Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections
In this study, the thermal performance of moving porous fin wetted with hybrid nanofluid with different cross-sections in the presence of a magnetic field is investigated. As an innovation, three different cross-sections) trapezoidal, concave parabolic and convex (have been used. The Shape-factor ef...
Saved in:
Published in | Case studies in thermal engineering Vol. 30; p. 101757 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, the thermal performance of moving porous fin wetted with hybrid nanofluid with different cross-sections in the presence of a magnetic field is investigated. As an innovation, three different cross-sections) trapezoidal, concave parabolic and convex (have been used. The Shape-factor effect of hybrid nanoparticles is also considered in the equations. After extracting the governing equations and converting the PDE equations to ODE by Similarity solution, the equations are solved by Akbari-Ganji's method. The boundary conditions are an insulated tip with a finite length, and thermal functions for heat transfer coefficient and conductivity have been assumed. The impacts of several characteristics on the dimensionless temperature are thoroughly investigated, including Peclet number, thermal conductivity parameter, emissivity parameter, heat transfer coefficient parameter, convective–conductive parameter, and radiative–conductive parameter. The results show that Akbari-Ganji's method has good accuracy in solving heat transfer equations related to moving porous fin. Also, increasing the Peclet number increases the dimensionless temperature, because increasing the Peclet number causes the fin to move faster. |
---|---|
AbstractList | In this study, the thermal performance of moving porous fin wetted with hybrid nanofluid with different cross-sections in the presence of a magnetic field is investigated. As an innovation, three different cross-sections) trapezoidal, concave parabolic and convex (have been used. The Shape-factor effect of hybrid nanoparticles is also considered in the equations. After extracting the governing equations and converting the PDE equations to ODE by Similarity solution, the equations are solved by Akbari-Ganji's method. The boundary conditions are an insulated tip with a finite length, and thermal functions for heat transfer coefficient and conductivity have been assumed. The impacts of several characteristics on the dimensionless temperature are thoroughly investigated, including Peclet number, thermal conductivity parameter, emissivity parameter, heat transfer coefficient parameter, convective–conductive parameter, and radiative–conductive parameter. The results show that Akbari-Ganji's method has good accuracy in solving heat transfer equations related to moving porous fin. Also, increasing the Peclet number increases the dimensionless temperature, because increasing the Peclet number causes the fin to move faster. |
ArticleNumber | 101757 |
Author | Hosseinzadeh, Kh Ganji, D.D. Hosseinzadeh, S. Hasibi, A. |
Author_xml | – sequence: 1 givenname: S. surname: Hosseinzadeh fullname: Hosseinzadeh, S. – sequence: 2 givenname: Kh surname: Hosseinzadeh fullname: Hosseinzadeh, Kh email: khashayarh68@stu.nit.ac.ir – sequence: 3 givenname: A. surname: Hasibi fullname: Hasibi, A. – sequence: 4 givenname: D.D. surname: Ganji fullname: Ganji, D.D. |
BookMark | eNp9UcFqGzEQXUIKTdN8QS_6gNqVtMpq95BDCW0aCPSSQm9iNBrFMmvJSIpT55Bv767dQukhpxke8x7z3nvXnMYUqWk-CL4UXHSf1kssodJScilnRF_qk-ZMSqEW4lL_PP1nf9tclLLmfDpqe6HUWfNyv6K8gZFBhHFfQmHJs03ahfjAtimnx8J8iOyJaiXH7J6t9jYHxyLE5MfHaXsKdcVqhi09p-Bg_MgwRYQdsS1ksGkMOIm7Gd3RL4Y5lcIKYQ0plvfNGw9joYs_87z58fXL_fW3xd33m9vrz3cLVELVhZPOSuk6qXqFg-U4OIveead0pzuhrLZeq96C7Uh75OR1ywWqDrhH1L49b26Pui7B2mxz2EDemwTBHICUHwzkGnAko0irrh2GAaRXWkAvexi8wE56tIOmSWs4ah2sZPIGQ4XZzpRCGI3gZu7FrM2hFzP3Yo69TNz2P-7fX15nXR1ZNEW0C5RNwUARyYU8BTl5CK_yfwM6-64S |
CitedBy_id | crossref_primary_10_1140_epjp_s13360_023_04459_3 crossref_primary_10_1016_j_ijhydene_2022_04_106 crossref_primary_10_1016_j_jmmm_2023_171612 crossref_primary_10_1080_10420150_2024_2436484 crossref_primary_10_1080_02286203_2023_2301211 crossref_primary_10_1515_nleng_2022_0044 crossref_primary_10_1016_j_asej_2022_101811 crossref_primary_10_1016_j_ijft_2023_100529 crossref_primary_10_1063_5_0176926 crossref_primary_10_1080_17455030_2022_2134605 crossref_primary_10_3390_sym14040690 crossref_primary_10_1016_j_csite_2023_102777 crossref_primary_10_1016_j_icheatmasstransfer_2022_106464 crossref_primary_10_3390_biomimetics8080574 crossref_primary_10_1016_j_icheatmasstransfer_2022_106341 crossref_primary_10_3934_mbe_2022535 crossref_primary_10_1016_j_taml_2022_100342 crossref_primary_10_1016_j_rineng_2022_100838 crossref_primary_10_1016_j_molliq_2023_123582 crossref_primary_10_1007_s12043_024_02823_1 crossref_primary_10_1007_s13369_023_08058_3 crossref_primary_10_1002_htj_23039 crossref_primary_10_1002_htj_22583 crossref_primary_10_1016_j_aej_2022_02_036 crossref_primary_10_1007_s12043_024_02880_6 crossref_primary_10_1016_j_icheatmasstransfer_2022_106354 crossref_primary_10_1080_10407790_2023_2200215 crossref_primary_10_1016_j_cjph_2022_06_020 crossref_primary_10_1016_j_icheatmasstransfer_2022_106311 crossref_primary_10_3390_nano12060891 crossref_primary_10_3390_sym16111532 crossref_primary_10_1080_10407790_2024_2333019 crossref_primary_10_1016_j_finmec_2022_100120 crossref_primary_10_1016_j_ijft_2022_100187 crossref_primary_10_1080_01495739_2023_2216803 crossref_primary_10_1002_htj_22957 crossref_primary_10_1007_s10973_024_13158_9 crossref_primary_10_3390_mi13081336 crossref_primary_10_1080_10407782_2024_2331581 crossref_primary_10_1007_s00158_022_03414_7 crossref_primary_10_1016_j_csite_2022_102113 crossref_primary_10_1016_j_padiff_2025_101092 crossref_primary_10_1080_10407782_2022_2157352 crossref_primary_10_1002_htj_23000 crossref_primary_10_1016_j_csite_2024_105308 crossref_primary_10_1016_j_csite_2024_105423 crossref_primary_10_1016_j_icheatmasstransfer_2022_106285 crossref_primary_10_1016_j_icheatmasstransfer_2022_106165 crossref_primary_10_1016_j_icheatmasstransfer_2022_106325 crossref_primary_10_1002_zamm_202300712 crossref_primary_10_1142_S0217979224501558 crossref_primary_10_3390_sym15061204 crossref_primary_10_1177_23977914221098614 crossref_primary_10_1002_zamm_202100526 crossref_primary_10_1080_10407782_2024_2345863 crossref_primary_10_1080_02286203_2023_2296520 crossref_primary_10_1016_j_heliyon_2024_e26424 crossref_primary_10_1002_htj_22964 crossref_primary_10_1002_htj_22562 crossref_primary_10_1016_j_csite_2023_103214 crossref_primary_10_1016_j_csite_2023_103576 crossref_primary_10_1016_j_physo_2023_100161 crossref_primary_10_1007_s12668_024_01378_0 crossref_primary_10_1016_j_csite_2022_102623 crossref_primary_10_1016_j_icheatmasstransfer_2022_106137 crossref_primary_10_1615_JPorMedia_2022040109 crossref_primary_10_1016_j_icheatmasstransfer_2022_106136 crossref_primary_10_1080_17455030_2022_2131935 crossref_primary_10_1016_j_csite_2023_103265 crossref_primary_10_1016_j_aej_2022_03_031 crossref_primary_10_1016_j_cjph_2023_09_013 crossref_primary_10_1007_s12668_024_01456_3 crossref_primary_10_1016_j_rinp_2023_106464 crossref_primary_10_1063_5_0138600 crossref_primary_10_1007_s11431_023_2495_y crossref_primary_10_1038_s41598_023_28916_2 crossref_primary_10_1080_10407782_2023_2202883 crossref_primary_10_1088_1402_4896_ad1c2d crossref_primary_10_1140_epjs_s11734_024_01114_5 crossref_primary_10_1142_S0217984925500678 crossref_primary_10_1016_j_ijoes_2023_100113 crossref_primary_10_1140_epjp_s13360_023_04848_8 crossref_primary_10_1016_j_icheatmasstransfer_2022_106272 crossref_primary_10_1140_epjp_s13360_024_04915_8 crossref_primary_10_1142_S021797922450245X crossref_primary_10_1108_WJE_09_2022_0365 crossref_primary_10_1016_j_cjph_2023_07_024 crossref_primary_10_1515_ntrev_2022_0486 crossref_primary_10_1016_j_petrol_2022_110857 crossref_primary_10_1016_j_ijoes_2023_100220 crossref_primary_10_1007_s12668_024_01308_0 crossref_primary_10_1140_epjs_s11734_024_01247_7 crossref_primary_10_1016_j_csite_2024_105229 crossref_primary_10_1002_htj_23280 crossref_primary_10_1515_phys_2022_0229 crossref_primary_10_1016_j_csite_2023_103524 crossref_primary_10_1080_10407782_2024_2337764 crossref_primary_10_1007_s12668_024_01468_z crossref_primary_10_1002_htj_22809 crossref_primary_10_1016_j_csite_2024_105052 crossref_primary_10_1142_S0217979224501510 crossref_primary_10_1038_s41598_022_12857_3 crossref_primary_10_1016_j_padiff_2024_100632 crossref_primary_10_1080_01430750_2022_2161631 crossref_primary_10_1016_j_aej_2022_09_026 crossref_primary_10_1016_j_cjph_2022_05_016 crossref_primary_10_1140_epjp_s13360_023_03986_3 crossref_primary_10_1007_s12668_023_01280_1 |
Cites_doi | 10.3390/nano11092250 10.1007/s12206-012-0202-4 10.1155/2007/42072 10.1016/j.molliq.2020.112920 10.1016/j.amc.2009.08.011 10.1016/j.applthermaleng.2021.117237 10.1016/j.enconman.2010.05.033 10.1007/s10891-018-1721-3 10.1016/j.energy.2011.01.052 10.1016/j.enconman.2009.06.017 10.1016/j.icheatmasstransfer.2015.01.011 10.1016/j.euromechflu.2021.04.005 10.1007/s10973-019-08917-y 10.1016/j.enconman.2012.10.015 10.1016/j.applthermaleng.2016.04.121 10.1007/s00231-008-0446-9 10.1142/S0217984921504625 10.1016/j.jppr.2014.01.005 10.1088/1572-9494/ab6904 10.3390/sym13101793 10.1016/j.energy.2010.03.016 10.4028/www.scientific.net/DDF.408.83 10.1016/j.enconman.2011.04.003 10.1016/j.csite.2021.101697 10.1016/j.icheatmasstransfer.2010.12.024 10.1016/j.applthermaleng.2008.01.012 10.1007/s10765-012-1179-z 10.1016/j.jfranklin.2011.01.008 10.1016/j.energy.2012.11.052 10.1016/j.icheatmasstransfer.2012.07.007 10.1007/s10973-020-09963-7 10.1016/j.energy.2011.01.014 10.3390/nano11113084 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2022.101757 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_4e7463999a2f471a828a9f1c62fcb97e 10_1016_j_csite_2022_101757 S2214157X2200003X |
GroupedDBID | 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c414t-d2db22d62484c9b0c9dbcfdfd4767614b7bf748bab6e7fc0ef7301c46a0fcc7f3 |
IEDL.DBID | IXB |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:29:27 EDT 2025 Tue Jul 01 02:28:32 EDT 2025 Thu Apr 24 22:54:49 EDT 2025 Tue Jul 25 20:59:09 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Magnetic field Moving porous fin AGM Hybrid nanofluid Different cross-sections |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-d2db22d62484c9b0c9dbcfdfd4767614b7bf748bab6e7fc0ef7301c46a0fcc7f3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2214157X2200003X |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4e7463999a2f471a828a9f1c62fcb97e crossref_citationtrail_10_1016_j_csite_2022_101757 crossref_primary_10_1016_j_csite_2022_101757 elsevier_sciencedirect_doi_10_1016_j_csite_2022_101757 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Torabi, Zhang (bib33) 2013; 66 Torabi, Aziz (bib31) 2012; 39 Alagumalai, Qin, Vimal, Solomin, Yang, Zhang, Otanicar, Kasaeian, Chamkha, Rashidi, Wongwises (bib2) 2021 Nov 21 Bennia, Benabdallah, Lounis (bib47) 2021; 408 Hosseinzadeh, Hosseinzadeh, Rahai, Ganji (bib53) 2021 Nov 10; 35 Aziz, Torabi (bib30) 2012; 41 Sowmya, Gireesha, Prasannakumara (bib6) 2019 Nov 18 Deepak UmraoSarwe, VinayakKulkarni (bib49) 2021; 96 Cengel (bib12) 2007 Domairry, Fazeli (bib16) 2009; 14 Buonomo, Cascetta, Manca, Sheremet (bib46) 2021; 195 Subba, Gorla, Bakier (bib28) 2011; 38 Manohar, Venkatesh, Gireesha, Madhukesh, Ramesh (bib10) 2021 Dec 2 Sowmya, Gireesha1, Berrehal (bib44) 2020; 143 AbeerBaslem, Gireesha, Prasannakumara, Rahimi-Gorji, Hoang (bib42) 2020; 307 Coşkun, Atay (bib14) 2007 Elshafei (bib21) 2010; 35 Khani, Aziz (bib23) 2010; 15 George, GbeminiyiSobamowob (bib43) 2020; 16 Aziz, Bouaziz (bib27) 2011; 52 Mosayebidorcheh, Ganji, Farzinpoor (bib35) 2014; 3 Sertkaya, Bilir, Kargıc&imath (bib25) 2011; 36 Sowmya, Sarris, Vishalakshi, Kumar, Prasannakumara (bib9) 2021 Oct; 13 Sun, Xu (bib52) 2015 Apr 1; 63 Tabaei, Sadeghi, Hosseinzadeh, Bidabadi, Xiong, Karimi (bib11) 2020 Feb; 139 Torabi, Aziz, Zhang (bib34) 2013; 51 Gireesha, Sowmya, Srikantha (bib45) 2020 Dogonchi, Ganji (bib37) 2016; 103 Hassanzadeha, Bilgili (bib40) 2018; 91 Sowmya, Gireesha, Sindhu, Prasannakumara (bib7) 2020 Feb 5; 72 Aziz, Beers-Green (bib20) 2009; 50 Kraus, Aziz, Welty (bib13) 2002 Coşkun SB, Atay MT. Fin efficiency analysis of convective straight fins with temperature dependent thermal conductivity using variational iteration method. Appl. Therm. Eng.2008;28:2345e52. Rashidi, Nazari, Mahariq, Assad, Ali, Almuzaiqer, Nuhait, Murshid (bib3) 2021 Nov; 11 H. A. Hoshyar, I. Rahimipetroudi, Heat transfer performance on longitudinal porous fins with temperature-dependent heat generation, heat transfer coefficient and surface emissivity, Iran J. Sci. Technol. Trans. Mech. Eng. Aziz, Khani (bib50) 2011 May 1; 348 Jayaprakash, Alzahrani, Sowmya, Kumar, Malik, Alsaiari, Prasannakumara (bib5) 2021 Dec 1; 28 Mosavat, Moradi, RahimiTakami, BarzegarGerdroodbary, Ganji (bib39) 2018; 21 Khani, AhmadzadehRaji, HamediNejad (bib19) 2009; 14 George, SobamowoGbeminiyi, James (bib41) 2019; 5 Baslem, Sowmya, Gireesha, Prasannakumara, Rahimi-Gorji, Hoang (bib8) 2020 Jun 1; 307 Torabi M, Yaghoobi H, Aziz A. Analytical solution for convective-radiative continuously moving fin with temperature dependent thermal conductivity. Int. J. Thermophys.2012;33:924e41. Torabi, Yaghoobi (bib32) 2012; 41 Sadri, Raveshi, Amiri (bib51) 2012; 26 Arslanturk (bib17) 2009; 45 Sun, Xu (bib36) 2015; 63 UmraoSarwe, Kulkarni (bib48) 2021; 96 Kundu, Barman (bib26) 2011; 36 Alipanah, Hatami, Ramiar (bib1) 2021; 88 Kulkarni DB, Joglekar MM. Residue minimization technique to analyze the efficiency of convective straight fins having temperature-dependent thermal conductivity. Appl. Math. Comput.2009;215:2184e91. Bouaziz, Aziz (bib24) 2010; 51 Fouladi, Hosseinzadeh, Barari, Domairry (bib22) 2010; 41 Rashidi, Sadri, Sheremet (bib4) 2021 Sep; 11 Aziz (10.1016/j.csite.2022.101757_bib27) 2011; 52 Khani (10.1016/j.csite.2022.101757_bib23) 2010; 15 Aziz (10.1016/j.csite.2022.101757_bib30) 2012; 41 Bouaziz (10.1016/j.csite.2022.101757_bib24) 2010; 51 Khani (10.1016/j.csite.2022.101757_bib19) 2009; 14 Mosayebidorcheh (10.1016/j.csite.2022.101757_bib35) 2014; 3 Dogonchi (10.1016/j.csite.2022.101757_bib37) 2016; 103 Buonomo (10.1016/j.csite.2022.101757_bib46) 2021; 195 Sadri (10.1016/j.csite.2022.101757_bib51) 2012; 26 Domairry (10.1016/j.csite.2022.101757_bib16) 2009; 14 Kraus (10.1016/j.csite.2022.101757_bib13) 2002 Alagumalai (10.1016/j.csite.2022.101757_bib2) 2021 Sowmya (10.1016/j.csite.2022.101757_bib9) 2021; 13 Rashidi (10.1016/j.csite.2022.101757_bib4) 2021; 11 Torabi (10.1016/j.csite.2022.101757_bib31) 2012; 39 Sertkaya (10.1016/j.csite.2022.101757_bib25) 2011; 36 Hassanzadeha (10.1016/j.csite.2022.101757_bib40) 2018; 91 Gireesha (10.1016/j.csite.2022.101757_bib45) 2020 10.1016/j.csite.2022.101757_bib38 Cengel (10.1016/j.csite.2022.101757_bib12) 2007 Tabaei (10.1016/j.csite.2022.101757_bib11) 2020; 139 Manohar (10.1016/j.csite.2022.101757_bib10) 2021 UmraoSarwe (10.1016/j.csite.2022.101757_bib48) 2021; 96 Aziz (10.1016/j.csite.2022.101757_bib50) 2011; 348 Arslanturk (10.1016/j.csite.2022.101757_bib17) 2009; 45 George (10.1016/j.csite.2022.101757_bib41) 2019; 5 Elshafei (10.1016/j.csite.2022.101757_bib21) 2010; 35 Sun (10.1016/j.csite.2022.101757_bib36) 2015; 63 Deepak UmraoSarwe (10.1016/j.csite.2022.101757_bib49) 2021; 96 Coşkun (10.1016/j.csite.2022.101757_bib14) 2007 Rashidi (10.1016/j.csite.2022.101757_bib3) 2021; 11 Alipanah (10.1016/j.csite.2022.101757_bib1) 2021; 88 Baslem (10.1016/j.csite.2022.101757_bib8) 2020; 307 Hosseinzadeh (10.1016/j.csite.2022.101757_bib53) 2021; 35 George (10.1016/j.csite.2022.101757_bib43) 2020; 16 Subba (10.1016/j.csite.2022.101757_bib28) 2011; 38 10.1016/j.csite.2022.101757_bib29 Torabi (10.1016/j.csite.2022.101757_bib33) 2013; 66 Mosavat (10.1016/j.csite.2022.101757_bib39) 2018; 21 Sowmya (10.1016/j.csite.2022.101757_bib44) 2020; 143 AbeerBaslem (10.1016/j.csite.2022.101757_bib42) 2020; 307 Jayaprakash (10.1016/j.csite.2022.101757_bib5) 2021; 28 Sowmya (10.1016/j.csite.2022.101757_bib6) 2019 Sowmya (10.1016/j.csite.2022.101757_bib7) 2020; 72 Aziz (10.1016/j.csite.2022.101757_bib20) 2009; 50 Sun (10.1016/j.csite.2022.101757_bib52) 2015; 63 Torabi (10.1016/j.csite.2022.101757_bib32) 2012; 41 Kundu (10.1016/j.csite.2022.101757_bib26) 2011; 36 Torabi (10.1016/j.csite.2022.101757_bib34) 2013; 51 10.1016/j.csite.2022.101757_bib15 Bennia (10.1016/j.csite.2022.101757_bib47) 2021; 408 Fouladi (10.1016/j.csite.2022.101757_bib22) 2010; 41 10.1016/j.csite.2022.101757_bib18 |
References_xml | – year: 2021 Nov 21 ident: bib2 article-title: Overcoming commercial application barriers of nanofluids uptake: a contextual relationship analysis publication-title: Nano Energy – volume: 45 start-page: 519e25 year: 2009 ident: bib17 article-title: Correlation equations for optimum design of annular fins with temperature dependent thermal conductivity publication-title: Heat Mass Tran. – volume: 51 start-page: 2776e82 year: 2010 ident: bib24 article-title: Simple and accurate solution for convective-radiative fin with temperature dependent thermal conductivity using double optimal linearization publication-title: Energy Convers. Manag. – volume: 11 start-page: 2250 year: 2021 Sep ident: bib4 article-title: Numerical simulation of hybrid nanofluid mixed convection in a lid-driven square cavity with magnetic field using high-order compact scheme publication-title: Nanomaterials – volume: 72 year: 2020 Feb 5 ident: bib7 article-title: Investigation of Ti6Al4V and AA7075 alloy embedded nanofluid flow over longitudinal porous fin in the presence of internal heat generation and convective condition publication-title: Commun. Theor. Phys. – volume: 14 start-page: 489e99 year: 2009 ident: bib16 article-title: Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity publication-title: Commun. Nonlin. SciNumer Simul. – volume: 63 start-page: 23 year: 2015 end-page: 34 ident: bib36 article-title: Thermal performance of continuously moving radiative–convective fin of complex cross-section with multiple nonlinearities publication-title: Int. Commun. Heat Mass Tran. – volume: 96 year: 2021 ident: bib48 article-title: Thermal behaviour of annular hyperbolic fin with temperature dependent thermal conductivity by differential transformation method and publication-title: Pade Approx. – volume: 88 start-page: 178 year: 2021 end-page: 190 ident: bib1 article-title: Thermal and rheological investigation of non-Newtonian fluids in an induced-charge electroosmotic micromixer publication-title: Eur. J. Mech. B Fluid – reference: Torabi M, Yaghoobi H, Aziz A. Analytical solution for convective-radiative continuously moving fin with temperature dependent thermal conductivity. Int. J. Thermophys.2012;33:924e41. – volume: 41 start-page: 99e113 year: 2012 ident: bib30 article-title: Convective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coefficient, and surface emissivity with temperature publication-title: Heat Tran. Asian Res. – year: 2002 ident: bib13 article-title: Extended Surface Heat Transfer – volume: 91 start-page: 79 year: 2018 end-page: 88 ident: bib40 article-title: Assessment OF thermal performance OF functionally graded materials IN longitudinal FINS publication-title: J. Eng. Phys. Thermophys. – volume: 13 start-page: 1793 year: 2021 Oct ident: bib9 article-title: Analysis of transient thermal distribution in a convective–radiative moving rod using two-dimensional differential transform method with multivariate pade approximant publication-title: Symmetry – volume: 21 start-page: 380 year: 2018 end-page: 388 ident: bib39 article-title: Heat transfer study of mechanical face seal and fin by analytical method, Engineering Science and Technology publication-title: Int. J. – volume: 36 start-page: 1513e7 year: 2011 ident: bib25 article-title: Experimental investigation of the effects of orientation angle on heat transfer performance of pin-finned surfaces in natural convection publication-title: Energy – volume: 307 year: 2020 Jun 1 ident: bib8 article-title: Analysis of thermal behavior of a porous fin fully wetted with nanofluids: convection and radiation publication-title: J. Mol. Liq. – volume: 408 start-page: 83 year: 2021 end-page: 98 ident: bib47 article-title: Numerical study of heat transfer in rectangular fins for different cases of thermo-physical properties publication-title: Defect Diffusion Forum – reference: Coşkun SB, Atay MT. Fin efficiency analysis of convective straight fins with temperature dependent thermal conductivity using variational iteration method. Appl. Therm. Eng.2008;28:2345e52. – volume: 52 start-page: 2876 year: 2011 end-page: 2882 ident: bib27 article-title: A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity publication-title: Energy Convers. Manag. – volume: 139 start-page: 2769 year: 2020 Feb end-page: 2779 ident: bib11 article-title: A simplified mathematical study of thermochemical preparation of particle oxide under counterflow configuration for use in biomedical applications publication-title: J. Therm. Anal. Calorim. – year: 2007 ident: bib12 publication-title: Heat Transfer: a Practical Approach – volume: 63 start-page: 23 year: 2015 Apr 1 end-page: 34 ident: bib52 article-title: Thermal performance of continuously moving radiative–convective fin of complex cross-section with multiple nonlinearities publication-title: Int. Commun. Heat Mass Tran. – volume: 14 start-page: 3327e38 year: 2009 ident: bib19 article-title: Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient publication-title: Commun. Nonlin. SciNumer Simul. – volume: 11 start-page: 3084 year: 2021 Nov ident: bib3 article-title: Thermophysical properties of hybrid nanofluids and the proposed models: an updated comprehensive study publication-title: Nanomaterials – reference: Kulkarni DB, Joglekar MM. Residue minimization technique to analyze the efficiency of convective straight fins having temperature-dependent thermal conductivity. Appl. Math. Comput.2009;215:2184e91. – volume: 38 start-page: 638 year: 2011 end-page: 645 ident: bib28 article-title: Thermal analysis of natural convection and radiation in porous fins publication-title: Int. Commun. Heat Mass Tran. – volume: 28 year: 2021 Dec 1 ident: bib5 article-title: Thermal distribution through a moving longitudinal trapezoidal fin with variable temperature-dependent thermal properties using DTM-Pade approximant publication-title: Case Stud. Therm. Eng. – volume: 103 start-page: 705 year: 2016 end-page: 712 ident: bib37 article-title: Convection–radiation heat transfer study of moving fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation publication-title: Appl. Therm. Eng. – volume: 3 start-page: 41 year: 2014 end-page: 47 ident: bib35 article-title: Approximate solution of the nonlinear heat transfer equation of a fin with the power–law temperature-dependent thermal conductivity and heat transfer coefficient publication-title: Propuls. Power Res. – volume: 66 start-page: 199 year: 2013 end-page: 201 ident: bib33 article-title: Analytical solution for evaluating the thermal performance and efficiency of convective straight fins with various profiles and considering all non-linearities publication-title: Energy Convers. Manag. – volume: 39 start-page: 1018e29 year: 2012 ident: bib31 article-title: Thermal performance and efficiency of convective-radiative T-shaped fins with temperature dependent thermal conductivity, heat transfer coefficient and surface emissivity publication-title: Int. Commun. Heat Mass Transfer – year: 2019 Nov 18 ident: bib6 article-title: Scrutinization of different shaped nanoparticle of molybdenum disulfide suspended nanofluid flow over a radial porous fin publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 35 start-page: 2870e7 year: 2010 ident: bib21 article-title: Natural convection heat transfer from a heat sink with hollow/perforated circular pin fins publication-title: Energy – reference: H. A. Hoshyar, I. Rahimipetroudi, Heat transfer performance on longitudinal porous fins with temperature-dependent heat generation, heat transfer coefficient and surface emissivity, Iran J. Sci. Technol. Trans. Mech. Eng. – volume: 307 year: 2020 ident: bib42 article-title: Analysis of thermal behavior of a porous fin fully wetted with nanofluids: convection and radiation publication-title: J. Mol. Liq. – volume: 50 start-page: 2622e31 year: 2009 ident: bib20 article-title: Performance and optimum design of convectiveradiative rectangular fin with convective base heating, wall conduction resistance, and contact resistance between the wall and the fin base publication-title: Energy Convers. Manag. – start-page: 1 year: 2021 Dec 2 ident: bib10 article-title: Performance of water, ethylene glycol, engine oil conveying SWCNT-MWCNT nanoparticles over a cylindrical fin subject to magnetic field and heat generation publication-title: Int. J. Model. Simulat. – volume: 51 start-page: 243 year: 2013 end-page: 256 ident: bib34 article-title: A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities publication-title: Energy – start-page: 1 year: 2020 end-page: 8 ident: bib45 article-title: Heat transfer in a radial porous fin in the presence of magnetic field: a numerical study publication-title: Int. J. Ambient Energy – volume: 96 start-page: 105213 year: 2021 ident: bib49 article-title: Differential transformation method to determine heat transfer in annular fins publication-title: Heat Transf – volume: 143 start-page: 2463 year: 2020 end-page: 2474 ident: bib44 article-title: An unsteady thermal investigation of a wetted longitudinal porous fn of diferentprofles publication-title: J. Therm. Anal. Calorim. – volume: 26 start-page: 1283 year: 2012 end-page: 1290 ident: bib51 article-title: Efficiency analysis of straight fin with variable heat transfer coefficient and thermal conductivity publication-title: J. Mech. Sci. Technol. – volume: 5 year: 2019 ident: bib41 article-title: Numerical investigation of inclination on the thermal performance of porous fin heatsink using pseudospectral collocation method publication-title: Karbala Int. J. Mod. Sci. – volume: 16 year: 2020 ident: bib43 article-title: A new hybrid approach for transient heat transfer analysis of convectiveradiative fin of functionally graded material under Lorentz force publication-title: Therm. Sci. Eng. Prog. – volume: 41 start-page: 155e65 year: 2010 ident: bib22 article-title: Highly nonlinear temperature-dependent fin analysis by variational iteration method publication-title: Heat Tran. Res. – volume: 195 year: 2021 ident: bib46 article-title: Heat transfer analysis of rectangular porous fins in local thermal non-equilibrium model publication-title: Appl. Therm. Eng. – volume: 36 start-page: 2572e88 year: 2011 ident: bib26 article-title: An analytical prediction for performance and optimization of an annular fin assembly of trapezoidal profile under dehumidifying conditions publication-title: Energy – volume: 348 start-page: 640 year: 2011 May 1 end-page: 651 ident: bib50 article-title: Convection–radiation from a continuously moving fin of variable thermal conductivity publication-title: J. Franklin Inst. – volume: 35 year: 2021 Nov 10 ident: bib53 article-title: Analytical solution of nonlinear differential equations two oscillators mechanism using Akbari–Ganji method publication-title: Mod. Phys. Lett. B – volume: 41 start-page: 354e70 year: 2012 ident: bib32 article-title: Analytical approaches for thermal analysis of radiative fin with a step change in thickness and variable thermal conductivity publication-title: Heat Tran. Asian Res. – year: 2007 ident: bib14 article-title: Analysis of convective straight and radial fins with temperature-dependent thermal conductivity using variational iteration method with comparison with respect to finite element analysis publication-title: Math Prob. Eng. – volume: 15 start-page: 590e601 year: 2010 ident: bib23 article-title: Thermal analysis of a longitudinal trapezoidal fin with temperature-dependent thermal conductivity and heat transfer coefficient publication-title: Commun. Nonlin. SciNumer Simul. – volume: 11 start-page: 2250 issue: 9 year: 2021 ident: 10.1016/j.csite.2022.101757_bib4 article-title: Numerical simulation of hybrid nanofluid mixed convection in a lid-driven square cavity with magnetic field using high-order compact scheme publication-title: Nanomaterials doi: 10.3390/nano11092250 – year: 2002 ident: 10.1016/j.csite.2022.101757_bib13 – volume: 26 start-page: 1283 year: 2012 ident: 10.1016/j.csite.2022.101757_bib51 article-title: Efficiency analysis of straight fin with variable heat transfer coefficient and thermal conductivity publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-012-0202-4 – year: 2007 ident: 10.1016/j.csite.2022.101757_bib14 article-title: Analysis of convective straight and radial fins with temperature-dependent thermal conductivity using variational iteration method with comparison with respect to finite element analysis publication-title: Math Prob. Eng. doi: 10.1155/2007/42072 – volume: 14 start-page: 489e99 year: 2009 ident: 10.1016/j.csite.2022.101757_bib16 article-title: Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity publication-title: Commun. Nonlin. SciNumer Simul. – volume: 16 year: 2020 ident: 10.1016/j.csite.2022.101757_bib43 article-title: A new hybrid approach for transient heat transfer analysis of convectiveradiative fin of functionally graded material under Lorentz force publication-title: Therm. Sci. Eng. Prog. – volume: 307 year: 2020 ident: 10.1016/j.csite.2022.101757_bib8 article-title: Analysis of thermal behavior of a porous fin fully wetted with nanofluids: convection and radiation publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.112920 – year: 2007 ident: 10.1016/j.csite.2022.101757_bib12 – ident: 10.1016/j.csite.2022.101757_bib18 doi: 10.1016/j.amc.2009.08.011 – volume: 5 year: 2019 ident: 10.1016/j.csite.2022.101757_bib41 article-title: Numerical investigation of inclination on the thermal performance of porous fin heatsink using pseudospectral collocation method publication-title: Karbala Int. J. Mod. Sci. – volume: 195 year: 2021 ident: 10.1016/j.csite.2022.101757_bib46 article-title: Heat transfer analysis of rectangular porous fins in local thermal non-equilibrium model publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117237 – volume: 51 start-page: 2776e82 year: 2010 ident: 10.1016/j.csite.2022.101757_bib24 article-title: Simple and accurate solution for convective-radiative fin with temperature dependent thermal conductivity using double optimal linearization publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2010.05.033 – volume: 41 start-page: 99e113 year: 2012 ident: 10.1016/j.csite.2022.101757_bib30 article-title: Convective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coefficient, and surface emissivity with temperature publication-title: Heat Tran. Asian Res. – volume: 21 start-page: 380 year: 2018 ident: 10.1016/j.csite.2022.101757_bib39 article-title: Heat transfer study of mechanical face seal and fin by analytical method, Engineering Science and Technology publication-title: Int. J. – volume: 41 start-page: 155e65 year: 2010 ident: 10.1016/j.csite.2022.101757_bib22 article-title: Highly nonlinear temperature-dependent fin analysis by variational iteration method publication-title: Heat Tran. Res. – volume: 96 year: 2021 ident: 10.1016/j.csite.2022.101757_bib48 article-title: Thermal behaviour of annular hyperbolic fin with temperature dependent thermal conductivity by differential transformation method and publication-title: Pade Approx. – volume: 91 start-page: 79 year: 2018 ident: 10.1016/j.csite.2022.101757_bib40 article-title: Assessment OF thermal performance OF functionally graded materials IN longitudinal FINS publication-title: J. Eng. Phys. Thermophys. doi: 10.1007/s10891-018-1721-3 – volume: 36 start-page: 2572e88 year: 2011 ident: 10.1016/j.csite.2022.101757_bib26 article-title: An analytical prediction for performance and optimization of an annular fin assembly of trapezoidal profile under dehumidifying conditions publication-title: Energy doi: 10.1016/j.energy.2011.01.052 – volume: 50 start-page: 2622e31 year: 2009 ident: 10.1016/j.csite.2022.101757_bib20 article-title: Performance and optimum design of convectiveradiative rectangular fin with convective base heating, wall conduction resistance, and contact resistance between the wall and the fin base publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2009.06.017 – volume: 96 start-page: 105213 issue: 10 year: 2021 ident: 10.1016/j.csite.2022.101757_bib49 article-title: Differential transformation method to determine heat transfer in annular fins publication-title: Heat Transf – volume: 63 start-page: 23 year: 2015 ident: 10.1016/j.csite.2022.101757_bib52 article-title: Thermal performance of continuously moving radiative–convective fin of complex cross-section with multiple nonlinearities publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2015.01.011 – volume: 88 start-page: 178 year: 2021 ident: 10.1016/j.csite.2022.101757_bib1 article-title: Thermal and rheological investigation of non-Newtonian fluids in an induced-charge electroosmotic micromixer publication-title: Eur. J. Mech. B Fluid doi: 10.1016/j.euromechflu.2021.04.005 – start-page: 1 year: 2020 ident: 10.1016/j.csite.2022.101757_bib45 article-title: Heat transfer in a radial porous fin in the presence of magnetic field: a numerical study publication-title: Int. J. Ambient Energy – year: 2019 ident: 10.1016/j.csite.2022.101757_bib6 article-title: Scrutinization of different shaped nanoparticle of molybdenum disulfide suspended nanofluid flow over a radial porous fin publication-title: Int. J. Numer. Methods Heat Fluid Flow – year: 2021 ident: 10.1016/j.csite.2022.101757_bib2 article-title: Overcoming commercial application barriers of nanofluids uptake: a contextual relationship analysis publication-title: Nano Energy – volume: 139 start-page: 2769 issue: 4 year: 2020 ident: 10.1016/j.csite.2022.101757_bib11 article-title: A simplified mathematical study of thermochemical preparation of particle oxide under counterflow configuration for use in biomedical applications publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-08917-y – volume: 66 start-page: 199 year: 2013 ident: 10.1016/j.csite.2022.101757_bib33 article-title: Analytical solution for evaluating the thermal performance and efficiency of convective straight fins with various profiles and considering all non-linearities publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2012.10.015 – volume: 103 start-page: 705 year: 2016 ident: 10.1016/j.csite.2022.101757_bib37 article-title: Convection–radiation heat transfer study of moving fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.04.121 – volume: 45 start-page: 519e25 issue: 4 year: 2009 ident: 10.1016/j.csite.2022.101757_bib17 article-title: Correlation equations for optimum design of annular fins with temperature dependent thermal conductivity publication-title: Heat Mass Tran. doi: 10.1007/s00231-008-0446-9 – volume: 35 issue: 31 year: 2021 ident: 10.1016/j.csite.2022.101757_bib53 article-title: Analytical solution of nonlinear differential equations two oscillators mechanism using Akbari–Ganji method publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984921504625 – volume: 14 start-page: 3327e38 year: 2009 ident: 10.1016/j.csite.2022.101757_bib19 article-title: Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient publication-title: Commun. Nonlin. SciNumer Simul. – volume: 3 start-page: 41 year: 2014 ident: 10.1016/j.csite.2022.101757_bib35 article-title: Approximate solution of the nonlinear heat transfer equation of a fin with the power–law temperature-dependent thermal conductivity and heat transfer coefficient publication-title: Propuls. Power Res. doi: 10.1016/j.jppr.2014.01.005 – volume: 72 issue: 2 year: 2020 ident: 10.1016/j.csite.2022.101757_bib7 article-title: Investigation of Ti6Al4V and AA7075 alloy embedded nanofluid flow over longitudinal porous fin in the presence of internal heat generation and convective condition publication-title: Commun. Theor. Phys. doi: 10.1088/1572-9494/ab6904 – volume: 13 start-page: 1793 issue: 10 year: 2021 ident: 10.1016/j.csite.2022.101757_bib9 article-title: Analysis of transient thermal distribution in a convective–radiative moving rod using two-dimensional differential transform method with multivariate pade approximant publication-title: Symmetry doi: 10.3390/sym13101793 – volume: 35 start-page: 2870e7 year: 2010 ident: 10.1016/j.csite.2022.101757_bib21 article-title: Natural convection heat transfer from a heat sink with hollow/perforated circular pin fins publication-title: Energy doi: 10.1016/j.energy.2010.03.016 – volume: 408 start-page: 83 year: 2021 ident: 10.1016/j.csite.2022.101757_bib47 article-title: Numerical study of heat transfer in rectangular fins for different cases of thermo-physical properties publication-title: Defect Diffusion Forum doi: 10.4028/www.scientific.net/DDF.408.83 – volume: 52 start-page: 2876 year: 2011 ident: 10.1016/j.csite.2022.101757_bib27 article-title: A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2011.04.003 – volume: 15 start-page: 590e601 year: 2010 ident: 10.1016/j.csite.2022.101757_bib23 article-title: Thermal analysis of a longitudinal trapezoidal fin with temperature-dependent thermal conductivity and heat transfer coefficient publication-title: Commun. Nonlin. SciNumer Simul. – volume: 28 year: 2021 ident: 10.1016/j.csite.2022.101757_bib5 article-title: Thermal distribution through a moving longitudinal trapezoidal fin with variable temperature-dependent thermal properties using DTM-Pade approximant publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101697 – volume: 38 start-page: 638 year: 2011 ident: 10.1016/j.csite.2022.101757_bib28 article-title: Thermal analysis of natural convection and radiation in porous fins publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2010.12.024 – volume: 63 start-page: 23 year: 2015 ident: 10.1016/j.csite.2022.101757_bib36 article-title: Thermal performance of continuously moving radiative–convective fin of complex cross-section with multiple nonlinearities publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2015.01.011 – ident: 10.1016/j.csite.2022.101757_bib15 doi: 10.1016/j.applthermaleng.2008.01.012 – ident: 10.1016/j.csite.2022.101757_bib29 doi: 10.1007/s10765-012-1179-z – volume: 41 start-page: 354e70 year: 2012 ident: 10.1016/j.csite.2022.101757_bib32 article-title: Analytical approaches for thermal analysis of radiative fin with a step change in thickness and variable thermal conductivity publication-title: Heat Tran. Asian Res. – volume: 348 start-page: 640 issue: 4 year: 2011 ident: 10.1016/j.csite.2022.101757_bib50 article-title: Convection–radiation from a continuously moving fin of variable thermal conductivity publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2011.01.008 – volume: 51 start-page: 243 year: 2013 ident: 10.1016/j.csite.2022.101757_bib34 article-title: A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities publication-title: Energy doi: 10.1016/j.energy.2012.11.052 – volume: 39 start-page: 1018e29 year: 2012 ident: 10.1016/j.csite.2022.101757_bib31 article-title: Thermal performance and efficiency of convective-radiative T-shaped fins with temperature dependent thermal conductivity, heat transfer coefficient and surface emissivity publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2012.07.007 – volume: 143 start-page: 2463 year: 2020 ident: 10.1016/j.csite.2022.101757_bib44 article-title: An unsteady thermal investigation of a wetted longitudinal porous fn of diferentprofles publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09963-7 – volume: 36 start-page: 1513e7 year: 2011 ident: 10.1016/j.csite.2022.101757_bib25 article-title: Experimental investigation of the effects of orientation angle on heat transfer performance of pin-finned surfaces in natural convection publication-title: Energy doi: 10.1016/j.energy.2011.01.014 – start-page: 1 year: 2021 ident: 10.1016/j.csite.2022.101757_bib10 article-title: Performance of water, ethylene glycol, engine oil conveying SWCNT-MWCNT nanoparticles over a cylindrical fin subject to magnetic field and heat generation publication-title: Int. J. Model. Simulat. – volume: 11 start-page: 3084 issue: 11 year: 2021 ident: 10.1016/j.csite.2022.101757_bib3 article-title: Thermophysical properties of hybrid nanofluids and the proposed models: an updated comprehensive study publication-title: Nanomaterials doi: 10.3390/nano11113084 – ident: 10.1016/j.csite.2022.101757_bib38 – volume: 307 year: 2020 ident: 10.1016/j.csite.2022.101757_bib42 article-title: Analysis of thermal behavior of a porous fin fully wetted with nanofluids: convection and radiation publication-title: J. Mol. Liq. |
SSID | ssj0001738144 |
Score | 2.537137 |
Snippet | In this study, the thermal performance of moving porous fin wetted with hybrid nanofluid with different cross-sections in the presence of a magnetic field is... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 101757 |
SubjectTerms | AGM Different cross-sections Hybrid nanofluid Magnetic field Moving porous fin |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9UwDI7QTuOAYIB4_JIPHFfxmqZNcgTENCHBiUnvVsVJLB569CH2NhiH_e2z076pp3HhVlVpEsWWPzu1Pyv1xnitHTXLKlr0lTEYK0_ZV8hgmbXHRI0UJ3_-0p2emU-rdjVr9SU5YSM98Hhwb022RlDUB01sSANHCMFTHTtNEb3NYn0Z82bBVLldsYxEpZOr1rWp6tau9pRDJbkrll-zHPjrQjQk4DSDpcLeP0OnGeKcPFQPJlcR3o1bfKTu5eFI3Z8RCD5W1yxltqwbCBO3CGwJfpRLAmDHmqN6oPUAvyWfJwFewbcrqdCCIQxb2lzwk9zDwk5KsP5u1ylsjoED5BguMwgpOAprME-eoGSn_4Gyezgv-VvD-RN1dvLx64fTauqoUEVTm12VdEKtU6eNM9HjMvqEkRIlYzvLQI0WyRqHAbtsKS4ziQGIpgtLitFS81QdDNshP1NgXXC5cW0XWm3agI5cwwImtBRMqN1C6f2B9nGiG5euF5t-n1f2vS9S6EUK_SiFhTq-_ejnyLZx9_D3IqnboUKVXV6wAvWTAvX_UqCF6vZy7ievY_QmeKr1Xas__x-rv1CHMuWYB_5SHex-XeRX7Obs8HXR6BtPMfxY priority: 102 providerName: Directory of Open Access Journals |
Title | Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections |
URI | https://dx.doi.org/10.1016/j.csite.2022.101757 https://doaj.org/article/4e7463999a2f471a828a9f1c62fcb97e |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnuCAeIqlUM2BY6PNOt7YPtKKqkKCC1TKLfJrIGhJqnYLlAO_nRknKculB26JNXYsjzXfeDLzWYjXykppsCqLoL0tlPKhsJhs4Qksk7Q-YsXFye8_1Gfn6l2zbvbEyVwLw2mVk-0fbXq21lPLclrN5UXXLT9KuSL00Y3kapOyasgOV8rkIr7m-G-cRRMm5TtdWb7gDjP5UE7zCvknrSQoy5RDDFM7AJV5_Hdwagd7Th-KB5PTCG_GeT0Se6l_LO7vUAk-Eb9J32RjN-AmlhEYEL7lcAGQi03ne8Cuhx-c2RPB38CXG67Vgt71A26u6YkjsrDlYqxfQxfd5gjoqBzc9wRMD-6ZP5gGj5Dz1H9Cnj1c5Uyu_uqpOD99--nkrJjuViiCWqltEWX0UsZaKqOC9WWw0QeMGJWuNUG21x61Mt75OmkMZUI2BUHVrsQQNFbPxH4_9Om5AG2cSZVZ124t1dp5g6YiVaPX6JRbmYWQ84K2YSIe5_svNu2cYfa1zVpoWQvtqIWFOLrtdDHybtwtfsyauhVl0uzcMFx-bqdd06qkFTtk1kkkTHZ02HQWV6GWGLzVaSHqWc_tP3uQhuru-vqL_-14IO7x25gF_lLsby-v0ytycrb-MAcHDvNe_gPTRf5B |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQCHiqdYysMHjo0263hj-0grqi20vdBKuUV-DQQtSdVugXLgtzPjJO320gO3yPE4lseab-zMfMPYe2mE0FDkmVfOZFI6nxmIJnMIllEYF6Cg5OSj43JxKj9V82qD7Y25MBRWOdj-3qYnaz20TIfVnJ41zfSLEDNEH1UJyjbJi-oeu4_egKL6DQfV7s1Fi0JQSkVdSSAjiZF9KMV5-fSXViCWJc4hwqk1hEpE_mtAtQY--4_Z1uA18g_9xJ6wjdg-ZY_WuASfsb-ocDSyS24HmhHeAf-R7gs4-th4wOfQtPwXhfYE7q74tytK1uKtbTtYXuITXcnyFWVj_emaYJc7HM_K3v6MnPjBHREI4-CBp0D13zzNnl-kUK724jk73f94srfIhuIKmZczucqCCE6IUAqppTcu9yY4DwGCVKVCzHbKgZLaWVdGBT6PQLbAy9Lm4L2C4gXbbLs2vmRcaatjoeelnQs5t06DLlDX4BRYaWd6wsS4oLUfmMepAMayHkPMvtdJCzVpoe61MGE710JnPfHG3d13SVPXXYk1OzV051_rYdvUMipJHpmxAhCULZ42rYGZLwV4Z1ScsHLUc31rE-JQzV1ff_W_gu_Yg8XJ0WF9eHD8eZs9pDd9SPhrtrk6v4xv0ONZubdpR_8DnZ4Aeg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+analysis+of+moving+porous+fin+wetted+by+hybrid+nanofluid+with+trapezoidal%2C+concave+parabolic+and+convex+cross+sections&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Hosseinzadeh%2C+S.&rft.au=Hosseinzadeh%2C+Kh&rft.au=Hasibi%2C+A.&rft.au=Ganji%2C+D.D.&rft.date=2022-02-01&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=30&rft.spage=101757&rft_id=info:doi/10.1016%2Fj.csite.2022.101757&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csite_2022_101757 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |