Prediction of droughts over Pakistan using machine learning algorithms

•For the first time drought prediction models were developed for Pakistan.•Support Vector Machine better captured spatiotemporal characteristics of droughts.•k-Nearest Neighbour showed limited ability in predicting characteristics of droughts.•Relative humidity, temperature and wind speed are indica...

Full description

Saved in:
Bibliographic Details
Published inAdvances in water resources Vol. 139; p. 103562
Main Authors Khan, Najeebullah, Sachindra, D.A., Shahid, Shamsuddin, Ahmed, Kamal, Shiru, Mohammed Sanusi, Nawaz, Nadeem
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2020
Subjects
Online AccessGet full text
ISSN0309-1708
1872-9657
DOI10.1016/j.advwatres.2020.103562

Cover

Loading…
Abstract •For the first time drought prediction models were developed for Pakistan.•Support Vector Machine better captured spatiotemporal characteristics of droughts.•k-Nearest Neighbour showed limited ability in predicting characteristics of droughts.•Relative humidity, temperature and wind speed are indicators of droughts in Pakistan. Climate change has increased frequency, severity and areal extent of droughts across the world in the last few decades magnifying their adverse impacts. Prediction of droughts is immensely helpful in early warning and preparing the most vulnerable communities to their adverse impacts. For the first time, this study investigated the potential of developing drought prediction models over Pakistan using three state-of-the-art Machine Learning (ML) techniques; Support Vector Machine (SVM), Artificial Neural Network (ANN) and k-Nearest Neighbour (KNN). Three categories of droughts; moderate, severe, and extreme considering two major cropping seasons called Rabi and Kharif were estimated using Standardized Precipitation Evaporation Index (SPEI) and then predicted using the predictor data obtained from the National Centres for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) reanalysis database. Also, for the first time in drought modelling, a novel feature selection approach called Recursive Feature Elimination (RFE) was used for identifying optimum sets of predictors. In validation, SVM-based models were able to better capture the temporal and spatial characteristics of droughts over Pakistan compared to those by ANN and KNN-based models. KNN which was used in developing drought models for the first time displayed limited performance in comparison to that by SVM and ANN-based drought models, in validation. It was found that in the Rabi season SPEI is positively correlated with relative humidity over the Mediterranean Sea and the region north of the Caspian Sea. In the Kharif season, SPEI is positively correlated with the humid region over the south-eastern part of the Bay of Bengal and the regions north of the Mediterranean and Caspian Seas. In developing a drought prediction model for Pakistan, relative humidity, temperature and wind speed should be considered with a domain which encompasses the Mediterranean Sea, the region north of the Caspian Sea, the Indian Ocean and the Arabian Sea.
AbstractList •For the first time drought prediction models were developed for Pakistan.•Support Vector Machine better captured spatiotemporal characteristics of droughts.•k-Nearest Neighbour showed limited ability in predicting characteristics of droughts.•Relative humidity, temperature and wind speed are indicators of droughts in Pakistan. Climate change has increased frequency, severity and areal extent of droughts across the world in the last few decades magnifying their adverse impacts. Prediction of droughts is immensely helpful in early warning and preparing the most vulnerable communities to their adverse impacts. For the first time, this study investigated the potential of developing drought prediction models over Pakistan using three state-of-the-art Machine Learning (ML) techniques; Support Vector Machine (SVM), Artificial Neural Network (ANN) and k-Nearest Neighbour (KNN). Three categories of droughts; moderate, severe, and extreme considering two major cropping seasons called Rabi and Kharif were estimated using Standardized Precipitation Evaporation Index (SPEI) and then predicted using the predictor data obtained from the National Centres for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) reanalysis database. Also, for the first time in drought modelling, a novel feature selection approach called Recursive Feature Elimination (RFE) was used for identifying optimum sets of predictors. In validation, SVM-based models were able to better capture the temporal and spatial characteristics of droughts over Pakistan compared to those by ANN and KNN-based models. KNN which was used in developing drought models for the first time displayed limited performance in comparison to that by SVM and ANN-based drought models, in validation. It was found that in the Rabi season SPEI is positively correlated with relative humidity over the Mediterranean Sea and the region north of the Caspian Sea. In the Kharif season, SPEI is positively correlated with the humid region over the south-eastern part of the Bay of Bengal and the regions north of the Mediterranean and Caspian Seas. In developing a drought prediction model for Pakistan, relative humidity, temperature and wind speed should be considered with a domain which encompasses the Mediterranean Sea, the region north of the Caspian Sea, the Indian Ocean and the Arabian Sea.
Climate change has increased frequency, severity and areal extent of droughts across the world in the last few decades magnifying their adverse impacts. Prediction of droughts is immensely helpful in early warning and preparing the most vulnerable communities to their adverse impacts. For the first time, this study investigated the potential of developing drought prediction models over Pakistan using three state-of-the-art Machine Learning (ML) techniques; Support Vector Machine (SVM), Artificial Neural Network (ANN) and k-Nearest Neighbour (KNN). Three categories of droughts; moderate, severe, and extreme considering two major cropping seasons called Rabi and Kharif were estimated using Standardized Precipitation Evaporation Index (SPEI) and then predicted using the predictor data obtained from the National Centres for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) reanalysis database. Also, for the first time in drought modelling, a novel feature selection approach called Recursive Feature Elimination (RFE) was used for identifying optimum sets of predictors. In validation, SVM-based models were able to better capture the temporal and spatial characteristics of droughts over Pakistan compared to those by ANN and KNN-based models. KNN which was used in developing drought models for the first time displayed limited performance in comparison to that by SVM and ANN-based drought models, in validation. It was found that in the Rabi season SPEI is positively correlated with relative humidity over the Mediterranean Sea and the region north of the Caspian Sea. In the Kharif season, SPEI is positively correlated with the humid region over the south-eastern part of the Bay of Bengal and the regions north of the Mediterranean and Caspian Seas. In developing a drought prediction model for Pakistan, relative humidity, temperature and wind speed should be considered with a domain which encompasses the Mediterranean Sea, the region north of the Caspian Sea, the Indian Ocean and the Arabian Sea.
ArticleNumber 103562
Author Ahmed, Kamal
Khan, Najeebullah
Shiru, Mohammed Sanusi
Sachindra, D.A.
Nawaz, Nadeem
Shahid, Shamsuddin
Author_xml – sequence: 1
  givenname: Najeebullah
  surname: Khan
  fullname: Khan, Najeebullah
  email: najeebmarri@gmail.com
  organization: School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia
– sequence: 2
  givenname: D.A.
  surname: Sachindra
  fullname: Sachindra, D.A.
  organization: Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, P.O. Box 14428, Melbourne, Victoria, 8001, Australia
– sequence: 3
  givenname: Shamsuddin
  surname: Shahid
  fullname: Shahid, Shamsuddin
  organization: School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia
– sequence: 4
  givenname: Kamal
  surname: Ahmed
  fullname: Ahmed, Kamal
  organization: School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia
– sequence: 5
  givenname: Mohammed Sanusi
  surname: Shiru
  fullname: Shiru, Mohammed Sanusi
  organization: School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia
– sequence: 6
  givenname: Nadeem
  surname: Nawaz
  fullname: Nawaz, Nadeem
  organization: School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia
BookMark eNqNkLFOwzAURS1UJNrCN5CRJcV2XDsZGKqKAlIlOsBsvdhO65LaxXaL-HsSFTGwwPSkq3uu9M4IDZx3BqFrgicEE367nYA-fkAKJk4opn1aTDk9Q0NSCppXfCoGaIgLXOVE4PICjWLcYoxLJugQLVbBaKuS9S7zTaaDP6w3KWb-aEK2gjcbE7jsEK1bZztQG-tM1hoIrg-gXftg02YXL9F5A200V993jF4X9y_zx3z5_PA0ny1zxQhLudKVLmoqWM05qQQn3QdAQVSYNVrjsgbDp2VRlQQa1eiaMFpTRniJQTBaVMUY3Zx298G_H0xMcmejMm0LzvhDlJRhPCVCcN5Vxamqgo8xmEbug91B-JQEy96c3Mofc7I3J0_mOvLuF6lsgl5RCmDbf_CzE286E0drgozKGqc60cGoJLW3f258AV-Uki0
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_130968
crossref_primary_10_3390_su152115675
crossref_primary_10_1080_19475705_2022_2095934
crossref_primary_10_1016_j_compag_2023_108609
crossref_primary_10_1007_s00704_021_03746_2
crossref_primary_10_3390_hydrology11050064
crossref_primary_10_1002_joc_8739
crossref_primary_10_1007_s12205_022_0149_7
crossref_primary_10_1016_j_jhydrol_2023_129573
crossref_primary_10_1016_j_ecoinf_2022_101838
crossref_primary_10_1016_j_jag_2024_104296
crossref_primary_10_1007_s10661_024_13009_y
crossref_primary_10_3390_rs16244803
crossref_primary_10_1007_s12524_023_01720_1
crossref_primary_10_1080_19475705_2022_2072774
crossref_primary_10_1007_s40808_022_01424_4
crossref_primary_10_1007_s11356_021_13445_0
crossref_primary_10_1029_2023WR036973
crossref_primary_10_1038_s41598_023_51111_2
crossref_primary_10_1016_j_acags_2024_100204
crossref_primary_10_1016_j_asoc_2021_108080
crossref_primary_10_3390_su14042250
crossref_primary_10_1007_s11600_024_01286_7
crossref_primary_10_1002_ep_14494
crossref_primary_10_51800_ecd_1224255
crossref_primary_10_1186_s12302_024_00975_w
crossref_primary_10_1016_j_jhydrol_2022_127711
crossref_primary_10_1063_5_0209709
crossref_primary_10_1038_s41598_024_76082_w
crossref_primary_10_1002_joc_8742
crossref_primary_10_1007_s11269_020_02710_5
crossref_primary_10_1007_s00477_020_01963_1
