773045X24000347 |
GroupedDBID | 6I. AAFTH AALRI AAXUO ADVLN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E ROL 0R~ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c414t-d3626d6947d6e89d9fa1fb5631a018099cd0a50e2c49a7dab3c338631205c1173 |
IEDL.DBID | DOA |
ISSN | 2773-045X |
IngestDate | Wed Aug 27 01:30:39 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 Tue Jul 01 00:20:32 EDT 2025 Wed Dec 04 16:48:38 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Enhanced photodynamic therapy Multifunctional strategy Diagnosis imaging Porphyrin-based metal-organic frameworks Cancer theranostics Synergistic therapy |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-d3626d6947d6e89d9fa1fb5631a018099cd0a50e2c49a7dab3c338631205c1173 |
ORCID | 0009-0008-5779-4506 |
OpenAccessLink | https://doaj.org/article/bd062da4f76b489393818442127e9410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bd062da4f76b489393818442127e9410 crossref_primary_10_1016_j_asems_2024_100123 crossref_citationtrail_10_1016_j_asems_2024_100123 elsevier_sciencedirect_doi_10_1016_j_asems_2024_100123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | Advanced Sensor and Energy Materials |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – sequence: 0 name: Elsevier B.V – name: Elsevier |
References | Du, Shi, Qin, Hu, Zhu, Jiang, Wang (bib149) 2022; 32 Wang, Wang, Gao, Ding, Yang, He, Xie, Zhang, Huang, Nie, Yan, Fan (bib70) 2024; 36 Sun, Sun, Feng, Zhou (bib49) 2016; 55 Sun, Chen, Liu, Zhang, Shi, Shi, Zhang (bib121) 2021; 3 Ai, Sun, Gao, Wang, Guan, Wang, Wang, Zhang, Liang (bib2) 2021; 31 Akhter, Ahmad, Javed, Haque, Khalilullah, Gupta, Ali (bib18) 2021; vol. 1 Truong Hoang, Kim, Kim, Lee, Shim (bib154) 2022; 209 Guan, Sun, Xiong, Hu, Ding, Liang (bib97) 2022; 373 Bao, Zu, Wang, Li, Fan, Shi, Xia, Cheng (bib64) 2020; 15 Hynek, Jurík, Koncošová, Zelenka, Křížová, Ruml, Kirakci, Jakubec, Kovanda, Lang, Demel (bib41) 2018; 9 Oroojalian, Karimzadeh, Javanbakht, Hejazi, Baradaran, Webster, Mokhtarzadeh, Varma, Kesharwani, Sahebkar (bib14) 2022; 57 Yang, Dai, Zhang, Teng, Ma, Yang (bib10) 2023; 13 Zhang, Li, Duan, Yao, Lu, Li, Tian, Li (bib90) 2022; 9 Xie, Wang, Sun, Wang, Li (bib95) 2023; 3 Zheng, Wang, Guan, Pei, Jiang, Xie (bib37) 2020; 235 Song, Zou, Castellanos, Matsuura, Ronald, Shuhendler, Weber, Gilad, Müller, Witney, Chen (bib4) 2024; 14 Yin, Song, Yang, Zhao, Wang, Zhu, Yin, Zhang (bib89) 2019; 29 Meng, Deng, Liu, Guo, Liu, Dai, Fan, Wang, Zhao (bib35) 2019; 19 Wang, Qu, Zhao, Weng, Waterhouse, Yan, Guan, Zhou (bib144) 2019; 11 Wang, Wu, Lim, Phua, Xu, Chen, Guo, Zhao (bib124) 2019; 31 Wang, Sun, Liu, Kuang, Gulzar, He, Gai, Yang, Lin (bib25) 2021; 439 Ghoochani, Hosseini, Sabouri, Soheilifar, Neghab, Hashemzadeh, Velayati, Darroudi (bib40) 2023; 38 Qian, Han, Yang, Cai, Jin, Yang (bib43) 2023; 39 Li, Chen, Tan, Wu, Ren, Fu, Niu, Li, Meng (bib114) 2022; 283 Zhou, Wang, Jin, Zhao, Zhang, Wen, He (bib165) 2019; 4 Lin, He, Li, Chen, Liu (bib164) 2024; 20 Ding, Liu, Gref (bib11) 2022; 190 Zhang, Ye, Wei, Luo, Xiao (bib122) 2019; 11 Wang, Chen, Wang, Liu, Zhou, Wang (bib133) 2019; 58 Zhang, Meng, Cao, Yang, Dong, Zhang, Lu, Shi, Zhang (bib145) 2018; 28 Wan, Zhong, Pan, Li, Chen, Li, Tang (bib140) 2019; 58 Liu, Feng, Chen, Zou, Bosch, Yuan, Wei, Fordham, Wang, Zhou (bib57) 2015; 137 Chen, Zhao, Yan (bib23) 2023; 2 Ai, He, Sun, Jia, Wu, Zhang, Sun, Liang (bib143) 2023; 35 Zhang, Wang, Liu, Wang, Kang, Huang, Dong, Ren, Qu (bib86) 2018; 12 Li, Yang, Wang, Jia, Hou (bib102) 2023; 10 Luo, Ni, Culbert, Lan, Li, Jiang, Kaufmann, Lin (bib47) 2020; 142 Lu, He, Lin (bib117) 2014; 136 Jiang, Feng, Wang, Gu, Wei, Chen, Zhou (bib56) 2013; 135 Qindeel, Sargazi, Hosseinikhah, Rahdar, Barani, Thakur, Pandey, Mirsafaei (bib15) 2021; 6 Zhang, Jiang, Chen, Pan, Sun, Liu, Li, Ren, Wu, Huang (bib136) 2020; 13 Fang, Yang, Du, Gao, Wu, Zhang, Shen (bib106) 2022; 10 Zhang, Sun, Zhang, Wang, Wang, Dong, Liu, Ren, Qu (bib87) 2019; 29 Wang, Liu, Sun, Dong, Kuang, Dong, He, Gai, Yang (bib129) 2020; 12 Zhao, Li, Du, Deng, Jiang, Zeng (bib158) 2021; 10 Qin, Peng, He, Li, Zhang (bib131) 2019; 11 Liu, Wang, Li, Cai, Yin, He, Zhang (bib93) 2017; 13 Xie, Yu, Liu, Zeng, Zou, Li, Zeng, Zhang (bib101) 2021; 272 Zhang, Tian, Shang, Li, Yin (bib113) 2018; 10 Fu, Wan, Qi, He, Li, Yang, Xu, Lin, Huang (bib105) 2021; 33 Burger, Hernández, Carbonell, Rattenberger, Wiltsche, Falcaro, Slugovc, Borisov (bib109) 2023; 6 Liu, Liu, Lu, Wu, Sun, Chu, Peng (bib137) 2023; 228 Park, Jiang, Feng, Mao, Zhou (bib59) 2016; 138 Wang, Dai, Kong, Du, Ni, Zhao, Sun, Shen, Li, Fan (bib17) 2020; 12 Xia, Xue, Lei, Xu, Sun, Li, Zhao, Wang, Luo, Zhang, Huang, Du, Yan (bib60) 2020; 8 Jiang, Liu, He, Dang, Zhang, Tian (bib65) 2023; 16 Jia, Jin, Xu, Liu, Mao, Peng, Zhang (bib132) 2023; 15 Zheng, Wang, Pei, He, Liu, Xie (bib32) 2017; 29 Zhang, Ouyang, Sohn, Fadeev, Karmi, Nechushtai, Stein, Pikarsky, Willner (bib108) 2022; 16 Jiang, Zhao, Sun, Xiang, Yan, Wang, Pei (bib20) 2023; 11 Peng, Yao, Zhao, Zhang, Chen, Wang, Yang, Tang, Chi (bib9) 2023; 3 Wong, Sena-Torralba, Álvarez-Diduk, Muthoosamy, Merkoçi (bib7) 2020; 14 He, Chen, Tao, Tian, An, Lin, Tian, Yang, Yang (bib68) 2019; 11 Jiang, Zhang, Li, Wang, Fu (bib110) 2023; 13 He, Huang, Wang, Li, Liu, Zhou, Wang, Zhang, Wang, Jacobson, Zhu, Yu, Dai, Chen (bib84) 2019; 58 Liu, Yang, Zhu, Yi, Dong, Xu, Chen, Yang, Lu, Jiang, Liu (bib153) 2016; 97 Guan, Hu, Zuo, Sun, Ai, He, Ma, Ding, Liang (bib98) 2023; 59 Pantwalawalkar, Mhettar, Nangare, Mali, Ghule, Patil, Mohite, More, Jadhav (bib13) 2023; 9 Zhang, Yin (bib48) 2022; 14 Wang, Zeng, Zhang, Zeng, Zhang (bib91) 2018; 28 Hu, Zhu, Dong, Zhu, Zhu, Ogawa, Odani, Koh, Chen (bib130) 2020; 59 Gharehdaghi, Rahimi, Naghib, Molaabasi (bib139) 2022; 19 Zhang, Lei, Ma, Ling, Liu, Ju (bib107) 2015; 51 Yuan, Li, Xu, Wang, Zhang, Jin, Chen, Sun, Wu, Zhang, Tang, Wang (bib138) 2022; 5 Wan, Li, Fu, Feng, Zhang, Li, Lin, Huang, Cui (bib38) 2024; 20 Zhao, Kuang, Liu, Wang, Pei (bib62) 2018; 30 Fan, Wu, Deng, Li, Huang, Liu (bib162) 2024; 18 Shen, Ma, Zhou, Zhang, Hao, Sun, Cao (bib125) 2021; 13 Tao, Sun, Shi, Pei, Ge, Yang, Liu (bib152) 2021; 9 Feng, Gu, Li, Jiang, Wei, Zhou (bib135) 2012; 51 Chao, Liang, Yang, Wang, Maiti, Tian, Wang, Pan, Wu, Yang, Liu (bib151) 2018; 12 Li, Cheng, Xie, Qiu, Zeng, Li, Wan, Zhang, Liu, Zhang (bib167) 2017; 11 He, Brasino, Mao, Cho, Park, Goodwin, Cha (bib76) 2017; 13 Kan, Jiang, Xue, Yu, Wang, Zhou, Dong (bib39) 2018; 57 Overchuk, Weersink, Wilson, Zheng (bib142) 2023; 17 Sun, He, Xiong, Wang, Lian, Hu, Li, Dalgarno, Yang, Tian (bib31) 2021; 13 Zhou, Dutta, Cao, Ge (bib160) 2023; 17 Li, Wang, Chen, Zhou, Dang, Chang, Wu (bib69) 2018; 8 Wang, Wu, Phua, Yang, Qi Lim, Gu, Qian, Wang, Guo, Chen, Zhao (bib36) 2020; 11 Jiang, Zhao, Li, Li, Huang (bib81) 2021; 13 Abrahams, Hoskins, Robson (bib44) 1991; 113 Zhang, Pan, Zhou, Xia (bib80) 2021; 17 Cheng, Li, Sun, Zhang (bib72) 2019; 11 Ye, Jiang, Li, Wu, Chen (bib27) 2023; 3 Zhang, Wasson, Shayan, Berdichevsky, Ricardo-Noordberg, Singh, Papazyan, Castro, Marino, Ajoyan, Chen, Islamoglu, Howarth, Liu, Majewski, Katz, Mondloch, Farha (bib21) 2021; 429 Falsafi, Zahiri, Saljooghi, Abnous, Taghdisi, Sazgarnia, Ramezani, Alibolandi (bib134) 2021; 325 Lu, He, Guo, Chan, Ni, Weichselbaum, Lin (bib46) 2016; 138 Zhao, Zhang, Wang, Jiang, Cheng, Wang, Xiang, Zhang, Liu, Shi (bib161) 2022; 32 Li, Huang, Wei, He, Ma, Lu, Jin, Wang, Wen (bib103) 2022; 10 Zhang, Li, Chen, Wang, Wang, Yin (bib115) 2017; 7 Josefsen, Boyle (bib92) 2012; 2 Calvete, Pinto, Pereira, Geraldes (bib111) 2017; 333 Hu, Lu, Zhou, Chen, Yao, Liang, Han, Dong, Shi (bib147) 2020; 8 Feng, Gu, Chen, Park, Wei, Sun, Bosch, Yuan, Zhou (bib55) 2014; 136 Jin, Chau, Arambula, Gao, Sessler, Zhang (bib16) 2022; 51 Scott, Baines, Gong, Moore, Pamuk, Saber, Subedee, Thompson, Xiao, Pazdur, Rao, Schneider, Beaver (bib3) 2023; 22 Liu, Zhang, Lei, Shen, Ju (bib33) 2017; 9 Liu, Pan, Liu (bib141) 2020; 59 Wang, Xiong, Li, Hu, Wei, Tian (bib146) 2021; 57 Yao, Yang, Li, He, Yang (bib166) 2023; 453 Ma, Huang, Song, Chen, Zhang (bib6) 2016; 12 Cheng, Li, Zou (bib116) 2024; 7 Liu, Xing, Akakuru, Luo, Sun, Zou, Yu, Fang, Wu (bib88) 2019; 19 Wang, Shang, Li, Yu, Chi, Wang, Zhang, Shi, Shen, Waterhouse, Liu, Tian, Zhang, Liu (bib73) 2016; 28 Chen, Zhu, Kaskel (bib24) 2021; 60 Schubert (bib54) 2022; 469 Gao, Li, Zhang, Cheng, An, Chen, Chen, You, Zhu, Sun (bib128) 2020; 12 Tabish, Dey, Mosca, Salimi, Palombo, Matousek, Stone (bib82) 2020; 7 Ai, Hu, Liang, Sun, Xin, Liang (bib8) 2022; 32 Lv, Li, Zhu, Mu, Luo, Ren, Liu, Li, Cheng, Ma (bib52) 2023; 10 Li, Di, Gao, Cheng, Di, Zhang, Liu, Shi, Sun, Li, Yan (bib118) 2017; 139 Park, Jiang, Feng, Zhou (bib50) 2016; 55 Lu, He, Lin (bib45) 2015; 137 Jiang, Zou, Zhao, Zhen, Li, Huang (bib53) 2020; 59 Li, Qiao, He, Sun, Feng, Hu, Xu, Xu, Ma, Tian (bib71) 2020; 13 Wan, Cheng, Zeng, Zhang (bib104) 2019; 13 Bray, Laversanne, Sung, Ferlay, Siegel, Soerjomataram, Jemal (bib1) 2024; 74 Yue, Mei, Wang, Miao, Dong, Li (bib74) 2022; 20 Mi (bib96) 2020; 10 Liu, Huang, Zhang, Lei (bib22) 2021; 50 Ouyang, Wang, Huang, Yang, Tian, Zhang (bib168) 2021; 4 Wan, Zeng, Cheng, Zhang (bib163) 2018; 185 Bao, Wang, Chen, Liu, Wang, Zhang, Zhao, Sha, Yang, Li, Zhong, Bai (bib19) 2024; 18 Zhu, Liu, Yang, Zhang, Xiao, Liu, Wang, Yi, Xu, Ren (bib112) 2018; 6 Chen, Sun, Wang, Zhou, Kong, Meng, Zhang (bib66) 2023; 17 Li, Hang, Jin (bib12) 2023; 3 Tian, Cao, Zhang, Li, Yin (bib67) 2019; 55 An, Guo, Li, Liu, Xu, Guo, Ding, Li, Chen, Zhang (bib28) 2020; 12 Wang, Liu, Sun, Feng, He, Yang, Gai, Quan, Lin (bib157) 2021; 15 Pu, Zhu, Qiao, Xin, Chen, Sun, Jin, Nie, Fan (bib61) 2021; 9 Zeng, Zhang, Peng, Gong, Zhang (bib83) 2018; 28 Wang, Yang, Yang, Pan, Sun, Zhang, Shao, Shen, Lin, Li, Yan (bib77) 2022; 43 Hang, Li, Zhang, Li, Fang, Chen, Zhou, Qu, Shao, Jiang (bib155) 2024; 20 Xu, Saw, Xu (bib126) 2022; 6 Huang, Cao, Liu, Wei, Zhu, Huang (bib26) 2023; 3 Feng, Chung, Wei, Gu, Jiang, Chen, Darensbourg, Zhou (bib58) 2013; 135 Ling, Wang, Mi, Wang, Chen, Li, Zhang, Wang (bib75) 2022; 17 Chen, Wang, Shan, Chen, Zhang, Lu (bib99) 2018; 90 Li, Xie, Cheng, Li, Zhang, Qiu, Liu, Wang, Zhang (bib100) 2018; 151 Sun, Bi, Wang, Li, Wang, Xu, Yang, He, Gai, Yang (bib34) 2019; 11 Liu, Tian, Zhang, Dong, Wang, Liu (bib127) 2018; 10 Xu, Pu (bib5) 2021; 50 Alkordi, Liu, Larsen, Eubank, Eddaoudi (bib30) 2008; 130 Li, Zhou, Chen, Pei, Li, Wang, Xie (bib159) 2022; 437 Xu, Duan, Yu, Dong (bib29) 2023; 11 Zheng, Wang, Liu, Lei, Liu, Xie (bib51) 2018; 30 Geng, Li, Macharia, Ren, Meng, Wang, Lan, Xiao (bib156) 2024; 660 Zhang, Xin, Li, Cao, Sun, Wang, Luo, Zeng, Li, Zhang, Zhang, Huang (bib123) 2022; 11 Tan, Li, Li, Lu, Wang, Liu, Wen, Li, Tu, Chen, Chen (bib119) 2024; 54 Li, Gao, Wu, Yang, Mo, Yu, Gong, Liu, Wang, Luo, Li (bib150) 2023; 10 Zhu, Yang, Jin, Chao, Tian, Liu, Dong, Liu (bib63) 2019; 12 Rakshit, Moulik, Bhattacharya (bib79) 2017; 491 Lin, Gong, Fang, Jiang (bib120) 2019; 645 Xiang, Li, Tan, Shi, Dong, Cheng, Huang, Zhang, Gong, Yang, Yang, Dong, Zhang (bib78) 2022; 444 Jia, Du, Yang, Li, Ohulchanskyy, Fang, Chen (bib94) 2024; 34 Zhang, Chang, Hao, Zhang, Liu, Li, Wang, Zeng (bib85) 2023; 474 Deng, Zhao, Song, Zhang, Zhao, Hu, Zhang, Liu, Lin, Wang (bib148) 2022; 29 Wang, He, Liu, Jana, Wu, Zhang, Qian, Guo, Chen, Bindra, Zhao (bib42) 2021; 60 Zhang (10.1016/j.asems.2024.100123_bib107) 2015; 51 Zhang (10.1016/j.asems.2024.100123_bib145) 2018; 28 Bray (10.1016/j.asems.2024.100123_bib1) 2024; 74 Fu (10.1016/j.asems.2024.100123_bib105) 2021; 33 Li (10.1016/j.asems.2024.100123_bib114) 2022; 283 Zhang (10.1016/j.asems.2024.100123_bib123) 2022; 11 Tabish (10.1016/j.asems.2024.100123_bib82) 2020; 7 Luo (10.1016/j.asems.2024.100123_bib47) 2020; 142 Qindeel (10.1016/j.asems.2024.100123_bib15) 2021; 6 Zhang (10.1016/j.asems.2024.100123_bib108) 2022; 16 Liu (10.1016/j.asems.2024.100123_bib153) 2016; 97 Fan (10.1016/j.asems.2024.100123_bib162) 2024; 18 Tian (10.1016/j.asems.2024.100123_bib67) 2019; 55 Gharehdaghi (10.1016/j.asems.2024.100123_bib139) 2022; 19 Zhang (10.1016/j.asems.2024.100123_bib87) 2019; 29 Guan (10.1016/j.asems.2024.100123_bib97) 2022; 373 Liu (10.1016/j.asems.2024.100123_bib93) 2017; 13 Yuan (10.1016/j.asems.2024.100123_bib138) 2022; 5 He (10.1016/j.asems.2024.100123_bib68) 2019; 11 Wang (10.1016/j.asems.2024.100123_bib70) 2024; 36 Li (10.1016/j.asems.2024.100123_bib150) 2023; 10 Hang (10.1016/j.asems.2024.100123_bib155) 2024; 20 Zhang (10.1016/j.asems.2024.100123_bib113) 2018; 10 Xu (10.1016/j.asems.2024.100123_bib5) 2021; 50 Feng (10.1016/j.asems.2024.100123_bib58) 2013; 135 Zhang (10.1016/j.asems.2024.100123_bib115) 2017; 7 Falsafi (10.1016/j.asems.2024.100123_bib134) 2021; 325 Rakshit (10.1016/j.asems.2024.100123_bib79) 2017; 491 Scott (10.1016/j.asems.2024.100123_bib3) 2023; 22 Li (10.1016/j.asems.2024.100123_bib12) 2023; 3 Lv (10.1016/j.asems.2024.100123_bib52) 2023; 10 Chen (10.1016/j.asems.2024.100123_bib99) 2018; 90 Hu (10.1016/j.asems.2024.100123_bib147) 2020; 8 Zhang (10.1016/j.asems.2024.100123_bib48) 2022; 14 Chen (10.1016/j.asems.2024.100123_bib66) 2023; 17 Qian (10.1016/j.asems.2024.100123_bib43) 2023; 39 Li (10.1016/j.asems.2024.100123_bib102) 2023; 10 Zhu (10.1016/j.asems.2024.100123_bib112) 2018; 6 Wan (10.1016/j.asems.2024.100123_bib104) 2019; 13 Yang (10.1016/j.asems.2024.100123_bib10) 2023; 13 Park (10.1016/j.asems.2024.100123_bib50) 2016; 55 Zhang (10.1016/j.asems.2024.100123_bib80) 2021; 17 Hynek (10.1016/j.asems.2024.100123_bib41) 2018; 9 Wang (10.1016/j.asems.2024.100123_bib146) 2021; 57 Zhu (10.1016/j.asems.2024.100123_bib63) 2019; 12 Mi (10.1016/j.asems.2024.100123_bib96) 2020; 10 Ouyang (10.1016/j.asems.2024.100123_bib168) 2021; 4 Wan (10.1016/j.asems.2024.100123_bib163) 2018; 185 Wong (10.1016/j.asems.2024.100123_bib7) 2020; 14 Ghoochani (10.1016/j.asems.2024.100123_bib40) 2023; 38 Sun (10.1016/j.asems.2024.100123_bib121) 2021; 3 Oroojalian (10.1016/j.asems.2024.100123_bib14) 2022; 57 Liu (10.1016/j.asems.2024.100123_bib57) 2015; 137 Feng (10.1016/j.asems.2024.100123_bib135) 2012; 51 Wang (10.1016/j.asems.2024.100123_bib133) 2019; 58 Gao (10.1016/j.asems.2024.100123_bib128) 2020; 12 Lin (10.1016/j.asems.2024.100123_bib164) 2024; 20 Wang (10.1016/j.asems.2024.100123_bib144) 2019; 11 Sun (10.1016/j.asems.2024.100123_bib49) 2016; 55 Jin (10.1016/j.asems.2024.100123_bib16) 2022; 51 Liu (10.1016/j.asems.2024.100123_bib88) 2019; 19 Geng (10.1016/j.asems.2024.100123_bib156) 2024; 660 Chao (10.1016/j.asems.2024.100123_bib151) 2018; 12 Ling (10.1016/j.asems.2024.100123_bib75) 2022; 17 Qin (10.1016/j.asems.2024.100123_bib131) 2019; 11 Liu (10.1016/j.asems.2024.100123_bib22) 2021; 50 Jiang (10.1016/j.asems.2024.100123_bib56) 2013; 135 Feng (10.1016/j.asems.2024.100123_bib55) 2014; 136 Zeng (10.1016/j.asems.2024.100123_bib83) 2018; 28 Wan (10.1016/j.asems.2024.100123_bib140) 2019; 58 Wang (10.1016/j.asems.2024.100123_bib36) 2020; 11 Xu (10.1016/j.asems.2024.100123_bib126) 2022; 6 Wan (10.1016/j.asems.2024.100123_bib38) 2024; 20 Zheng (10.1016/j.asems.2024.100123_bib37) 2020; 235 Jiang (10.1016/j.asems.2024.100123_bib65) 2023; 16 Li (10.1016/j.asems.2024.100123_bib71) 2020; 13 Xie (10.1016/j.asems.2024.100123_bib95) 2023; 3 Ai (10.1016/j.asems.2024.100123_bib2) 2021; 31 Kan (10.1016/j.asems.2024.100123_bib39) 2018; 57 Wang (10.1016/j.asems.2024.100123_bib157) 2021; 15 Zhao (10.1016/j.asems.2024.100123_bib158) 2021; 10 He (10.1016/j.asems.2024.100123_bib84) 2019; 58 Jia (10.1016/j.asems.2024.100123_bib94) 2024; 34 Park (10.1016/j.asems.2024.100123_bib59) 2016; 138 Yin (10.1016/j.asems.2024.100123_bib89) 2019; 29 Liu (10.1016/j.asems.2024.100123_bib137) 2023; 228 Li (10.1016/j.asems.2024.100123_bib167) 2017; 11 Zhou (10.1016/j.asems.2024.100123_bib160) 2023; 17 Zhou (10.1016/j.asems.2024.100123_bib165) 2019; 4 Akhter (10.1016/j.asems.2024.100123_bib18) 2021; vol. 1 Yao (10.1016/j.asems.2024.100123_bib166) 2023; 453 Liu (10.1016/j.asems.2024.100123_bib33) 2017; 9 Truong Hoang (10.1016/j.asems.2024.100123_bib154) 2022; 209 Alkordi (10.1016/j.asems.2024.100123_bib30) 2008; 130 Josefsen (10.1016/j.asems.2024.100123_bib92) 2012; 2 Bao (10.1016/j.asems.2024.100123_bib19) 2024; 18 Wang (10.1016/j.asems.2024.100123_bib42) 2021; 60 Lin (10.1016/j.asems.2024.100123_bib120) 2019; 645 Li (10.1016/j.asems.2024.100123_bib69) 2018; 8 Zhang (10.1016/j.asems.2024.100123_bib136) 2020; 13 Ma (10.1016/j.asems.2024.100123_bib6) 2016; 12 Zhang (10.1016/j.asems.2024.100123_bib85) 2023; 474 Zhang (10.1016/j.asems.2024.100123_bib122) 2019; 11 Li (10.1016/j.asems.2024.100123_bib103) 2022; 10 Burger (10.1016/j.asems.2024.100123_bib109) 2023; 6 Lu (10.1016/j.asems.2024.100123_bib46) 2016; 138 Xu (10.1016/j.asems.2024.100123_bib29) 2023; 11 Zhang (10.1016/j.asems.2024.100123_bib21) 2021; 429 Calvete (10.1016/j.asems.2024.100123_bib111) 2017; 333 Shen (10.1016/j.asems.2024.100123_bib125) 2021; 13 Du (10.1016/j.asems.2024.100123_bib149) 2022; 32 Zhang (10.1016/j.asems.2024.100123_bib86) 2018; 12 Fang (10.1016/j.asems.2024.100123_bib106) 2022; 10 Wang (10.1016/j.asems.2024.100123_bib124) 2019; 31 Liu (10.1016/j.asems.2024.100123_bib127) 2018; 10 Abrahams (10.1016/j.asems.2024.100123_bib44) 1991; 113 Cheng (10.1016/j.asems.2024.100123_bib72) 2019; 11 Pu (10.1016/j.asems.2024.100123_bib61) 2021; 9 Sun (10.1016/j.asems.2024.100123_bib34) 2019; 11 Cheng (10.1016/j.asems.2024.100123_bib116) 2024; 7 Yue (10.1016/j.asems.2024.100123_bib74) 2022; 20 Bao (10.1016/j.asems.2024.100123_bib64) 2020; 15 Lu (10.1016/j.asems.2024.100123_bib45) 2015; 137 Huang (10.1016/j.asems.2024.100123_bib26) 2023; 3 Zheng (10.1016/j.asems.2024.100123_bib32) 2017; 29 Deng (10.1016/j.asems.2024.100123_bib148) 2022; 29 Pantwalawalkar (10.1016/j.asems.2024.100123_bib13) 2023; 9 Sun (10.1016/j.asems.2024.100123_bib31) 2021; 13 Jiang (10.1016/j.asems.2024.100123_bib110) 2023; 13 Meng (10.1016/j.asems.2024.100123_bib35) 2019; 19 Li (10.1016/j.asems.2024.100123_bib159) 2022; 437 An (10.1016/j.asems.2024.100123_bib28) 2020; 12 Xia (10.1016/j.asems.2024.100123_bib60) 2020; 8 Liu (10.1016/j.asems.2024.100123_bib141) 2020; 59 Zhao (10.1016/j.asems.2024.100123_bib161) 2022; 32 Ding (10.1016/j.asems.2024.100123_bib11) 2022; 190 Tao (10.1016/j.asems.2024.100123_bib152) 2021; 9 Zheng (10.1016/j.asems.2024.100123_bib51) 2018; 30 Chen (10.1016/j.asems.2024.100123_bib24) 2021; 60 Wang (10.1016/j.asems.2024.100123_bib77) 2022; 43 Peng (10.1016/j.asems.2024.100123_bib9) 2023; 3 Jiang (10.1016/j.asems.2024.100123_bib81) 2021; 13 Hu (10.1016/j.asems.2024.100123_bib130) 2020; 59 Ai (10.1016/j.asems.2024.100123_bib143) 2023; 35 Jia (10.1016/j.asems.2024.100123_bib132) 2023; 15 Ai (10.1016/j.asems.2024.100123_bib8) 2022; 32 Wang (10.1016/j.asems.2024.100123_bib73) 2016; 28 Song (10.1016/j.asems.2024.100123_bib4) 2024; 14 Schubert (10.1016/j.asems.2024.100123_bib54) 2022; 469 Jiang (10.1016/j.asems.2024.100123_bib20) 2023; 11 Ye (10.1016/j.asems.2024.100123_bib27) 2023; 3 Tan (10.1016/j.asems.2024.100123_bib119) 2024; 54 Li (10.1016/j.asems.2024.100123_bib118) 2017; 139 Lu (10.1016/j.asems.2024.100123_bib117) 2014; 136 Wang (10.1016/j.asems.2024.100123_bib91) 2018; 28 Guan (10.1016/j.asems.2024.100123_bib98) 2023; 59 Chen (10.1016/j.asems.2024.100123_bib23) 2023; 2 Jiang (10.1016/j.asems.2024.100123_bib53) 2020; 59 Zhao (10.1016/j.asems.2024.100123_bib62) 2018; 30 Li (10.1016/j.asems.2024.100123_bib100) 2018; 151 Overchuk (10.1016/j.asems.2024.100123_bib142) 2023; 17 Xiang (10.1016/j.asems.2024.100123_bib78) 2022; 444 Wang (10.1016/j.asems.2024.100123_bib25) 2021; 439 Zhang (10.1016/j.asems.2024.100123_bib90) 2022; 9 Wang (10.1016/j.asems.2024.100123_bib129) 2020; 12 He (10.1016/j.asems.2024.100123_bib76) 2017; 13 Wang (10.1016/j.asems.2024.100123_bib17) 2020; 12 Xie (10.1016/j.asems.2024.100123_bib101) 2021; 272 |
References_xml | – volume: 35 year: 2023 ident: bib143 article-title: Ultra-small high-entropy alloy nanoparticles: efficient nanozyme for enhancing tumor photothermal therapy publication-title: Adv Mater – volume: 11 start-page: 63 year: 2019 ident: bib72 article-title: Controlled synthesis of a core-shell nanohybrid for effective multimodal image-guided combined photothermal/photodynamic therapy of tumors publication-title: NPG Asia Mater. – volume: 135 start-page: 17105 year: 2013 end-page: 17110 ident: bib58 article-title: Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 49754 year: 2021 end-page: 49761 ident: bib81 article-title: 2D MOF-based photoelectrochemical aptasensor for SARS-CoV-2 spike glycoprotein detection publication-title: ACS Appl. Mater. Interfaces – volume: 228 year: 2023 ident: bib137 article-title: Controllable growth of drug-encapsulated metal-organic framework (MOF) on porphyrinic MOF for PDT/chemo-combined therapy publication-title: Mater. Des. – volume: 57 start-page: 4035 year: 2021 end-page: 4038 ident: bib146 article-title: Defect-engineered porphyrinic metal–organic framework nanoparticles for targeted multimodal cancer phototheranostics publication-title: Chem Commun – volume: 373 year: 2022 ident: bib97 article-title: A quinoline-based indicator for NAD(P)H multimodal detection publication-title: Sens. Actuators B Chem. – volume: 235 year: 2020 ident: bib37 article-title: Integration of metal-organic framework with a photoactive porous-organic polymer for interface enhanced phototherapy publication-title: Biomaterials – volume: 51 start-page: 10307 year: 2012 end-page: 10310 ident: bib135 article-title: Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts publication-title: Angew. Chem. Int. Ed. – volume: 38 start-page: 151 year: 2023 ident: bib40 article-title: Zn(II) porphyrin–encapsulated MIL-101 for photodynamic therapy of breast cancer cells publication-title: Laser Med. Sci. – volume: 60 start-page: 26254 year: 2021 end-page: 26259 ident: bib42 article-title: Missing-linker-assisted artesunate delivery by metal–organic frameworks for synergistic cancer treatment publication-title: Angew. Chem. Int. Ed. – volume: 15 start-page: 50069 year: 2023 end-page: 50082 ident: bib132 article-title: pH-responsive and actively targeted metal–organic framework structures for multimodal antitumor therapy and inhibition of tumor invasion and metastasis publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 35228 year: 2019 end-page: 35237 ident: bib144 article-title: Exploiting single atom iron centers in a porphyrin-like MOF for efficient cancer phototherapy publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 7687 year: 2020 end-page: 7702 ident: bib64 article-title: Multifunctional Hf/Mn-TCPP metal-organic framework nanoparticles for triple-modality imaging-guided PTT/RT synergistic cancer therapy publication-title: Int. J. Nanomed. – volume: 17 start-page: 7979 year: 2023 end-page: 8003 ident: bib142 article-title: Photodynamic and photothermal therapies: synergy opportunities for nanomedicine publication-title: ACS Nano – volume: 13 start-page: 39 year: 2021 ident: bib125 article-title: Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment publication-title: NPG Asia Mater. – volume: 9 start-page: 4497 year: 2023 end-page: 4526 ident: bib13 article-title: Stimuli-responsive design of metal-organic frameworks for cancer theranostics: current challenges and future perspective publication-title: ACS Biomater. Sci. – volume: 333 start-page: 82 year: 2017 end-page: 107 ident: bib111 article-title: Metal coordinated pyrrole-based macrocycles as contrast agents for magnetic resonance imaging technologies: synthesis and applications publication-title: Coord. Chem. Rev. – volume: 5 start-page: 15318 year: 2022 end-page: 15327 ident: bib138 article-title: Imaging-guided synergistic photo-chemotherapy using doxorubicin-loaded gadolinium porphyrin-based metal–organic framework nanosheets publication-title: ACS Appl. Nano Mater. – volume: 3 year: 2023 ident: bib26 article-title: Controlled synthesis of MOF-derived hollow and yolk–shell nanocages for improved water oxidation and selective ethylene glycol reformation publication-title: eScience – volume: 8 start-page: 4086 year: 2018 end-page: 4096 ident: bib69 article-title: Ultrathin Cu-TCPP MOF nanosheets: a new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers publication-title: Theranostics – volume: 29 year: 2019 ident: bib89 article-title: Persistent regulation of tumor microenvironment via circulating catalysis of MnFe publication-title: Adv. Funct. Mater. – volume: vol. 1 start-page: 275 year: 2021 end-page: 295 ident: bib18 article-title: Porphyrin-based nanomaterials for cancer nanotheranostics publication-title: Cancer Nanotheranostics – volume: 469 year: 2022 ident: bib54 article-title: Clusters with a Zr publication-title: Coord. Chem. Rev. – volume: 12 start-page: 1307 year: 2019 end-page: 1312 ident: bib63 article-title: Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy publication-title: Nano Res. – volume: 16 start-page: 1791 year: 2022 end-page: 1801 ident: bib108 article-title: miRNA-guided imaging and photodynamic therapy treatment of cancer cells using Zn(II)-Protoporphyrin IX-loaded metal–organic framework nanoparticles publication-title: ACS Nano – volume: 9 start-page: 2947 year: 2021 end-page: 2954 ident: bib152 article-title: Versatile labeling of multiple radionuclides onto a nanoscale metal–organic framework for tumor imaging and radioisotope therapy publication-title: Biomater. Sci. – volume: 58 start-page: 14134 year: 2019 end-page: 14139 ident: bib140 article-title: Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 1111 year: 2021 end-page: 1137 ident: bib5 article-title: Second near-infrared photothermal materials for combinational nanotheranostics publication-title: Chem. Soc. Rev. – volume: 12 start-page: 17254 year: 2020 end-page: 17267 ident: bib129 article-title: Fusiform-like copper(II)-Based metal–organic framework through relief hypoxia and GSH-depletion Co-enhanced starvation and chemodynamic synergetic cancer therapy publication-title: ACS Appl. Mater. Interfaces – volume: 33 year: 2021 ident: bib105 article-title: Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy publication-title: Adv Mater – volume: 31 year: 2019 ident: bib124 article-title: A mesoporous nanoenzyme derived from metal–organic frameworks with endogenous oxygen generation to alleviate tumor hypoxia for significantly enhanced photodynamic therapy publication-title: Adv Mater – volume: 29 start-page: 2374 year: 2017 end-page: 2381 ident: bib32 article-title: Metal–organic Framework@Porous organic polymer nanocomposite for photodynamic therapy publication-title: Chem. Mater. – volume: 137 start-page: 7600 year: 2015 end-page: 7603 ident: bib45 article-title: A chlorin-based nanoscale metal–organic framework for photodynamic therapy of colon cancers publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 9100 year: 2024 end-page: 9113 ident: bib19 article-title: Coordination self-assembled AuTPyP-Cu metal–organic framework nanosheets with pH/ultrasound dual-responsiveness for synergistically triggering cuproptosis-augmented chemotherapy publication-title: ACS Nano – volume: 51 start-page: 6177 year: 2022 end-page: 6209 ident: bib16 article-title: Lanthanide porphyrinoids as molecular theranostics publication-title: Chem. Soc. Rev. – volume: 10 start-page: 28390 year: 2018 end-page: 28398 ident: bib113 article-title: Theranostic Mn-porphyrin metal–organic frameworks for magnetic resonance imaging-guided nitric oxide and photothermal synergistic therapy publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 14082 year: 2021 end-page: 14099 ident: bib15 article-title: Porphyrin-based nanostructures for cancer theranostics: Chemistry, fundamentals and recent advances publication-title: ChemistrySelect – volume: 12 start-page: 17230 year: 2020 end-page: 17243 ident: bib28 article-title: Hydrogen peroxide-activatable nanoparticles for luminescence imaging and publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 4557 year: 2020 end-page: 4588 ident: bib96 article-title: Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics publication-title: Theranostics – volume: 55 start-page: 6241 year: 2019 end-page: 6244 ident: bib67 article-title: GSH-activated MRI-guided enhanced photodynamic- and chemo-combination therapy with a MnO publication-title: Chem. Commun. – volume: 453 year: 2023 ident: bib166 article-title: Second near-infrared light-activatable CO nanogenerator for enhanced cancer photo-theranostics publication-title: Chem. Eng. J. – volume: 10 year: 2023 ident: bib52 article-title: Electrocatalytic porphyrin/phthalocyanine-based organic frameworks: building blocks, coordination microenvironments, structure-performance relationships publication-title: Adv. Sci. – volume: 9 start-page: 1846 year: 2021 end-page: 1857 ident: bib61 article-title: A Gd-doped polydopamine (PDA)-based theranostic nanoplatform as a strong MR/PA dual-modal imaging agent for PTT/PDT synergistic therapy publication-title: J. Mater. Chem. B – volume: 17 year: 2022 ident: bib75 article-title: Multimodal imaging and synergetic chemodynamic/photodynamic therapy achieved using an NaGdF publication-title: Chem. Asian J. – volume: 11 start-page: 41946 year: 2019 end-page: 41956 ident: bib68 article-title: Mn–Porphyrin-Based metal–organic framework with high longitudinal relaxivity for magnetic resonance imaging guidance and oxygen self-supplementing photodynamic therapy publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 6561 year: 2019 end-page: 6571 ident: bib104 article-title: A Mn(III)-Sealed metal–organic framework nanosystem for redox-unlocked tumor theranostics publication-title: ACS Nano – volume: 444 year: 2022 ident: bib78 article-title: Engineering of upconversion carbon dots/metal-organic frameworks “Peeled Pitaya-Like” heterostructure for mitochondria-targeted photodynamic therapy publication-title: Chem Eng J – volume: 12 start-page: 7519 year: 2018 end-page: 7528 ident: bib151 article-title: Highly effective radioisotope cancer therapy with a non-therapeutic isotope delivered and sensitized by nanoscale coordination polymers publication-title: ACS Nano – volume: 34 year: 2024 ident: bib94 article-title: Metalloporphyrin MOFs-based nanoagent enabling tumor microenvironment responsive sonodynamic therapy of intracranial glioma signaled by NIR-IIb luminescence imaging publication-title: Adv. Funct. Mater. – volume: 136 start-page: 17714 year: 2014 end-page: 17717 ident: bib55 article-title: A highly stable porphyrinic zirconium metal–organic framework with shp-a topology publication-title: J. Am. Chem. Soc. – volume: 97 start-page: 1 year: 2016 end-page: 9 ident: bib153 article-title: Nanoscale metal−organic frameworks for combined photodynamic & radiation therapy in cancer treatment publication-title: Biomaterials – volume: 7 year: 2024 ident: bib116 article-title: Porphyrin-based nanozymes for biomedical applications publication-title: Advanced Therapeutics – volume: 50 start-page: 1188 year: 2021 end-page: 1218 ident: bib22 article-title: Multifunctional metal–organic framework heterostructures for enhanced cancer therapy publication-title: Chem. Soc. Rev. – volume: 28 year: 2018 ident: bib83 article-title: Porphyrinic metal–organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/chemotherapy of tumor publication-title: Adv. Funct. Mater. – volume: 59 start-page: 1617 year: 2023 end-page: 1620 ident: bib98 article-title: An NIR fluorescent/photoacoustic dual-mode probe of NADPH for tumor imaging publication-title: Chem Commun – volume: 13 start-page: 295 year: 2023 end-page: 323 ident: bib10 article-title: Multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer therapy: from single to combination therapy publication-title: Theranostics – volume: 58 start-page: 8752 year: 2019 end-page: 8756 ident: bib84 article-title: A catalase-like metal-organic framework nanohybrid for O publication-title: Angew. Chem. Int. Ed. – volume: 55 start-page: 6471 year: 2016 end-page: 6475 ident: bib49 article-title: An publication-title: Angew. Chem. Int. Ed. – volume: 17 start-page: 9003 year: 2023 end-page: 9013 ident: bib66 article-title: Dual-responsive triple-synergistic Fe-MOF for tumor theranostics publication-title: ACS Nano – volume: 7 year: 2020 ident: bib82 article-title: Smart gold nanostructures for light mediated cancer theranostics: combining optical diagnostics with photothermal therapy publication-title: Adv. Sci. – volume: 28 year: 2018 ident: bib91 article-title: A versatile Pt-based core–shell nanoplatform as a nanofactory for enhanced tumor therapy publication-title: Adv. Funct. Mater. – volume: 39 start-page: 8205 year: 2023 end-page: 8214 ident: bib43 article-title: Metal-organic frameworks facilitate nucleic acids for multimode synergistic therapy of breast cancer publication-title: Langmuir – volume: 11 start-page: 36347 year: 2019 end-page: 36358 ident: bib34 article-title: O publication-title: ACS Appl. Mater. Interfaces – volume: 74 start-page: 229 year: 2024 end-page: 263 ident: bib1 article-title: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer. J. Clin. – volume: 11 start-page: 6172 year: 2023 end-page: 6200 ident: bib20 article-title: Research development of porphyrin-based metal–organic frameworks: targeting modalities and cancer therapeutic applications publication-title: J. Mater. Chem. B – volume: 439 year: 2021 ident: bib25 article-title: Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy publication-title: Coord. Chem. Rev. – volume: 12 start-page: 4936 year: 2016 end-page: 4954 ident: bib6 article-title: Cancer-targeted nanotheranostics: recent advances and perspectives publication-title: Small – volume: 185 start-page: 51 year: 2018 end-page: 62 ident: bib163 article-title: ROS-induced NO generation for gas therapy and sensitizing photodynamic therapy of tumor publication-title: Biomaterials – volume: 10 start-page: 966 year: 2022 end-page: 976 ident: bib106 article-title: Biomimetic smart nanoplatform for dual imaging-guided synergistic cancer therapy publication-title: J. Mater. Chem. B – volume: 59 start-page: 3300 year: 2020 end-page: 3306 ident: bib53 article-title: Controllable synthesis of porphyrin-based 2D lanthanide metal–organic frameworks with thickness- and metal-node-dependent photocatalytic performance publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 7006 year: 2017 end-page: 7018 ident: bib167 article-title: Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy publication-title: ACS Nano – volume: 36 year: 2024 ident: bib70 article-title: Employing noble metal–porphyrins to engineer robust and highly active single-atom nanozymes for targeted catalytic therapy in nasopharyngeal carcinoma publication-title: Adv Mater – volume: 10 year: 2021 ident: bib158 article-title: Soft X-ray stimulated lanthanide@MOF nanoprobe for amplifying deep tissue synergistic photodynamic and antitumor immunotherapy publication-title: Adv. Healthcare Mater. – volume: 283 year: 2022 ident: bib114 article-title: MOF@COF nanocapsule for the enhanced microwave thermal-dynamic therapy and anti-angiogenesis of colorectal cancer publication-title: Biomaterials – volume: 90 start-page: 7056 year: 2018 end-page: 7063 ident: bib99 article-title: Dual-emitting fluorescent metal–organic framework nanocomposites as a broad-range pH sensor for fluorescence imaging publication-title: Anal. Chem. – volume: 13 start-page: 273 year: 2020 end-page: 281 ident: bib136 article-title: PCN-Fe(III)-PTX nanoparticles for MRI guided high efficiency chemo-photodynamic therapy in pancreatic cancer through alleviating tumor hypoxia publication-title: Nano Res. – volume: 20 start-page: 181 year: 2022 ident: bib74 article-title: Light-triggered multifunctional nanoplatform for efficient cancer photo-immunotherapy publication-title: J. Nanobiotechnol. – volume: 138 start-page: 12502 year: 2016 end-page: 12510 ident: bib46 article-title: Chlorin-based nanoscale metal–organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 26528 year: 2022 end-page: 26535 ident: bib48 article-title: Mixed-ligand metal–organic frameworks for all-in-one theranostics with controlled drug delivery and enhanced photodynamic therapy publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 2464 year: 2024 end-page: 2488 ident: bib4 article-title: Theranostics―a sure cure for cancer after 100 years? publication-title: Theranostics – volume: 190 year: 2022 ident: bib11 article-title: Nanoscale MOFs: from synthesis to drug delivery and theranostics applications publication-title: Adv. Drug Deliv. Rev. – volume: 209 year: 2022 ident: bib154 article-title: Pro-oxidant drug-loaded porphyrinic zirconium metal-organic-frameworks for cancer-specific sonodynamic therapy publication-title: Colloids Surf., B – volume: 130 start-page: 12639 year: 2008 end-page: 12641 ident: bib30 article-title: Zeolite-like Metal−Organic frameworks as platforms for applications: on metalloporphyrin-based catalysts publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 3142 year: 2022 end-page: 3154 ident: bib148 article-title: Synthesis of dual-stimuli responsive metal organic framework-coated iridium oxide nanocomposite functionalized with tumor targeting albumin-folate for synergistic photodynamic/photothermal cancer therapy publication-title: Drug Deliv. – volume: 32 year: 2022 ident: bib149 article-title: Tailoring photothermally triggered phase transition of multimodal cascade theranostics platform by spherical nucleic acids publication-title: Adv. Funct. Mater. – volume: 58 start-page: 7380 year: 2019 end-page: 7384 ident: bib133 article-title: DNAzyme-loaded metal–organic frameworks (MOFs) for self-sufficient gene therapy publication-title: Angew. Chem. Int. Ed. – volume: 17 start-page: 9374 year: 2023 end-page: 9387 ident: bib160 article-title: Oxidation-responsive PolyMOF nanoparticles for combination photodynamic-immunotherapy with enhanced STING activation publication-title: ACS Nano – volume: 9 start-page: 2150 year: 2017 end-page: 2158 ident: bib33 article-title: Multifunctional metal–organic framework nanoprobe for cathepsin B-activated cancer cell imaging and chemo-photodynamic therapy publication-title: ACS Appl. Mater. Interfaces – volume: 138 start-page: 3518 year: 2016 end-page: 3525 ident: bib59 article-title: Size-controlled synthesis of porphyrinic metal–organic framework and functionalization for targeted photodynamic therapy publication-title: J. Am. Chem. Soc. – volume: 10 year: 2022 ident: bib103 article-title: Hydrogen sulfide activatable metal-organic frameworks for Fluorescence Imaging-Guided Photodynamic Therapy of colorectal cancer publication-title: Front. Bioeng. Biotechnol. – volume: 272 year: 2021 ident: bib101 article-title: A near infrared ratiometric platform based π-extended porphyrin metal-organic framework for O publication-title: Biomaterials – volume: 4 start-page: 4413 year: 2021 end-page: 4421 ident: bib168 article-title: Zeolitic imidazolate framework platform for combinational starvation therapy and oxygen self-sufficient photodynamic therapy against a hypoxia tumor publication-title: ACS Appl. Bio Mater. – volume: 6 start-page: 248 year: 2023 end-page: 260 ident: bib109 article-title: Luminescent porphyrinic metal–organic frameworks for oxygen sensing: correlation of nanostructure and sensitivity publication-title: ACS Appl. Nano Mater. – volume: 9 start-page: 670 year: 2022 end-page: 677 ident: bib90 article-title: Confined publication-title: Inorg. Chem. Front. – volume: 19 start-page: 5674 year: 2019 end-page: 5682 ident: bib88 article-title: Nanozymes-engineered metal–organic frameworks for catalytic cascades-enhanced synergistic cancer therapy publication-title: Nano Lett. – volume: 12 start-page: 53634 year: 2020 end-page: 53645 ident: bib17 article-title: Tumor microenvironment-responsive Fe(III)–Porphyrin nanotheranostics for tumor imaging and targeted chemodynamic–photodynamic therapy publication-title: ACS Appl. Mater. Interfaces – volume: 2 year: 2023 ident: bib23 article-title: Porphyrinic metal-organic frameworks for biological applications publication-title: Adv. Energy Mater. – volume: 13 start-page: 483 year: 2023 end-page: 509 ident: bib110 article-title: Nanomaterial-based CT contrast agents and their applications in image-guided therapy publication-title: Theranostics – volume: 2 start-page: 916 year: 2012 end-page: 966 ident: bib92 article-title: Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics publication-title: Theranostics – volume: 20 year: 2024 ident: bib164 article-title: Oxygen-Evolving Radiotherapy-Radiodynamic Therapy Synergized with NO Gas Therapy by Cerium-Based Rare-Earth Metal-Porphyrin Framework publication-title: Small – volume: 113 start-page: 3606 year: 1991 end-page: 3607 ident: bib44 article-title: A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 6669 year: 2021 end-page: 6677 ident: bib121 article-title: Metal-organic framework combined with CaO publication-title: Nanoscale Adv. – volume: 30 start-page: 6867 year: 2018 end-page: 6876 ident: bib51 article-title: Nanoscale mixed-component metal–organic frameworks with photosensitizer spatial-arrangement-dependent photochemistry for multimodal-imaging-guided photothermal therapy publication-title: Chem. Mater. – volume: 11 start-page: 357 year: 2020 ident: bib36 article-title: Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor publication-title: Nat. Commun. – volume: 142 start-page: 7334 year: 2020 end-page: 7339 ident: bib47 article-title: Nanoscale metal–organic frameworks stabilize bacteriochlorins for type I and type II photodynamic therapy publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 10831 year: 2015 end-page: 10834 ident: bib107 article-title: A porphyrin photosensitized metal–organic framework for cancer cell apoptosis and caspase responsive theranostics publication-title: Chem Commun – volume: 6 start-page: 265 year: 2018 end-page: 276 ident: bib112 article-title: Albumin/sulfonamide stabilized iron porphyrin metal organic framework nanocomposites: targeting tumor hypoxia by carbonic anhydrase IX inhibition and publication-title: J. Mater. Chem. B – volume: 491 start-page: 349 year: 2017 end-page: 357 ident: bib79 article-title: Understanding the effect of size and shape of gold nanomaterials on nanometal surface energy transfer publication-title: J. Colloid Interface Sci. – volume: 22 start-page: 625 year: 2023 end-page: 640 ident: bib3 article-title: Trends in the approval of cancer therapies by the FDA in the twenty-first century publication-title: Nat. Rev. Drug Discov. – volume: 32 year: 2022 ident: bib161 article-title: Intracellular self-assembly driven nucleus-targeted photo-immune stimulator with chromatin decompaction function for robust innate and adaptive antitumor immunity publication-title: Adv. Funct. Mater. – volume: 20 year: 2024 ident: bib38 article-title: Erythrocyte membrane camouflaged nanotheranostics for optical molecular imaging-escorted self-oxygenation photodynamic therapy publication-title: Small – volume: 13 year: 2017 ident: bib76 article-title: DNA-assembled core-satellite upconverting-metal–organic framework nanoparticle superstructures for efficient photodynamic therapy publication-title: Small – volume: 10 start-page: 43493 year: 2018 end-page: 43502 ident: bib127 article-title: Collagenase-encapsulated pH-responsive nanoscale coordination polymers for tumor microenvironment modulation and enhanced photodynamic nanomedicine publication-title: ACS Appl. Mater. Interfaces – volume: 20 year: 2024 ident: bib155 article-title: Mn(II) optimized sono/chemodynamic effect of porphyrin-metal–organic framework nanosheets for MRI-guided colon cancer therapy and metastasis suppression publication-title: Small – volume: 437 year: 2022 ident: bib159 article-title: Near-Infrared Light-Boosted Photodynamic-Immunotherapy based on sulfonated Metal-Organic framework nanospindle publication-title: Chem Eng J – volume: 15 start-page: 12342 year: 2021 end-page: 12357 ident: bib157 article-title: Upconverted metal–organic framework Janus architecture for near-infrared and ultrasound Co-enhanced high performance tumor therapy publication-title: ACS Nano – volume: 11 year: 2022 ident: bib123 article-title: Metal–organic framework (MOF)-Based ultrasound-responsive dual-sonosensitizer nanoplatform for hypoxic cancer therapy publication-title: Adv. Healthcare Mater. – volume: 59 start-page: 5890 year: 2020 end-page: 5900 ident: bib141 article-title: Two-dimensional nanomaterials for photothermal therapy publication-title: Angew. Chem. Int. Ed. – volume: 7 year: 2017 ident: bib115 article-title: Fluorescence and magnetic resonance dual-modality imaging-guided photothermal and photodynamic dual-therapy with magnetic porphyrin-metal organic framework nanocomposites publication-title: Sci. Rep. – volume: 12 start-page: 1963 year: 2020 end-page: 1972 ident: bib128 article-title: Biomimetic platinum nanozyme immobilized on 2D metal–organic frameworks for mitochondrion-targeting and oxygen self-supply photodynamic therapy publication-title: ACS Appl. Mater. Interfaces – volume: 28 year: 2018 ident: bib145 article-title: Metal–organic framework nanoshuttle for synergistic photodynamic and low-temperature photothermal therapy publication-title: Adv. Funct. Mater. – volume: 4 start-page: 1185 year: 2019 end-page: 1193 ident: bib165 article-title: Porphyrin–palladium hydride MOF nanoparticles for tumor-targeting photoacoustic imaging-guided hydrogenothermal cancer therapy publication-title: Nanoscale Horiz – volume: 3 year: 2023 ident: bib95 article-title: Recent advances in tetrakis (4-carboxyphenyl) porphyrin-based nanocomposites for tumor therapy publication-title: Adv Nanobiomed Res – volume: 54 year: 2024 ident: bib119 article-title: Near-infrared-responsive nanoplatforms integrating dye-sensitized upconversion and heavy-atom effect for enhanced photodynamic therapy efficacy publication-title: Nano Today – volume: 59 start-page: 4617 year: 2020 end-page: 4625 ident: bib130 article-title: Inorganic and metal–organic nanocomposites for cascade-responsive imaging and photochemical synergistic effects publication-title: Inorg. Chem. – volume: 645 start-page: 1161 year: 2019 end-page: 1164 ident: bib120 article-title: A photodynamic system based on endogenous bioluminescence for publication-title: Z. Anorg. Allg. Chem. – volume: 6 year: 2022 ident: bib126 article-title: Long-circulating theranostic 2D metal-organic frameworks with concurrent O publication-title: Small Methods – volume: 32 year: 2022 ident: bib8 article-title: Recent advances in nanozymes: from matters to bioapplications publication-title: Adv. Funct. Mater. – volume: 18 start-page: 12261 year: 2024 end-page: 12275 ident: bib162 article-title: Light-triggered nanozymes remodel the tumor hypoxic and immunosuppressive microenvironment for ferroptosis-enhanced antitumor immunity publication-title: ACS Nano – volume: 3 year: 2023 ident: bib27 article-title: MOF-related electrocatalysts for sulfur reduction/evolution reactions: composition modulation, structure design, and mechanism research publication-title: eScience – volume: 151 start-page: 1 year: 2018 end-page: 12 ident: bib100 article-title: A biomimetic theranostic O publication-title: Biomaterials – volume: 57 start-page: 192 year: 2022 end-page: 224 ident: bib14 article-title: Current trends in stimuli-responsive nanotheranostics based on metal-organic frameworks for cancer therapy publication-title: Mater. Today – volume: 60 start-page: 5010 year: 2021 end-page: 5035 ident: bib24 article-title: Porphyrin-based metal–organic frameworks for biomedical applications publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 2960 year: 2018 end-page: 2967 ident: bib41 article-title: The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy publication-title: Beilstein J. Nanotechnol. – volume: 13 year: 2017 ident: bib93 article-title: Fluorescent imaging-guided chemotherapy-and-photodynamic dual therapy with nanoscale porphyrin metal–organic framework publication-title: Small – volume: 429 year: 2021 ident: bib21 article-title: A historical perspective on porphyrin-based metal–organic frameworks and their applications publication-title: Coord. Chem. Rev. – volume: 139 start-page: 13804 year: 2017 end-page: 13810 ident: bib118 article-title: Heterodimers made of upconversion nanoparticles and metal–organic frameworks publication-title: J. Am. Chem. Soc. – volume: 660 start-page: 1021 year: 2024 end-page: 1029 ident: bib156 article-title: One stone, three birds: design and synthesis of “all-in-one” nanoscale Mn-porphyrin coordination polymers for magnetic resonance imaging-guided synergistic photodynamic-sonodynamic therapy publication-title: J. Colloid Interface Sci. – volume: 29 year: 2019 ident: bib87 article-title: Silver-infused porphyrinic metal–organic framework: surface-adaptive, on-demand nanoplatform for synergistic bacteria killing and wound disinfection publication-title: Adv. Funct. Mater. – volume: 57 start-page: 5420 year: 2018 end-page: 5428 ident: bib39 article-title: Surface decorated porphyrinic nanoscale metal–organic framework for photodynamic therapy publication-title: Inorg. Chem. – volume: 11 start-page: 5976 year: 2023 end-page: 5989 ident: bib29 article-title: Photodynamic therapy based on porphyrin-based metal–organic frameworks publication-title: J. Mater. Chem. B – volume: 17 year: 2021 ident: bib80 article-title: Nanometal thermocatalysts: transformations, deactivation, and mitigation publication-title: Small – volume: 8 year: 2020 ident: bib60 article-title: Multimodal channel cancer chemotherapy by 2D functional gadolinium metal–organic framework publication-title: Natl. Sci. Rev. – volume: 8 start-page: 935 year: 2020 end-page: 944 ident: bib147 article-title: Post-synthesis strategy to integrate porphyrinic metal–organic frameworks with CuS NPs for synergistic enhanced photo-therapy publication-title: J. Mater. Chem. B – volume: 136 start-page: 16712 year: 2014 end-page: 16715 ident: bib117 article-title: Nanoscale metal–organic framework for highly effective photodynamic therapy of resistant head and neck cancer publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 7866 year: 2019 end-page: 7876 ident: bib35 article-title: Triggered all-active metal organic framework: ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy publication-title: Nano Lett. – volume: 19 start-page: 2727 year: 2022 end-page: 2737 ident: bib139 article-title: Fabrication and application of copper metal–organic frameworks as nanocarriers for pH-responsive anticancer drug delivery publication-title: J. Iran. Chem. Soc. – volume: 10 year: 2023 ident: bib150 article-title: Tantalum–zirconium Co-doped metal–organic frameworks sequentially sensitize radio–radiodynamic–immunotherapy for metastatic osteosarcoma publication-title: Adv. Sci. – volume: 3 year: 2023 ident: bib12 article-title: Atomically Fe-anchored MOF-on-MOF nanozyme with differential signal amplification for ultrasensitive cathodic electrochemiluminescence immunoassay publication-title: Explorations – volume: 11 start-page: 39594 year: 2019 end-page: 39602 ident: bib122 article-title: Cell membrane-coated porphyrin metal–organic frameworks for cancer cell targeting and O publication-title: ACS Appl. Mater. Interfaces – volume: 137 start-page: 413 year: 2015 end-page: 419 ident: bib57 article-title: Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal–organic frameworks with high surface area publication-title: J. Am. Chem. Soc. – volume: 31 year: 2021 ident: bib2 article-title: Dual enzyme mimics based on metal-ligand cross-linking strategy for accelerating ascorbate oxidation and enhancing tumor therapy publication-title: Adv. Funct. Mater. – volume: 13 start-page: 3679 year: 2021 end-page: 3693 ident: bib31 article-title: One-pot fabrication of hollow porphyrinic MOF nanoparticles with ultrahigh drug loading toward controlled delivery and synergistic cancer therapy publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 2585 year: 2020 end-page: 2627 ident: bib7 article-title: Nanomaterials for nanotheranostics: tuning their properties according to disease needs publication-title: ACS Nano – volume: 28 start-page: 8379 year: 2016 end-page: 8387 ident: bib73 article-title: Metal–organic-framework-derived mesoporous carbon nanospheres containing porphyrin-like metal centers for conformal phototherapy publication-title: Adv Mater – volume: 474 year: 2023 ident: bib85 article-title: Copper/gold-modified porphyrinic metal–organic frameworks nanoprobes for enhanced photodynamic/chemodynamic therapy publication-title: Chem Eng J – volume: 13 start-page: 3377 year: 2020 end-page: 3386 ident: bib71 article-title: Core-satellite metal-organic framework@upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics publication-title: Nano Res. – volume: 135 start-page: 13934 year: 2013 end-page: 13938 ident: bib56 article-title: An exceptionally stable, porphyrinic Zr metal–organic framework exhibiting pH-dependent fluorescence publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 9633 year: 2023 end-page: 9641 ident: bib65 article-title: Porphyrin-based metal-organic framework nanocrystals for combination of immune and sonodynamic therapy publication-title: Nano Res. – volume: 43 year: 2022 ident: bib77 article-title: Upconverted/downshifted NaLnF publication-title: Nano Today – volume: 11 start-page: 34268 year: 2019 end-page: 34281 ident: bib131 article-title: pH-responsive polymer-stabilized ZIF-8 nanocomposites for fluorescence and magnetic resonance dual-modal imaging-guided chemo-/photodynamic combinational cancer therapy publication-title: ACS Appl. Mater. Interfaces – volume: 325 year: 2021 ident: bib134 article-title: Aptamer targeted red blood cell membrane-coated porphyrinic copper-based MOF for guided photochemotherapy against metastatic breast cancer publication-title: Microporous Mesoporous Mater. – volume: 30 start-page: 7511 year: 2018 end-page: 7520 ident: bib62 article-title: Synthesis of metal–organic framework nanosheets with high relaxation rate and singlet oxygen yield publication-title: Chem. Mater. – volume: 3 year: 2023 ident: bib9 article-title: Unraveling mitochondria-targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials publication-title: Explorations – volume: 55 start-page: 7188 year: 2016 end-page: 7193 ident: bib50 article-title: Controlled generation of singlet oxygen in living cells with tunable ratios of the photochromic switch in metal–organic frameworks publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 651 year: 2018 end-page: 661 ident: bib86 article-title: Nanozyme decorated metal–organic frameworks for enhanced photodynamic therapy publication-title: ACS Nano – volume: 10 start-page: 5734 year: 2023 end-page: 5752 ident: bib102 article-title: Self-reported and self-facilitated theranostic oxygen nano-economizer for precise and hypoxia alleviation-potentiated photodynamic therapy publication-title: Mater. Horiz. – volume: 10 start-page: 966 issue: 6 year: 2022 ident: 10.1016/j.asems.2024.100123_bib106 article-title: Biomimetic smart nanoplatform for dual imaging-guided synergistic cancer therapy publication-title: J. Mater. Chem. B doi: 10.1039/D1TB02306C – volume: 151 start-page: 1 year: 2018 ident: 10.1016/j.asems.2024.100123_bib100 article-title: A biomimetic theranostic O2-meter for cancer targeted photodynamic therapy and phosphorescence imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.10.021 – volume: 29 start-page: 3142 issue: 1 year: 2022 ident: 10.1016/j.asems.2024.100123_bib148 article-title: Synthesis of dual-stimuli responsive metal organic framework-coated iridium oxide nanocomposite functionalized with tumor targeting albumin-folate for synergistic photodynamic/photothermal cancer therapy publication-title: Drug Deliv. doi: 10.1080/10717544.2022.2127973 – volume: 9 start-page: 670 issue: 4 year: 2022 ident: 10.1016/j.asems.2024.100123_bib90 article-title: Confined in situ polymerization in a nanoscale porphyrinic metal-organic framework for fluorescence imaging-guided synergistic phototherapy publication-title: Inorg. Chem. Front. doi: 10.1039/D1QI01384J – volume: 20 issue: 36 year: 2024 ident: 10.1016/j.asems.2024.100123_bib164 article-title: Oxygen-Evolving Radiotherapy-Radiodynamic Therapy Synergized with NO Gas Therapy by Cerium-Based Rare-Earth Metal-Porphyrin Framework publication-title: Small – volume: 17 issue: 14 year: 2022 ident: 10.1016/j.asems.2024.100123_bib75 article-title: Multimodal imaging and synergetic chemodynamic/photodynamic therapy achieved using an NaGdF4,Yb,Er@ NaGdF4,Yb,Tm@NaYF4@Fe-MOFs nanocomposite publication-title: Chem. Asian J. doi: 10.1002/asia.202200161 – volume: 9 start-page: 1846 issue: 7 year: 2021 ident: 10.1016/j.asems.2024.100123_bib61 article-title: A Gd-doped polydopamine (PDA)-based theranostic nanoplatform as a strong MR/PA dual-modal imaging agent for PTT/PDT synergistic therapy publication-title: J. Mater. Chem. B doi: 10.1039/D0TB02725A – volume: 17 start-page: 9374 issue: 10 year: 2023 ident: 10.1016/j.asems.2024.100123_bib160 article-title: Oxidation-responsive PolyMOF nanoparticles for combination photodynamic-immunotherapy with enhanced STING activation publication-title: ACS Nano doi: 10.1021/acsnano.3c01333 – volume: 12 start-page: 1307 issue: 6 year: 2019 ident: 10.1016/j.asems.2024.100123_bib63 article-title: Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy publication-title: Nano Res. doi: 10.1007/s12274-018-2242-2 – volume: 50 start-page: 1111 issue: 2 year: 2021 ident: 10.1016/j.asems.2024.100123_bib5 article-title: Second near-infrared photothermal materials for combinational nanotheranostics publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00664E – volume: 38 start-page: 151 issue: 1 year: 2023 ident: 10.1016/j.asems.2024.100123_bib40 article-title: Zn(II) porphyrin–encapsulated MIL-101 for photodynamic therapy of breast cancer cells publication-title: Laser Med. Sci. doi: 10.1007/s10103-023-03813-2 – volume: 7 issue: 4 year: 2024 ident: 10.1016/j.asems.2024.100123_bib116 article-title: Porphyrin-based nanozymes for biomedical applications publication-title: Advanced Therapeutics doi: 10.1002/adtp.202300329 – volume: 15 start-page: 7687 year: 2020 ident: 10.1016/j.asems.2024.100123_bib64 article-title: Multifunctional Hf/Mn-TCPP metal-organic framework nanoparticles for triple-modality imaging-guided PTT/RT synergistic cancer therapy publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S267321 – volume: 6 issue: 6 year: 2022 ident: 10.1016/j.asems.2024.100123_bib126 article-title: Long-circulating theranostic 2D metal-organic frameworks with concurrent O2 self-supplying and GSH depletion characteristic for enhanced cancer chemodynamic therapy publication-title: Small Methods doi: 10.1002/smtd.202200178 – volume: 3 issue: 5 year: 2023 ident: 10.1016/j.asems.2024.100123_bib27 article-title: MOF-related electrocatalysts for sulfur reduction/evolution reactions: composition modulation, structure design, and mechanism research publication-title: eScience doi: 10.1016/j.esci.2023.100107 – volume: 29 start-page: 2374 issue: 5 year: 2017 ident: 10.1016/j.asems.2024.100123_bib32 article-title: Metal–organic Framework@Porous organic polymer nanocomposite for photodynamic therapy publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00228 – volume: 13 start-page: 483 issue: 2 year: 2023 ident: 10.1016/j.asems.2024.100123_bib110 article-title: Nanomaterial-based CT contrast agents and their applications in image-guided therapy publication-title: Theranostics doi: 10.7150/thno.79625 – volume: 429 year: 2021 ident: 10.1016/j.asems.2024.100123_bib21 article-title: A historical perspective on porphyrin-based metal–organic frameworks and their applications publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213615 – volume: 4 start-page: 4413 issue: 5 year: 2021 ident: 10.1016/j.asems.2024.100123_bib168 article-title: Zeolitic imidazolate framework platform for combinational starvation therapy and oxygen self-sufficient photodynamic therapy against a hypoxia tumor publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.1c00174 – volume: 58 start-page: 14134 issue: 40 year: 2019 ident: 10.1016/j.asems.2024.100123_bib140 article-title: Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO3 mineralized metal–organic framework publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201907388 – volume: 22 start-page: 625 issue: 8 year: 2023 ident: 10.1016/j.asems.2024.100123_bib3 article-title: Trends in the approval of cancer therapies by the FDA in the twenty-first century publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-023-00723-4 – volume: 10 start-page: 5734 issue: 12 year: 2023 ident: 10.1016/j.asems.2024.100123_bib102 article-title: Self-reported and self-facilitated theranostic oxygen nano-economizer for precise and hypoxia alleviation-potentiated photodynamic therapy publication-title: Mater. Horiz. doi: 10.1039/D3MH01244A – volume: 5 start-page: 15318 issue: 10 year: 2022 ident: 10.1016/j.asems.2024.100123_bib138 article-title: Imaging-guided synergistic photo-chemotherapy using doxorubicin-loaded gadolinium porphyrin-based metal–organic framework nanosheets publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c03390 – volume: 28 start-page: 8379 issue: 38 year: 2016 ident: 10.1016/j.asems.2024.100123_bib73 article-title: Metal–organic-framework-derived mesoporous carbon nanospheres containing porphyrin-like metal centers for conformal phototherapy publication-title: Adv Mater doi: 10.1002/adma.201602197 – volume: 11 start-page: 39594 issue: 43 year: 2019 ident: 10.1016/j.asems.2024.100123_bib122 article-title: Cell membrane-coated porphyrin metal–organic frameworks for cancer cell targeting and O2-evolving photodynamic therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14084 – volume: 474 year: 2023 ident: 10.1016/j.asems.2024.100123_bib85 article-title: Copper/gold-modified porphyrinic metal–organic frameworks nanoprobes for enhanced photodynamic/chemodynamic therapy publication-title: Chem Eng J – volume: 325 year: 2021 ident: 10.1016/j.asems.2024.100123_bib134 article-title: Aptamer targeted red blood cell membrane-coated porphyrinic copper-based MOF for guided photochemotherapy against metastatic breast cancer publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2021.111337 – volume: 645 start-page: 1161 issue: 18–19 year: 2019 ident: 10.1016/j.asems.2024.100123_bib120 article-title: A photodynamic system based on endogenous bioluminescence for in vitro anticancer studies publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.201900144 – volume: 11 start-page: 357 issue: 1 year: 2020 ident: 10.1016/j.asems.2024.100123_bib36 article-title: Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor publication-title: Nat. Commun. doi: 10.1038/s41467-019-14199-7 – volume: 11 start-page: 35228 issue: 38 year: 2019 ident: 10.1016/j.asems.2024.100123_bib144 article-title: Exploiting single atom iron centers in a porphyrin-like MOF for efficient cancer phototherapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11238 – volume: 13 start-page: 6561 issue: 6 year: 2019 ident: 10.1016/j.asems.2024.100123_bib104 article-title: A Mn(III)-Sealed metal–organic framework nanosystem for redox-unlocked tumor theranostics publication-title: ACS Nano doi: 10.1021/acsnano.9b00300 – volume: 9 start-page: 2960 year: 2018 ident: 10.1016/j.asems.2024.100123_bib41 article-title: The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.9.275 – volume: 10 year: 2022 ident: 10.1016/j.asems.2024.100123_bib103 article-title: Hydrogen sulfide activatable metal-organic frameworks for Fluorescence Imaging-Guided Photodynamic Therapy of colorectal cancer publication-title: Front. Bioeng. Biotechnol. – volume: 50 start-page: 1188 issue: 2 year: 2021 ident: 10.1016/j.asems.2024.100123_bib22 article-title: Multifunctional metal–organic framework heterostructures for enhanced cancer therapy publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00178C – volume: 373 year: 2022 ident: 10.1016/j.asems.2024.100123_bib97 article-title: A quinoline-based indicator for NAD(P)H multimodal detection in vitro and in vivo: spectrophotometry and visible near-infrared dual-channel lighting-up fluorescence imaging publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2022.132694 – volume: 12 start-page: 17254 issue: 15 year: 2020 ident: 10.1016/j.asems.2024.100123_bib129 article-title: Fusiform-like copper(II)-Based metal–organic framework through relief hypoxia and GSH-depletion Co-enhanced starvation and chemodynamic synergetic cancer therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c01539 – volume: 11 start-page: 7006 issue: 7 year: 2017 ident: 10.1016/j.asems.2024.100123_bib167 article-title: Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy publication-title: ACS Nano doi: 10.1021/acsnano.7b02533 – volume: 32 issue: 45 year: 2022 ident: 10.1016/j.asems.2024.100123_bib149 article-title: Tailoring photothermally triggered phase transition of multimodal cascade theranostics platform by spherical nucleic acids publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202207410 – volume: 12 start-page: 53634 issue: 48 year: 2020 ident: 10.1016/j.asems.2024.100123_bib17 article-title: Tumor microenvironment-responsive Fe(III)–Porphyrin nanotheranostics for tumor imaging and targeted chemodynamic–photodynamic therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c14046 – volume: 135 start-page: 17105 issue: 45 year: 2013 ident: 10.1016/j.asems.2024.100123_bib58 article-title: Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408084j – volume: 55 start-page: 6241 issue: 44 year: 2019 ident: 10.1016/j.asems.2024.100123_bib67 article-title: GSH-activated MRI-guided enhanced photodynamic- and chemo-combination therapy with a MnO2-coated porphyrin metal organic framework publication-title: Chem. Commun. doi: 10.1039/C9CC01957J – volume: 59 start-page: 4617 issue: 7 year: 2020 ident: 10.1016/j.asems.2024.100123_bib130 article-title: Inorganic and metal–organic nanocomposites for cascade-responsive imaging and photochemical synergistic effects publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b03719 – volume: 8 issue: 7 year: 2020 ident: 10.1016/j.asems.2024.100123_bib60 article-title: Multimodal channel cancer chemotherapy by 2D functional gadolinium metal–organic framework publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwaa221 – volume: 13 start-page: 3377 issue: 12 year: 2020 ident: 10.1016/j.asems.2024.100123_bib71 article-title: Core-satellite metal-organic framework@upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics publication-title: Nano Res. doi: 10.1007/s12274-020-3025-0 – volume: 228 year: 2023 ident: 10.1016/j.asems.2024.100123_bib137 article-title: Controllable growth of drug-encapsulated metal-organic framework (MOF) on porphyrinic MOF for PDT/chemo-combined therapy publication-title: Mater. Des. doi: 10.1016/j.matdes.2023.111861 – volume: 10 issue: 21 year: 2021 ident: 10.1016/j.asems.2024.100123_bib158 article-title: Soft X-ray stimulated lanthanide@MOF nanoprobe for amplifying deep tissue synergistic photodynamic and antitumor immunotherapy publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202101174 – volume: 2 issue: 1 year: 2023 ident: 10.1016/j.asems.2024.100123_bib23 article-title: Porphyrinic metal-organic frameworks for biological applications publication-title: Adv. Energy Mater. – volume: 137 start-page: 413 issue: 1 year: 2015 ident: 10.1016/j.asems.2024.100123_bib57 article-title: Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal–organic frameworks with high surface area publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5111317 – volume: 113 start-page: 3606 issue: 9 year: 1991 ident: 10.1016/j.asems.2024.100123_bib44 article-title: A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00009a065 – volume: 14 start-page: 2585 issue: 3 year: 2020 ident: 10.1016/j.asems.2024.100123_bib7 article-title: Nanomaterials for nanotheranostics: tuning their properties according to disease needs publication-title: ACS Nano doi: 10.1021/acsnano.9b08133 – volume: 32 issue: 14 year: 2022 ident: 10.1016/j.asems.2024.100123_bib8 article-title: Recent advances in nanozymes: from matters to bioapplications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202110432 – volume: 34 issue: 3 year: 2024 ident: 10.1016/j.asems.2024.100123_bib94 article-title: Metalloporphyrin MOFs-based nanoagent enabling tumor microenvironment responsive sonodynamic therapy of intracranial glioma signaled by NIR-IIb luminescence imaging publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202307816 – volume: 13 start-page: 49754 issue: 42 year: 2021 ident: 10.1016/j.asems.2024.100123_bib81 article-title: 2D MOF-based photoelectrochemical aptasensor for SARS-CoV-2 spike glycoprotein detection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c17574 – volume: 7 issue: 15 year: 2020 ident: 10.1016/j.asems.2024.100123_bib82 article-title: Smart gold nanostructures for light mediated cancer theranostics: combining optical diagnostics with photothermal therapy publication-title: Adv. Sci. doi: 10.1002/advs.201903441 – volume: 14 start-page: 26528 issue: 23 year: 2022 ident: 10.1016/j.asems.2024.100123_bib48 article-title: Mixed-ligand metal–organic frameworks for all-in-one theranostics with controlled drug delivery and enhanced photodynamic therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c06873 – volume: 3 issue: 5 year: 2023 ident: 10.1016/j.asems.2024.100123_bib26 article-title: Controlled synthesis of MOF-derived hollow and yolk–shell nanocages for improved water oxidation and selective ethylene glycol reformation publication-title: eScience doi: 10.1016/j.esci.2023.100118 – volume: 17 start-page: 7979 issue: 9 year: 2023 ident: 10.1016/j.asems.2024.100123_bib142 article-title: Photodynamic and photothermal therapies: synergy opportunities for nanomedicine publication-title: ACS Nano doi: 10.1021/acsnano.3c00891 – volume: 453 year: 2023 ident: 10.1016/j.asems.2024.100123_bib166 article-title: Second near-infrared light-activatable CO nanogenerator for enhanced cancer photo-theranostics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139888 – volume: 12 start-page: 651 issue: 1 year: 2018 ident: 10.1016/j.asems.2024.100123_bib86 article-title: Nanozyme decorated metal–organic frameworks for enhanced photodynamic therapy publication-title: ACS Nano doi: 10.1021/acsnano.7b07746 – volume: 15 start-page: 12342 issue: 7 year: 2021 ident: 10.1016/j.asems.2024.100123_bib157 article-title: Upconverted metal–organic framework Janus architecture for near-infrared and ultrasound Co-enhanced high performance tumor therapy publication-title: ACS Nano doi: 10.1021/acsnano.1c04280 – volume: 30 start-page: 7511 issue: 21 year: 2018 ident: 10.1016/j.asems.2024.100123_bib62 article-title: Synthesis of metal–organic framework nanosheets with high relaxation rate and singlet oxygen yield publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b02467 – volume: 12 start-page: 17230 issue: 15 year: 2020 ident: 10.1016/j.asems.2024.100123_bib28 article-title: Hydrogen peroxide-activatable nanoparticles for luminescence imaging and in situ triggerable photodynamic therapy of cancer publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c01413 – volume: 11 start-page: 41946 issue: 45 year: 2019 ident: 10.1016/j.asems.2024.100123_bib68 article-title: Mn–Porphyrin-Based metal–organic framework with high longitudinal relaxivity for magnetic resonance imaging guidance and oxygen self-supplementing photodynamic therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b15083 – volume: 11 start-page: 34268 issue: 37 year: 2019 ident: 10.1016/j.asems.2024.100123_bib131 article-title: pH-responsive polymer-stabilized ZIF-8 nanocomposites for fluorescence and magnetic resonance dual-modal imaging-guided chemo-/photodynamic combinational cancer therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b12641 – volume: 19 start-page: 7866 issue: 11 year: 2019 ident: 10.1016/j.asems.2024.100123_bib35 article-title: Triggered all-active metal organic framework: ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02904 – volume: 491 start-page: 349 year: 2017 ident: 10.1016/j.asems.2024.100123_bib79 article-title: Understanding the effect of size and shape of gold nanomaterials on nanometal surface energy transfer publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.12.052 – volume: 57 start-page: 4035 issue: 33 year: 2021 ident: 10.1016/j.asems.2024.100123_bib146 article-title: Defect-engineered porphyrinic metal–organic framework nanoparticles for targeted multimodal cancer phototheranostics publication-title: Chem Commun doi: 10.1039/D0CC07903K – volume: 59 start-page: 5890 issue: 15 year: 2020 ident: 10.1016/j.asems.2024.100123_bib141 article-title: Two-dimensional nanomaterials for photothermal therapy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201911477 – volume: 8 start-page: 935 issue: 5 year: 2020 ident: 10.1016/j.asems.2024.100123_bib147 article-title: Post-synthesis strategy to integrate porphyrinic metal–organic frameworks with CuS NPs for synergistic enhanced photo-therapy publication-title: J. Mater. Chem. B doi: 10.1039/C9TB02597A – volume: 660 start-page: 1021 year: 2024 ident: 10.1016/j.asems.2024.100123_bib156 article-title: One stone, three birds: design and synthesis of “all-in-one” nanoscale Mn-porphyrin coordination polymers for magnetic resonance imaging-guided synergistic photodynamic-sonodynamic therapy publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2024.01.157 – volume: 28 issue: 8 year: 2018 ident: 10.1016/j.asems.2024.100123_bib83 article-title: Porphyrinic metal–organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/chemotherapy of tumor publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705451 – volume: 19 start-page: 2727 issue: 7 year: 2022 ident: 10.1016/j.asems.2024.100123_bib139 article-title: Fabrication and application of copper metal–organic frameworks as nanocarriers for pH-responsive anticancer drug delivery publication-title: J. Iran. Chem. Soc. – volume: 28 issue: 42 year: 2018 ident: 10.1016/j.asems.2024.100123_bib145 article-title: Metal–organic framework nanoshuttle for synergistic photodynamic and low-temperature photothermal therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804634 – volume: 58 start-page: 7380 issue: 22 year: 2019 ident: 10.1016/j.asems.2024.100123_bib133 article-title: DNAzyme-loaded metal–organic frameworks (MOFs) for self-sufficient gene therapy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902714 – volume: 10 start-page: 28390 issue: 34 year: 2018 ident: 10.1016/j.asems.2024.100123_bib113 article-title: Theranostic Mn-porphyrin metal–organic frameworks for magnetic resonance imaging-guided nitric oxide and photothermal synergistic therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b09680 – volume: 97 start-page: 1 year: 2016 ident: 10.1016/j.asems.2024.100123_bib153 article-title: Nanoscale metal−organic frameworks for combined photodynamic & radiation therapy in cancer treatment publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.04.034 – volume: 9 start-page: 4497 issue: 8 year: 2023 ident: 10.1016/j.asems.2024.100123_bib13 article-title: Stimuli-responsive design of metal-organic frameworks for cancer theranostics: current challenges and future perspective publication-title: ACS Biomater. Sci. doi: 10.1021/acsbiomaterials.3c00507 – volume: 57 start-page: 192 year: 2022 ident: 10.1016/j.asems.2024.100123_bib14 article-title: Current trends in stimuli-responsive nanotheranostics based on metal-organic frameworks for cancer therapy publication-title: Mater. Today doi: 10.1016/j.mattod.2022.05.024 – volume: 55 start-page: 7188 issue: 25 year: 2016 ident: 10.1016/j.asems.2024.100123_bib50 article-title: Controlled generation of singlet oxygen in living cells with tunable ratios of the photochromic switch in metal–organic frameworks publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602417 – volume: 33 issue: 7 year: 2021 ident: 10.1016/j.asems.2024.100123_bib105 article-title: Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy publication-title: Adv Mater doi: 10.1002/adma.202006892 – volume: 17 issue: 7 year: 2021 ident: 10.1016/j.asems.2024.100123_bib80 article-title: Nanometal thermocatalysts: transformations, deactivation, and mitigation publication-title: Small doi: 10.1002/smll.202005771 – volume: 43 year: 2022 ident: 10.1016/j.asems.2024.100123_bib77 article-title: Upconverted/downshifted NaLnF4 and metal-organic framework heterostructures boosting NIR-II imaging-guided photodynamic immunotherapy toward tumors publication-title: Nano Today doi: 10.1016/j.nantod.2022.101439 – volume: 60 start-page: 5010 issue: 10 year: 2021 ident: 10.1016/j.asems.2024.100123_bib24 article-title: Porphyrin-based metal–organic frameworks for biomedical applications publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201909880 – volume: 13 start-page: 3679 issue: 3 year: 2021 ident: 10.1016/j.asems.2024.100123_bib31 article-title: One-pot fabrication of hollow porphyrinic MOF nanoparticles with ultrahigh drug loading toward controlled delivery and synergistic cancer therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c20617 – volume: 136 start-page: 17714 issue: 51 year: 2014 ident: 10.1016/j.asems.2024.100123_bib55 article-title: A highly stable porphyrinic zirconium metal–organic framework with shp-a topology publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510525s – volume: 6 start-page: 14082 issue: 48 year: 2021 ident: 10.1016/j.asems.2024.100123_bib15 article-title: Porphyrin-based nanostructures for cancer theranostics: Chemistry, fundamentals and recent advances publication-title: ChemistrySelect doi: 10.1002/slct.202103418 – volume: 10 issue: 10 year: 2023 ident: 10.1016/j.asems.2024.100123_bib150 article-title: Tantalum–zirconium Co-doped metal–organic frameworks sequentially sensitize radio–radiodynamic–immunotherapy for metastatic osteosarcoma publication-title: Adv. Sci. doi: 10.1002/advs.202206779 – volume: 12 start-page: 4936 issue: 36 year: 2016 ident: 10.1016/j.asems.2024.100123_bib6 article-title: Cancer-targeted nanotheranostics: recent advances and perspectives publication-title: Small doi: 10.1002/smll.201600635 – volume: 190 year: 2022 ident: 10.1016/j.asems.2024.100123_bib11 article-title: Nanoscale MOFs: from synthesis to drug delivery and theranostics applications publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2022.114496 – volume: 12 start-page: 7519 issue: 8 year: 2018 ident: 10.1016/j.asems.2024.100123_bib151 article-title: Highly effective radioisotope cancer therapy with a non-therapeutic isotope delivered and sensitized by nanoscale coordination polymers publication-title: ACS Nano doi: 10.1021/acsnano.8b02400 – volume: 3 start-page: 6669 issue: 23 year: 2021 ident: 10.1016/j.asems.2024.100123_bib121 article-title: Metal-organic framework combined with CaO2 nanoparticles for enhanced and targeted photodynamic therapy publication-title: Nanoscale Adv. doi: 10.1039/D1NA00610J – volume: 136 start-page: 16712 issue: 48 year: 2014 ident: 10.1016/j.asems.2024.100123_bib117 article-title: Nanoscale metal–organic framework for highly effective photodynamic therapy of resistant head and neck cancer publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508679h – volume: 15 start-page: 50069 issue: 43 year: 2023 ident: 10.1016/j.asems.2024.100123_bib132 article-title: pH-responsive and actively targeted metal–organic framework structures for multimodal antitumor therapy and inhibition of tumor invasion and metastasis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c11909 – volume: 12 start-page: 1963 issue: 2 year: 2020 ident: 10.1016/j.asems.2024.100123_bib128 article-title: Biomimetic platinum nanozyme immobilized on 2D metal–organic frameworks for mitochondrion-targeting and oxygen self-supply photodynamic therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14958 – volume: 3 issue: 3 year: 2023 ident: 10.1016/j.asems.2024.100123_bib95 article-title: Recent advances in tetrakis (4-carboxyphenyl) porphyrin-based nanocomposites for tumor therapy publication-title: Adv Nanobiomed Res doi: 10.1002/anbr.202200136 – volume: 13 issue: 17 year: 2017 ident: 10.1016/j.asems.2024.100123_bib93 article-title: Fluorescent imaging-guided chemotherapy-and-photodynamic dual therapy with nanoscale porphyrin metal–organic framework publication-title: Small doi: 10.1002/smll.201603459 – volume: 13 issue: 24 year: 2017 ident: 10.1016/j.asems.2024.100123_bib76 article-title: DNA-assembled core-satellite upconverting-metal–organic framework nanoparticle superstructures for efficient photodynamic therapy publication-title: Small doi: 10.1002/smll.201700504 – volume: 74 start-page: 229 issue: 3 year: 2024 ident: 10.1016/j.asems.2024.100123_bib1 article-title: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer. J. Clin. doi: 10.3322/caac.21834 – volume: 11 start-page: 36347 issue: 40 year: 2019 ident: 10.1016/j.asems.2024.100123_bib34 article-title: O2-Generating metal–organic framework-based hydrophobic photosensitizer delivery system for enhanced photodynamic therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11607 – volume: 209 year: 2022 ident: 10.1016/j.asems.2024.100123_bib154 article-title: Pro-oxidant drug-loaded porphyrinic zirconium metal-organic-frameworks for cancer-specific sonodynamic therapy publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2021.112189 – volume: vol. 1 start-page: 275 year: 2021 ident: 10.1016/j.asems.2024.100123_bib18 article-title: Porphyrin-based nanomaterials for cancer nanotheranostics – volume: 54 year: 2024 ident: 10.1016/j.asems.2024.100123_bib119 article-title: Near-infrared-responsive nanoplatforms integrating dye-sensitized upconversion and heavy-atom effect for enhanced photodynamic therapy efficacy publication-title: Nano Today doi: 10.1016/j.nantod.2023.102089 – volume: 51 start-page: 10831 issue: 54 year: 2015 ident: 10.1016/j.asems.2024.100123_bib107 article-title: A porphyrin photosensitized metal–organic framework for cancer cell apoptosis and caspase responsive theranostics publication-title: Chem Commun doi: 10.1039/C5CC03028E – volume: 11 start-page: 6172 issue: 27 year: 2023 ident: 10.1016/j.asems.2024.100123_bib20 article-title: Research development of porphyrin-based metal–organic frameworks: targeting modalities and cancer therapeutic applications publication-title: J. Mater. Chem. B doi: 10.1039/D3TB00632H – volume: 29 issue: 25 year: 2019 ident: 10.1016/j.asems.2024.100123_bib89 article-title: Persistent regulation of tumor microenvironment via circulating catalysis of MnFe2O4@Metal–organic frameworks for enhanced photodynamic therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901417 – volume: 10 start-page: 43493 issue: 50 year: 2018 ident: 10.1016/j.asems.2024.100123_bib127 article-title: Collagenase-encapsulated pH-responsive nanoscale coordination polymers for tumor microenvironment modulation and enhanced photodynamic nanomedicine publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17684 – volume: 469 year: 2022 ident: 10.1016/j.asems.2024.100123_bib54 article-title: Clusters with a Zr6O8 core publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214686 – volume: 3 issue: 2 year: 2023 ident: 10.1016/j.asems.2024.100123_bib9 article-title: Unraveling mitochondria-targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials publication-title: Explorations – volume: 142 start-page: 7334 issue: 16 year: 2020 ident: 10.1016/j.asems.2024.100123_bib47 article-title: Nanoscale metal–organic frameworks stabilize bacteriochlorins for type I and type II photodynamic therapy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c02129 – volume: 11 start-page: 5976 issue: 26 year: 2023 ident: 10.1016/j.asems.2024.100123_bib29 article-title: Photodynamic therapy based on porphyrin-based metal–organic frameworks publication-title: J. Mater. Chem. B doi: 10.1039/D2TB02789E – volume: 59 start-page: 3300 issue: 8 year: 2020 ident: 10.1016/j.asems.2024.100123_bib53 article-title: Controllable synthesis of porphyrin-based 2D lanthanide metal–organic frameworks with thickness- and metal-node-dependent photocatalytic performance publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201913748 – volume: 13 start-page: 273 issue: 1 year: 2020 ident: 10.1016/j.asems.2024.100123_bib136 article-title: PCN-Fe(III)-PTX nanoparticles for MRI guided high efficiency chemo-photodynamic therapy in pancreatic cancer through alleviating tumor hypoxia publication-title: Nano Res. doi: 10.1007/s12274-019-2610-6 – volume: 2 start-page: 916 issue: 9 year: 2012 ident: 10.1016/j.asems.2024.100123_bib92 article-title: Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics publication-title: Theranostics doi: 10.7150/thno.4571 – volume: 31 issue: 27 year: 2019 ident: 10.1016/j.asems.2024.100123_bib124 article-title: A mesoporous nanoenzyme derived from metal–organic frameworks with endogenous oxygen generation to alleviate tumor hypoxia for significantly enhanced photodynamic therapy publication-title: Adv Mater doi: 10.1002/adma.201901893 – volume: 51 start-page: 6177 issue: 14 year: 2022 ident: 10.1016/j.asems.2024.100123_bib16 article-title: Lanthanide porphyrinoids as molecular theranostics publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00275B – volume: 235 year: 2020 ident: 10.1016/j.asems.2024.100123_bib37 article-title: Integration of metal-organic framework with a photoactive porous-organic polymer for interface enhanced phototherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.119792 – volume: 14 start-page: 2464 issue: 6 year: 2024 ident: 10.1016/j.asems.2024.100123_bib4 article-title: Theranostics―a sure cure for cancer after 100 years? publication-title: Theranostics doi: 10.7150/thno.96675 – volume: 10 issue: 7 year: 2023 ident: 10.1016/j.asems.2024.100123_bib52 article-title: Electrocatalytic porphyrin/phthalocyanine-based organic frameworks: building blocks, coordination microenvironments, structure-performance relationships publication-title: Adv. Sci. doi: 10.1002/advs.202206239 – volume: 35 issue: 23 year: 2023 ident: 10.1016/j.asems.2024.100123_bib143 article-title: Ultra-small high-entropy alloy nanoparticles: efficient nanozyme for enhancing tumor photothermal therapy publication-title: Adv Mater doi: 10.1002/adma.202302335 – volume: 16 start-page: 9633 issue: 7 year: 2023 ident: 10.1016/j.asems.2024.100123_bib65 article-title: Porphyrin-based metal-organic framework nanocrystals for combination of immune and sonodynamic therapy publication-title: Nano Res. doi: 10.1007/s12274-023-5477-5 – volume: 333 start-page: 82 year: 2017 ident: 10.1016/j.asems.2024.100123_bib111 article-title: Metal coordinated pyrrole-based macrocycles as contrast agents for magnetic resonance imaging technologies: synthesis and applications publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2016.11.011 – volume: 6 start-page: 248 issue: 1 year: 2023 ident: 10.1016/j.asems.2024.100123_bib109 article-title: Luminescent porphyrinic metal–organic frameworks for oxygen sensing: correlation of nanostructure and sensitivity publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c04301 – volume: 11 start-page: 63 issue: 1 year: 2019 ident: 10.1016/j.asems.2024.100123_bib72 article-title: Controlled synthesis of a core-shell nanohybrid for effective multimodal image-guided combined photothermal/photodynamic therapy of tumors publication-title: NPG Asia Mater. doi: 10.1038/s41427-019-0164-4 – volume: 139 start-page: 13804 issue: 39 year: 2017 ident: 10.1016/j.asems.2024.100123_bib118 article-title: Heterodimers made of upconversion nanoparticles and metal–organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07302 – volume: 9 start-page: 2150 issue: 3 year: 2017 ident: 10.1016/j.asems.2024.100123_bib33 article-title: Multifunctional metal–organic framework nanoprobe for cathepsin B-activated cancer cell imaging and chemo-photodynamic therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14446 – volume: 272 year: 2021 ident: 10.1016/j.asems.2024.100123_bib101 article-title: A near infrared ratiometric platform based π-extended porphyrin metal-organic framework for O2 imaging and cancer therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120782 – volume: 11 issue: 2 year: 2022 ident: 10.1016/j.asems.2024.100123_bib123 article-title: Metal–organic framework (MOF)-Based ultrasound-responsive dual-sonosensitizer nanoplatform for hypoxic cancer therapy publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202101946 – volume: 58 start-page: 8752 issue: 26 year: 2019 ident: 10.1016/j.asems.2024.100123_bib84 article-title: A catalase-like metal-organic framework nanohybrid for O2-evolving synergistic chemoradiotherapy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902612 – volume: 444 year: 2022 ident: 10.1016/j.asems.2024.100123_bib78 article-title: Engineering of upconversion carbon dots/metal-organic frameworks “Peeled Pitaya-Like” heterostructure for mitochondria-targeted photodynamic therapy publication-title: Chem Eng J doi: 10.1016/j.cej.2022.136706 – volume: 138 start-page: 3518 issue: 10 year: 2016 ident: 10.1016/j.asems.2024.100123_bib59 article-title: Size-controlled synthesis of porphyrinic metal–organic framework and functionalization for targeted photodynamic therapy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00007 – volume: 4 start-page: 1185 issue: 5 year: 2019 ident: 10.1016/j.asems.2024.100123_bib165 article-title: Porphyrin–palladium hydride MOF nanoparticles for tumor-targeting photoacoustic imaging-guided hydrogenothermal cancer therapy publication-title: Nanoscale Horiz doi: 10.1039/C9NH00021F – volume: 30 start-page: 6867 issue: 19 year: 2018 ident: 10.1016/j.asems.2024.100123_bib51 article-title: Nanoscale mixed-component metal–organic frameworks with photosensitizer spatial-arrangement-dependent photochemistry for multimodal-imaging-guided photothermal therapy publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03043 – volume: 90 start-page: 7056 issue: 11 year: 2018 ident: 10.1016/j.asems.2024.100123_bib99 article-title: Dual-emitting fluorescent metal–organic framework nanocomposites as a broad-range pH sensor for fluorescence imaging publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b01455 – volume: 39 start-page: 8205 issue: 23 year: 2023 ident: 10.1016/j.asems.2024.100123_bib43 article-title: Metal-organic frameworks facilitate nucleic acids for multimode synergistic therapy of breast cancer publication-title: Langmuir doi: 10.1021/acs.langmuir.3c00667 – volume: 55 start-page: 6471 issue: 22 year: 2016 ident: 10.1016/j.asems.2024.100123_bib49 article-title: An in situ one-pot synthetic approach towards multivariate zirconium MOFs publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602274 – volume: 18 start-page: 12261 issue: 19 year: 2024 ident: 10.1016/j.asems.2024.100123_bib162 article-title: Light-triggered nanozymes remodel the tumor hypoxic and immunosuppressive microenvironment for ferroptosis-enhanced antitumor immunity publication-title: ACS Nano doi: 10.1021/acsnano.4c00844 – volume: 130 start-page: 12639 issue: 38 year: 2008 ident: 10.1016/j.asems.2024.100123_bib30 article-title: Zeolite-like Metal−Organic frameworks as platforms for applications: on metalloporphyrin-based catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja804703w – volume: 32 issue: 17 year: 2022 ident: 10.1016/j.asems.2024.100123_bib161 article-title: Intracellular self-assembly driven nucleus-targeted photo-immune stimulator with chromatin decompaction function for robust innate and adaptive antitumor immunity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108883 – volume: 57 start-page: 5420 issue: 9 year: 2018 ident: 10.1016/j.asems.2024.100123_bib39 article-title: Surface decorated porphyrinic nanoscale metal–organic framework for photodynamic therapy publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b00384 – volume: 13 start-page: 39 issue: 1 year: 2021 ident: 10.1016/j.asems.2024.100123_bib125 article-title: Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment publication-title: NPG Asia Mater. doi: 10.1038/s41427-021-00303-1 – volume: 439 year: 2021 ident: 10.1016/j.asems.2024.100123_bib25 article-title: Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.213945 – volume: 20 issue: 15 year: 2024 ident: 10.1016/j.asems.2024.100123_bib155 article-title: Mn(II) optimized sono/chemodynamic effect of porphyrin-metal–organic framework nanosheets for MRI-guided colon cancer therapy and metastasis suppression publication-title: Small doi: 10.1002/smll.202306364 – volume: 36 issue: 7 year: 2024 ident: 10.1016/j.asems.2024.100123_bib70 article-title: Employing noble metal–porphyrins to engineer robust and highly active single-atom nanozymes for targeted catalytic therapy in nasopharyngeal carcinoma publication-title: Adv Mater doi: 10.1002/adma.202310033 – volume: 283 year: 2022 ident: 10.1016/j.asems.2024.100123_bib114 article-title: MOF@COF nanocapsule for the enhanced microwave thermal-dynamic therapy and anti-angiogenesis of colorectal cancer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121472 – volume: 20 issue: 31 year: 2024 ident: 10.1016/j.asems.2024.100123_bib38 article-title: Erythrocyte membrane camouflaged nanotheranostics for optical molecular imaging-escorted self-oxygenation photodynamic therapy publication-title: Small doi: 10.1002/smll.202309026 – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.asems.2024.100123_bib115 article-title: Fluorescence and magnetic resonance dual-modality imaging-guided photothermal and photodynamic dual-therapy with magnetic porphyrin-metal organic framework nanocomposites publication-title: Sci. Rep. – volume: 437 year: 2022 ident: 10.1016/j.asems.2024.100123_bib159 article-title: Near-Infrared Light-Boosted Photodynamic-Immunotherapy based on sulfonated Metal-Organic framework nanospindle publication-title: Chem Eng J doi: 10.1016/j.cej.2022.135370 – volume: 137 start-page: 7600 issue: 24 year: 2015 ident: 10.1016/j.asems.2024.100123_bib45 article-title: A chlorin-based nanoscale metal–organic framework for photodynamic therapy of colon cancers publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04069 – volume: 135 start-page: 13934 issue: 37 year: 2013 ident: 10.1016/j.asems.2024.100123_bib56 article-title: An exceptionally stable, porphyrinic Zr metal–organic framework exhibiting pH-dependent fluorescence publication-title: J. Am. Chem. Soc. doi: 10.1021/ja406844r – volume: 18 start-page: 9100 issue: 12 year: 2024 ident: 10.1016/j.asems.2024.100123_bib19 article-title: Coordination self-assembled AuTPyP-Cu metal–organic framework nanosheets with pH/ultrasound dual-responsiveness for synergistically triggering cuproptosis-augmented chemotherapy publication-title: ACS Nano doi: 10.1021/acsnano.3c13225 – volume: 13 start-page: 295 issue: 1 year: 2023 ident: 10.1016/j.asems.2024.100123_bib10 article-title: Multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer therapy: from single to combination therapy publication-title: Theranostics doi: 10.7150/thno.80687 – volume: 6 start-page: 265 issue: 2 year: 2018 ident: 10.1016/j.asems.2024.100123_bib112 article-title: Albumin/sulfonamide stabilized iron porphyrin metal organic framework nanocomposites: targeting tumor hypoxia by carbonic anhydrase IX inhibition and T1–T2 dual mode MRI guided photodynamic/photothermal therapy publication-title: J. Mater. Chem. B doi: 10.1039/C7TB02818K – volume: 3 issue: 4 year: 2023 ident: 10.1016/j.asems.2024.100123_bib12 article-title: Atomically Fe-anchored MOF-on-MOF nanozyme with differential signal amplification for ultrasensitive cathodic electrochemiluminescence immunoassay publication-title: Explorations – volume: 10 start-page: 4557 issue: 10 year: 2020 ident: 10.1016/j.asems.2024.100123_bib96 article-title: Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics publication-title: Theranostics doi: 10.7150/thno.38069 – volume: 138 start-page: 12502 issue: 38 year: 2016 ident: 10.1016/j.asems.2024.100123_bib46 article-title: Chlorin-based nanoscale metal–organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06663 – volume: 51 start-page: 10307 issue: 41 year: 2012 ident: 10.1016/j.asems.2024.100123_bib135 article-title: Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204475 – volume: 9 start-page: 2947 issue: 8 year: 2021 ident: 10.1016/j.asems.2024.100123_bib152 article-title: Versatile labeling of multiple radionuclides onto a nanoscale metal–organic framework for tumor imaging and radioisotope therapy publication-title: Biomater. Sci. doi: 10.1039/D0BM02225J – volume: 31 issue: 40 year: 2021 ident: 10.1016/j.asems.2024.100123_bib2 article-title: Dual enzyme mimics based on metal-ligand cross-linking strategy for accelerating ascorbate oxidation and enhancing tumor therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103581 – volume: 59 start-page: 1617 issue: 12 year: 2023 ident: 10.1016/j.asems.2024.100123_bib98 article-title: An NIR fluorescent/photoacoustic dual-mode probe of NADPH for tumor imaging publication-title: Chem Commun doi: 10.1039/D2CC06354A – volume: 19 start-page: 5674 issue: 8 year: 2019 ident: 10.1016/j.asems.2024.100123_bib88 article-title: Nanozymes-engineered metal–organic frameworks for catalytic cascades-enhanced synergistic cancer therapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02253 – volume: 28 issue: 36 year: 2018 ident: 10.1016/j.asems.2024.100123_bib91 article-title: A versatile Pt-based core–shell nanoplatform as a nanofactory for enhanced tumor therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801783 – volume: 8 start-page: 4086 issue: 15 year: 2018 ident: 10.1016/j.asems.2024.100123_bib69 article-title: Ultrathin Cu-TCPP MOF nanosheets: a new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers publication-title: Theranostics doi: 10.7150/thno.25433 – volume: 60 start-page: 26254 issue: 50 year: 2021 ident: 10.1016/j.asems.2024.100123_bib42 article-title: Missing-linker-assisted artesunate delivery by metal–organic frameworks for synergistic cancer treatment publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202112128 – volume: 29 issue: 11 year: 2019 ident: 10.1016/j.asems.2024.100123_bib87 article-title: Silver-infused porphyrinic metal–organic framework: surface-adaptive, on-demand nanoplatform for synergistic bacteria killing and wound disinfection publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808594 – volume: 185 start-page: 51 year: 2018 ident: 10.1016/j.asems.2024.100123_bib163 article-title: ROS-induced NO generation for gas therapy and sensitizing photodynamic therapy of tumor publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.09.004 – volume: 17 start-page: 9003 issue: 10 year: 2023 ident: 10.1016/j.asems.2024.100123_bib66 article-title: Dual-responsive triple-synergistic Fe-MOF for tumor theranostics publication-title: ACS Nano doi: 10.1021/acsnano.2c10310 – volume: 20 start-page: 181 issue: 1 year: 2022 ident: 10.1016/j.asems.2024.100123_bib74 article-title: Light-triggered multifunctional nanoplatform for efficient cancer photo-immunotherapy publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-022-01388-8 – volume: 16 start-page: 1791 issue: 2 year: 2022 ident: 10.1016/j.asems.2024.100123_bib108 article-title: miRNA-guided imaging and photodynamic therapy treatment of cancer cells using Zn(II)-Protoporphyrin IX-loaded metal–organic framework nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.1c04681 |
SSID | ssj0002856910 |
Score | 2.315045 |
SecondaryResourceType | review_article |
Snippet | Theranostics, integrating diagnostic and therapeutic functionalities, have emerged as advanced systems for timely cancer diagnosis and effective treatment. The... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100123 |
SubjectTerms | Cancer theranostics Diagnosis imaging Enhanced photodynamic therapy Multifunctional strategy Porphyrin-based metal-organic frameworks Synergistic therapy |
Title | Porphyrin-based metal-organic frameworks for cancer theranostics |
URI | https://dx.doi.org/10.1016/j.asems.2024.100123 https://doaj.org/article/bd062da4f76b489393818442127e9410 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA6ykxdRVKxf5ODRYJqmaXPzg40hTDw42C00H4UN18mcV3-7eZN21Mu8SKGHNk3K8xaeJ82b50XoBjzphMlrIqjVhHMK67tcEue5VNiypkbCBufJixhP-fMsn_VKfUFOWLQHjsDdaUsFsxWvC6HBKEUCxXBYxyyc5HFzlee83mRqEX4Z5cITYWczFBK6PCsswaCb8WA8xLJfVBQc-3uM1GOZ0SE6aOUhfoivdYT2XHOM7l9XgMZ63hAgHYuXzktmEgsyGVx3-VWf2CtQbCCOaxw2VjWrYMN8gqaj4dvTmLSVD4jhKd8QCyYxVkheWOFKaWVdpbXORZZWwXBLGkurnDpmuKwKW-nM-Kmmv81obtK0yE7RoFk17gxhBpLEaCldSbl2lXY28wc3JRQcY3mCWAeCMq0tOFSneFdd_tdCBeQUIKcicgm63T70EV0xdjd_BHS3TcHSOlzwQKk20OqvQCdIdLFRrTqIrO-7mu8a_fw_Rr9A-9BlTGS5RIPN-stdeTmy0dfhy_PnyffwB0l42pE |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porphyrin-based+metal-organic+frameworks+for+cancer+theranostics&rft.jtitle=Advanced+Sensor+and+Energy+Materials&rft.au=Guan%2C+Liandi&rft.au=Liu%2C+Fang&rft.au=Zhang%2C+Cun&rft.au=Wang%2C+Wei&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=2773-045X&rft.eissn=2773-045X&rft.volume=3&rft.issue=4&rft_id=info:doi/10.1016%2Fj.asems.2024.100123&rft.externalDocID=S2773045X24000347 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2773-045X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2773-045X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2773-045X&client=summon |