Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections

In this study, the thermal performance of moving porous fin wetted with hybrid nanofluid with different cross-sections in the presence of a magnetic field is investigated. As an innovation, three different cross-sections) trapezoidal, concave parabolic and convex (have been used. The Shape-factor ef...

Full description

Saved in:
Bibliographic Details
Published inCase studies in thermal engineering Vol. 30; p. 101757
Main Authors Hosseinzadeh, S., Hosseinzadeh, Kh, Hasibi, A., Ganji, D.D.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, the thermal performance of moving porous fin wetted with hybrid nanofluid with different cross-sections in the presence of a magnetic field is investigated. As an innovation, three different cross-sections) trapezoidal, concave parabolic and convex (have been used. The Shape-factor effect of hybrid nanoparticles is also considered in the equations. After extracting the governing equations and converting the PDE equations to ODE by Similarity solution, the equations are solved by Akbari-Ganji's method. The boundary conditions are an insulated tip with a finite length, and thermal functions for heat transfer coefficient and conductivity have been assumed. The impacts of several characteristics on the dimensionless temperature are thoroughly investigated, including Peclet number, thermal conductivity parameter, emissivity parameter, heat transfer coefficient parameter, convective–conductive parameter, and radiative–conductive parameter. The results show that Akbari-Ganji's method has good accuracy in solving heat transfer equations related to moving porous fin. Also, increasing the Peclet number increases the dimensionless temperature, because increasing the Peclet number causes the fin to move faster.
AbstractList In this study, the thermal performance of moving porous fin wetted with hybrid nanofluid with different cross-sections in the presence of a magnetic field is investigated. As an innovation, three different cross-sections) trapezoidal, concave parabolic and convex (have been used. The Shape-factor effect of hybrid nanoparticles is also considered in the equations. After extracting the governing equations and converting the PDE equations to ODE by Similarity solution, the equations are solved by Akbari-Ganji's method. The boundary conditions are an insulated tip with a finite length, and thermal functions for heat transfer coefficient and conductivity have been assumed. The impacts of several characteristics on the dimensionless temperature are thoroughly investigated, including Peclet number, thermal conductivity parameter, emissivity parameter, heat transfer coefficient parameter, convective–conductive parameter, and radiative–conductive parameter. The results show that Akbari-Ganji's method has good accuracy in solving heat transfer equations related to moving porous fin. Also, increasing the Peclet number increases the dimensionless temperature, because increasing the Peclet number causes the fin to move faster.
ArticleNumber 101757
Author Hosseinzadeh, Kh
Ganji, D.D.
Hosseinzadeh, S.
Hasibi, A.
Author_xml – sequence: 1
  givenname: S.
  surname: Hosseinzadeh
  fullname: Hosseinzadeh, S.
– sequence: 2
  givenname: Kh
  surname: Hosseinzadeh
  fullname: Hosseinzadeh, Kh
  email: khashayarh68@stu.nit.ac.ir
– sequence: 3
  givenname: A.
  surname: Hasibi
  fullname: Hasibi, A.
– sequence: 4
  givenname: D.D.
  surname: Ganji
  fullname: Ganji, D.D.
BookMark eNp9UcFqGzEQXUIKTdN8QS_6gNqVtMpq95BDCW0aCPSSQm9iNBrFMmvJSIpT55Bv767dQukhpxke8x7z3nvXnMYUqWk-CL4UXHSf1kssodJScilnRF_qk-ZMSqEW4lL_PP1nf9tclLLmfDpqe6HUWfNyv6K8gZFBhHFfQmHJs03ahfjAtimnx8J8iOyJaiXH7J6t9jYHxyLE5MfHaXsKdcVqhi09p-Bg_MgwRYQdsS1ksGkMOIm7Gd3RL4Y5lcIKYQ0plvfNGw9joYs_87z58fXL_fW3xd33m9vrz3cLVELVhZPOSuk6qXqFg-U4OIveead0pzuhrLZeq96C7Uh75OR1ywWqDrhH1L49b26Pui7B2mxz2EDemwTBHICUHwzkGnAko0irrh2GAaRXWkAvexi8wE56tIOmSWs4ah2sZPIGQ4XZzpRCGI3gZu7FrM2hFzP3Yo69TNz2P-7fX15nXR1ZNEW0C5RNwUARyYU8BTl5CK_yfwM6-64S
CitedBy_id crossref_primary_10_1140_epjp_s13360_023_04459_3
crossref_primary_10_1016_j_ijhydene_2022_04_106
crossref_primary_10_1016_j_jmmm_2023_171612
crossref_primary_10_1080_10420150_2024_2436484
crossref_primary_10_1080_02286203_2023_2301211
crossref_primary_10_1515_nleng_2022_0044
crossref_primary_10_1016_j_asej_2022_101811
crossref_primary_10_1016_j_ijft_2023_100529
crossref_primary_10_1063_5_0176926
crossref_primary_10_1080_17455030_2022_2134605
crossref_primary_10_3390_sym14040690
crossref_primary_10_1016_j_csite_2023_102777
crossref_primary_10_1016_j_icheatmasstransfer_2022_106464