crossref_primary_10_1080_10106049_2023_2211041
crossref_primary_10_1016_j_jhydrol_2021_127381
crossref_primary_10_3354_cr01680
crossref_primary_10_1007_s00704_023_04654_3
crossref_primary_10_3390_su151511684
crossref_primary_10_1007_s10661_025_13708_0
crossref_primary_10_1007_s11069_021_05019_7
crossref_primary_10_1080_09640568_2021_2001317
crossref_primary_10_1016_j_catena_2021_105524
crossref_primary_10_1007_s11269_022_03395_8
crossref_primary_10_1016_j_gfs_2023_100734
crossref_primary_10_1016_j_ecoinf_2023_102093
crossref_primary_10_11648_j_ajdmkd_20240901_11
crossref_primary_10_1007_s00477_023_02502_4
crossref_primary_10_1111_1752_1688_13098
crossref_primary_10_1002_joc_7386
crossref_primary_10_1016_j_crm_2024_100630
crossref_primary_10_3390_land13050615
crossref_primary_10_1007_s00477_023_02526_w
crossref_primary_10_1007_s00704_020_03349_3
crossref_primary_10_3390_s24237837
crossref_primary_10_1007_s11831_022_09828_2
crossref_primary_10_3390_w16213133
crossref_primary_10_2166_wcc_2020_330
crossref_primary_10_1038_s41598_023_46957_5
crossref_primary_10_3390_forecast6040051
crossref_primary_10_1080_19475705_2021_1938703
crossref_primary_10_3390_rs14246398
crossref_primary_10_1007_s00704_023_04571_5
crossref_primary_10_1029_2022EF002830
crossref_primary_10_1371_journal_pone_0319678
crossref_primary_10_3390_w14030431
crossref_primary_10_1016_j_asej_2024_102686
crossref_primary_10_1080_10106049_2023_2210532
crossref_primary_10_1007_s11269_022_03341_8
crossref_primary_10_1007_s00477_022_02324_w
crossref_primary_10_1007_s00704_021_03838_z
crossref_primary_10_1016_j_scitotenv_2021_151464
crossref_primary_10_1007_s12205_022_0992_6
crossref_primary_10_1109_ACCESS_2024_3396695
crossref_primary_10_3390_rs16050828
crossref_primary_10_1016_j_earscirev_2024_104773
crossref_primary_10_1016_j_jhydrol_2021_126477
crossref_primary_10_1002_cben_202100015
crossref_primary_10_1002_joc_8806
crossref_primary_10_3390_rs13091662
crossref_primary_10_3390_atmos14091447
crossref_primary_10_3390_w13091173
crossref_primary_10_3390_electronics12183956
crossref_primary_10_1080_15623599_2021_1917285
crossref_primary_10_1016_j_agrformet_2024_110374
crossref_primary_10_1109_ACCESS_2021_3074305
crossref_primary_10_3390_eng4010003
crossref_primary_10_21015_vtse_v13i1_2042
crossref_primary_10_1038_s41598_023_40106_8
crossref_primary_10_1016_j_jenvman_2024_122640
crossref_primary_10_1016_j_jhydrol_2023_129307
crossref_primary_10_3390_w14030387
crossref_primary_10_1007_s00477_021_02103_z
crossref_primary_10_1007_s40899_023_00897_0
crossref_primary_10_1016_j_asr_2023_03_031
crossref_primary_10_1155_2021_3724919
crossref_primary_10_1002_joc_7321
crossref_primary_10_1016_j_heliyon_2025_e41974
crossref_primary_10_1007_s00703_021_00787_0
crossref_primary_10_1016_j_scitotenv_2021_149797
crossref_primary_10_1007_s41748_024_00507_9
crossref_primary_10_1016_j_compag_2022_107155
crossref_primary_10_1007_s00382_021_06104_0
crossref_primary_10_1007_s11069_024_06758_z
crossref_primary_10_1016_j_jocs_2022_101767
crossref_primary_10_1016_j_scitotenv_2020_142638
crossref_primary_10_2166_wcc_2024_324
crossref_primary_10_1007_s41748_020_00165_7
crossref_primary_10_1007_s00704_024_05138_8
crossref_primary_10_2166_ws_2022_155
crossref_primary_10_2166_hydro_2024_404
crossref_primary_10_3390_su16083461
crossref_primary_10_4018_IJAMC_296262
crossref_primary_10_1007_s00704_024_04949_z
crossref_primary_10_1155_2021_6610228
crossref_primary_10_33317_ssurj_450
crossref_primary_10_1007_s12524_024_01895_1
crossref_primary_10_1007_s40808_020_01010_6
crossref_primary_10_1007_s11600_022_00738_2
crossref_primary_10_1007_s12517_022_09514_4
crossref_primary_10_1080_02626667_2022_2082876
crossref_primary_10_1080_19475705_2022_2131471
crossref_primary_10_1016_j_scitotenv_2021_150018
crossref_primary_10_1007_s12145_024_01650_7
crossref_primary_10_1016_j_rineng_2024_102417
crossref_primary_10_3390_cli12110190
crossref_primary_10_3390_atmos11060585
crossref_primary_10_1007_s00382_022_06443_6
crossref_primary_10_1016_j_atmosres_2020_105061
crossref_primary_10_1016_j_heliyon_2024_e34253
crossref_primary_10_1007_s11069_023_06060_4
crossref_primary_10_1007_s11069_022_05559_6
crossref_primary_10_1029_2023WR035600
crossref_primary_10_1080_10106049_2022_2093411
crossref_primary_10_1029_2023JG007911
crossref_primary_10_3233_JIFS_212748
crossref_primary_10_3390_w13050729
crossref_primary_10_1007_s00521_021_06362_3
crossref_primary_10_1016_j_envpol_2025_126060
crossref_primary_10_1007_s11269_021_02934_z
crossref_primary_10_1007_s11600_024_01501_5
crossref_primary_10_1029_2022EF002723
crossref_primary_10_3390_su14116690
crossref_primary_10_3390_w16152085
crossref_primary_10_1002_joc_7063
crossref_primary_10_1007_s11269_023_03730_7
crossref_primary_10_1016_j_compag_2022_106687
crossref_primary_10_1371_journal_pone_0249718
crossref_primary_10_3390_land14020219
crossref_primary_10_1016_j_jhydrol_2021_126046
crossref_primary_10_3390_w12113044
crossref_primary_10_3389_fpls_2022_1007150
crossref_primary_10_1007_s12517_021_08432_1
crossref_primary_10_1016_j_heliyon_2023_e20297
crossref_primary_10_1080_19475705_2022_2128440
crossref_primary_10_1007_s12205_023_1423_z
crossref_primary_10_1007_s00704_020_03389_9
crossref_primary_10_1007_s11069_021_04913_4
crossref_primary_10_3390_w13040547
crossref_primary_10_1080_02626667_2021_1962884
crossref_primary_10_1007_s12205_020_0951_z
crossref_primary_10_1029_2022WR033146
crossref_primary_10_2166_wcc_2021_062
crossref_primary_10_3390_f15060972
crossref_primary_10_1007_s00477_022_02343_7
crossref_primary_10_1016_j_ejrh_2024_101707
crossref_primary_10_1016_j_jenvman_2021_113085
crossref_primary_10_1029_2021WR031829
crossref_primary_10_1007_s00704_025_05414_1
crossref_primary_10_1007_s11069_023_06233_1
crossref_primary_10_1016_j_envres_2024_118171
crossref_primary_10_1016_j_jhydrol_2024_132492
crossref_primary_10_1080_10106049_2021_2017015
crossref_primary_10_1111_1752_1688_13229
crossref_primary_10_1371_journal_pone_0259774
crossref_primary_10_1038_s41598_022_23436_x
crossref_primary_10_1016_j_jhydrol_2021_126958
Cites_doi 10.1103/PhysRevLett.59.845
10.1002/2015WR018547
10.3390/su11236754
10.1016/j.jhydrol.2015.10.038
10.1007/s10584-010-9895-5
10.1002/hyp.9641
10.1002/hyp.9966
10.21423/twj.v3i1.6463
10.1007/s11069-013-0932-3
10.1016/j.jhydrol.2009.06.019
10.1002/2016RG000549
10.1111/j.1752-1688.2002.tb01544.x
10.1007/s12040-018-1024-2
10.1590/0103-8478cr20170854
10.1175/MWR-D-15-0308.1
10.1016/j.jhydrol.2011.03.049
10.1016/j.jhydrol.2019.03.092
10.1061/(ASCE)HE.1943-5584.0000574
10.1007/s00704-019-02773-4
10.1016/j.atmosres.2019.01.024
10.1175/JCLI3790.1
10.1016/j.jclepro.2019.01.158
10.1007/s11069-007-9191-5
10.1016/j.atmosres.2019.104688
10.1002/wrcr.20123
10.1002/met.1792
10.1061/(ASCE)1084-0699(2007)12:6(626)
10.1016/j.atmosres.2014.10.016
10.3390/genes9060301
10.1175/2009JCLI2909.1
10.1007/s11027-017-9767-7
10.3390/su10030871
10.1007/s11069-017-2769-7
10.1088/1748-9326/aa7859
10.1002/hyp.10394
10.1016/j.jhydrol.2006.04.030
10.1175/BAMS-D-13-00085.1
10.1007/s00477-019-01721-y
10.1002/joc.3933
10.1007/s00382-013-1944-0
10.1016/j.asoc.2014.02.002
10.1371/journal.pone.0021750
10.1016/j.atmosres.2015.12.017
10.1007/s12665-016-5435-6
10.1162/neco.1992.4.3.448
10.1175/MWR-D-18-0156.1
10.1007/s00477-010-0415-y
10.1126/science.284.5423.2156
10.1007/s00382-017-3987-0
10.1175/BAMS-D-11-00176.1
10.1175/2010JHM1224.1
10.1175/JCLI-D-17-0342.1
10.1007/BF00994018
10.1175/JHM-D-16-0182.1
10.1016/0022-1694(95)02918-4
10.1007/s00477-015-1117-2
10.1016/j.scitotenv.2017.12.025
10.1016/j.jhydrol.2018.09.020
10.1016/j.eswa.2013.04.013
10.1080/07055900.2012.734276
10.7763/IJCTE.2009.V1.9
10.1109/TIT.1967.1053964
10.1007/s00704-018-2520-7
10.1080/02723646.1981.10642213
10.1029/2018GL081314
10.1016/j.atmosres.2018.08.020
10.1016/0954-1810(94)00011-S
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1007/s00704-016-1735-8
10.1007/s00704-015-1530-y
10.1016/j.ecolmodel.2006.04.017
10.1016/j.atmosres.2018.05.012
10.1175/1520-0434(2003)018<0938:FMAMTB>2.0.CO;2
10.1002/qj.3200
10.1364/AO.36.008352
10.18637/jss.v028.i05
10.2166/wcc.2019.236
10.1002/joc.2053
10.1016/j.atmosres.2018.05.022
10.1002/joc.3423
10.1007/s00477-018-1605-2
10.1002/joc.3887
10.1175/BAMS-D-12-00248.1
10.1002/joc.1498
10.1016/j.agrformet.2017.02.011
10.1002/joc.1719
10.1016/j.agsy.2019.03.015
10.1061/(ASCE)HE.1943-5584.0000355
10.1016/j.agwat.2019.03.015
10.1175/BAMS-D-13-00055.1
10.1002/joc.3545
10.1007/s12517-018-4187-x
10.3390/su11082287
10.1093/biomet/78.3.691
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.advwatres.2020.103562
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9657
ExternalDocumentID 10_1016_j_advwatres_2020_103562
S0309170819306797
GeographicLocations Caspian Sea
Arabian Sea
Pakistan
Indian Ocean
Mediterranean Sea
Bay of Bengal
GeographicLocations_xml – name: Mediterranean Sea
– name: Caspian Sea
– name: Bay of Bengal
– name: Arabian Sea
– name: Indian Ocean
– name: Pakistan
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c414t-cd9d3b274b6619761101a2a7904fdd08bae6583981afcfdb142b241680a742393
IEDL.DBID .~1
ISSN 0309-1708
IngestDate Tue Aug 05 10:53:33 EDT 2025
Tue Jul 01 01:23:12 EDT 2025
Thu Apr 24 23:04:31 EDT 2025
Fri Feb 23 02:48:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords k-Nearest Neighbour
Pakistan
Artificial Neural Network
Support Vector Machines
Drought prediction
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-cd9d3b274b6619761101a2a7904fdd08bae6583981afcfdb142b241680a742393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2400517766
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2400517766
crossref_primary_10_1016_j_advwatres_2020_103562
crossref_citationtrail_10_1016_j_advwatres_2020_103562
elsevier_sciencedirect_doi_10_1016_j_advwatres_2020_103562
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationTitle Advances in water resources
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yaseen, El-Shafie, Jaafar, Afan, Sayl (bib0103) 2015; 530
Smits, Jordaan (bib0085) 2002
Shawe-Taylor, Cristianini (bib0082) 2004
Vicente-Serrano, Beguería, López-Moreno, Angulo, El Kenawy (bib0095) 2010; 11
Ullah, Khan, Zheng (bib0091) 2018; 48
Burden, Winkler (bib0013) 2008
Parmar, Mistree, Sompura (bib0071) 2017
Vapnik, Vapnik (bib0093) 1998
Santos, Portela, Pulido‐Calvo (bib0078) 2014; 28
Deo, Şahin (bib0019) 2015; 153
Hadi, P.S., Wahab, A., Khairi, A., Shahid, S., Wang, X., 2019. Spatial pattern of the unidirectional trends in thermal bioclimatic indicators in Iran Sustainability 11:2287.
Belayneh, Adamowski, Khalil, Quilty (bib0011) 2016; 172
Granata (bib0037) 2019; 217
Rhee, Im (bib0076) 2017; 237
Zhao, Velicogna, Kimball (bib0105) 2017; 18
Dutra (bib0022) 2013; 33
Hoerling (bib0039) 2014; 95
Khan, Shahid, Chung, Kim, Ali (bib0048) 2019; 11
Murakami, Villarini, Vecchi, Zhang, Gudgel (bib0066) 2016; 144
Barua, Ng, Perera (bib0008) 2012; 17
Willmott (bib0097) 1981; 2
Ghodichore, Vinnarasi, Dhanya, Roy (bib0034) 2018; 127
del Río (bib0018) 2013; 33
Gao (bib0031) 2014; 43
Mariotti (bib0060) 2013; 94
Sheffield, Goteti, Wood (bib0083) 2006; 19
Bourdin, Fleming, Stull (bib0012) 2012; 50
Strazzo (bib0086) 2019; 147
Fienup (bib0026) 1997; 36
Peterson, Hoerling, Stott, Herring (bib0072) 2013; 94
Radhika, Shashi (bib0074) 2009; 1
Nagelkerke (bib0067) 1991; 78
van Dijk (bib0092) 2013; 49
Najafi, Moradkhani, Wherry (bib0068) 2010; 16
Shahid (bib0080) 2011; 105
Mishra, Singh (bib0063) 2011; 403
Ghimire, Deo, Downs, Raj (bib0033) 2019; 216
Khan, Pour, Shahid, Ismail, Ahmed, Chung, Wang (bib0044) 2019
Kannan, Ghosh (bib0043) 2011; 25
Khan, Shahid, Ismail, Ahmed, Nawaz (bib0049) 2019
Yapo, Gupta, Sorooshian (bib0102) 1996; 181
Ghorbani, Khatibi, Goel, FazeliFard, Azani (bib0035) 2016; 75
Liang (bib0055) 2011; 6
Tripathi, Srinivas, Nanjundiah (bib0089) 2006; 330
Pozzi (bib0073) 2013; 94
Al-Mukhtar, Qasim (bib0006) 2019; 12
Chen, Meng, Liu, Jin, Su (bib0014) 2018; 9
Shahid (bib0079) 2010; 30
Fahimi, Yaseen, El-shafie (bib0023) 2017; 128
Lantz (bib0053) 2013
Kumar, Rajagopalan, Cane (bib0052) 1999; 284
Wang, Chau, Cheng, Qiu (bib0096) 2009; 374
Turco, Ceglar, Prodhomme, Soret, Toreti, Doblas-Reyes (bib0090) 2017; 12
Maini, Kumar, Rathore, Singh (bib0059) 2003; 18
Yu, Pu, Koudas (bib0104) 2005
Iqbal, Shahid, Ahmed, Ismail, Nawaz (bib0041) 2019; 137
Farmer, Sidorowich (bib0024) 1987; 59
Ganguli, Reddy (bib0029) 2014; 28
Cortes, Vapnik (bib0016) 1995; 20
Sachindra, Kanae (bib0077) 2019; 33
Yang, Zhou, Yu, Krysanova, Wang (bib0101) 2015; 29
Hao, Singh, Xia (bib0038) 2018; 56
Nielsen-Gammon, J., The 2011 Texas drought: a briefing packet for the Texas Legislature. (2011).
Madadgar (bib0058) 2016; 52
Ahmad, Hussain, Qureshi (bib0002) 2019
MacKay (bib0057) 1992; 4
Khan (bib0050) 2019; 221
Mishra, Desai, Singh (bib0062) 2007; 12
Shiru, Shahid, Alias, Chung (bib0084) 2018; 10
Fung, Huang, Koo, Soh (bib0028) 2019
Beecham, Rashid, Chowdhury (bib0009) 2014; 34
Khan, Shahid, Ismail, Wang (bib0047) 2019; 136
Anandhi, Srinivas, Kumar, Nanjundiah (bib0007) 2009; 29
Kalnay (bib0042) 1996; 77
Adnan (bib0001) 2018; 51
Shahid, Behrawan (bib0081) 2008; 46
Zhu, Jin, Liu, Tian, Zhang (bib0106) 2017
Ahmed, Shahid, Sachindra, Nawaz, Chung (bib0005) 2019; 573
Raghavendra, Deka (bib0075) 2014; 19
Xu, Chen, Zhang, Chen (bib0100) 2018; 566
Xiang (bib0099) 2019; 46
Salem, Kazama, Shahid (bib0902) 2018; 23
Khan (bib0045) 2018; 10
Goh (bib0036) 1995; 9
Liong, Sivapragasam (bib0056) 2002; 38
Gao, Wang, Yang, Dong (bib0030) 2018; 31
Khan (bib0046) 2020; 233
Nourani, Pradhan, Ghaffari, Sharifi (bib0070) 2014; 71
Ahmed, Shahid, bin Harun, Wang (bib0003) 2016; 30
Ahmed, Shahid, Nawaz (bib0004) 2018; 214
Tian, Xu, Wang (bib0087) 2018; 622
Sachindra, Ahmed, Rashid, Shahid, Perera (bib0903) 2018; 212
Chiang, Tsai (bib0015) 2012
Wu, Zhang (bib0098) 2004
Morid, Smakhtin, Bagherzadeh (bib0064) 2007; 27
Foresee, Hagan (bib0027) 1997
Hunt, Turner, Shaffrey (bib0040) 2018; 144
Vicente-Serrano, Beguería, López-Moreno (bib0094) 2010; 23
Cover, Hart (bib0017) 1967; 13
Mishra, Desai (bib0061) 2006; 198
Dodla, Satyanarayana, Desamsetti (bib0020) 2017; 87
Beguería, Vicente‐Serrano, Reig, Latorre (bib0010) 2014; 34
Kuhn (bib0051) 2008; 28
Latif, M., Syed, F., Determination of summer monsoon onset and its related large-scale circulation characteristics over Pakistan, (2015).
Mouatadid, Raj, Deo, Adamowski (bib0065) 2018; 212
Garson (bib0032) 1991; 6
Feng, Wang, Li Liu, Yu (bib0025) 2019; 173
Durrani, Adnan, Aftab (bib0021) 2018
Ticknor (bib0088) 2013; 40
Ghodichore (10.1016/j.advwatres.2020.103562_bib0034) 2018; 127
Al-Mukhtar (10.1016/j.advwatres.2020.103562_bib0006) 2019; 12
Smits (10.1016/j.advwatres.2020.103562_bib0085) 2002
Ticknor (10.1016/j.advwatres.2020.103562_bib0088) 2013; 40
Goh (10.1016/j.advwatres.2020.103562_bib0036) 1995; 9
MacKay (10.1016/j.advwatres.2020.103562_bib0057) 1992; 4
Vicente-Serrano (10.1016/j.advwatres.2020.103562_bib0095) 2010; 11
Yaseen (10.1016/j.advwatres.2020.103562_bib0103) 2015; 530
Mouatadid (10.1016/j.advwatres.2020.103562_bib0065) 2018; 212
Najafi (10.1016/j.advwatres.2020.103562_bib0068) 2010; 16
Parmar (10.1016/j.advwatres.2020.103562_bib0071) 2017
Mishra (10.1016/j.advwatres.2020.103562_bib0061) 2006; 198
Lantz (10.1016/j.advwatres.2020.103562_bib0053) 2013
Vapnik (10.1016/j.advwatres.2020.103562_bib0093) 1998
Wu (10.1016/j.advwatres.2020.103562_bib0098) 2004
Morid (10.1016/j.advwatres.2020.103562_bib0064) 2007; 27
Deo (10.1016/j.advwatres.2020.103562_bib0019) 2015; 153
Durrani (10.1016/j.advwatres.2020.103562_bib0021) 2018
Santos (10.1016/j.advwatres.2020.103562_bib0078) 2014; 28
Shahid (10.1016/j.advwatres.2020.103562_bib0080) 2011; 105
Tripathi (10.1016/j.advwatres.2020.103562_bib0089) 2006; 330
Salem (10.1016/j.advwatres.2020.103562_bib0902) 2018; 23
Shahid (10.1016/j.advwatres.2020.103562_bib0079) 2010; 30
Maini (10.1016/j.advwatres.2020.103562_bib0059) 2003; 18
Hao (10.1016/j.advwatres.2020.103562_bib0038) 2018; 56
Willmott (10.1016/j.advwatres.2020.103562_bib0097) 1981; 2
Sachindra (10.1016/j.advwatres.2020.103562_bib0077) 2019; 33
Beecham (10.1016/j.advwatres.2020.103562_bib0009) 2014; 34
Kannan (10.1016/j.advwatres.2020.103562_bib0043) 2011; 25
Beguería (10.1016/j.advwatres.2020.103562_bib0010) 2014; 34
del Río (10.1016/j.advwatres.2020.103562_bib0018) 2013; 33
Adnan (10.1016/j.advwatres.2020.103562_bib0001) 2018; 51
Iqbal (10.1016/j.advwatres.2020.103562_bib0041) 2019; 137
Kuhn (10.1016/j.advwatres.2020.103562_bib0051) 2008; 28
Sheffield (10.1016/j.advwatres.2020.103562_bib0083) 2006; 19
Chen (10.1016/j.advwatres.2020.103562_bib0014) 2018; 9
Foresee (10.1016/j.advwatres.2020.103562_bib0027) 1997
Yapo (10.1016/j.advwatres.2020.103562_bib0102) 1996; 181
Khan (10.1016/j.advwatres.2020.103562_bib0047) 2019; 136
Rhee (10.1016/j.advwatres.2020.103562_bib0076) 2017; 237
Khan (10.1016/j.advwatres.2020.103562_bib0050) 2019; 221
Nourani (10.1016/j.advwatres.2020.103562_bib0070) 2014; 71
Xiang (10.1016/j.advwatres.2020.103562_bib0099) 2019; 46
Fienup (10.1016/j.advwatres.2020.103562_bib0026) 1997; 36
Mishra (10.1016/j.advwatres.2020.103562_bib0062) 2007; 12
Wang (10.1016/j.advwatres.2020.103562_bib0096) 2009; 374
Mishra (10.1016/j.advwatres.2020.103562_bib0063) 2011; 403
Kalnay (10.1016/j.advwatres.2020.103562_bib0042) 1996; 77
Yang (10.1016/j.advwatres.2020.103562_bib0101) 2015; 29
Sachindra (10.1016/j.advwatres.2020.103562_bib0903) 2018; 212
Ahmed (10.1016/j.advwatres.2020.103562_bib0005) 2019; 573
Fung (10.1016/j.advwatres.2020.103562_bib0028) 2019
Madadgar (10.1016/j.advwatres.2020.103562_bib0058) 2016; 52
Barua (10.1016/j.advwatres.2020.103562_bib0008) 2012; 17
Belayneh (10.1016/j.advwatres.2020.103562_bib0011) 2016; 172
Liang (10.1016/j.advwatres.2020.103562_bib0055) 2011; 6
Garson (10.1016/j.advwatres.2020.103562_bib0032) 1991; 6
Mariotti (10.1016/j.advwatres.2020.103562_bib0060) 2013; 94
Cover (10.1016/j.advwatres.2020.103562_bib0017) 1967; 13
Peterson (10.1016/j.advwatres.2020.103562_bib0072) 2013; 94
Khan (10.1016/j.advwatres.2020.103562_bib0046) 2020; 233
Ahmed (10.1016/j.advwatres.2020.103562_bib0004) 2018; 214
Xu (10.1016/j.advwatres.2020.103562_bib0100) 2018; 566
van Dijk (10.1016/j.advwatres.2020.103562_bib0092) 2013; 49
Dutra (10.1016/j.advwatres.2020.103562_bib0022) 2013; 33
Cortes (10.1016/j.advwatres.2020.103562_bib0016) 1995; 20
10.1016/j.advwatres.2020.103562_bib0901
Khan (10.1016/j.advwatres.2020.103562_bib0044) 2019
Gao (10.1016/j.advwatres.2020.103562_bib0031) 2014; 43
Dodla (10.1016/j.advwatres.2020.103562_bib0020) 2017; 87
Ullah (10.1016/j.advwatres.2020.103562_bib0091) 2018; 48
Kumar (10.1016/j.advwatres.2020.103562_bib0052) 1999; 284
Chiang (10.1016/j.advwatres.2020.103562_bib0015) 2012
Turco (10.1016/j.advwatres.2020.103562_bib0090) 2017; 12
Khan (10.1016/j.advwatres.2020.103562_bib0048) 2019; 11
Fahimi (10.1016/j.advwatres.2020.103562_bib0023) 2017; 128
10.1016/j.advwatres.2020.103562_bib0069
Khan (10.1016/j.advwatres.2020.103562_bib0045) 2018; 10
Radhika (10.1016/j.advwatres.2020.103562_bib0074) 2009; 1
Raghavendra (10.1016/j.advwatres.2020.103562_bib0075) 2014; 19
Ghimire (10.1016/j.advwatres.2020.103562_bib0033) 2019; 216
Nagelkerke (10.1016/j.advwatres.2020.103562_bib0067) 1991; 78
Strazzo (10.1016/j.advwatres.2020.103562_bib0086) 2019; 147
Vicente-Serrano (10.1016/j.advwatres.2020.103562_bib0094) 2010; 23
Bourdin (10.1016/j.advwatres.2020.103562_bib0012) 2012; 50
Pozzi (10.1016/j.advwatres.2020.103562_bib0073) 2013; 94
Ganguli (10.1016/j.advwatres.2020.103562_bib0029) 2014; 28
10.1016/j.advwatres.2020.103562_bib0054
Burden (10.1016/j.advwatres.2020.103562_bib0013) 2008
Farmer (10.1016/j.advwatres.2020.103562_bib0024) 1987; 59
Tian (10.1016/j.advwatres.2020.103562_bib0087) 2018; 622
Gao (10.1016/j.advwatres.2020.103562_bib0030) 2018; 31
Granata (10.1016/j.advwatres.2020.103562_bib0037) 2019; 217
Anandhi (10.1016/j.advwatres.2020.103562_bib0007) 2009; 29
Yu (10.1016/j.advwatres.2020.103562_bib0104) 2005
Hunt (10.1016/j.advwatres.2020.103562_bib0040) 2018; 144
Khan (10.1016/j.advwatres.2020.103562_bib0049) 2019
Feng (10.1016/j.advwatres.2020.103562_bib0025) 2019; 173
Shiru (10.1016/j.advwatres.2020.103562_bib0084) 2018; 10
Zhao (10.1016/j.advwatres.2020.103562_bib0105) 2017; 18
Ahmed (10.1016/j.advwatres.2020.103562_bib0003) 2016; 30
Ghorbani (10.1016/j.advwatres.2020.103562_bib0035) 2016; 75
Murakami (10.1016/j.advwatres.2020.103562_bib0066) 2016; 144
Hoerling (10.1016/j.advwatres.2020.103562_bib0039) 2014; 95
Shawe-Taylor (10.1016/j.advwatres.2020.103562_bib0082) 2004
Zhu (10.1016/j.advwatres.2020.103562_bib0106) 2017
Ahmad (10.1016/j.advwatres.2020.103562_bib0002) 2019
Liong (10.1016/j.advwatres.2020.103562_bib0056) 2002; 38
Shahid (10.1016/j.advwatres.2020.103562_bib0081) 2008; 46
References_xml – volume: 622
  start-page: 710
  year: 2018
  end-page: 720
  ident: bib0087
  article-title: Agricultural drought prediction using climate indices based on support vector regression in Xiangjiang River basin
  publication-title: Sci. Total Environ.
– volume: 25
  start-page: 457
  year: 2011
  end-page: 474
  ident: bib0043
  article-title: Prediction of daily rainfall state in a river basin using statistical downscaling from GCM output
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 27
  start-page: 2103
  year: 2007
  end-page: 2111
  ident: bib0064
  article-title: Drought forecasting using artificial neural networks and time series of drought indices
  publication-title: Int. J. Climatol.
– year: 2004
  ident: bib0082
  article-title: Kernel Methods For Pattern Analysis
– volume: 12
  year: 2017
  ident: bib0090
  article-title: Summer drought predictability over Europe: empirical versus dynamical forecasts
  publication-title: Environ. Res. Lett.
– start-page: 287
  year: 2019
  end-page: 302
  ident: bib0049
  article-title: Trends in heat wave related indices in Pakistan
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 49
  start-page: 1040
  year: 2013
  end-page: 1057
  ident: bib0092
  article-title: The millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society
  publication-title: Water Resour. Res.
– volume: 46
  start-page: 391
  year: 2008
  end-page: 413
  ident: bib0081
  article-title: Drought risk assessment in the western part of Bangladesh
  publication-title: Nat. Hazards
– volume: 29
  start-page: 2635
  year: 2015
  end-page: 2648
  ident: bib0101
  article-title: Drought projection based on a hybrid drought index using artificial neural networks
  publication-title: Hydrol. Process.
– start-page: 2785
  year: 2002
  end-page: 2790
  ident: bib0085
  article-title: Improved SVM regression using mixtures of kernels
  publication-title: Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No. 02CH37290)
– volume: 12
  start-page: 25
  year: 2019
  ident: bib0006
  article-title: Future predictions of precipitation and temperature in Iraq using the statistical downscaling model
  publication-title: Arab. J. Geosci.
– volume: 10
  start-page: 871
  year: 2018
  ident: bib0084
  article-title: Trend analysis of droughts during crop growing seasons of Nigeria
  publication-title: Sustainability
– volume: 374
  start-page: 294
  year: 2009
  end-page: 306
  ident: bib0096
  article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
  publication-title: J. Hydrol. (Amst)
– volume: 34
  start-page: 3654
  year: 2014
  end-page: 3670
  ident: bib0009
  article-title: Statistical downscaling of multi‐site daily rainfall in a South Australian catchment using a generalized linear model
  publication-title: Int. J. Climatol.
– volume: 11
  start-page: 6754
  year: 2019
  ident: bib0048
  article-title: Influence of surface water bodies on the land surface temperature of Bangladesh
  publication-title: Sustainability
– start-page: 631
  year: 2005
  end-page: 642
  ident: bib0104
  article-title: Monitoring k-nearest neighbor queries over moving objects
  publication-title: 21st International Conference on Data Engineering (ICDE'05)
– volume: 38
  start-page: 173
  year: 2002
  end-page: 186
  ident: bib0056
  article-title: Flood stage forecasting with support vector machines 1
  publication-title: JAWRA J. Am. Water Res. Assoc.
– volume: 28
  start-page: 1009
  year: 2014
  end-page: 1024
  ident: bib0078
  article-title: Spring drought prediction based on winter NAO and global SST in Portugal
  publication-title: Hydrol. Process.
– volume: 52
  start-page: 5095
  year: 2016
  end-page: 5110
  ident: bib0058
  article-title: A hybrid statistical‐dynamical framework for meteorological drought prediction: application to the southwestern United States
  publication-title: Water Resour. Res.
– volume: 87
  start-page: 395
  year: 2017
  end-page: 414
  ident: bib0020
  article-title: Analysis and prediction of a catastrophic Indian coastal heat wave of 2015
  publication-title: Nat. Hazards
– volume: 237
  start-page: 105
  year: 2017
  end-page: 122
  ident: bib0076
  article-title: Meteorological drought forecasting for ungauged areas based on machine learning: using long-range climate forecast and remote sensing data
  publication-title: Agric. For. Meteorol.
– volume: 33
  start-page: 277
  year: 2013
  end-page: 290
  ident: bib0018
  article-title: Recent mean temperature trends in Pakistan and links with teleconnection patterns
  publication-title: Int. J. Climatol.
– volume: 16
  start-page: 650
  year: 2010
  end-page: 664
  ident: bib0068
  article-title: Statistical downscaling of precipitation using machine learning with optimal predictor selection
  publication-title: J. Hydrol. Eng.
– volume: 214
  start-page: 364
  year: 2018
  end-page: 374
  ident: bib0004
  article-title: Impacts of climate variability and change on seasonal drought characteristics of Pakistan
  publication-title: Atmos. Res.
– volume: 51
  start-page: 1885
  year: 2018
  end-page: 1899
  ident: bib0001
  article-title: Comparison of various drought indices to monitor drought status in Pakistan
  publication-title: Clim. Dyn.
– volume: 71
  start-page: 523
  year: 2014
  end-page: 547
  ident: bib0070
  article-title: Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models
  publication-title: Nat. Hazards
– volume: 11
  start-page: 1033
  year: 2010
  end-page: 1043
  ident: bib0095
  article-title: A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index
  publication-title: J. Hydrometeorol.
– volume: 46
  start-page: 416
  year: 2019
  end-page: 425
  ident: bib0099
  article-title: Subseasonal week 3–5 surface air temperature prediction during boreal wintertime in a GFDL model
  publication-title: Geophys. Res. Lett.
– start-page: 455
  year: 2012
  end-page: 459
  ident: bib0015
  article-title: Reservoir drought prediction using support vector machines
  publication-title: Applied Mechanics and Materials
– volume: 28
  start-page: 1
  year: 2008
  end-page: 26
  ident: bib0051
  article-title: Building predictive models in R using the caret package
  publication-title: J. Stat. Softw.
– volume: 403
  start-page: 157
  year: 2011
  end-page: 175
  ident: bib0063
  article-title: Drought modeling–a review
  publication-title: J. Hydrol. (Amst)
– start-page: 23
  year: 2008
  end-page: 42
  ident: bib0013
  article-title: Bayesian regularization of neural networks
  publication-title: Artificial Neural Networks
– volume: 94
  start-page: S1
  year: 2013
  end-page: S74
  ident: bib0072
  article-title: Explaining extreme events of 2012 from a climate perspective
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 40
  start-page: 5501
  year: 2013
  end-page: 5506
  ident: bib0088
  article-title: ABayesian regularized artificial neural network for stock market forecasting
  publication-title: Expert Syst. Appl.
– volume: 181
  start-page: 23
  year: 1996
  end-page: 48
  ident: bib0102
  article-title: Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data
  publication-title: J. Hydrol. (Amst)
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0016
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 144
  start-page: 2101
  year: 2016
  end-page: 2123
  ident: bib0066
  article-title: Statistical–dynamical seasonal forecast of North Atlantic and US landfalling tropical cyclones using the high-resolution GFDL FLOR coupled model
  publication-title: Mon. Weather Rev.
– volume: 17
  start-page: 1408
  year: 2012
  end-page: 1413
  ident: bib0008
  article-title: Artificial neural network–based drought forecasting using a nonlinear aggregated drought index
  publication-title: J. Hydrol. Eng.
– year: 2017
  ident: bib0071
  article-title: Machine learning techniques for rainfall prediction: a review.
  publication-title: International Conference on Innovations in information Embedded and Communication Systems
– volume: 94
  start-page: 776
  year: 2013
  end-page: 785
  ident: bib0073
  article-title: Toward global drought early warning capability: expanding international cooperation for the development of a framework for monitoring and forecasting
  publication-title: Bull. Am. Meteorol. Soc.
– reference: Nielsen-Gammon, J., The 2011 Texas drought: a briefing packet for the Texas Legislature. (2011).
– volume: 216
  start-page: 288
  year: 2019
  end-page: 310
  ident: bib0033
  article-title: Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cites of queensland Australia
  publication-title: J. Clean. Prod.
– start-page: 655
  year: 2019
  end-page: 670
  ident: bib0044
  article-title: Spatial distribution of secular trends in rainfall indices of Peninsular Malaysia in the presence of long-term persistence
  publication-title: Meteorol. Appl.
– reference: Hadi, P.S., Wahab, A., Khairi, A., Shahid, S., Wang, X., 2019. Spatial pattern of the unidirectional trends in thermal bioclimatic indicators in Iran Sustainability 11:2287.
– volume: 33
  start-page: 1720
  year: 2013
  end-page: 1729
  ident: bib0022
  article-title: The 2010–2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products
  publication-title: Int. J. Climatol.
– volume: 137
  start-page: 2755
  year: 2019
  end-page: 2769
  ident: bib0041
  article-title: Spatial distribution of the trends in precipitation and precipitation extremes in the sub-Himalayan region of Pakistan
  publication-title: Theor. Appl. Climatol.
– volume: 30
  start-page: 747
  year: 2016
  end-page: 762
  ident: bib0003
  article-title: Characterization of seasonal droughts in Balochistan Province, Pakistan
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 19
  start-page: 372
  year: 2014
  end-page: 386
  ident: bib0075
  article-title: Support vector machine applications in the field of hydrology: a review
  publication-title: Appl. Soft Comput.
– volume: 31
  start-page: 2185
  year: 2018
  end-page: 2196
  ident: bib0030
  article-title: Are peak summer sultry heat wave days over the Yangtze–Huaihe river basin predictable?
  publication-title: J. Clim.
– volume: 212
  start-page: 240
  year: 2018
  end-page: 258
  ident: bib0903
  article-title: Statistical downscaling of precipitation using machine learning techniques
  publication-title: Atmospheric Research
– volume: 573
  start-page: 281
  year: 2019
  end-page: 298
  ident: bib0005
  article-title: Fidelity assessment of general circulation model simulated precipitation and temperature over Pakistan using a feature selection method
  publication-title: J. Hydrol. (Amst)
– volume: 10
  start-page: 1793
  year: 2018
  ident: bib0045
  article-title: Performance assessment of general circulation model in simulating daily precipitation and temperature using multiple gridded datasets
  publication-title: Water (Basel)
– volume: 530
  start-page: 829
  year: 2015
  end-page: 844
  ident: bib0103
  article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015
  publication-title: J. Hydrol. (Amst)
– volume: 50
  start-page: 507
  year: 2012
  end-page: 536
  ident: bib0012
  article-title: Streamflow modelling: a primer on applications, approaches and challenges
  publication-title: Atmos. Ocean.
– volume: 198
  start-page: 127
  year: 2006
  end-page: 138
  ident: bib0061
  article-title: Drought forecasting using feed-forward recursive neural network
  publication-title: Ecol. Modell.
– volume: 128
  start-page: 875
  year: 2017
  end-page: 903
  ident: bib0023
  article-title: Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review
  publication-title: Theor. Appl. Climatol.
– volume: 43
  start-page: 787
  year: 2014
  end-page: 804
  ident: bib0031
  article-title: Variability and predictability of Northeast China climate during 1948–2012
  publication-title: Clim. Dyn.
– volume: 4
  start-page: 448
  year: 1992
  end-page: 472
  ident: bib0057
  article-title: A practical Bayesian framework for backpropagation networks
  publication-title: Neural Comput.
– year: 2019
  ident: bib0002
  article-title: Drought Mitigation in Pakistan: Current Status and Options for Future Strategies
– volume: 23
  start-page: 1696
  year: 2010
  end-page: 1718
  ident: bib0094
  article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index
  publication-title: J. Clim.
– volume: 566
  start-page: 235
  year: 2018
  end-page: 249
  ident: bib0100
  article-title: An evaluation of statistical, NMME and hybrid models for drought prediction in China
  publication-title: J. Hydrol. (Amst)
– volume: 9
  start-page: 301
  year: 2018
  ident: bib0014
  article-title: Decision variants for the automatic determination of optimal feature subset in RF-RFE
  publication-title: Genes (Basel)
– volume: 48
  year: 2018
  ident: bib0091
  article-title: Testing long-run relationship between agricultural gross domestic product and fruits production: evidence from Pakistan
  publication-title: Cienc. Rural.
– volume: 136
  start-page: 899
  year: 2019
  end-page: 913
  ident: bib0047
  article-title: Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan
  publication-title: Theor. Appl. Climatol.
– volume: 105
  start-page: 433
  year: 2011
  end-page: 453
  ident: bib0080
  article-title: Impact of climate change on irrigation water demand of dry season Boro rice in northwest Bangladesh
  publication-title: Clim. Change
– volume: 173
  start-page: 303
  year: 2019
  end-page: 316
  ident: bib0025
  article-title: Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia
  publication-title: Agric. Syst.
– volume: 23
  start-page: 953
  year: 2018
  end-page: 979
  ident: bib0902
  article-title: Groundwater-dependent irrigation costs and benefits for adaptation to global change
  publication-title: Mitig Adapt Strateg Glob Change
– volume: 2
  start-page: 184
  year: 1981
  end-page: 194
  ident: bib0097
  article-title: On the validation of models
  publication-title: Phys. Geograph.
– volume: 144
  start-page: 278
  year: 2018
  end-page: 290
  ident: bib0040
  article-title: The evolution, seasonality and impacts of western disturbances
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 1
  start-page: 55
  year: 2009
  ident: bib0074
  article-title: Atmospheric temperature prediction using support vector machines
  publication-title: Int. J. Comput. Theory Eng.
– volume: 59
  start-page: 845
  year: 1987
  ident: bib0024
  article-title: Predicting chaotic time series
  publication-title: Phys. Rev. Lett.
– start-page: II
  year: 2004
  ident: bib0098
  article-title: Feature selection for classifying high-dimensional numerical data
  publication-title: . CVPR 2004
– volume: 94
  start-page: ES186
  year: 2013
  end-page: ES188
  ident: bib0060
  article-title: Advancing drought understanding, monitoring, and prediction
  publication-title: Bull. Am. Meteorol. Soc.
– start-page: 156
  year: 1998
  end-page: 160
  ident: bib0093
  article-title: Statistical Learning Theory
– volume: 172
  start-page: 37
  year: 2016
  end-page: 47
  ident: bib0011
  article-title: Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction
  publication-title: Atmos. Res.
– volume: 33
  start-page: 1497
  year: 2019
  end-page: 1533
  ident: bib0077
  article-title: Machine learning for downscaling: the use of parallel multiple populations in genetic programming
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 28
  start-page: 4989
  year: 2014
  end-page: 5009
  ident: bib0029
  article-title: Ensemble prediction of regional droughts using climate inputs and the SVM–copula approach
  publication-title: Hydrol. Process.
– volume: 56
  start-page: 108
  year: 2018
  end-page: 141
  ident: bib0038
  article-title: Seasonal drought prediction: advances, challenges, and future prospects
  publication-title: Rev. Geophys.
– start-page: 1
  year: 2017
  end-page: 10
  ident: bib0106
  article-title: Simulations of the impact of lakes on local and regional climate over the Tibetan Plateau
  publication-title: Atmos. Ocean
– volume: 6
  start-page: e21750
  year: 2011
  ident: bib0055
  article-title: Prediction of drought-resistant genes in Arabidopsis thaliana using SVM-RFE
  publication-title: PLoS ONE
– year: 2019
  ident: bib0028
  article-title: Drought forecasting: a review of modelling approaches 2007–2017
  publication-title: J. Water Clim. Change
– volume: 30
  start-page: 2299
  year: 2010
  end-page: 2313
  ident: bib0079
  article-title: Rainfall variability and the trends of wet and dry periods in Bangladesh
  publication-title: Int. J. Climatol.
– volume: 147
  start-page: 607
  year: 2019
  end-page: 625
  ident: bib0086
  article-title: Application of a hybrid statistical–dynamical system to seasonal prediction of North American temperature and precipitation
  publication-title: Mon. Weather Rev.
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: bib0017
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
– volume: 284
  start-page: 2156
  year: 1999
  end-page: 2159
  ident: bib0052
  article-title: On the weakening relationship between the Indian monsoon and ENSO
  publication-title: Science
– volume: 18
  start-page: 938
  year: 2003
  end-page: 952
  ident: bib0059
  article-title: Forecasting maximum and minimum temperatures by statistical interpretation of numerical weather prediction model output
  publication-title: Weather Forecast.
– volume: 34
  start-page: 3001
  year: 2014
  end-page: 3023
  ident: bib0010
  article-title: Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring
  publication-title: Int. J. Climatol.
– volume: 127
  start-page: 115
  year: 2018
  ident: bib0034
  article-title: Reliability of reanalyses products in simulating precipitation and temperature characteristics over India
  publication-title: J. Earth Syst. Sci.
– volume: 75
  start-page: 685
  year: 2016
  ident: bib0035
  article-title: Modeling river discharge time series using support vector machine and artificial neural networks
  publication-title: Environ. Earth Sci.
– volume: 212
  start-page: 130
  year: 2018
  end-page: 149
  ident: bib0065
  article-title: Input selection and data-driven model performance optimization to predict the standardized precipitation and evaporation index in a drought-prone region
  publication-title: Atmos. Res.
– volume: 153
  start-page: 512
  year: 2015
  end-page: 525
  ident: bib0019
  article-title: Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia
  publication-title: Atmos. Res.
– volume: 95
  start-page: 269
  year: 2014
  end-page: 282
  ident: bib0039
  article-title: Causes and predictability of the 2012 Great Plains drought
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 19
  start-page: 3088
  year: 2006
  end-page: 3111
  ident: bib0083
  article-title: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling
  publication-title: J. Clim.
– year: 2018
  ident: bib0021
  article-title: Historical and future climatological drought projections over Quetta Valley, Balochistan, Pakistan
  publication-title: IOP Conference Series: Materials Science and Engineering
– volume: 9
  start-page: 143
  year: 1995
  end-page: 151
  ident: bib0036
  article-title: Back-propagation neural networks for modeling complex systems
  publication-title: Artif. Intell. Eng.
– volume: 18
  start-page: 2117
  year: 2017
  end-page: 2129
  ident: bib0105
  article-title: A global gridded dataset of grace drought severity index for 2002–14: comparison with PDSI and SPEI and a case study of the Australia millennium drought
  publication-title: J. Hydrometeorol.
– volume: 78
  start-page: 691
  year: 1991
  end-page: 692
  ident: bib0067
  article-title: A note on a general definition of the coefficient of determination
  publication-title: Biometrika
– year: 2013
  ident: bib0053
  article-title: Machine Learning With R
– volume: 36
  start-page: 8352
  year: 1997
  end-page: 8357
  ident: bib0026
  article-title: Invariant error metrics for image reconstruction
  publication-title: Appl. Opt.
– volume: 6
  start-page: 46
  year: 1991
  end-page: 51
  ident: bib0032
  article-title: Interpreting neural-network connection weights
  publication-title: AI Expert
– volume: 233
  year: 2020
  ident: bib0046
  article-title: Selection of GCMs for the projection of spatial distribution of heat waves in Pakistan
  publication-title: Atmos. Res.
– volume: 330
  start-page: 621
  year: 2006
  end-page: 640
  ident: bib0089
  article-title: Downscaling of precipitation for climate change scenarios: a support vector machine approach
  publication-title: J. Hydrol. (Amst)
– volume: 29
  start-page: 583
  year: 2009
  end-page: 603
  ident: bib0007
  article-title: Role of predictors in downscaling surface temperature to river basin in India for IPCC SRES scenarios using support vector machine
  publication-title: Int. J. Climatol.
– volume: 221
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib0050
  article-title: Prediction of heat waves in Pakistan using quantile regression forests
  publication-title: Atmos. Res.
– volume: 77
  start-page: 437
  year: 1996
  end-page: 472
  ident: bib0042
  article-title: The NCEP/NCAR 40-year reanalysis project
  publication-title: Bull. Am. Meteorol. Soc.
– reference: Latif, M., Syed, F., Determination of summer monsoon onset and its related large-scale circulation characteristics over Pakistan, (2015).
– start-page: 1930
  year: 1997
  end-page: 1935
  ident: bib0027
  article-title: Gauss-Newton approximation to Bayesian learning
  publication-title: Proceedings of International Conference on Neural Networks (ICNN'97)
– volume: 12
  start-page: 626
  year: 2007
  end-page: 638
  ident: bib0062
  article-title: Drought forecasting using a hybrid stochastic and neural network model
  publication-title: J. Hydrol. Eng.
– volume: 217
  start-page: 303
  year: 2019
  end-page: 315
  ident: bib0037
  article-title: Evapotranspiration evaluation models based on machine learning algorithms—a comparative study
  publication-title: Agric. Water Manage.
– volume: 59
  start-page: 845
  year: 1987
  ident: 10.1016/j.advwatres.2020.103562_bib0024
  article-title: Predicting chaotic time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.845
– volume: 52
  start-page: 5095
  year: 2016
  ident: 10.1016/j.advwatres.2020.103562_bib0058
  article-title: A hybrid statistical‐dynamical framework for meteorological drought prediction: application to the southwestern United States
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR018547
– volume: 11
  start-page: 6754
  year: 2019
  ident: 10.1016/j.advwatres.2020.103562_bib0048
  article-title: Influence of surface water bodies on the land surface temperature of Bangladesh
  publication-title: Sustainability
  doi: 10.3390/su11236754
– year: 2018
  ident: 10.1016/j.advwatres.2020.103562_bib0021
  article-title: Historical and future climatological drought projections over Quetta Valley, Balochistan, Pakistan
– volume: 530
  start-page: 829
  year: 2015
  ident: 10.1016/j.advwatres.2020.103562_bib0103
  article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015
  publication-title: J. Hydrol. (Amst)
  doi: 10.1016/j.jhydrol.2015.10.038
– volume: 105
  start-page: 433
  year: 2011
  ident: 10.1016/j.advwatres.2020.103562_bib0080
  article-title: Impact of climate change on irrigation water demand of dry season Boro rice in northwest Bangladesh
  publication-title: Clim. Change
  doi: 10.1007/s10584-010-9895-5
– volume: 28
  start-page: 1009
  year: 2014
  ident: 10.1016/j.advwatres.2020.103562_bib0078
  article-title: Spring drought prediction based on winter NAO and global SST in Portugal
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9641
– volume: 28
  start-page: 4989
  year: 2014
  ident: 10.1016/j.advwatres.2020.103562_bib0029
  article-title: Ensemble prediction of regional droughts using climate inputs and the SVM–copula approach
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9966
– ident: 10.1016/j.advwatres.2020.103562_bib0069
  doi: 10.21423/twj.v3i1.6463
– volume: 71
  start-page: 523
  year: 2014
  ident: 10.1016/j.advwatres.2020.103562_bib0070
  article-title: Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-013-0932-3
– volume: 374
  start-page: 294
  year: 2009
  ident: 10.1016/j.advwatres.2020.103562_bib0096
  article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
  publication-title: J. Hydrol. (Amst)
  doi: 10.1016/j.jhydrol.2009.06.019
– volume: 56
  start-page: 108
  year: 2018
  ident: 10.1016/j.advwatres.2020.103562_bib0038
  article-title: Seasonal drought prediction: advances, challenges, and future prospects
  publication-title: Rev. Geophys.
  doi: 10.1002/2016RG000549
– volume: 38
  start-page: 173
  year: 2002
  ident: 10.1016/j.advwatres.2020.103562_bib0056
  article-title: Flood stage forecasting with support vector machines 1
  publication-title: JAWRA J. Am. Water Res. Assoc.
  doi: 10.1111/j.1752-1688.2002.tb01544.x
– volume: 127
  start-page: 115
  year: 2018
  ident: 10.1016/j.advwatres.2020.103562_bib0034
  article-title: Reliability of reanalyses products in simulating precipitation and temperature characteristics over India
  publication-title: J. Earth Syst. Sci.
  doi: 10.1007/s12040-018-1024-2
– volume: 48
  issue: 5
  year: 2018
  ident: 10.1016/j.advwatres.2020.103562_bib0091
  article-title: Testing long-run relationship between agricultural gross domestic product and fruits production: evidence from Pakistan
  publication-title: Cienc. Rural.
  doi: 10.1590/0103-8478cr20170854
– volume: 144
  start-page: 2101
  year: 2016
  ident: 10.1016/j.advwatres.2020.103562_bib0066
  article-title: Statistical–dynamical seasonal forecast of North Atlantic and US landfalling tropical cyclones using the high-resolution GFDL FLOR coupled model
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-15-0308.1
– start-page: 1930
  year: 1997
  ident: 10.1016/j.advwatres.2020.103562_bib0027
  article-title: Gauss-Newton approximation to Bayesian learning
– volume: 403
  start-page: 157
  year: 2011
  ident: 10.1016/j.advwatres.2020.103562_bib0063
  article-title: Drought modeling–a review
  publication-title: J. Hydrol. (Amst)
  doi: 10.1016/j.jhydrol.2011.03.049
– volume: 573
  start-page: 281
  year: 2019
  ident: 10.1016/j.advwatres.2020.103562_bib0005
  article-title: Fidelity assessment of general circulation model simulated precipitation and temperature over Pakistan using a feature selection method
  publication-title: J. Hydrol. (Amst)
  doi: 10.1016/j.jhydrol.2019.03.092
– volume: 17
  start-page: 1408
  year: 2012
  ident: 10.1016/j.advwatres.2020.103562_bib0008
  article-title: Artificial neural network–based drought forecasting using a nonlinear aggregated drought index
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000574
– volume: 137
  start-page: 2755
  year: 2019
  ident: 10.1016/j.advwatres.2020.103562_bib0041
  article-title: Spatial distribution of the trends in precipitation and precipitation extremes in the sub-Himalayan region of Pakistan
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-019-02773-4
– volume: 221
  start-page: 1
  year: 2019
  ident: 10.1016/j.advwatres.2020.103562_bib0050
  article-title: Prediction of heat waves in Pakistan using quantile regression forests
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2019.01.024
– volume: 19
  start-page: 3088
  year: 2006
  ident: 10.1016/j.advwatres.2020.103562_bib0083
  article-title: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling
  publication-title: J. Clim.
  doi: 10.1175/JCLI3790.1
– year: 2013
  ident: 10.1016/j.advwatres.2020.103562_bib0053
– volume: 216
  start-page: 288
  year: 2019
  ident: 10.1016/j.advwatres.2020.103562_bib0033
  article-title: Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cites of queensland Australia
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.01.158
– volume: 46
  start-page: 391
  year: 2008
  ident: 10.1016/j.advwatres.2020.103562_bib0081
  article-title: Drought risk assessment in the western part of Bangladesh
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-007-9191-5
– volume: 233
  year: 2020
  ident: 10.1016/j.advwatres.2020.103562_bib0046
  article-title: Selection of GCMs for the projection of spatial distribution of heat waves in Pakistan
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2019.104688
– start-page: 631
  year: 2005
  ident: 10.1016/j.advwatres.2020.103562_bib0104
  article-title: Monitoring k-nearest neighbor queries over moving objects
– volume: 49
  start-page: 1040
  year: 2013
  ident: 10.1016/j.advwatres.2020.103562_bib0092
  article-title: The millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20123
– start-page: 655
  year: 2019
  ident: 10.1016/j.advwatres.2020.103562_bib0044
  article-title: Spatial distribution of secular trends in rainfall indices of Peninsular Malaysia in the presence of long-term persistence
  publication-title: Meteorol. Appl.
  doi: 10.1002/met.1792
– volume: 12
  start-page: 626
  year: 2007
  ident: 10.1016/j.advwatres.2020.103562_bib0062
  article-title: Drought forecasting using a hybrid stochastic and neural network model
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2007)12:6(626)
– volume: 153
  start-page: 512
  year: 2015
  ident: 10.1016/j.advwatres.2020.103562_bib0019
  article-title: Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2014.10.016
– volume: 9
  start-page: 301
  year: 2018
  ident: 10.1016/j.advwatres.2020.103562_bib0014
  article-title: Decision variants for the automatic determination of optimal feature subset in RF-RFE
  publication-title: Genes (Basel)
  doi: 10.3390/genes9060301
– volume: 23
  start-page: 1696
  year: 2010
  ident: 10.1016/j.advwatres.2020.103562_bib0094
  article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index
  publication-title: J. Clim.
  doi: 10.1175/2009JCLI2909.1
– volume: 23
  start-page: 953
  year: 2018
  ident: 10.1016/j.advwatres.2020.103562_bib0902
  article-title: Groundwater-dependent irrigation costs and benefits for adaptation to global change
  publication-title: Mitig Adapt Strateg Glob Change
  doi: 10.1007/s11027-017-9767-7
– volume: 10
  start-page: 871
  year: 2018
  ident: 10.1016/j.advwatres.2020.103562_bib0084
  article-title: Trend analysis of droughts during crop growing seasons of Nigeria
  publication-title: Sustainability
  doi: 10.3390/su10030871
– volume: 87
  start-page: 395
  year: 2017
  ident: 10.1016/j.advwatres.2020.103562_bib0020
  article-title: Analysis and prediction of a catastrophic Indian coastal heat wave of 2015
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-017-2769-7
– volume: 12
  year: 2017
  ident: 10.1016/j.advwatres.2020.103562_bib0090
  article-title: Summer drought predictability over Europe: empirical versus dynamical forecasts
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa7859
– volume: 29
  start-page: 2635
  year: 2015
  ident: 10.1016/j.advwatres.2020.103562_bib0101
  article-title: Drought projection based on a hybrid drought index using artificial neural networks
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10394
– volume: 330
  start-page: 621
  year: 2006
  ident: 10.1016/j.advwatres.2020.103562_bib0089
  article-title: Downscaling of precipitation for climate change scenarios: a support vector machine approach
  publication-title: J. Hydrol. (Amst)
  doi: 10.1016/j.jhydrol.2006.04.030
– volume: 94
  start-page: S1
  year: 2013
  ident: 10.1016/j.advwatres.2020.103562_bib0072
  article-title: Explaining extreme events of 2012 from a climate perspective
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-13-00085.1
– volume: 33
  start-page: 1497
  year: 2019
  ident: 10.1016/j.advwatres.2020.103562_bib0077
  article-title: Machine learning for downscaling: the use of parallel multiple populations in genetic programming
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-019-01721-y
– volume: 34
  start-page: 3654
  year: 2014
  ident: 10.1016/j.advwatres.2020.103562_bib0009
  article-title: Statistical downscaling of multi‐site daily rainfall in a South Australian catchment using a generalized linear model
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3933
– volume: 43
  start-page: 787
  year: 2014
  ident: 10.1016/j.advwatres.2020.103562_bib0031
  article-title: Variability and predictability of Northeast China climate during 1948–2012
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-013-1944-0
– start-page: II
  year: 2004
  ident: 10.1016/j.advwatres.2020.103562_bib0098
  article-title: Feature selection for classifying high-dimensional numerical data
– volume: 19
  start-page: 372
  year: 2014
  ident: 10.1016/j.advwatres.2020.103562_bib0075
  article-title: Support vector machine applications in the field of hydrology: a review
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.02.002
– volume: 6
  start-page: e21750
  year: 2011
  ident: 10.1016/j.advwatres.2020.103562_bib0055
  article-title: Prediction of drought-resistant genes in Arabidopsis thaliana using SVM-RFE
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0021750
– volume: 172
  start-page: 37
  year: 2016
  ident: 10.1016/j.advwatres.2020.103562_bib0011
  article-title: Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2015.12.017
– volume: 10
  start-page: 1793
  year: 2018
  ident: 10.1016/j.advwatres.2020.103562_bib0045
  article-title: Performance assessment of general circulation model in simulating daily precipitation and temperature using multiple gridded datasets
  publication-title: Water (Basel)
– volume: 75
  start-page: 685
  year: 2016
  ident: 10.1016/j.advwatres.2020.103562_bib0035
  article-title: Modeling river discharge time series using support vector machine and artificial neural networks
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-5435-6
– volume: 4
  start-page: 448
  year: 1992
  ident: 10.1016/j.advwatres.2020.103562_bib0057
  article-title: A practical Bayesian framework for backpropagation networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.448
– volume: 147
  start-page: 607
  year: 2019
  ident: 10.1016/j.advwatres.2020.103562_bib0086
  article-title: Application of a hybrid statistical–dynamical system to seasonal prediction of North American temperature and precipitation
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-18-0156.1
– volume: 25
  start-page: 457
  year: 2011
  ident: 10.1016/j.advwatres.2020.103562_bib0043
  article-title: Prediction of daily rainfall state in a river basin using statistical downscaling from GCM output
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-010-0415-y
– volume: 284
  start-page: 2156
  year: 1999
  ident: 10.1016/j.advwatres.2020.103562_bib0052
  article-title: On the weakening relationship between the Indian monsoon and ENSO
  publication-title: Science
  doi: 10.1126/science.284.5423.2156
– volume: 51
  start-page: 1885
  year: 2018
  ident: 10.1016/j.advwatres.2020.103562_bib0001
  article-title: Comparison of various drought indices to monitor drought status in Pakistan
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-017-3987-0
– volume: 94
  start-page: 776
  year: 2013
  ident: 10.1016/j.advwatres.2020.103562_bib0073
  article-title: Toward global drought early warning capability: expanding international cooperation for the development of a framework for monitoring and forecasting
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-11-00176.1
– volume: 11
  start-page: 1033
  year: 2010
  ident: 10.1016/j.advwatres.2020.103562_bib0095
  article-title: A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index
  publication-title: J. Hydrometeorol.
  doi: 10.1175/2010JHM1224.1
– volume: 31
  start-page: 2185
  year: 2018
  ident: 10.1016/j.advwatres.2020.103562_bib0030
  article-title: Are peak summer sultry heat wave days over the Yangtze–Huaihe river basin predictable?
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-17-0342.1
– year: 2017
  ident: 10.1016/j.advwatres.2020.103562_bib0071
  article-title: Machine learning techniques for rainfall prediction: a review. 2017
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.advwatres.2020.103562_bib0016
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– start-page: 156
  year: 1998
  ident: 10.1016/j.advwatres.2020.103562_bib0093
– volume: 18
  start-page: 2117
  year: 2017
  ident: 10.1016/j.advwatres.2020.103562_bib0105
  article-title: A global gridded dataset of grace drought severity index for 2002–14: comparison with PDSI and SPEI and a case study of the Australia millennium drought
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-16-0182.1
– volume: 181
  start-page: 23
  year: 1996
  ident: 10.1016/j.advwatres.2020.103562_bib0102
  article-title: Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data
  publication-title: J. Hydrol. (Amst)
  doi: 10.1016/0022-1694(95)02918-4
– volume: 30
  start-page: 747
  year: 2016
  ident: 10.1016/j.advwatres.2020.103562_bib0003
  article-title: Characterization of seasonal droughts in Balochistan Province, Pakistan
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-015-1117-2
– volume: 622
  start-page: 710
  year: 2018
  ident: 10.1016/j.advwatres.2020.103562_bib0087
  article-title: Agricultural drought prediction using climate indices based on support vector regression in Xiangjiang River basin
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.025
– volume: 566
  start-page: 235
  year: 2018
  ident: 10.1016/j.advwatres.2020.103562_bib0100
  article-title: An evaluation of statistical, NMME and hybrid models for drought prediction in China
  publication-title: J. Hydrol. (Amst)
  doi: 10.1016/j.jhydrol.2018.09.020
– volume: 40
  start-page: 5501
  year: 2013
  ident: 10.1016/j.advwatres.2020.103562_bib0088
  article-title: ABayesian regularized artificial neural network for stock market forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.04.013
– volume: 50
  start-page: 507
  year: 2012
  ident: 10.1016/j.advwatres.2020.103562_bib0012
  article-title: Streamflow modelling: a primer on applications, approaches and challenges
  publication-title: Atmos. Ocean.
  doi: 10.1080/07055900.2012.734276
– start-page: 455
  year: 2012
  ident: 10.1016/j.advwatres.2020.103562_bib0015
  article-title: Reservoir drought prediction using support vector machines
– year: 2019
  ident: 10.1016/j.advwatres.2020.103562_bib0002
– volume: 1
  start-page: 55
  year: 2009
  ident: 10.1016/j.advwatres.2020.103562_bib0074
  article-title: Atmospheric temperature prediction using support vector machines
  publication-title: Int. J. Comput. Theory Eng.
  doi: 10.7763/IJCTE.2009.V1.9
– volume: 13
  start-page: 21
  year: 1967
  ident: 10.1016/j.advwatres.2020.103562_bib0017
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 136
  start-page: 899
  year: 2019
  ident: 10.1016/j.advwatres.2020.103562_bib0047
  article-title: Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-018-2520-7
– volume: 2
  start-page: 184
  year: 1981
  ident: 10.1016/j.advwatres.2020.103562_bib0097
  article-title: On the validation of models
  publication-title: Phys. Geograph.
  doi: 10.1080/02723646.1981.10642213
– volume: 46
  start-page: 416
  year: 2019
  ident: 10.1016/j.advwatres.2020.103562_bib0099
  article-title: Subseasonal week 3–5 surface air temperature prediction during boreal wintertime in a GFDL model
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL081314
– volume: 214
  start-page: 364
  year: 2018
  ident: 10.1016/j.advwatres.2020.103562_bib0004
  article-title: Impacts of climate variability and change on seasonal drought characteristics of Pakistan
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2018.08.020
– volume: 9
  start-page: 143
  year: 1995
  ident: 10.1016/j.advwatres.2020.103562_bib0036
  article-title: Back-propagation neural networks for modeling complex systems
  publication-title: Artif. Intell. Eng.
  doi: 10.1016/0954-1810(94)00011-S
– volume: 77
  start-page: 437
  year: 1996
  ident: 10.1016/j.advwatres.2020.103562_bib0042
  article-title: The NCEP/NCAR 40-year reanalysis project
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– volume: 128
  start-page: 875
  year: 2017
  ident: 10.1016/j.advwatres.2020.103562_bib0023
  article-title: Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-016-1735-8
– ident: 10.1016/j.advwatres.2020.103562_bib0054
  doi: 10.1007/s00704-015-1530-y
– start-page: 2785
  year: 2002
  ident: 10.1016/j.advwatres.2020.103562_bib0085
  article-title: Improved SVM regression using mixtures of kernels
– volume: 198
  start-page: 127
  year: 2006
  ident: 10.1016/j.advwatres.2020.103562_bib0061
  article-title: Drought forecasting using feed-forward recursive neural network
  publication-title: Ecol. Modell.
  doi: 10.1016/j.ecolmodel.2006.04.017
– volume: 212
  start-page: 130
  year: 2018
  ident: 10.1016/j.advwatres.2020.103562_bib0065
  article-title: Input selection and data-driven model performance optimization to predict the standardized precipitation and evaporation index in a drought-prone region
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2018.05.012
– volume: 18
  start-page: 938
  year: 2003
  ident: 10.1016/j.advwatres.2020.103562_bib0059
  article-title: Forecasting maximum and minimum temperatures by statistical interpretation of numerical weather prediction model output
  publication-title: Weather Forecast.
  doi: 10.1175/1520-0434(2003)018<0938:FMAMTB>2.0.CO;2
– volume: 144
  start-page: 278
  year: 2018
  ident: 10.1016/j.advwatres.2020.103562_bib0040
  article-title: The evolution, seasonality and impacts of western disturbances
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3200
– volume: 36
  start-page: 8352
  year: 1997
  ident: 10.1016/j.advwatres.2020.103562_bib0026
  article-title: Invariant error metrics for image reconstruction
  publication-title: Appl. Opt.
  doi: 10.1364/AO.36.008352
– volume: 28
  start-page: 1
  year: 2008
  ident: 10.1016/j.advwatres.2020.103562_bib0051
  article-title: Building predictive models in R using the caret package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v028.i05
– year: 2004
  ident: 10.1016/j.advwatres.2020.103562_bib0082
– year: 2019
  ident: 10.1016/j.advwatres.2020.103562_bib0028
  article-title: Drought forecasting: a review of modelling approaches 2007–2017
  publication-title: J. Water Clim. Change
  doi: 10.2166/wcc.2019.236
– volume: 30
  start-page: 2299
  year: 2010
  ident: 10.1016/j.advwatres.2020.103562_bib0079
  article-title: Rainfall variability and the trends of wet and dry periods in Bangladesh
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.2053
– volume: 212
  start-page: 240
  year: 2018
  ident: 10.1016/j.advwatres.2020.103562_bib0903
  article-title: Statistical downscaling of precipitation using machine learning techniques
  publication-title: Atmospheric Research
  doi: 10.1016/j.atmosres.2018.05.022
– volume: 33
  start-page: 277
  year: 2013
  ident: 10.1016/j.advwatres.2020.103562_bib0018
  article-title: Recent mean temperature trends in Pakistan and links with teleconnection patterns
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3423
– start-page: 287
  year: 2019
  ident: 10.1016/j.advwatres.2020.103562_bib0049
  article-title: Trends in heat wave related indices in Pakistan
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-018-1605-2
– volume: 34
  start-page: 3001
  year: 2014
  ident: 10.1016/j.advwatres.2020.103562_bib0010
  article-title: Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3887
– volume: 94
  start-page: ES186
  year: 2013
  ident: 10.1016/j.advwatres.2020.103562_bib0060
  article-title: Advancing drought understanding, monitoring, and prediction
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-12-00248.1
– volume: 27
  start-page: 2103
  year: 2007
  ident: 10.1016/j.advwatres.2020.103562_bib0064
  article-title: Drought forecasting using artificial neural networks and time series of drought indices
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1498
– volume: 237
  start-page: 105
  year: 2017
  ident: 10.1016/j.advwatres.2020.103562_bib0076
  article-title: Meteorological drought forecasting for ungauged areas based on machine learning: using long-range climate forecast and remote sensing data
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.02.011
– volume: 29
  start-page: 583
  year: 2009
  ident: 10.1016/j.advwatres.2020.103562_bib0007
  article-title: Role of predictors in downscaling surface temperature to river basin in India for IPCC SRES scenarios using support vector machine
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1719
– volume: 6
  start-page: 46
  year: 1991
  ident: 10.1016/j.advwatres.2020.103562_bib0032
  article-title: Interpreting neural-network connection weights
  publication-title: AI Expert
– volume: 173
  start-page: 303
  year: 2019
  ident: 10.1016/j.advwatres.2020.103562_bib0025
  article-title: Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2019.03.015
– volume: 16
  start-page: 650
  year: 2010
  ident: 10.1016/j.advwatres.2020.103562_bib0068
  article-title: Statistical downscaling of precipitation using machine learning with optimal predictor selection
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000355
– volume: 217
  start-page: 303
  year: 2019
  ident: 10.1016/j.advwatres.2020.103562_bib0037
  article-title: Evapotranspiration evaluation models based on machine learning algorithms—a comparative study
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2019.03.015
– volume: 95
  start-page: 269
  year: 2014
  ident: 10.1016/j.advwatres.2020.103562_bib0039
  article-title: Causes and predictability of the 2012 Great Plains drought
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-13-00055.1
– volume: 33
  start-page: 1720
  year: 2013
  ident: 10.1016/j.advwatres.2020.103562_bib0022
  article-title: The 2010–2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3545
– start-page: 1
  year: 2017
  ident: 10.1016/j.advwatres.2020.103562_bib0106
  article-title: Simulations of the impact of lakes on local and regional climate over the Tibetan Plateau
  publication-title: Atmos. Ocean
– volume: 12
  start-page: 25
  year: 2019
  ident: 10.1016/j.advwatres.2020.103562_bib0006
  article-title: Future predictions of precipitation and temperature in Iraq using the statistical downscaling model
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-018-4187-x
– start-page: 23
  year: 2008
  ident: 10.1016/j.advwatres.2020.103562_bib0013
  article-title: Bayesian regularization of neural networks
– ident: 10.1016/j.advwatres.2020.103562_bib0901
  doi: 10.3390/su11082287
– volume: 78
  start-page: 691
  year: 1991
  ident: 10.1016/j.advwatres.2020.103562_bib0067
  article-title: A note on a general definition of the coefficient of determination
  publication-title: Biometrika
  doi: 10.1093/biomet/78.3.691
SSID ssj0008472
Score 2.6476517
Snippet •For the first time drought prediction models were developed for Pakistan.•Support Vector Machine better captured spatiotemporal characteristics of...
Climate change has increased frequency, severity and areal extent of droughts across the world in the last few decades magnifying their adverse impacts....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103562
SubjectTerms Arabian Sea
Artificial Neural Network
Bay of Bengal
Caspian Sea
climate change
drought
Drought prediction
evaporation
humid zones
Indian Ocean
k-Nearest Neighbour
Machine learning
Mediterranean Sea
neural networks
Pakistan
prediction
relative humidity
Support Vector Machines
temperature
water resources
wind speed
Title Prediction of droughts over Pakistan using machine learning algorithms
URI https://dx.doi.org/10.1016/j.advwatres.2020.103562
https://www.proquest.com/docview/2400517766
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuL8GBG81vUzTbyN4ZiKQ9DBbiVNmjnZ2rF1evNvN69NpxNkB48tCS0v6fv90vd77yF0RZktlD5mWHHIqeUrRSxOQ2EpYguNV5z7Rfu2xz7pDfz7YTCsoU6VCwOySuP7S59eeGtzp2Ws2ZqNx61nCA44IUAa0F4GGeVQvU7v6evPb5mH9r6rSAKMXtN4cfn-wSEnQx8U3SIBPSDuXwj1y1cXANTdQ7uGOeJ2-XL7qJakB2jnRz3BQ9R9mkPcBWyNM4Vl0YInX2CQaWLDFVMMUvcRnhYqygSbthEjzCejbD7OX6eLIzTo3r50epZplGAJ3_FzS0gmvVifL2ONtppfaEh3uMtDZvtKSpvGPNFEw2PU4UooCf99Yo3chNocArXMO0b1NEuTE4SZJ0I3DjzhSB-4Gg-oSJhg3PWIChPaQKQyTiRMFXFoZjGJKrnYW7SyagRWjUqrNpC9mjgrC2lsnnJTWT9a2xORdvebJ19W6xXpLwbCIDxNsqUe5BeFyUJCTv_zgDO0DVel-PEc1fP5MrnQBCWPm8UObKKt9t1Dr_8FtvnmEg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HtSD-MT6XMFraB6bTdZbEUvrowgq9LZsNtlaqam0qf59d5JNUUE8eE0yJHzZzHyb-WYG4DzmrtJmm-EkkYwdqjVzZBwpRzNXmXglJS3Ht931WfeJXg_CwRJc1rUwKKu0vr_y6aW3tkdaFs3W22jUesDkgBdhSEPay6NlWMHuVLQBK-3eTbe_cMjGAS-SCWjwTeYl0_cPiWUZZq_olzXoIfN_C1I_3HUZgzqbsGHJI2lXz7cFS1m-DetfWgruQOd-iqkXhJtMNEnLKTzFjKBSk1i6mBNUuw_JaymkzIidHDEkcjycTEfF8-tsF546V4-XXcfOSnAU9WjhqJSnQWK2mIkJuIZimKjuSV9G3KU6Td04kZnhGgGPPamVTvHXT2KCN4tdiblaHuxBI5_k2T4QHqjIT8JAeSlFuibDWGVccekHTEdZ3ARWgyOUbSSO8yzGolaMvYgFqgJRFRWqTXAXhm9VL42_TS5q9MW3ZSGMx__b-Kx-X8J8NJgJkXk2mZuLaNmbLGLs4D83OIXV7uPdrbjt9W8OYQ3PVFrII2gU03l2bPhKkZzY9fgJnnboww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+droughts+over+Pakistan+using+machine+learning+algorithms&rft.jtitle=Advances+in+water+resources&rft.au=Khan%2C+Najeebullah&rft.au=Sachindra%2C+D.A.&rft.au=Shahid%2C+Shamsuddin&rft.au=Ahmed%2C+Kamal&rft.date=2020-05-01&rft.pub=Elsevier+Ltd&rft.issn=0309-1708&rft.eissn=1872-9657&rft.volume=139&rft_id=info:doi/10.1016%2Fj.advwatres.2020.103562&rft.externalDocID=S0309170819306797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0309-1708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0309-1708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0309-1708&client=summon