crossref_primary_10_3390_biomimetics8080574
crossref_primary_10_1016_j_icheatmasstransfer_2022_106341
crossref_primary_10_3934_mbe_2022535
crossref_primary_10_1016_j_taml_2022_100342
crossref_primary_10_1016_j_rineng_2022_100838
crossref_primary_10_1016_j_molliq_2023_123582
crossref_primary_10_1007_s12043_024_02823_1
crossref_primary_10_1007_s13369_023_08058_3
crossref_primary_10_1002_htj_23039
crossref_primary_10_1002_htj_22583
crossref_primary_10_1016_j_aej_2022_02_036
crossref_primary_10_1007_s12043_024_02880_6
crossref_primary_10_1016_j_icheatmasstransfer_2022_106354
crossref_primary_10_1080_10407790_2023_2200215
crossref_primary_10_1016_j_cjph_2022_06_020
crossref_primary_10_1016_j_icheatmasstransfer_2022_106311
crossref_primary_10_3390_nano12060891
crossref_primary_10_3390_sym16111532
crossref_primary_10_1080_10407790_2024_2333019
crossref_primary_10_1016_j_finmec_2022_100120
crossref_primary_10_1016_j_ijft_2022_100187
crossref_primary_10_1080_01495739_2023_2216803
crossref_primary_10_1002_htj_22957
crossref_primary_10_1007_s10973_024_13158_9
crossref_primary_10_3390_mi13081336
crossref_primary_10_1080_10407782_2024_2331581
crossref_primary_10_1007_s00158_022_03414_7
crossref_primary_10_1016_j_csite_2022_102113
crossref_primary_10_1016_j_padiff_2025_101092
crossref_primary_10_1080_10407782_2022_2157352
crossref_primary_10_1002_htj_23000
crossref_primary_10_1016_j_csite_2024_105308
crossref_primary_10_1016_j_csite_2024_105423
crossref_primary_10_1016_j_icheatmasstransfer_2022_106285
crossref_primary_10_1016_j_icheatmasstransfer_2022_106165
crossref_primary_10_1016_j_icheatmasstransfer_2022_106325
crossref_primary_10_1002_zamm_202300712
crossref_primary_10_1142_S0217979224501558
crossref_primary_10_3390_sym15061204
crossref_primary_10_1177_23977914221098614
crossref_primary_10_1002_zamm_202100526
crossref_primary_10_1080_10407782_2024_2345863
crossref_primary_10_1080_02286203_2023_2296520
crossref_primary_10_1016_j_heliyon_2024_e26424
crossref_primary_10_1002_htj_22964
crossref_primary_10_1002_htj_22562
crossref_primary_10_1016_j_csite_2023_103214
crossref_primary_10_1016_j_csite_2023_103576
crossref_primary_10_1016_j_physo_2023_100161
crossref_primary_10_1007_s12668_024_01378_0
crossref_primary_10_1016_j_csite_2022_102623
crossref_primary_10_1016_j_icheatmasstransfer_2022_106137
crossref_primary_10_1615_JPorMedia_2022040109
crossref_primary_10_1016_j_icheatmasstransfer_2022_106136
crossref_primary_10_1080_17455030_2022_2131935
crossref_primary_10_1016_j_csite_2023_103265
crossref_primary_10_1016_j_aej_2022_03_031
crossref_primary_10_1016_j_cjph_2023_09_013
crossref_primary_10_1007_s12668_024_01456_3
crossref_primary_10_1016_j_rinp_2023_106464
crossref_primary_10_1063_5_0138600
crossref_primary_10_1007_s11431_023_2495_y
crossref_primary_10_1038_s41598_023_28916_2
crossref_primary_10_1080_10407782_2023_2202883
crossref_primary_10_1088_1402_4896_ad1c2d
crossref_primary_10_1140_epjs_s11734_024_01114_5
crossref_primary_10_1142_S0217984925500678
crossref_primary_10_1016_j_ijoes_2023_100113
crossref_primary_10_1140_epjp_s13360_023_04848_8
crossref_primary_10_1016_j_icheatmasstransfer_2022_106272
crossref_primary_10_1140_epjp_s13360_024_04915_8
crossref_primary_10_1142_S021797922450245X
crossref_primary_10_1108_WJE_09_2022_0365
crossref_primary_10_1016_j_cjph_2023_07_024
crossref_primary_10_1515_ntrev_2022_0486
crossref_primary_10_1016_j_petrol_2022_110857
crossref_primary_10_1016_j_ijoes_2023_100220
crossref_primary_10_1007_s12668_024_01308_0
crossref_primary_10_1140_epjs_s11734_024_01247_7
crossref_primary_10_1016_j_csite_2024_105229
crossref_primary_10_1002_htj_23280
crossref_primary_10_1515_phys_2022_0229
crossref_primary_10_1016_j_csite_2023_103524
crossref_primary_10_1080_10407782_2024_2337764
crossref_primary_10_1007_s12668_024_01468_z
crossref_primary_10_1002_htj_22809
crossref_primary_10_1016_j_csite_2024_105052
crossref_primary_10_1142_S0217979224501510
crossref_primary_10_1038_s41598_022_12857_3
crossref_primary_10_1016_j_padiff_2024_100632
crossref_primary_10_1080_01430750_2022_2161631
crossref_primary_10_1016_j_aej_2022_09_026
crossref_primary_10_1016_j_cjph_2022_05_016
crossref_primary_10_1140_epjp_s13360_023_03986_3
crossref_primary_10_1007_s12668_023_01280_1
Cites_doi 10.3390/nano11092250
10.1007/s12206-012-0202-4
10.1155/2007/42072
10.1016/j.molliq.2020.112920
10.1016/j.amc.2009.08.011
10.1016/j.applthermaleng.2021.117237
10.1016/j.enconman.2010.05.033
10.1007/s10891-018-1721-3
10.1016/j.energy.2011.01.052
10.1016/j.enconman.2009.06.017
10.1016/j.icheatmasstransfer.2015.01.011
10.1016/j.euromechflu.2021.04.005
10.1007/s10973-019-08917-y
10.1016/j.enconman.2012.10.015
10.1016/j.applthermaleng.2016.04.121
10.1007/s00231-008-0446-9
10.1142/S0217984921504625
10.1016/j.jppr.2014.01.005
10.1088/1572-9494/ab6904
10.3390/sym13101793
10.1016/j.energy.2010.03.016
10.4028/www.scientific.net/DDF.408.83
10.1016/j.enconman.2011.04.003
10.1016/j.csite.2021.101697
10.1016/j.icheatmasstransfer.2010.12.024
10.1016/j.applthermaleng.2008.01.012
10.1007/s10765-012-1179-z
10.1016/j.jfranklin.2011.01.008
10.1016/j.energy.2012.11.052
10.1016/j.icheatmasstransfer.2012.07.007
10.1007/s10973-020-09963-7
10.1016/j.energy.2011.01.014
10.3390/nano11113084
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2022.101757
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_4e7463999a2f471a828a9f1c62fcb97e
10_1016_j_csite_2022_101757
S2214157X2200003X
GroupedDBID 0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-d2db22d62484c9b0c9dbcfdfd4767614b7bf748bab6e7fc0ef7301c46a0fcc7f3
IEDL.DBID IXB
ISSN 2214-157X
IngestDate Wed Aug 27 01:29:27 EDT 2025
Tue Jul 01 02:28:32 EDT 2025
Thu Apr 24 22:54:49 EDT 2025
Tue Jul 25 20:59:09 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Magnetic field
Moving porous fin
AGM
Hybrid nanofluid
Different cross-sections
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-d2db22d62484c9b0c9dbcfdfd4767614b7bf748bab6e7fc0ef7301c46a0fcc7f3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2214157X2200003X
ParticipantIDs doaj_primary_oai_doaj_org_article_4e7463999a2f471a828a9f1c62fcb97e
crossref_citationtrail_10_1016_j_csite_2022_101757
crossref_primary_10_1016_j_csite_2022_101757
elsevier_sciencedirect_doi_10_1016_j_csite_2022_101757
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Torabi, Zhang (bib33) 2013; 66
Torabi, Aziz (bib31) 2012; 39
Alagumalai, Qin, Vimal, Solomin, Yang, Zhang, Otanicar, Kasaeian, Chamkha, Rashidi, Wongwises (bib2) 2021 Nov 21
Bennia, Benabdallah, Lounis (bib47) 2021; 408
Hosseinzadeh, Hosseinzadeh, Rahai, Ganji (bib53) 2021 Nov 10; 35
Aziz, Torabi (bib30) 2012; 41
Sowmya, Gireesha, Prasannakumara (bib6) 2019 Nov 18
Deepak UmraoSarwe, VinayakKulkarni (bib49) 2021; 96
Cengel (bib12) 2007
Domairry, Fazeli (bib16) 2009; 14
Buonomo, Cascetta, Manca, Sheremet (bib46) 2021; 195
Subba, Gorla, Bakier (bib28) 2011; 38
Manohar, Venkatesh, Gireesha, Madhukesh, Ramesh (bib10) 2021 Dec 2
Sowmya, Gireesha1, Berrehal (bib44) 2020; 143
AbeerBaslem, Gireesha, Prasannakumara, Rahimi-Gorji, Hoang (bib42) 2020; 307
Coşkun, Atay (bib14) 2007
Elshafei (bib21) 2010; 35
Khani, Aziz (bib23) 2010; 15
George, GbeminiyiSobamowob (bib43) 2020; 16
Aziz, Bouaziz (bib27) 2011; 52
Mosayebidorcheh, Ganji, Farzinpoor (bib35) 2014; 3
Sertkaya, Bilir, Kargıc&imath (bib25) 2011; 36
Sowmya, Sarris, Vishalakshi, Kumar, Prasannakumara (bib9) 2021 Oct; 13
Sun, Xu (bib52) 2015 Apr 1; 63
Tabaei, Sadeghi, Hosseinzadeh, Bidabadi, Xiong, Karimi (bib11) 2020 Feb; 139
Torabi, Aziz, Zhang (bib34) 2013; 51
Gireesha, Sowmya, Srikantha (bib45) 2020
Dogonchi, Ganji (bib37) 2016; 103
Hassanzadeha, Bilgili (bib40) 2018; 91
Sowmya, Gireesha, Sindhu, Prasannakumara (bib7) 2020 Feb 5; 72
Aziz, Beers-Green (bib20) 2009; 50
Kraus, Aziz, Welty (bib13) 2002
Coşkun SB, Atay MT. Fin efficiency analysis of convective straight fins with temperature dependent thermal conductivity using variational iteration method. Appl. Therm. Eng.2008;28:2345e52.
Rashidi, Nazari, Mahariq, Assad, Ali, Almuzaiqer, Nuhait, Murshid (bib3) 2021 Nov; 11
H. A. Hoshyar, I. Rahimipetroudi, Heat transfer performance on longitudinal porous fins with temperature-dependent heat generation, heat transfer coefficient and surface emissivity, Iran J. Sci. Technol. Trans. Mech. Eng.
Aziz, Khani (bib50) 2011 May 1; 348
Jayaprakash, Alzahrani, Sowmya, Kumar, Malik, Alsaiari, Prasannakumara (bib5) 2021 Dec 1; 28
Mosavat, Moradi, RahimiTakami, BarzegarGerdroodbary, Ganji (bib39) 2018; 21
Khani, AhmadzadehRaji, HamediNejad (bib19) 2009; 14
George, SobamowoGbeminiyi, James (bib41) 2019; 5
Baslem, Sowmya, Gireesha, Prasannakumara, Rahimi-Gorji, Hoang (bib8) 2020 Jun 1; 307
Torabi M, Yaghoobi H, Aziz A. Analytical solution for convective-radiative continuously moving fin with temperature dependent thermal conductivity. Int. J. Thermophys.2012;33:924e41.
Torabi, Yaghoobi (bib32) 2012; 41
Sadri, Raveshi, Amiri (bib51) 2012; 26
Arslanturk (bib17) 2009; 45
Sun, Xu (bib36) 2015; 63
UmraoSarwe, Kulkarni (bib48) 2021; 96
Kundu, Barman (bib26) 2011; 36
Alipanah, Hatami, Ramiar (bib1) 2021; 88
Kulkarni DB, Joglekar MM. Residue minimization technique to analyze the efficiency of convective straight fins having temperature-dependent thermal conductivity. Appl. Math. Comput.2009;215:2184e91.
Bouaziz, Aziz (bib24) 2010; 51
Fouladi, Hosseinzadeh, Barari, Domairry (bib22) 2010; 41
Rashidi, Sadri, Sheremet (bib4) 2021 Sep; 11
Aziz (10.1016/j.csite.2022.101757_bib27) 2011; 52
Khani (10.1016/j.csite.2022.101757_bib23) 2010; 15
Aziz (10.1016/j.csite.2022.101757_bib30) 2012; 41
Bouaziz (10.1016/j.csite.2022.101757_bib24) 2010; 51
Khani (10.1016/j.csite.2022.101757_bib19) 2009; 14
Mosayebidorcheh (10.1016/j.csite.2022.101757_bib35) 2014; 3
Dogonchi (10.1016/j.csite.2022.101757_bib37) 2016; 103
Buonomo (10.1016/j.csite.2022.101757_bib46) 2021; 195
Sadri (10.1016/j.csite.2022.101757_bib51) 2012; 26
Domairry (10.1016/j.csite.2022.101757_bib16) 2009; 14
Kraus (10.1016/j.csite.2022.101757_bib13) 2002
Alagumalai (10.1016/j.csite.2022.101757_bib2) 2021
Sowmya (10.1016/j.csite.2022.101757_bib9) 2021; 13
Rashidi (10.1016/j.csite.2022.101757_bib4) 2021; 11
Torabi (10.1016/j.csite.2022.101757_bib31) 2012; 39
Sertkaya (10.1016/j.csite.2022.101757_bib25) 2011; 36
Hassanzadeha (10.1016/j.csite.2022.101757_bib40) 2018; 91
Gireesha (10.1016/j.csite.2022.101757_bib45) 2020
10.1016/j.csite.2022.101757_bib38
Cengel (10.1016/j.csite.2022.101757_bib12) 2007
Tabaei (10.1016/j.csite.2022.101757_bib11) 2020; 139
Manohar (10.1016/j.csite.2022.101757_bib10) 2021
UmraoSarwe (10.1016/j.csite.2022.101757_bib48) 2021; 96
Aziz (10.1016/j.csite.2022.101757_bib50) 2011; 348
Arslanturk (10.1016/j.csite.2022.101757_bib17) 2009; 45
George (10.1016/j.csite.2022.101757_bib41) 2019; 5
Elshafei (10.1016/j.csite.2022.101757_bib21) 2010; 35
Sun (10.1016/j.csite.2022.101757_bib36) 2015; 63
Deepak UmraoSarwe (10.1016/j.csite.2022.101757_bib49) 2021; 96
Coşkun (10.1016/j.csite.2022.101757_bib14) 2007
Rashidi (10.1016/j.csite.2022.101757_bib3) 2021; 11
Alipanah (10.1016/j.csite.2022.101757_bib1) 2021; 88
Baslem (10.1016/j.csite.2022.101757_bib8) 2020; 307
Hosseinzadeh (10.1016/j.csite.2022.101757_bib53) 2021; 35
George (10.1016/j.csite.2022.101757_bib43) 2020; 16
Subba (10.1016/j.csite.2022.101757_bib28) 2011; 38
10.1016/j.csite.2022.101757_bib29
Torabi (10.1016/j.csite.2022.101757_bib33) 2013; 66
Mosavat (10.1016/j.csite.2022.101757_bib39) 2018; 21
Sowmya (10.1016/j.csite.2022.101757_bib44) 2020; 143
AbeerBaslem (10.1016/j.csite.2022.101757_bib42) 2020; 307
Jayaprakash (10.1016/j.csite.2022.101757_bib5) 2021; 28
Sowmya (10.1016/j.csite.2022.101757_bib6) 2019
Sowmya (10.1016/j.csite.2022.101757_bib7) 2020; 72
Aziz (10.1016/j.csite.2022.101757_bib20) 2009; 50
Sun (10.1016/j.csite.2022.101757_bib52) 2015; 63
Torabi (10.1016/j.csite.2022.101757_bib32) 2012; 41
Kundu (10.1016/j.csite.2022.101757_bib26) 2011; 36
Torabi (10.1016/j.csite.2022.101757_bib34) 2013; 51
10.1016/j.csite.2022.101757_bib15
Bennia (10.1016/j.csite.2022.101757_bib47) 2021; 408
Fouladi (10.1016/j.csite.2022.101757_bib22) 2010; 41
10.1016/j.csite.2022.101757_bib18
References_xml – year: 2021 Nov 21
  ident: bib2
  article-title: Overcoming commercial application barriers of nanofluids uptake: a contextual relationship analysis
  publication-title: Nano Energy
– volume: 45
  start-page: 519e25
  year: 2009
  ident: bib17
  article-title: Correlation equations for optimum design of annular fins with temperature dependent thermal conductivity
  publication-title: Heat Mass Tran.
– volume: 51
  start-page: 2776e82
  year: 2010
  ident: bib24
  article-title: Simple and accurate solution for convective-radiative fin with temperature dependent thermal conductivity using double optimal linearization
  publication-title: Energy Convers. Manag.
– volume: 11
  start-page: 2250
  year: 2021 Sep
  ident: bib4
  article-title: Numerical simulation of hybrid nanofluid mixed convection in a lid-driven square cavity with magnetic field using high-order compact scheme
  publication-title: Nanomaterials
– volume: 72
  year: 2020 Feb 5
  ident: bib7
  article-title: Investigation of Ti6Al4V and AA7075 alloy embedded nanofluid flow over longitudinal porous fin in the presence of internal heat generation and convective condition
  publication-title: Commun. Theor. Phys.
– volume: 14
  start-page: 489e99
  year: 2009
  ident: bib16
  article-title: Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity
  publication-title: Commun. Nonlin. SciNumer Simul.
– volume: 63
  start-page: 23
  year: 2015
  end-page: 34
  ident: bib36
  article-title: Thermal performance of continuously moving radiative–convective fin of complex cross-section with multiple nonlinearities
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 96
  year: 2021
  ident: bib48
  article-title: Thermal behaviour of annular hyperbolic fin with temperature dependent thermal conductivity by differential transformation method and
  publication-title: Pade Approx.
– volume: 88
  start-page: 178
  year: 2021
  end-page: 190
  ident: bib1
  article-title: Thermal and rheological investigation of non-Newtonian fluids in an induced-charge electroosmotic micromixer
  publication-title: Eur. J. Mech. B Fluid
– reference: Torabi M, Yaghoobi H, Aziz A. Analytical solution for convective-radiative continuously moving fin with temperature dependent thermal conductivity. Int. J. Thermophys.2012;33:924e41.
– volume: 41
  start-page: 99e113
  year: 2012
  ident: bib30
  article-title: Convective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coefficient, and surface emissivity with temperature
  publication-title: Heat Tran. Asian Res.
– year: 2002
  ident: bib13
  article-title: Extended Surface Heat Transfer
– volume: 91
  start-page: 79
  year: 2018
  end-page: 88
  ident: bib40
  article-title: Assessment OF thermal performance OF functionally graded materials IN longitudinal FINS
  publication-title: J. Eng. Phys. Thermophys.
– volume: 13
  start-page: 1793
  year: 2021 Oct
  ident: bib9
  article-title: Analysis of transient thermal distribution in a convective–radiative moving rod using two-dimensional differential transform method with multivariate pade approximant
  publication-title: Symmetry
– volume: 21
  start-page: 380
  year: 2018
  end-page: 388
  ident: bib39
  article-title: Heat transfer study of mechanical face seal and fin by analytical method, Engineering Science and Technology
  publication-title: Int. J.
– volume: 36
  start-page: 1513e7
  year: 2011
  ident: bib25
  article-title: Experimental investigation of the effects of orientation angle on heat transfer performance of pin-finned surfaces in natural convection
  publication-title: Energy
– volume: 307
  year: 2020 Jun 1
  ident: bib8
  article-title: Analysis of thermal behavior of a porous fin fully wetted with nanofluids: convection and radiation
  publication-title: J. Mol. Liq.
– volume: 408
  start-page: 83
  year: 2021
  end-page: 98
  ident: bib47
  article-title: Numerical study of heat transfer in rectangular fins for different cases of thermo-physical properties
  publication-title: Defect Diffusion Forum
– reference: Coşkun SB, Atay MT. Fin efficiency analysis of convective straight fins with temperature dependent thermal conductivity using variational iteration method. Appl. Therm. Eng.2008;28:2345e52.
– volume: 52
  start-page: 2876
  year: 2011
  end-page: 2882
  ident: bib27
  article-title: A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity
  publication-title: Energy Convers. Manag.
– volume: 139
  start-page: 2769
  year: 2020 Feb
  end-page: 2779
  ident: bib11
  article-title: A simplified mathematical study of thermochemical preparation of particle oxide under counterflow configuration for use in biomedical applications
  publication-title: J. Therm. Anal. Calorim.
– year: 2007
  ident: bib12
  publication-title: Heat Transfer: a Practical Approach
– volume: 63
  start-page: 23
  year: 2015 Apr 1
  end-page: 34
  ident: bib52
  article-title: Thermal performance of continuously moving radiative–convective fin of complex cross-section with multiple nonlinearities
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 14
  start-page: 3327e38
  year: 2009
  ident: bib19
  article-title: Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient
  publication-title: Commun. Nonlin. SciNumer Simul.
– volume: 11
  start-page: 3084
  year: 2021 Nov
  ident: bib3
  article-title: Thermophysical properties of hybrid nanofluids and the proposed models: an updated comprehensive study
  publication-title: Nanomaterials
– reference: Kulkarni DB, Joglekar MM. Residue minimization technique to analyze the efficiency of convective straight fins having temperature-dependent thermal conductivity. Appl. Math. Comput.2009;215:2184e91.
– volume: 38
  start-page: 638
  year: 2011
  end-page: 645
  ident: bib28
  article-title: Thermal analysis of natural convection and radiation in porous fins
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 28
  year: 2021 Dec 1
  ident: bib5
  article-title: Thermal distribution through a moving longitudinal trapezoidal fin with variable temperature-dependent thermal properties using DTM-Pade approximant
  publication-title: Case Stud. Therm. Eng.
– volume: 103
  start-page: 705
  year: 2016
  end-page: 712
  ident: bib37
  article-title: Convection–radiation heat transfer study of moving fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation
  publication-title: Appl. Therm. Eng.
– volume: 3
  start-page: 41
  year: 2014
  end-page: 47
  ident: bib35
  article-title: Approximate solution of the nonlinear heat transfer equation of a fin with the power–law temperature-dependent thermal conductivity and heat transfer coefficient
  publication-title: Propuls. Power Res.
– volume: 66
  start-page: 199
  year: 2013
  end-page: 201
  ident: bib33
  article-title: Analytical solution for evaluating the thermal performance and efficiency of convective straight fins with various profiles and considering all non-linearities
  publication-title: Energy Convers. Manag.
– volume: 39
  start-page: 1018e29
  year: 2012
  ident: bib31
  article-title: Thermal performance and efficiency of convective-radiative T-shaped fins with temperature dependent thermal conductivity, heat transfer coefficient and surface emissivity
  publication-title: Int. Commun. Heat Mass Transfer
– year: 2019 Nov 18
  ident: bib6
  article-title: Scrutinization of different shaped nanoparticle of molybdenum disulfide suspended nanofluid flow over a radial porous fin
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 35
  start-page: 2870e7
  year: 2010
  ident: bib21
  article-title: Natural convection heat transfer from a heat sink with hollow/perforated circular pin fins
  publication-title: Energy
– reference: H. A. Hoshyar, I. Rahimipetroudi, Heat transfer performance on longitudinal porous fins with temperature-dependent heat generation, heat transfer coefficient and surface emissivity, Iran J. Sci. Technol. Trans. Mech. Eng.
– volume: 307
  year: 2020
  ident: bib42
  article-title: Analysis of thermal behavior of a porous fin fully wetted with nanofluids: convection and radiation
  publication-title: J. Mol. Liq.
– volume: 50
  start-page: 2622e31
  year: 2009
  ident: bib20
  article-title: Performance and optimum design of convectiveradiative rectangular fin with convective base heating, wall conduction resistance, and contact resistance between the wall and the fin base
  publication-title: Energy Convers. Manag.
– start-page: 1
  year: 2021 Dec 2
  ident: bib10
  article-title: Performance of water, ethylene glycol, engine oil conveying SWCNT-MWCNT nanoparticles over a cylindrical fin subject to magnetic field and heat generation
  publication-title: Int. J. Model. Simulat.
– volume: 51
  start-page: 243
  year: 2013
  end-page: 256
  ident: bib34
  article-title: A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities
  publication-title: Energy
– start-page: 1
  year: 2020
  end-page: 8
  ident: bib45
  article-title: Heat transfer in a radial porous fin in the presence of magnetic field: a numerical study
  publication-title: Int. J. Ambient Energy
– volume: 96
  start-page: 105213
  year: 2021
  ident: bib49
  article-title: Differential transformation method to determine heat transfer in annular fins
  publication-title: Heat Transf
– volume: 143
  start-page: 2463
  year: 2020
  end-page: 2474
  ident: bib44
  article-title: An unsteady thermal investigation of a wetted longitudinal porous fn of diferentprofles
  publication-title: J. Therm. Anal. Calorim.
– volume: 26
  start-page: 1283
  year: 2012
  end-page: 1290
  ident: bib51
  article-title: Efficiency analysis of straight fin with variable heat transfer coefficient and thermal conductivity
  publication-title: J. Mech. Sci. Technol.
– volume: 5
  year: 2019
  ident: bib41
  article-title: Numerical investigation of inclination on the thermal performance of porous fin heatsink using pseudospectral collocation method
  publication-title: Karbala Int. J. Mod. Sci.
– volume: 16
  year: 2020
  ident: bib43
  article-title: A new hybrid approach for transient heat transfer analysis of convectiveradiative fin of functionally graded material under Lorentz force
  publication-title: Therm. Sci. Eng. Prog.
– volume: 41
  start-page: 155e65
  year: 2010
  ident: bib22
  article-title: Highly nonlinear temperature-dependent fin analysis by variational iteration method
  publication-title: Heat Tran. Res.
– volume: 195
  year: 2021
  ident: bib46
  article-title: Heat transfer analysis of rectangular porous fins in local thermal non-equilibrium model
  publication-title: Appl. Therm. Eng.
– volume: 36
  start-page: 2572e88
  year: 2011
  ident: bib26
  article-title: An analytical prediction for performance and optimization of an annular fin assembly of trapezoidal profile under dehumidifying conditions
  publication-title: Energy
– volume: 348
  start-page: 640
  year: 2011 May 1
  end-page: 651
  ident: bib50
  article-title: Convection–radiation from a continuously moving fin of variable thermal conductivity
  publication-title: J. Franklin Inst.
– volume: 35
  year: 2021 Nov 10
  ident: bib53
  article-title: Analytical solution of nonlinear differential equations two oscillators mechanism using Akbari–Ganji method
  publication-title: Mod. Phys. Lett. B
– volume: 41
  start-page: 354e70
  year: 2012
  ident: bib32
  article-title: Analytical approaches for thermal analysis of radiative fin with a step change in thickness and variable thermal conductivity
  publication-title: Heat Tran. Asian Res.
– year: 2007
  ident: bib14
  article-title: Analysis of convective straight and radial fins with temperature-dependent thermal conductivity using variational iteration method with comparison with respect to finite element analysis
  publication-title: Math Prob. Eng.
– volume: 15
  start-page: 590e601
  year: 2010
  ident: bib23
  article-title: Thermal analysis of a longitudinal trapezoidal fin with temperature-dependent thermal conductivity and heat transfer coefficient
  publication-title: Commun. Nonlin. SciNumer Simul.
– volume: 11
  start-page: 2250
  issue: 9
  year: 2021
  ident: 10.1016/j.csite.2022.101757_bib4
  article-title: Numerical simulation of hybrid nanofluid mixed convection in a lid-driven square cavity with magnetic field using high-order compact scheme
  publication-title: Nanomaterials
  doi: 10.3390/nano11092250
– year: 2002
  ident: 10.1016/j.csite.2022.101757_bib13
– volume: 26
  start-page: 1283
  year: 2012
  ident: 10.1016/j.csite.2022.101757_bib51
  article-title: Efficiency analysis of straight fin with variable heat transfer coefficient and thermal conductivity
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-012-0202-4
– year: 2007
  ident: 10.1016/j.csite.2022.101757_bib14
  article-title: Analysis of convective straight and radial fins with temperature-dependent thermal conductivity using variational iteration method with comparison with respect to finite element analysis
  publication-title: Math Prob. Eng.
  doi: 10.1155/2007/42072
– volume: 14
  start-page: 489e99
  year: 2009
  ident: 10.1016/j.csite.2022.101757_bib16
  article-title: Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity
  publication-title: Commun. Nonlin. SciNumer Simul.
– volume: 16
  year: 2020
  ident: 10.1016/j.csite.2022.101757_bib43
  article-title: A new hybrid approach for transient heat transfer analysis of convectiveradiative fin of functionally graded material under Lorentz force
  publication-title: Therm. Sci. Eng. Prog.
– volume: 307
  year: 2020
  ident: 10.1016/j.csite.2022.101757_bib8
  article-title: Analysis of thermal behavior of a porous fin fully wetted with nanofluids: convection and radiation
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.112920
– year: 2007
  ident: 10.1016/j.csite.2022.101757_bib12
– ident: 10.1016/j.csite.2022.101757_bib18
  doi: 10.1016/j.amc.2009.08.011
– volume: 5
  year: 2019
  ident: 10.1016/j.csite.2022.101757_bib41
  article-title: Numerical investigation of inclination on the thermal performance of porous fin heatsink using pseudospectral collocation method
  publication-title: Karbala Int. J. Mod. Sci.
– volume: 195
  year: 2021
  ident: 10.1016/j.csite.2022.101757_bib46
  article-title: Heat transfer analysis of rectangular porous fins in local thermal non-equilibrium model
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117237
– volume: 51
  start-page: 2776e82
  year: 2010
  ident: 10.1016/j.csite.2022.101757_bib24
  article-title: Simple and accurate solution for convective-radiative fin with temperature dependent thermal conductivity using double optimal linearization
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2010.05.033
– volume: 41
  start-page: 99e113
  year: 2012
  ident: 10.1016/j.csite.2022.101757_bib30
  article-title: Convective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coefficient, and surface emissivity with temperature
  publication-title: Heat Tran. Asian Res.
– volume: 21
  start-page: 380
  year: 2018
  ident: 10.1016/j.csite.2022.101757_bib39
  article-title: Heat transfer study of mechanical face seal and fin by analytical method, Engineering Science and Technology
  publication-title: Int. J.
– volume: 41
  start-page: 155e65
  year: 2010
  ident: 10.1016/j.csite.2022.101757_bib22
  article-title: Highly nonlinear temperature-dependent fin analysis by variational iteration method
  publication-title: Heat Tran. Res.
– volume: 96
  year: 2021
  ident: 10.1016/j.csite.2022.101757_bib48
  article-title: Thermal behaviour of annular hyperbolic fin with temperature dependent thermal conductivity by differential transformation method and
  publication-title: Pade Approx.
– volume: 91
  start-page: 79
  year: 2018
  ident: 10.1016/j.csite.2022.101757_bib40
  article-title: Assessment OF thermal performance OF functionally graded materials IN longitudinal FINS
  publication-title: J. Eng. Phys. Thermophys.
  doi: 10.1007/s10891-018-1721-3
– volume: 36
  start-page: 2572e88
  year: 2011
  ident: 10.1016/j.csite.2022.101757_bib26
  article-title: An analytical prediction for performance and optimization of an annular fin assembly of trapezoidal profile under dehumidifying conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2011.01.052
– volume: 50
  start-page: 2622e31
  year: 2009
  ident: 10.1016/j.csite.2022.101757_bib20
  article-title: Performance and optimum design of convectiveradiative rectangular fin with convective base heating, wall conduction resistance, and contact resistance between the wall and the fin base
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2009.06.017
– volume: 96
  start-page: 105213
  issue: 10
  year: 2021
  ident: 10.1016/j.csite.2022.101757_bib49
  article-title: Differential transformation method to determine heat transfer in annular fins
  publication-title: Heat Transf
– volume: 63
  start-page: 23
  year: 2015
  ident: 10.1016/j.csite.2022.101757_bib52
  article-title: Thermal performance of continuously moving radiative–convective fin of complex cross-section with multiple nonlinearities
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2015.01.011
– volume: 88
  start-page: 178
  year: 2021
  ident: 10.1016/j.csite.2022.101757_bib1
  article-title: Thermal and rheological investigation of non-Newtonian fluids in an induced-charge electroosmotic micromixer
  publication-title: Eur. J. Mech. B Fluid
  doi: 10.1016/j.euromechflu.2021.04.005
– start-page: 1
  year: 2020
  ident: 10.1016/j.csite.2022.101757_bib45
  article-title: Heat transfer in a radial porous fin in the presence of magnetic field: a numerical study
  publication-title: Int. J. Ambient Energy
– year: 2019
  ident: 10.1016/j.csite.2022.101757_bib6
  article-title: Scrutinization of different shaped nanoparticle of molybdenum disulfide suspended nanofluid flow over a radial porous fin
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– year: 2021
  ident: 10.1016/j.csite.2022.101757_bib2
  article-title: Overcoming commercial application barriers of nanofluids uptake: a contextual relationship analysis
  publication-title: Nano Energy
– volume: 139
  start-page: 2769
  issue: 4
  year: 2020
  ident: 10.1016/j.csite.2022.101757_bib11
  article-title: A simplified mathematical study of thermochemical preparation of particle oxide under counterflow configuration for use in biomedical applications
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-08917-y
– volume: 66
  start-page: 199
  year: 2013
  ident: 10.1016/j.csite.2022.101757_bib33
  article-title: Analytical solution for evaluating the thermal performance and efficiency of convective straight fins with various profiles and considering all non-linearities
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2012.10.015
– volume: 103
  start-page: 705
  year: 2016
  ident: 10.1016/j.csite.2022.101757_bib37
  article-title: Convection–radiation heat transfer study of moving fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.04.121
– volume: 45
  start-page: 519e25
  issue: 4
  year: 2009
  ident: 10.1016/j.csite.2022.101757_bib17
  article-title: Correlation equations for optimum design of annular fins with temperature dependent thermal conductivity
  publication-title: Heat Mass Tran.
  doi: 10.1007/s00231-008-0446-9
– volume: 35
  issue: 31
  year: 2021
  ident: 10.1016/j.csite.2022.101757_bib53
  article-title: Analytical solution of nonlinear differential equations two oscillators mechanism using Akbari–Ganji method
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984921504625
– volume: 14
  start-page: 3327e38
  year: 2009
  ident: 10.1016/j.csite.2022.101757_bib19
  article-title: Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient
  publication-title: Commun. Nonlin. SciNumer Simul.
– volume: 3
  start-page: 41
  year: 2014
  ident: 10.1016/j.csite.2022.101757_bib35
  article-title: Approximate solution of the nonlinear heat transfer equation of a fin with the power–law temperature-dependent thermal conductivity and heat transfer coefficient
  publication-title: Propuls. Power Res.
  doi: 10.1016/j.jppr.2014.01.005
– volume: 72
  issue: 2
  year: 2020
  ident: 10.1016/j.csite.2022.101757_bib7
  article-title: Investigation of Ti6Al4V and AA7075 alloy embedded nanofluid flow over longitudinal porous fin in the presence of internal heat generation and convective condition
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/1572-9494/ab6904
– volume: 13
  start-page: 1793
  issue: 10
  year: 2021
  ident: 10.1016/j.csite.2022.101757_bib9
  article-title: Analysis of transient thermal distribution in a convective–radiative moving rod using two-dimensional differential transform method with multivariate pade approximant
  publication-title: Symmetry
  doi: 10.3390/sym13101793
– volume: 35
  start-page: 2870e7
  year: 2010
  ident: 10.1016/j.csite.2022.101757_bib21
  article-title: Natural convection heat transfer from a heat sink with hollow/perforated circular pin fins
  publication-title: Energy
  doi: 10.1016/j.energy.2010.03.016
– volume: 408
  start-page: 83
  year: 2021
  ident: 10.1016/j.csite.2022.101757_bib47
  article-title: Numerical study of heat transfer in rectangular fins for different cases of thermo-physical properties
  publication-title: Defect Diffusion Forum
  doi: 10.4028/www.scientific.net/DDF.408.83
– volume: 52
  start-page: 2876
  year: 2011
  ident: 10.1016/j.csite.2022.101757_bib27
  article-title: A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2011.04.003
– volume: 15
  start-page: 590e601
  year: 2010
  ident: 10.1016/j.csite.2022.101757_bib23
  article-title: Thermal analysis of a longitudinal trapezoidal fin with temperature-dependent thermal conductivity and heat transfer coefficient
  publication-title: Commun. Nonlin. SciNumer Simul.
– volume: 28
  year: 2021
  ident: 10.1016/j.csite.2022.101757_bib5
  article-title: Thermal distribution through a moving longitudinal trapezoidal fin with variable temperature-dependent thermal properties using DTM-Pade approximant
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101697
– volume: 38
  start-page: 638
  year: 2011
  ident: 10.1016/j.csite.2022.101757_bib28
  article-title: Thermal analysis of natural convection and radiation in porous fins
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2010.12.024
– volume: 63
  start-page: 23
  year: 2015
  ident: 10.1016/j.csite.2022.101757_bib36
  article-title: Thermal performance of continuously moving radiative–convective fin of complex cross-section with multiple nonlinearities
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2015.01.011
– ident: 10.1016/j.csite.2022.101757_bib15
  doi: 10.1016/j.applthermaleng.2008.01.012
– ident: 10.1016/j.csite.2022.101757_bib29
  doi: 10.1007/s10765-012-1179-z
– volume: 41
  start-page: 354e70
  year: 2012
  ident: 10.1016/j.csite.2022.101757_bib32
  article-title: Analytical approaches for thermal analysis of radiative fin with a step change in thickness and variable thermal conductivity
  publication-title: Heat Tran. Asian Res.
– volume: 348
  start-page: 640
  issue: 4
  year: 2011
  ident: 10.1016/j.csite.2022.101757_bib50
  article-title: Convection–radiation from a continuously moving fin of variable thermal conductivity
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2011.01.008
– volume: 51
  start-page: 243
  year: 2013
  ident: 10.1016/j.csite.2022.101757_bib34
  article-title: A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities
  publication-title: Energy
  doi: 10.1016/j.energy.2012.11.052
– volume: 39
  start-page: 1018e29
  year: 2012
  ident: 10.1016/j.csite.2022.101757_bib31
  article-title: Thermal performance and efficiency of convective-radiative T-shaped fins with temperature dependent thermal conductivity, heat transfer coefficient and surface emissivity
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2012.07.007
– volume: 143
  start-page: 2463
  year: 2020
  ident: 10.1016/j.csite.2022.101757_bib44
  article-title: An unsteady thermal investigation of a wetted longitudinal porous fn of diferentprofles
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-09963-7
– volume: 36
  start-page: 1513e7
  year: 2011
  ident: 10.1016/j.csite.2022.101757_bib25
  article-title: Experimental investigation of the effects of orientation angle on heat transfer performance of pin-finned surfaces in natural convection
  publication-title: Energy
  doi: 10.1016/j.energy.2011.01.014
– start-page: 1
  year: 2021
  ident: 10.1016/j.csite.2022.101757_bib10
  article-title: Performance of water, ethylene glycol, engine oil conveying SWCNT-MWCNT nanoparticles over a cylindrical fin subject to magnetic field and heat generation
  publication-title: Int. J. Model. Simulat.
– volume: 11
  start-page: 3084
  issue: 11
  year: 2021
  ident: 10.1016/j.csite.2022.101757_bib3
  article-title: Thermophysical properties of hybrid nanofluids and the proposed models: an updated comprehensive study
  publication-title: Nanomaterials
  doi: 10.3390/nano11113084
– ident: 10.1016/j.csite.2022.101757_bib38
– volume: 307
  year: 2020
  ident: 10.1016/j.csite.2022.101757_bib42
  article-title: Analysis of thermal behavior of a porous fin fully wetted with nanofluids: convection and radiation
  publication-title: J. Mol. Liq.
SSID ssj0001738144
Score 2.537137
Snippet In this study, the thermal performance of moving porous fin wetted with hybrid nanofluid with different cross-sections in the presence of a magnetic field is...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 101757
SubjectTerms AGM
Different cross-sections
Hybrid nanofluid
Magnetic field
Moving porous fin
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9UwDI7QTuOAYIB4_JIPHFfxmqZNcgTENCHBiUnvVsVJLB569CH2NhiH_e2z076pp3HhVlVpEsWWPzu1Pyv1xnitHTXLKlr0lTEYK0_ZV8hgmbXHRI0UJ3_-0p2emU-rdjVr9SU5YSM98Hhwb022RlDUB01sSANHCMFTHTtNEb3NYn0Z82bBVLldsYxEpZOr1rWp6tau9pRDJbkrll-zHPjrQjQk4DSDpcLeP0OnGeKcPFQPJlcR3o1bfKTu5eFI3Z8RCD5W1yxltqwbCBO3CGwJfpRLAmDHmqN6oPUAvyWfJwFewbcrqdCCIQxb2lzwk9zDwk5KsP5u1ylsjoED5BguMwgpOAprME-eoGSn_4Gyezgv-VvD-RN1dvLx64fTauqoUEVTm12VdEKtU6eNM9HjMvqEkRIlYzvLQI0WyRqHAbtsKS4ziQGIpgtLitFS81QdDNshP1NgXXC5cW0XWm3agI5cwwImtBRMqN1C6f2B9nGiG5euF5t-n1f2vS9S6EUK_SiFhTq-_ejnyLZx9_D3IqnboUKVXV6wAvWTAvX_UqCF6vZy7ievY_QmeKr1Xas__x-rv1CHMuWYB_5SHex-XeRX7Obs8HXR6BtPMfxY
  priority: 102
  providerName: Directory of Open Access Journals
Title Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections
URI https://dx.doi.org/10.1016/j.csite.2022.101757
https://doaj.org/article/4e7463999a2f471a828a9f1c62fcb97e
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnuCAeIqlUM2BY6PNOt7YPtKKqkKCC1TKLfJrIGhJqnYLlAO_nRknKculB26JNXYsjzXfeDLzWYjXykppsCqLoL0tlPKhsJhs4Qksk7Q-YsXFye8_1Gfn6l2zbvbEyVwLw2mVk-0fbXq21lPLclrN5UXXLT9KuSL00Y3kapOyasgOV8rkIr7m-G-cRRMm5TtdWb7gDjP5UE7zCvknrSQoy5RDDFM7AJV5_Hdwagd7Th-KB5PTCG_GeT0Se6l_LO7vUAk-Eb9J32RjN-AmlhEYEL7lcAGQi03ne8Cuhx-c2RPB38CXG67Vgt71A26u6YkjsrDlYqxfQxfd5gjoqBzc9wRMD-6ZP5gGj5Dz1H9Cnj1c5Uyu_uqpOD99--nkrJjuViiCWqltEWX0UsZaKqOC9WWw0QeMGJWuNUG21x61Mt75OmkMZUI2BUHVrsQQNFbPxH4_9Om5AG2cSZVZ124t1dp5g6YiVaPX6JRbmYWQ84K2YSIe5_svNu2cYfa1zVpoWQvtqIWFOLrtdDHybtwtfsyauhVl0uzcMFx-bqdd06qkFTtk1kkkTHZ02HQWV6GWGLzVaSHqWc_tP3uQhuru-vqL_-14IO7x25gF_lLsby-v0ytycrb-MAcHDvNe_gPTRf5B
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQCHiqdYysMHjo0263hj-0grqi20vdBKuUV-DQQtSdVugXLgtzPjJO320gO3yPE4lseab-zMfMPYe2mE0FDkmVfOZFI6nxmIJnMIllEYF6Cg5OSj43JxKj9V82qD7Y25MBRWOdj-3qYnaz20TIfVnJ41zfSLEDNEH1UJyjbJi-oeu4_egKL6DQfV7s1Fi0JQSkVdSSAjiZF9KMV5-fSXViCWJc4hwqk1hEpE_mtAtQY--4_Z1uA18g_9xJ6wjdg-ZY_WuASfsb-ocDSyS24HmhHeAf-R7gs4-th4wOfQtPwXhfYE7q74tytK1uKtbTtYXuITXcnyFWVj_emaYJc7HM_K3v6MnPjBHREI4-CBp0D13zzNnl-kUK724jk73f94srfIhuIKmZczucqCCE6IUAqppTcu9yY4DwGCVKVCzHbKgZLaWVdGBT6PQLbAy9Lm4L2C4gXbbLs2vmRcaatjoeelnQs5t06DLlDX4BRYaWd6wsS4oLUfmMepAMayHkPMvtdJCzVpoe61MGE710JnPfHG3d13SVPXXYk1OzV051_rYdvUMipJHpmxAhCULZ42rYGZLwV4Z1ScsHLUc31rE-JQzV1ff_W_gu_Yg8XJ0WF9eHD8eZs9pDd9SPhrtrk6v4xv0ONZubdpR_8DnZ4Aeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+analysis+of+moving+porous+fin+wetted+by+hybrid+nanofluid+with+trapezoidal%2C+concave+parabolic+and+convex+cross+sections&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Hosseinzadeh%2C+S.&rft.au=Hosseinzadeh%2C+Kh&rft.au=Hasibi%2C+A.&rft.au=Ganji%2C+D.D.&rft.date=2022-02-01&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=30&rft.spage=101757&rft_id=info:doi/10.1016%2Fj.csite.2022.101757&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csite_2022_101757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon