Prediction of droughts over Pakistan using machine learning algorithms
•For the first time drought prediction models were developed for Pakistan.•Support Vector Machine better captured spatiotemporal characteristics of droughts.•k-Nearest Neighbour showed limited ability in predicting characteristics of droughts.•Relative humidity, temperature and wind speed are indica...
Saved in:
Published in | Advances in water resources Vol. 139; p. 103562 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0309-1708 1872-9657 |
DOI | 10.1016/j.advwatres.2020.103562 |
Cover
Loading…
Abstract | •For the first time drought prediction models were developed for Pakistan.•Support Vector Machine better captured spatiotemporal characteristics of droughts.•k-Nearest Neighbour showed limited ability in predicting characteristics of droughts.•Relative humidity, temperature and wind speed are indicators of droughts in Pakistan.
Climate change has increased frequency, severity and areal extent of droughts across the world in the last few decades magnifying their adverse impacts. Prediction of droughts is immensely helpful in early warning and preparing the most vulnerable communities to their adverse impacts. For the first time, this study investigated the potential of developing drought prediction models over Pakistan using three state-of-the-art Machine Learning (ML) techniques; Support Vector Machine (SVM), Artificial Neural Network (ANN) and k-Nearest Neighbour (KNN). Three categories of droughts; moderate, severe, and extreme considering two major cropping seasons called Rabi and Kharif were estimated using Standardized Precipitation Evaporation Index (SPEI) and then predicted using the predictor data obtained from the National Centres for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) reanalysis database. Also, for the first time in drought modelling, a novel feature selection approach called Recursive Feature Elimination (RFE) was used for identifying optimum sets of predictors. In validation, SVM-based models were able to better capture the temporal and spatial characteristics of droughts over Pakistan compared to those by ANN and KNN-based models. KNN which was used in developing drought models for the first time displayed limited performance in comparison to that by SVM and ANN-based drought models, in validation. It was found that in the Rabi season SPEI is positively correlated with relative humidity over the Mediterranean Sea and the region north of the Caspian Sea. In the Kharif season, SPEI is positively correlated with the humid region over the south-eastern part of the Bay of Bengal and the regions north of the Mediterranean and Caspian Seas. In developing a drought prediction model for Pakistan, relative humidity, temperature and wind speed should be considered with a domain which encompasses the Mediterranean Sea, the region north of the Caspian Sea, the Indian Ocean and the Arabian Sea. |
---|---|
AbstractList | •For the first time drought prediction models were developed for Pakistan.•Support Vector Machine better captured spatiotemporal characteristics of droughts.•k-Nearest Neighbour showed limited ability in predicting characteristics of droughts.•Relative humidity, temperature and wind speed are indicators of droughts in Pakistan.
Climate change has increased frequency, severity and areal extent of droughts across the world in the last few decades magnifying their adverse impacts. Prediction of droughts is immensely helpful in early warning and preparing the most vulnerable communities to their adverse impacts. For the first time, this study investigated the potential of developing drought prediction models over Pakistan using three state-of-the-art Machine Learning (ML) techniques; Support Vector Machine (SVM), Artificial Neural Network (ANN) and k-Nearest Neighbour (KNN). Three categories of droughts; moderate, severe, and extreme considering two major cropping seasons called Rabi and Kharif were estimated using Standardized Precipitation Evaporation Index (SPEI) and then predicted using the predictor data obtained from the National Centres for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) reanalysis database. Also, for the first time in drought modelling, a novel feature selection approach called Recursive Feature Elimination (RFE) was used for identifying optimum sets of predictors. In validation, SVM-based models were able to better capture the temporal and spatial characteristics of droughts over Pakistan compared to those by ANN and KNN-based models. KNN which was used in developing drought models for the first time displayed limited performance in comparison to that by SVM and ANN-based drought models, in validation. It was found that in the Rabi season SPEI is positively correlated with relative humidity over the Mediterranean Sea and the region north of the Caspian Sea. In the Kharif season, SPEI is positively correlated with the humid region over the south-eastern part of the Bay of Bengal and the regions north of the Mediterranean and Caspian Seas. In developing a drought prediction model for Pakistan, relative humidity, temperature and wind speed should be considered with a domain which encompasses the Mediterranean Sea, the region north of the Caspian Sea, the Indian Ocean and the Arabian Sea. Climate change has increased frequency, severity and areal extent of droughts across the world in the last few decades magnifying their adverse impacts. Prediction of droughts is immensely helpful in early warning and preparing the most vulnerable communities to their adverse impacts. For the first time, this study investigated the potential of developing drought prediction models over Pakistan using three state-of-the-art Machine Learning (ML) techniques; Support Vector Machine (SVM), Artificial Neural Network (ANN) and k-Nearest Neighbour (KNN). Three categories of droughts; moderate, severe, and extreme considering two major cropping seasons called Rabi and Kharif were estimated using Standardized Precipitation Evaporation Index (SPEI) and then predicted using the predictor data obtained from the National Centres for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) reanalysis database. Also, for the first time in drought modelling, a novel feature selection approach called Recursive Feature Elimination (RFE) was used for identifying optimum sets of predictors. In validation, SVM-based models were able to better capture the temporal and spatial characteristics of droughts over Pakistan compared to those by ANN and KNN-based models. KNN which was used in developing drought models for the first time displayed limited performance in comparison to that by SVM and ANN-based drought models, in validation. It was found that in the Rabi season SPEI is positively correlated with relative humidity over the Mediterranean Sea and the region north of the Caspian Sea. In the Kharif season, SPEI is positively correlated with the humid region over the south-eastern part of the Bay of Bengal and the regions north of the Mediterranean and Caspian Seas. In developing a drought prediction model for Pakistan, relative humidity, temperature and wind speed should be considered with a domain which encompasses the Mediterranean Sea, the region north of the Caspian Sea, the Indian Ocean and the Arabian Sea. |
ArticleNumber | 103562 |
Author | Ahmed, Kamal Khan, Najeebullah Shiru, Mohammed Sanusi Sachindra, D.A. Nawaz, Nadeem Shahid, Shamsuddin |
Author_xml | – sequence: 1 givenname: Najeebullah surname: Khan fullname: Khan, Najeebullah email: najeebmarri@gmail.com organization: School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia – sequence: 2 givenname: D.A. surname: Sachindra fullname: Sachindra, D.A. organization: Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, P.O. Box 14428, Melbourne, Victoria, 8001, Australia – sequence: 3 givenname: Shamsuddin surname: Shahid fullname: Shahid, Shamsuddin organization: School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia – sequence: 4 givenname: Kamal surname: Ahmed fullname: Ahmed, Kamal organization: School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia – sequence: 5 givenname: Mohammed Sanusi surname: Shiru fullname: Shiru, Mohammed Sanusi organization: School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia – sequence: 6 givenname: Nadeem surname: Nawaz fullname: Nawaz, Nadeem organization: School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia |
BookMark | eNqNkLFOwzAURS1UJNrCN5CRJcV2XDsZGKqKAlIlOsBsvdhO65LaxXaL-HsSFTGwwPSkq3uu9M4IDZx3BqFrgicEE367nYA-fkAKJk4opn1aTDk9Q0NSCppXfCoGaIgLXOVE4PICjWLcYoxLJugQLVbBaKuS9S7zTaaDP6w3KWb-aEK2gjcbE7jsEK1bZztQG-tM1hoIrg-gXftg02YXL9F5A200V993jF4X9y_zx3z5_PA0ny1zxQhLudKVLmoqWM05qQQn3QdAQVSYNVrjsgbDp2VRlQQa1eiaMFpTRniJQTBaVMUY3Zx298G_H0xMcmejMm0LzvhDlJRhPCVCcN5Vxamqgo8xmEbug91B-JQEy96c3Mofc7I3J0_mOvLuF6lsgl5RCmDbf_CzE286E0drgozKGqc60cGoJLW3f258AV-Uki0 |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2024_130968 crossref_primary_10_3390_su152115675 crossref_primary_10_1080_19475705_2022_2095934 crossref_primary_10_1016_j_compag_2023_108609 crossref_primary_10_1007_s00704_021_03746_2 crossref_primary_10_3390_hydrology11050064 crossref_primary_10_1002_joc_8739 crossref_primary_10_1007_s12205_022_0149_7 crossref_primary_10_1016_j_jhydrol_2023_129573 crossref_primary_10_1016_j_ecoinf_2022_101838 crossref_primary_10_1016_j_jag_2024_104296 crossref_primary_10_1007_s10661_024_13009_y crossref_primary_10_3390_rs16244803 crossref_primary_10_1007_s12524_023_01720_1 crossref_primary_10_1080_19475705_2022_2072774 crossref_primary_10_1007_s40808_022_01424_4 crossref_primary_10_1007_s11356_021_13445_0 crossref_primary_10_1029_2023WR036973 crossref_primary_10_1038_s41598_023_51111_2 crossref_primary_10_1016_j_acags_2024_100204 crossref_primary_10_1016_j_asoc_2021_108080 crossref_primary_10_3390_su14042250 crossref_primary_10_1007_s11600_024_01286_7 crossref_primary_10_1002_ep_14494 crossref_primary_10_51800_ecd_1224255 crossref_primary_10_1186_s12302_024_00975_w crossref_primary_10_1016_j_jhydrol_2022_127711 crossref_primary_10_1063_5_0209709 crossref_primary_10_1038_s41598_024_76082_w crossref_primary_10_1002_joc_8742 crossref_primary_10_1007_s11269_020_02710_5 crossref_primary_10_1007_s00477_020_01963_1 crossref_primary_10_1080_10106049_2023_2211041 crossref_primary_10_1016_j_jhydrol_2021_127381 crossref_primary_10_3354_cr01680 crossref_primary_10_1007_s00704_023_04654_3 crossref_primary_10_3390_su151511684 crossref_primary_10_1007_s10661_025_13708_0 crossref_primary_10_1007_s11069_021_05019_7 crossref_primary_10_1080_09640568_2021_2001317 crossref_primary_10_1016_j_catena_2021_105524 crossref_primary_10_1007_s11269_022_03395_8 crossref_primary_10_1016_j_gfs_2023_100734 crossref_primary_10_1016_j_ecoinf_2023_102093 crossref_primary_10_11648_j_ajdmkd_20240901_11 crossref_primary_10_1007_s00477_023_02502_4 crossref_primary_10_1111_1752_1688_13098 crossref_primary_10_1002_joc_7386 crossref_primary_10_1016_j_crm_2024_100630 crossref_primary_10_3390_land13050615 crossref_primary_10_1007_s00477_023_02526_w crossref_primary_10_1007_s00704_020_03349_3 crossref_primary_10_3390_s24237837 crossref_primary_10_1007_s11831_022_09828_2 crossref_primary_10_3390_w16213133 crossref_primary_10_2166_wcc_2020_330 crossref_primary_10_1038_s41598_023_46957_5 crossref_primary_10_3390_forecast6040051 crossref_primary_10_1080_19475705_2021_1938703 crossref_primary_10_3390_rs14246398 crossref_primary_10_1007_s00704_023_04571_5 crossref_primary_10_1029_2022EF002830 crossref_primary_10_1371_journal_pone_0319678 crossref_primary_10_3390_w14030431 crossref_primary_10_1016_j_asej_2024_102686 crossref_primary_10_1080_10106049_2023_2210532 crossref_primary_10_1007_s11269_022_03341_8 crossref_primary_10_1007_s00477_022_02324_w crossref_primary_10_1007_s00704_021_03838_z crossref_primary_10_1016_j_scitotenv_2021_151464 crossref_primary_10_1007_s12205_022_0992_6 crossref_primary_10_1109_ACCESS_2024_3396695 crossref_primary_10_3390_rs16050828 crossref_primary_10_1016_j_earscirev_2024_104773 crossref_primary_10_1016_j_jhydrol_2021_126477 crossref_primary_10_1002_cben_202100015 crossref_primary_10_1002_joc_8806 crossref_primary_10_3390_rs13091662 crossref_primary_10_3390_atmos14091447 crossref_primary_10_3390_w13091173 crossref_primary_10_3390_electronics12183956 crossref_primary_10_1080_15623599_2021_1917285 crossref_primary_10_1016_j_agrformet_2024_110374 crossref_primary_10_1109_ACCESS_2021_3074305 crossref_primary_10_3390_eng4010003 crossref_primary_10_21015_vtse_v13i1_2042 crossref_primary_10_1038_s41598_023_40106_8 crossref_primary_10_1016_j_jenvman_2024_122640 crossref_primary_10_1016_j_jhydrol_2023_129307 crossref_primary_10_3390_w14030387 crossref_primary_10_1007_s00477_021_02103_z crossref_primary_10_1007_s40899_023_00897_0 crossref_primary_10_1016_j_asr_2023_03_031 crossref_primary_10_1155_2021_3724919 crossref_primary_10_1002_joc_7321 crossref_primary_10_1016_j_heliyon_2025_e41974 crossref_primary_10_1007_s00703_021_00787_0 crossref_primary_10_1016_j_scitotenv_2021_149797 crossref_primary_10_1007_s41748_024_00507_9 crossref_primary_10_1016_j_compag_2022_107155 crossref_primary_10_1007_s00382_021_06104_0 crossref_primary_10_1007_s11069_024_06758_z crossref_primary_10_1016_j_jocs_2022_101767 crossref_primary_10_1016_j_scitotenv_2020_142638 crossref_primary_10_2166_wcc_2024_324 crossref_primary_10_1007_s41748_020_00165_7 crossref_primary_10_1007_s00704_024_05138_8 crossref_primary_10_2166_ws_2022_155 crossref_primary_10_2166_hydro_2024_404 crossref_primary_10_3390_su16083461 crossref_primary_10_4018_IJAMC_296262 crossref_primary_10_1007_s00704_024_04949_z crossref_primary_10_1155_2021_6610228 crossref_primary_10_33317_ssurj_450 crossref_primary_10_1007_s12524_024_01895_1 crossref_primary_10_1007_s40808_020_01010_6 crossref_primary_10_1007_s11600_022_00738_2 crossref_primary_10_1007_s12517_022_09514_4 crossref_primary_10_1080_02626667_2022_2082876 crossref_primary_10_1080_19475705_2022_2131471 crossref_primary_10_1016_j_scitotenv_2021_150018 crossref_primary_10_1007_s12145_024_01650_7 crossref_primary_10_1016_j_rineng_2024_102417 crossref_primary_10_3390_cli12110190 crossref_primary_10_3390_atmos11060585 crossref_primary_10_1007_s00382_022_06443_6 crossref_primary_10_1016_j_atmosres_2020_105061 crossref_primary_10_1016_j_heliyon_2024_e34253 crossref_primary_10_1007_s11069_023_06060_4 crossref_primary_10_1007_s11069_022_05559_6 crossref_primary_10_1029_2023WR035600 crossref_primary_10_1080_10106049_2022_2093411 crossref_primary_10_1029_2023JG007911 crossref_primary_10_3233_JIFS_212748 crossref_primary_10_3390_w13050729 crossref_primary_10_1007_s00521_021_06362_3 crossref_primary_10_1016_j_envpol_2025_126060 crossref_primary_10_1007_s11269_021_02934_z crossref_primary_10_1007_s11600_024_01501_5 crossref_primary_10_1029_2022EF002723 crossref_primary_10_3390_su14116690 crossref_primary_10_3390_w16152085 crossref_primary_10_1002_joc_7063 crossref_primary_10_1007_s11269_023_03730_7 crossref_primary_10_1016_j_compag_2022_106687 crossref_primary_10_1371_journal_pone_0249718 crossref_primary_10_3390_land14020219 crossref_primary_10_1016_j_jhydrol_2021_126046 crossref_primary_10_3390_w12113044 crossref_primary_10_3389_fpls_2022_1007150 crossref_primary_10_1007_s12517_021_08432_1 crossref_primary_10_1016_j_heliyon_2023_e20297 crossref_primary_10_1080_19475705_2022_2128440 crossref_primary_10_1007_s12205_023_1423_z crossref_primary_10_1007_s00704_020_03389_9 crossref_primary_10_1007_s11069_021_04913_4 crossref_primary_10_3390_w13040547 crossref_primary_10_1080_02626667_2021_1962884 crossref_primary_10_1007_s12205_020_0951_z crossref_primary_10_1029_2022WR033146 crossref_primary_10_2166_wcc_2021_062 crossref_primary_10_3390_f15060972 crossref_primary_10_1007_s00477_022_02343_7 crossref_primary_10_1016_j_ejrh_2024_101707 crossref_primary_10_1016_j_jenvman_2021_113085 crossref_primary_10_1029_2021WR031829 crossref_primary_10_1007_s00704_025_05414_1 crossref_primary_10_1007_s11069_023_06233_1 crossref_primary_10_1016_j_envres_2024_118171 crossref_primary_10_1016_j_jhydrol_2024_132492 crossref_primary_10_1080_10106049_2021_2017015 crossref_primary_10_1111_1752_1688_13229 crossref_primary_10_1371_journal_pone_0259774 crossref_primary_10_1038_s41598_022_23436_x crossref_primary_10_1016_j_jhydrol_2021_126958 |
Cites_doi | 10.1103/PhysRevLett.59.845 10.1002/2015WR018547 10.3390/su11236754 10.1016/j.jhydrol.2015.10.038 10.1007/s10584-010-9895-5 10.1002/hyp.9641 10.1002/hyp.9966 10.21423/twj.v3i1.6463 10.1007/s11069-013-0932-3 10.1016/j.jhydrol.2009.06.019 10.1002/2016RG000549 10.1111/j.1752-1688.2002.tb01544.x 10.1007/s12040-018-1024-2 10.1590/0103-8478cr20170854 10.1175/MWR-D-15-0308.1 10.1016/j.jhydrol.2011.03.049 10.1016/j.jhydrol.2019.03.092 10.1061/(ASCE)HE.1943-5584.0000574 10.1007/s00704-019-02773-4 10.1016/j.atmosres.2019.01.024 10.1175/JCLI3790.1 10.1016/j.jclepro.2019.01.158 10.1007/s11069-007-9191-5 10.1016/j.atmosres.2019.104688 10.1002/wrcr.20123 10.1002/met.1792 10.1061/(ASCE)1084-0699(2007)12:6(626) 10.1016/j.atmosres.2014.10.016 10.3390/genes9060301 10.1175/2009JCLI2909.1 10.1007/s11027-017-9767-7 10.3390/su10030871 10.1007/s11069-017-2769-7 10.1088/1748-9326/aa7859 10.1002/hyp.10394 10.1016/j.jhydrol.2006.04.030 10.1175/BAMS-D-13-00085.1 10.1007/s00477-019-01721-y 10.1002/joc.3933 10.1007/s00382-013-1944-0 10.1016/j.asoc.2014.02.002 10.1371/journal.pone.0021750 10.1016/j.atmosres.2015.12.017 10.1007/s12665-016-5435-6 10.1162/neco.1992.4.3.448 10.1175/MWR-D-18-0156.1 10.1007/s00477-010-0415-y 10.1126/science.284.5423.2156 10.1007/s00382-017-3987-0 10.1175/BAMS-D-11-00176.1 10.1175/2010JHM1224.1 10.1175/JCLI-D-17-0342.1 10.1007/BF00994018 10.1175/JHM-D-16-0182.1 10.1016/0022-1694(95)02918-4 10.1007/s00477-015-1117-2 10.1016/j.scitotenv.2017.12.025 10.1016/j.jhydrol.2018.09.020 10.1016/j.eswa.2013.04.013 10.1080/07055900.2012.734276 10.7763/IJCTE.2009.V1.9 10.1109/TIT.1967.1053964 10.1007/s00704-018-2520-7 10.1080/02723646.1981.10642213 10.1029/2018GL081314 10.1016/j.atmosres.2018.08.020 10.1016/0954-1810(94)00011-S 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.1007/s00704-016-1735-8 10.1007/s00704-015-1530-y 10.1016/j.ecolmodel.2006.04.017 10.1016/j.atmosres.2018.05.012 10.1175/1520-0434(2003)018<0938:FMAMTB>2.0.CO;2 10.1002/qj.3200 10.1364/AO.36.008352 10.18637/jss.v028.i05 10.2166/wcc.2019.236 10.1002/joc.2053 10.1016/j.atmosres.2018.05.022 10.1002/joc.3423 10.1007/s00477-018-1605-2 10.1002/joc.3887 10.1175/BAMS-D-12-00248.1 10.1002/joc.1498 10.1016/j.agrformet.2017.02.011 10.1002/joc.1719 10.1016/j.agsy.2019.03.015 10.1061/(ASCE)HE.1943-5584.0000355 10.1016/j.agwat.2019.03.015 10.1175/BAMS-D-13-00055.1 10.1002/joc.3545 10.1007/s12517-018-4187-x 10.3390/su11082287 10.1093/biomet/78.3.691 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.advwatres.2020.103562 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-9657 |
ExternalDocumentID | 10_1016_j_advwatres_2020_103562 S0309170819306797 |
GeographicLocations | Caspian Sea Arabian Sea Pakistan Indian Ocean Mediterranean Sea Bay of Bengal |
GeographicLocations_xml | – name: Mediterranean Sea – name: Caspian Sea – name: Bay of Bengal – name: Arabian Sea – name: Indian Ocean – name: Pakistan |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEP SES SEW SPC SPCBC SSA SSE SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c414t-cd9d3b274b6619761101a2a7904fdd08bae6583981afcfdb142b241680a742393 |
IEDL.DBID | .~1 |
ISSN | 0309-1708 |
IngestDate | Tue Aug 05 10:53:33 EDT 2025 Tue Jul 01 01:23:12 EDT 2025 Thu Apr 24 23:04:31 EDT 2025 Fri Feb 23 02:48:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | k-Nearest Neighbour Pakistan Artificial Neural Network Support Vector Machines Drought prediction Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-cd9d3b274b6619761101a2a7904fdd08bae6583981afcfdb142b241680a742393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2400517766 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2400517766 crossref_primary_10_1016_j_advwatres_2020_103562 crossref_citationtrail_10_1016_j_advwatres_2020_103562 elsevier_sciencedirect_doi_10_1016_j_advwatres_2020_103562 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 2020-05-00 20200501 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationTitle | Advances in water resources |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yaseen, El-Shafie, Jaafar, Afan, Sayl (bib0103) 2015; 530 Smits, Jordaan (bib0085) 2002 Shawe-Taylor, Cristianini (bib0082) 2004 Vicente-Serrano, Beguería, López-Moreno, Angulo, El Kenawy (bib0095) 2010; 11 Ullah, Khan, Zheng (bib0091) 2018; 48 Burden, Winkler (bib0013) 2008 Parmar, Mistree, Sompura (bib0071) 2017 Vapnik, Vapnik (bib0093) 1998 Santos, Portela, Pulido‐Calvo (bib0078) 2014; 28 Deo, Şahin (bib0019) 2015; 153 Hadi, P.S., Wahab, A., Khairi, A., Shahid, S., Wang, X., 2019. Spatial pattern of the unidirectional trends in thermal bioclimatic indicators in Iran Sustainability 11:2287. Belayneh, Adamowski, Khalil, Quilty (bib0011) 2016; 172 Granata (bib0037) 2019; 217 Rhee, Im (bib0076) 2017; 237 Zhao, Velicogna, Kimball (bib0105) 2017; 18 Dutra (bib0022) 2013; 33 Hoerling (bib0039) 2014; 95 Khan, Shahid, Chung, Kim, Ali (bib0048) 2019; 11 Murakami, Villarini, Vecchi, Zhang, Gudgel (bib0066) 2016; 144 Barua, Ng, Perera (bib0008) 2012; 17 Willmott (bib0097) 1981; 2 Ghodichore, Vinnarasi, Dhanya, Roy (bib0034) 2018; 127 del Río (bib0018) 2013; 33 Gao (bib0031) 2014; 43 Mariotti (bib0060) 2013; 94 Sheffield, Goteti, Wood (bib0083) 2006; 19 Bourdin, Fleming, Stull (bib0012) 2012; 50 Strazzo (bib0086) 2019; 147 Fienup (bib0026) 1997; 36 Peterson, Hoerling, Stott, Herring (bib0072) 2013; 94 Radhika, Shashi (bib0074) 2009; 1 Nagelkerke (bib0067) 1991; 78 van Dijk (bib0092) 2013; 49 Najafi, Moradkhani, Wherry (bib0068) 2010; 16 Shahid (bib0080) 2011; 105 Mishra, Singh (bib0063) 2011; 403 Ghimire, Deo, Downs, Raj (bib0033) 2019; 216 Khan, Pour, Shahid, Ismail, Ahmed, Chung, Wang (bib0044) 2019 Kannan, Ghosh (bib0043) 2011; 25 Khan, Shahid, Ismail, Ahmed, Nawaz (bib0049) 2019 Yapo, Gupta, Sorooshian (bib0102) 1996; 181 Ghorbani, Khatibi, Goel, FazeliFard, Azani (bib0035) 2016; 75 Liang (bib0055) 2011; 6 Tripathi, Srinivas, Nanjundiah (bib0089) 2006; 330 Pozzi (bib0073) 2013; 94 Al-Mukhtar, Qasim (bib0006) 2019; 12 Chen, Meng, Liu, Jin, Su (bib0014) 2018; 9 Shahid (bib0079) 2010; 30 Fahimi, Yaseen, El-shafie (bib0023) 2017; 128 Lantz (bib0053) 2013 Kumar, Rajagopalan, Cane (bib0052) 1999; 284 Wang, Chau, Cheng, Qiu (bib0096) 2009; 374 Turco, Ceglar, Prodhomme, Soret, Toreti, Doblas-Reyes (bib0090) 2017; 12 Maini, Kumar, Rathore, Singh (bib0059) 2003; 18 Yu, Pu, Koudas (bib0104) 2005 Iqbal, Shahid, Ahmed, Ismail, Nawaz (bib0041) 2019; 137 Farmer, Sidorowich (bib0024) 1987; 59 Ganguli, Reddy (bib0029) 2014; 28 Cortes, Vapnik (bib0016) 1995; 20 Sachindra, Kanae (bib0077) 2019; 33 Yang, Zhou, Yu, Krysanova, Wang (bib0101) 2015; 29 Hao, Singh, Xia (bib0038) 2018; 56 Nielsen-Gammon, J., The 2011 Texas drought: a briefing packet for the Texas Legislature. (2011). Madadgar (bib0058) 2016; 52 Ahmad, Hussain, Qureshi (bib0002) 2019 MacKay (bib0057) 1992; 4 Khan (bib0050) 2019; 221 Mishra, Desai, Singh (bib0062) 2007; 12 Shiru, Shahid, Alias, Chung (bib0084) 2018; 10 Fung, Huang, Koo, Soh (bib0028) 2019 Beecham, Rashid, Chowdhury (bib0009) 2014; 34 Khan, Shahid, Ismail, Wang (bib0047) 2019; 136 Anandhi, Srinivas, Kumar, Nanjundiah (bib0007) 2009; 29 Kalnay (bib0042) 1996; 77 Adnan (bib0001) 2018; 51 Shahid, Behrawan (bib0081) 2008; 46 Zhu, Jin, Liu, Tian, Zhang (bib0106) 2017 Ahmed, Shahid, Sachindra, Nawaz, Chung (bib0005) 2019; 573 Raghavendra, Deka (bib0075) 2014; 19 Xu, Chen, Zhang, Chen (bib0100) 2018; 566 Xiang (bib0099) 2019; 46 Salem, Kazama, Shahid (bib0902) 2018; 23 Khan (bib0045) 2018; 10 Goh (bib0036) 1995; 9 Liong, Sivapragasam (bib0056) 2002; 38 Gao, Wang, Yang, Dong (bib0030) 2018; 31 Khan (bib0046) 2020; 233 Nourani, Pradhan, Ghaffari, Sharifi (bib0070) 2014; 71 Ahmed, Shahid, bin Harun, Wang (bib0003) 2016; 30 Ahmed, Shahid, Nawaz (bib0004) 2018; 214 Tian, Xu, Wang (bib0087) 2018; 622 Sachindra, Ahmed, Rashid, Shahid, Perera (bib0903) 2018; 212 Chiang, Tsai (bib0015) 2012 Wu, Zhang (bib0098) 2004 Morid, Smakhtin, Bagherzadeh (bib0064) 2007; 27 Foresee, Hagan (bib0027) 1997 Hunt, Turner, Shaffrey (bib0040) 2018; 144 Vicente-Serrano, Beguería, López-Moreno (bib0094) 2010; 23 Cover, Hart (bib0017) 1967; 13 Mishra, Desai (bib0061) 2006; 198 Dodla, Satyanarayana, Desamsetti (bib0020) 2017; 87 Beguería, Vicente‐Serrano, Reig, Latorre (bib0010) 2014; 34 Kuhn (bib0051) 2008; 28 Latif, M., Syed, F., Determination of summer monsoon onset and its related large-scale circulation characteristics over Pakistan, (2015). Mouatadid, Raj, Deo, Adamowski (bib0065) 2018; 212 Garson (bib0032) 1991; 6 Feng, Wang, Li Liu, Yu (bib0025) 2019; 173 Durrani, Adnan, Aftab (bib0021) 2018 Ticknor (bib0088) 2013; 40 Ghodichore (10.1016/j.advwatres.2020.103562_bib0034) 2018; 127 Al-Mukhtar (10.1016/j.advwatres.2020.103562_bib0006) 2019; 12 Smits (10.1016/j.advwatres.2020.103562_bib0085) 2002 Ticknor (10.1016/j.advwatres.2020.103562_bib0088) 2013; 40 Goh (10.1016/j.advwatres.2020.103562_bib0036) 1995; 9 MacKay (10.1016/j.advwatres.2020.103562_bib0057) 1992; 4 Vicente-Serrano (10.1016/j.advwatres.2020.103562_bib0095) 2010; 11 Yaseen (10.1016/j.advwatres.2020.103562_bib0103) 2015; 530 Mouatadid (10.1016/j.advwatres.2020.103562_bib0065) 2018; 212 Najafi (10.1016/j.advwatres.2020.103562_bib0068) 2010; 16 Parmar (10.1016/j.advwatres.2020.103562_bib0071) 2017 Mishra (10.1016/j.advwatres.2020.103562_bib0061) 2006; 198 Lantz (10.1016/j.advwatres.2020.103562_bib0053) 2013 Vapnik (10.1016/j.advwatres.2020.103562_bib0093) 1998 Wu (10.1016/j.advwatres.2020.103562_bib0098) 2004 Morid (10.1016/j.advwatres.2020.103562_bib0064) 2007; 27 Deo (10.1016/j.advwatres.2020.103562_bib0019) 2015; 153 Durrani (10.1016/j.advwatres.2020.103562_bib0021) 2018 Santos (10.1016/j.advwatres.2020.103562_bib0078) 2014; 28 Shahid (10.1016/j.advwatres.2020.103562_bib0080) 2011; 105 Tripathi (10.1016/j.advwatres.2020.103562_bib0089) 2006; 330 Salem (10.1016/j.advwatres.2020.103562_bib0902) 2018; 23 Shahid (10.1016/j.advwatres.2020.103562_bib0079) 2010; 30 Maini (10.1016/j.advwatres.2020.103562_bib0059) 2003; 18 Hao (10.1016/j.advwatres.2020.103562_bib0038) 2018; 56 Willmott (10.1016/j.advwatres.2020.103562_bib0097) 1981; 2 Sachindra (10.1016/j.advwatres.2020.103562_bib0077) 2019; 33 Beecham (10.1016/j.advwatres.2020.103562_bib0009) 2014; 34 Kannan (10.1016/j.advwatres.2020.103562_bib0043) 2011; 25 Beguería (10.1016/j.advwatres.2020.103562_bib0010) 2014; 34 del Río (10.1016/j.advwatres.2020.103562_bib0018) 2013; 33 Adnan (10.1016/j.advwatres.2020.103562_bib0001) 2018; 51 Iqbal (10.1016/j.advwatres.2020.103562_bib0041) 2019; 137 Kuhn (10.1016/j.advwatres.2020.103562_bib0051) 2008; 28 Sheffield (10.1016/j.advwatres.2020.103562_bib0083) 2006; 19 Chen (10.1016/j.advwatres.2020.103562_bib0014) 2018; 9 Foresee (10.1016/j.advwatres.2020.103562_bib0027) 1997 Yapo (10.1016/j.advwatres.2020.103562_bib0102) 1996; 181 Khan (10.1016/j.advwatres.2020.103562_bib0047) 2019; 136 Rhee (10.1016/j.advwatres.2020.103562_bib0076) 2017; 237 Khan (10.1016/j.advwatres.2020.103562_bib0050) 2019; 221 Nourani (10.1016/j.advwatres.2020.103562_bib0070) 2014; 71 Xiang (10.1016/j.advwatres.2020.103562_bib0099) 2019; 46 Fienup (10.1016/j.advwatres.2020.103562_bib0026) 1997; 36 Mishra (10.1016/j.advwatres.2020.103562_bib0062) 2007; 12 Wang (10.1016/j.advwatres.2020.103562_bib0096) 2009; 374 Mishra (10.1016/j.advwatres.2020.103562_bib0063) 2011; 403 Kalnay (10.1016/j.advwatres.2020.103562_bib0042) 1996; 77 Yang (10.1016/j.advwatres.2020.103562_bib0101) 2015; 29 Sachindra (10.1016/j.advwatres.2020.103562_bib0903) 2018; 212 Ahmed (10.1016/j.advwatres.2020.103562_bib0005) 2019; 573 Fung (10.1016/j.advwatres.2020.103562_bib0028) 2019 Madadgar (10.1016/j.advwatres.2020.103562_bib0058) 2016; 52 Barua (10.1016/j.advwatres.2020.103562_bib0008) 2012; 17 Belayneh (10.1016/j.advwatres.2020.103562_bib0011) 2016; 172 Liang (10.1016/j.advwatres.2020.103562_bib0055) 2011; 6 Garson (10.1016/j.advwatres.2020.103562_bib0032) 1991; 6 Mariotti (10.1016/j.advwatres.2020.103562_bib0060) 2013; 94 Cover (10.1016/j.advwatres.2020.103562_bib0017) 1967; 13 Peterson (10.1016/j.advwatres.2020.103562_bib0072) 2013; 94 Khan (10.1016/j.advwatres.2020.103562_bib0046) 2020; 233 Ahmed (10.1016/j.advwatres.2020.103562_bib0004) 2018; 214 Xu (10.1016/j.advwatres.2020.103562_bib0100) 2018; 566 van Dijk (10.1016/j.advwatres.2020.103562_bib0092) 2013; 49 Dutra (10.1016/j.advwatres.2020.103562_bib0022) 2013; 33 Cortes (10.1016/j.advwatres.2020.103562_bib0016) 1995; 20 10.1016/j.advwatres.2020.103562_bib0901 Khan (10.1016/j.advwatres.2020.103562_bib0044) 2019 Gao (10.1016/j.advwatres.2020.103562_bib0031) 2014; 43 Dodla (10.1016/j.advwatres.2020.103562_bib0020) 2017; 87 Ullah (10.1016/j.advwatres.2020.103562_bib0091) 2018; 48 Kumar (10.1016/j.advwatres.2020.103562_bib0052) 1999; 284 Chiang (10.1016/j.advwatres.2020.103562_bib0015) 2012 Turco (10.1016/j.advwatres.2020.103562_bib0090) 2017; 12 Khan (10.1016/j.advwatres.2020.103562_bib0048) 2019; 11 Fahimi (10.1016/j.advwatres.2020.103562_bib0023) 2017; 128 10.1016/j.advwatres.2020.103562_bib0069 Khan (10.1016/j.advwatres.2020.103562_bib0045) 2018; 10 Radhika (10.1016/j.advwatres.2020.103562_bib0074) 2009; 1 Raghavendra (10.1016/j.advwatres.2020.103562_bib0075) 2014; 19 Ghimire (10.1016/j.advwatres.2020.103562_bib0033) 2019; 216 Nagelkerke (10.1016/j.advwatres.2020.103562_bib0067) 1991; 78 Strazzo (10.1016/j.advwatres.2020.103562_bib0086) 2019; 147 Vicente-Serrano (10.1016/j.advwatres.2020.103562_bib0094) 2010; 23 Bourdin (10.1016/j.advwatres.2020.103562_bib0012) 2012; 50 Pozzi (10.1016/j.advwatres.2020.103562_bib0073) 2013; 94 Ganguli (10.1016/j.advwatres.2020.103562_bib0029) 2014; 28 10.1016/j.advwatres.2020.103562_bib0054 Burden (10.1016/j.advwatres.2020.103562_bib0013) 2008 Farmer (10.1016/j.advwatres.2020.103562_bib0024) 1987; 59 Tian (10.1016/j.advwatres.2020.103562_bib0087) 2018; 622 Gao (10.1016/j.advwatres.2020.103562_bib0030) 2018; 31 Granata (10.1016/j.advwatres.2020.103562_bib0037) 2019; 217 Anandhi (10.1016/j.advwatres.2020.103562_bib0007) 2009; 29 Yu (10.1016/j.advwatres.2020.103562_bib0104) 2005 Hunt (10.1016/j.advwatres.2020.103562_bib0040) 2018; 144 Khan (10.1016/j.advwatres.2020.103562_bib0049) 2019 Feng (10.1016/j.advwatres.2020.103562_bib0025) 2019; 173 Shiru (10.1016/j.advwatres.2020.103562_bib0084) 2018; 10 Zhao (10.1016/j.advwatres.2020.103562_bib0105) 2017; 18 Ahmed (10.1016/j.advwatres.2020.103562_bib0003) 2016; 30 Ghorbani (10.1016/j.advwatres.2020.103562_bib0035) 2016; 75 Murakami (10.1016/j.advwatres.2020.103562_bib0066) 2016; 144 Hoerling (10.1016/j.advwatres.2020.103562_bib0039) 2014; 95 Shawe-Taylor (10.1016/j.advwatres.2020.103562_bib0082) 2004 Zhu (10.1016/j.advwatres.2020.103562_bib0106) 2017 Ahmad (10.1016/j.advwatres.2020.103562_bib0002) 2019 Liong (10.1016/j.advwatres.2020.103562_bib0056) 2002; 38 Shahid (10.1016/j.advwatres.2020.103562_bib0081) 2008; 46 |
References_xml | – volume: 622 start-page: 710 year: 2018 end-page: 720 ident: bib0087 article-title: Agricultural drought prediction using climate indices based on support vector regression in Xiangjiang River basin publication-title: Sci. Total Environ. – volume: 25 start-page: 457 year: 2011 end-page: 474 ident: bib0043 article-title: Prediction of daily rainfall state in a river basin using statistical downscaling from GCM output publication-title: Stoch. Environ. Res. Risk Assess. – volume: 27 start-page: 2103 year: 2007 end-page: 2111 ident: bib0064 article-title: Drought forecasting using artificial neural networks and time series of drought indices publication-title: Int. J. Climatol. – year: 2004 ident: bib0082 article-title: Kernel Methods For Pattern Analysis – volume: 12 year: 2017 ident: bib0090 article-title: Summer drought predictability over Europe: empirical versus dynamical forecasts publication-title: Environ. Res. Lett. – start-page: 287 year: 2019 end-page: 302 ident: bib0049 article-title: Trends in heat wave related indices in Pakistan publication-title: Stoch. Environ. Res. Risk Assess. – volume: 49 start-page: 1040 year: 2013 end-page: 1057 ident: bib0092 article-title: The millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society publication-title: Water Resour. Res. – volume: 46 start-page: 391 year: 2008 end-page: 413 ident: bib0081 article-title: Drought risk assessment in the western part of Bangladesh publication-title: Nat. Hazards – volume: 29 start-page: 2635 year: 2015 end-page: 2648 ident: bib0101 article-title: Drought projection based on a hybrid drought index using artificial neural networks publication-title: Hydrol. Process. – start-page: 2785 year: 2002 end-page: 2790 ident: bib0085 article-title: Improved SVM regression using mixtures of kernels publication-title: Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No. 02CH37290) – volume: 12 start-page: 25 year: 2019 ident: bib0006 article-title: Future predictions of precipitation and temperature in Iraq using the statistical downscaling model publication-title: Arab. J. Geosci. – volume: 10 start-page: 871 year: 2018 ident: bib0084 article-title: Trend analysis of droughts during crop growing seasons of Nigeria publication-title: Sustainability – volume: 374 start-page: 294 year: 2009 end-page: 306 ident: bib0096 article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series publication-title: J. Hydrol. (Amst) – volume: 34 start-page: 3654 year: 2014 end-page: 3670 ident: bib0009 article-title: Statistical downscaling of multi‐site daily rainfall in a South Australian catchment using a generalized linear model publication-title: Int. J. Climatol. – volume: 11 start-page: 6754 year: 2019 ident: bib0048 article-title: Influence of surface water bodies on the land surface temperature of Bangladesh publication-title: Sustainability – start-page: 631 year: 2005 end-page: 642 ident: bib0104 article-title: Monitoring k-nearest neighbor queries over moving objects publication-title: 21st International Conference on Data Engineering (ICDE'05) – volume: 38 start-page: 173 year: 2002 end-page: 186 ident: bib0056 article-title: Flood stage forecasting with support vector machines 1 publication-title: JAWRA J. Am. Water Res. Assoc. – volume: 28 start-page: 1009 year: 2014 end-page: 1024 ident: bib0078 article-title: Spring drought prediction based on winter NAO and global SST in Portugal publication-title: Hydrol. Process. – volume: 52 start-page: 5095 year: 2016 end-page: 5110 ident: bib0058 article-title: A hybrid statistical‐dynamical framework for meteorological drought prediction: application to the southwestern United States publication-title: Water Resour. Res. – volume: 87 start-page: 395 year: 2017 end-page: 414 ident: bib0020 article-title: Analysis and prediction of a catastrophic Indian coastal heat wave of 2015 publication-title: Nat. Hazards – volume: 237 start-page: 105 year: 2017 end-page: 122 ident: bib0076 article-title: Meteorological drought forecasting for ungauged areas based on machine learning: using long-range climate forecast and remote sensing data publication-title: Agric. For. Meteorol. – volume: 33 start-page: 277 year: 2013 end-page: 290 ident: bib0018 article-title: Recent mean temperature trends in Pakistan and links with teleconnection patterns publication-title: Int. J. Climatol. – volume: 16 start-page: 650 year: 2010 end-page: 664 ident: bib0068 article-title: Statistical downscaling of precipitation using machine learning with optimal predictor selection publication-title: J. Hydrol. Eng. – volume: 214 start-page: 364 year: 2018 end-page: 374 ident: bib0004 article-title: Impacts of climate variability and change on seasonal drought characteristics of Pakistan publication-title: Atmos. Res. – volume: 51 start-page: 1885 year: 2018 end-page: 1899 ident: bib0001 article-title: Comparison of various drought indices to monitor drought status in Pakistan publication-title: Clim. Dyn. – volume: 71 start-page: 523 year: 2014 end-page: 547 ident: bib0070 article-title: Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models publication-title: Nat. Hazards – volume: 11 start-page: 1033 year: 2010 end-page: 1043 ident: bib0095 article-title: A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index publication-title: J. Hydrometeorol. – volume: 46 start-page: 416 year: 2019 end-page: 425 ident: bib0099 article-title: Subseasonal week 3–5 surface air temperature prediction during boreal wintertime in a GFDL model publication-title: Geophys. Res. Lett. – start-page: 455 year: 2012 end-page: 459 ident: bib0015 article-title: Reservoir drought prediction using support vector machines publication-title: Applied Mechanics and Materials – volume: 28 start-page: 1 year: 2008 end-page: 26 ident: bib0051 article-title: Building predictive models in R using the caret package publication-title: J. Stat. Softw. – volume: 403 start-page: 157 year: 2011 end-page: 175 ident: bib0063 article-title: Drought modeling–a review publication-title: J. Hydrol. (Amst) – start-page: 23 year: 2008 end-page: 42 ident: bib0013 article-title: Bayesian regularization of neural networks publication-title: Artificial Neural Networks – volume: 94 start-page: S1 year: 2013 end-page: S74 ident: bib0072 article-title: Explaining extreme events of 2012 from a climate perspective publication-title: Bull. Am. Meteorol. Soc. – volume: 40 start-page: 5501 year: 2013 end-page: 5506 ident: bib0088 article-title: ABayesian regularized artificial neural network for stock market forecasting publication-title: Expert Syst. Appl. – volume: 181 start-page: 23 year: 1996 end-page: 48 ident: bib0102 article-title: Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data publication-title: J. Hydrol. (Amst) – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0016 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 144 start-page: 2101 year: 2016 end-page: 2123 ident: bib0066 article-title: Statistical–dynamical seasonal forecast of North Atlantic and US landfalling tropical cyclones using the high-resolution GFDL FLOR coupled model publication-title: Mon. Weather Rev. – volume: 17 start-page: 1408 year: 2012 end-page: 1413 ident: bib0008 article-title: Artificial neural network–based drought forecasting using a nonlinear aggregated drought index publication-title: J. Hydrol. Eng. – year: 2017 ident: bib0071 article-title: Machine learning techniques for rainfall prediction: a review. publication-title: International Conference on Innovations in information Embedded and Communication Systems – volume: 94 start-page: 776 year: 2013 end-page: 785 ident: bib0073 article-title: Toward global drought early warning capability: expanding international cooperation for the development of a framework for monitoring and forecasting publication-title: Bull. Am. Meteorol. Soc. – reference: Nielsen-Gammon, J., The 2011 Texas drought: a briefing packet for the Texas Legislature. (2011). – volume: 216 start-page: 288 year: 2019 end-page: 310 ident: bib0033 article-title: Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cites of queensland Australia publication-title: J. Clean. Prod. – start-page: 655 year: 2019 end-page: 670 ident: bib0044 article-title: Spatial distribution of secular trends in rainfall indices of Peninsular Malaysia in the presence of long-term persistence publication-title: Meteorol. Appl. – reference: Hadi, P.S., Wahab, A., Khairi, A., Shahid, S., Wang, X., 2019. Spatial pattern of the unidirectional trends in thermal bioclimatic indicators in Iran Sustainability 11:2287. – volume: 33 start-page: 1720 year: 2013 end-page: 1729 ident: bib0022 article-title: The 2010–2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products publication-title: Int. J. Climatol. – volume: 137 start-page: 2755 year: 2019 end-page: 2769 ident: bib0041 article-title: Spatial distribution of the trends in precipitation and precipitation extremes in the sub-Himalayan region of Pakistan publication-title: Theor. Appl. Climatol. – volume: 30 start-page: 747 year: 2016 end-page: 762 ident: bib0003 article-title: Characterization of seasonal droughts in Balochistan Province, Pakistan publication-title: Stoch. Environ. Res. Risk Assess. – volume: 19 start-page: 372 year: 2014 end-page: 386 ident: bib0075 article-title: Support vector machine applications in the field of hydrology: a review publication-title: Appl. Soft Comput. – volume: 31 start-page: 2185 year: 2018 end-page: 2196 ident: bib0030 article-title: Are peak summer sultry heat wave days over the Yangtze–Huaihe river basin predictable? publication-title: J. Clim. – volume: 212 start-page: 240 year: 2018 end-page: 258 ident: bib0903 article-title: Statistical downscaling of precipitation using machine learning techniques publication-title: Atmospheric Research – volume: 573 start-page: 281 year: 2019 end-page: 298 ident: bib0005 article-title: Fidelity assessment of general circulation model simulated precipitation and temperature over Pakistan using a feature selection method publication-title: J. Hydrol. (Amst) – volume: 10 start-page: 1793 year: 2018 ident: bib0045 article-title: Performance assessment of general circulation model in simulating daily precipitation and temperature using multiple gridded datasets publication-title: Water (Basel) – volume: 530 start-page: 829 year: 2015 end-page: 844 ident: bib0103 article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015 publication-title: J. Hydrol. (Amst) – volume: 50 start-page: 507 year: 2012 end-page: 536 ident: bib0012 article-title: Streamflow modelling: a primer on applications, approaches and challenges publication-title: Atmos. Ocean. – volume: 198 start-page: 127 year: 2006 end-page: 138 ident: bib0061 article-title: Drought forecasting using feed-forward recursive neural network publication-title: Ecol. Modell. – volume: 128 start-page: 875 year: 2017 end-page: 903 ident: bib0023 article-title: Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review publication-title: Theor. Appl. Climatol. – volume: 43 start-page: 787 year: 2014 end-page: 804 ident: bib0031 article-title: Variability and predictability of Northeast China climate during 1948–2012 publication-title: Clim. Dyn. – volume: 4 start-page: 448 year: 1992 end-page: 472 ident: bib0057 article-title: A practical Bayesian framework for backpropagation networks publication-title: Neural Comput. – year: 2019 ident: bib0002 article-title: Drought Mitigation in Pakistan: Current Status and Options for Future Strategies – volume: 23 start-page: 1696 year: 2010 end-page: 1718 ident: bib0094 article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index publication-title: J. Clim. – volume: 566 start-page: 235 year: 2018 end-page: 249 ident: bib0100 article-title: An evaluation of statistical, NMME and hybrid models for drought prediction in China publication-title: J. Hydrol. (Amst) – volume: 9 start-page: 301 year: 2018 ident: bib0014 article-title: Decision variants for the automatic determination of optimal feature subset in RF-RFE publication-title: Genes (Basel) – volume: 48 year: 2018 ident: bib0091 article-title: Testing long-run relationship between agricultural gross domestic product and fruits production: evidence from Pakistan publication-title: Cienc. Rural. – volume: 136 start-page: 899 year: 2019 end-page: 913 ident: bib0047 article-title: Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan publication-title: Theor. Appl. Climatol. – volume: 105 start-page: 433 year: 2011 end-page: 453 ident: bib0080 article-title: Impact of climate change on irrigation water demand of dry season Boro rice in northwest Bangladesh publication-title: Clim. Change – volume: 173 start-page: 303 year: 2019 end-page: 316 ident: bib0025 article-title: Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia publication-title: Agric. Syst. – volume: 23 start-page: 953 year: 2018 end-page: 979 ident: bib0902 article-title: Groundwater-dependent irrigation costs and benefits for adaptation to global change publication-title: Mitig Adapt Strateg Glob Change – volume: 2 start-page: 184 year: 1981 end-page: 194 ident: bib0097 article-title: On the validation of models publication-title: Phys. Geograph. – volume: 144 start-page: 278 year: 2018 end-page: 290 ident: bib0040 article-title: The evolution, seasonality and impacts of western disturbances publication-title: Q. J. R. Meteorol. Soc. – volume: 1 start-page: 55 year: 2009 ident: bib0074 article-title: Atmospheric temperature prediction using support vector machines publication-title: Int. J. Comput. Theory Eng. – volume: 59 start-page: 845 year: 1987 ident: bib0024 article-title: Predicting chaotic time series publication-title: Phys. Rev. Lett. – start-page: II year: 2004 ident: bib0098 article-title: Feature selection for classifying high-dimensional numerical data publication-title: . CVPR 2004 – volume: 94 start-page: ES186 year: 2013 end-page: ES188 ident: bib0060 article-title: Advancing drought understanding, monitoring, and prediction publication-title: Bull. Am. Meteorol. Soc. – start-page: 156 year: 1998 end-page: 160 ident: bib0093 article-title: Statistical Learning Theory – volume: 172 start-page: 37 year: 2016 end-page: 47 ident: bib0011 article-title: Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction publication-title: Atmos. Res. – volume: 33 start-page: 1497 year: 2019 end-page: 1533 ident: bib0077 article-title: Machine learning for downscaling: the use of parallel multiple populations in genetic programming publication-title: Stoch. Environ. Res. Risk Assess. – volume: 28 start-page: 4989 year: 2014 end-page: 5009 ident: bib0029 article-title: Ensemble prediction of regional droughts using climate inputs and the SVM–copula approach publication-title: Hydrol. Process. – volume: 56 start-page: 108 year: 2018 end-page: 141 ident: bib0038 article-title: Seasonal drought prediction: advances, challenges, and future prospects publication-title: Rev. Geophys. – start-page: 1 year: 2017 end-page: 10 ident: bib0106 article-title: Simulations of the impact of lakes on local and regional climate over the Tibetan Plateau publication-title: Atmos. Ocean – volume: 6 start-page: e21750 year: 2011 ident: bib0055 article-title: Prediction of drought-resistant genes in Arabidopsis thaliana using SVM-RFE publication-title: PLoS ONE – year: 2019 ident: bib0028 article-title: Drought forecasting: a review of modelling approaches 2007–2017 publication-title: J. Water Clim. Change – volume: 30 start-page: 2299 year: 2010 end-page: 2313 ident: bib0079 article-title: Rainfall variability and the trends of wet and dry periods in Bangladesh publication-title: Int. J. Climatol. – volume: 147 start-page: 607 year: 2019 end-page: 625 ident: bib0086 article-title: Application of a hybrid statistical–dynamical system to seasonal prediction of North American temperature and precipitation publication-title: Mon. Weather Rev. – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: bib0017 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory – volume: 284 start-page: 2156 year: 1999 end-page: 2159 ident: bib0052 article-title: On the weakening relationship between the Indian monsoon and ENSO publication-title: Science – volume: 18 start-page: 938 year: 2003 end-page: 952 ident: bib0059 article-title: Forecasting maximum and minimum temperatures by statistical interpretation of numerical weather prediction model output publication-title: Weather Forecast. – volume: 34 start-page: 3001 year: 2014 end-page: 3023 ident: bib0010 article-title: Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring publication-title: Int. J. Climatol. – volume: 127 start-page: 115 year: 2018 ident: bib0034 article-title: Reliability of reanalyses products in simulating precipitation and temperature characteristics over India publication-title: J. Earth Syst. Sci. – volume: 75 start-page: 685 year: 2016 ident: bib0035 article-title: Modeling river discharge time series using support vector machine and artificial neural networks publication-title: Environ. Earth Sci. – volume: 212 start-page: 130 year: 2018 end-page: 149 ident: bib0065 article-title: Input selection and data-driven model performance optimization to predict the standardized precipitation and evaporation index in a drought-prone region publication-title: Atmos. Res. – volume: 153 start-page: 512 year: 2015 end-page: 525 ident: bib0019 article-title: Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia publication-title: Atmos. Res. – volume: 95 start-page: 269 year: 2014 end-page: 282 ident: bib0039 article-title: Causes and predictability of the 2012 Great Plains drought publication-title: Bull. Am. Meteorol. Soc. – volume: 19 start-page: 3088 year: 2006 end-page: 3111 ident: bib0083 article-title: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling publication-title: J. Clim. – year: 2018 ident: bib0021 article-title: Historical and future climatological drought projections over Quetta Valley, Balochistan, Pakistan publication-title: IOP Conference Series: Materials Science and Engineering – volume: 9 start-page: 143 year: 1995 end-page: 151 ident: bib0036 article-title: Back-propagation neural networks for modeling complex systems publication-title: Artif. Intell. Eng. – volume: 18 start-page: 2117 year: 2017 end-page: 2129 ident: bib0105 article-title: A global gridded dataset of grace drought severity index for 2002–14: comparison with PDSI and SPEI and a case study of the Australia millennium drought publication-title: J. Hydrometeorol. – volume: 78 start-page: 691 year: 1991 end-page: 692 ident: bib0067 article-title: A note on a general definition of the coefficient of determination publication-title: Biometrika – year: 2013 ident: bib0053 article-title: Machine Learning With R – volume: 36 start-page: 8352 year: 1997 end-page: 8357 ident: bib0026 article-title: Invariant error metrics for image reconstruction publication-title: Appl. Opt. – volume: 6 start-page: 46 year: 1991 end-page: 51 ident: bib0032 article-title: Interpreting neural-network connection weights publication-title: AI Expert – volume: 233 year: 2020 ident: bib0046 article-title: Selection of GCMs for the projection of spatial distribution of heat waves in Pakistan publication-title: Atmos. Res. – volume: 330 start-page: 621 year: 2006 end-page: 640 ident: bib0089 article-title: Downscaling of precipitation for climate change scenarios: a support vector machine approach publication-title: J. Hydrol. (Amst) – volume: 29 start-page: 583 year: 2009 end-page: 603 ident: bib0007 article-title: Role of predictors in downscaling surface temperature to river basin in India for IPCC SRES scenarios using support vector machine publication-title: Int. J. Climatol. – volume: 221 start-page: 1 year: 2019 end-page: 11 ident: bib0050 article-title: Prediction of heat waves in Pakistan using quantile regression forests publication-title: Atmos. Res. – volume: 77 start-page: 437 year: 1996 end-page: 472 ident: bib0042 article-title: The NCEP/NCAR 40-year reanalysis project publication-title: Bull. Am. Meteorol. Soc. – reference: Latif, M., Syed, F., Determination of summer monsoon onset and its related large-scale circulation characteristics over Pakistan, (2015). – start-page: 1930 year: 1997 end-page: 1935 ident: bib0027 article-title: Gauss-Newton approximation to Bayesian learning publication-title: Proceedings of International Conference on Neural Networks (ICNN'97) – volume: 12 start-page: 626 year: 2007 end-page: 638 ident: bib0062 article-title: Drought forecasting using a hybrid stochastic and neural network model publication-title: J. Hydrol. Eng. – volume: 217 start-page: 303 year: 2019 end-page: 315 ident: bib0037 article-title: Evapotranspiration evaluation models based on machine learning algorithms—a comparative study publication-title: Agric. Water Manage. – volume: 59 start-page: 845 year: 1987 ident: 10.1016/j.advwatres.2020.103562_bib0024 article-title: Predicting chaotic time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.845 – volume: 52 start-page: 5095 year: 2016 ident: 10.1016/j.advwatres.2020.103562_bib0058 article-title: A hybrid statistical‐dynamical framework for meteorological drought prediction: application to the southwestern United States publication-title: Water Resour. Res. doi: 10.1002/2015WR018547 – volume: 11 start-page: 6754 year: 2019 ident: 10.1016/j.advwatres.2020.103562_bib0048 article-title: Influence of surface water bodies on the land surface temperature of Bangladesh publication-title: Sustainability doi: 10.3390/su11236754 – year: 2018 ident: 10.1016/j.advwatres.2020.103562_bib0021 article-title: Historical and future climatological drought projections over Quetta Valley, Balochistan, Pakistan – volume: 530 start-page: 829 year: 2015 ident: 10.1016/j.advwatres.2020.103562_bib0103 article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015 publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2015.10.038 – volume: 105 start-page: 433 year: 2011 ident: 10.1016/j.advwatres.2020.103562_bib0080 article-title: Impact of climate change on irrigation water demand of dry season Boro rice in northwest Bangladesh publication-title: Clim. Change doi: 10.1007/s10584-010-9895-5 – volume: 28 start-page: 1009 year: 2014 ident: 10.1016/j.advwatres.2020.103562_bib0078 article-title: Spring drought prediction based on winter NAO and global SST in Portugal publication-title: Hydrol. Process. doi: 10.1002/hyp.9641 – volume: 28 start-page: 4989 year: 2014 ident: 10.1016/j.advwatres.2020.103562_bib0029 article-title: Ensemble prediction of regional droughts using climate inputs and the SVM–copula approach publication-title: Hydrol. Process. doi: 10.1002/hyp.9966 – ident: 10.1016/j.advwatres.2020.103562_bib0069 doi: 10.21423/twj.v3i1.6463 – volume: 71 start-page: 523 year: 2014 ident: 10.1016/j.advwatres.2020.103562_bib0070 article-title: Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models publication-title: Nat. Hazards doi: 10.1007/s11069-013-0932-3 – volume: 374 start-page: 294 year: 2009 ident: 10.1016/j.advwatres.2020.103562_bib0096 article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2009.06.019 – volume: 56 start-page: 108 year: 2018 ident: 10.1016/j.advwatres.2020.103562_bib0038 article-title: Seasonal drought prediction: advances, challenges, and future prospects publication-title: Rev. Geophys. doi: 10.1002/2016RG000549 – volume: 38 start-page: 173 year: 2002 ident: 10.1016/j.advwatres.2020.103562_bib0056 article-title: Flood stage forecasting with support vector machines 1 publication-title: JAWRA J. Am. Water Res. Assoc. doi: 10.1111/j.1752-1688.2002.tb01544.x – volume: 127 start-page: 115 year: 2018 ident: 10.1016/j.advwatres.2020.103562_bib0034 article-title: Reliability of reanalyses products in simulating precipitation and temperature characteristics over India publication-title: J. Earth Syst. Sci. doi: 10.1007/s12040-018-1024-2 – volume: 48 issue: 5 year: 2018 ident: 10.1016/j.advwatres.2020.103562_bib0091 article-title: Testing long-run relationship between agricultural gross domestic product and fruits production: evidence from Pakistan publication-title: Cienc. Rural. doi: 10.1590/0103-8478cr20170854 – volume: 144 start-page: 2101 year: 2016 ident: 10.1016/j.advwatres.2020.103562_bib0066 article-title: Statistical–dynamical seasonal forecast of North Atlantic and US landfalling tropical cyclones using the high-resolution GFDL FLOR coupled model publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-15-0308.1 – start-page: 1930 year: 1997 ident: 10.1016/j.advwatres.2020.103562_bib0027 article-title: Gauss-Newton approximation to Bayesian learning – volume: 403 start-page: 157 year: 2011 ident: 10.1016/j.advwatres.2020.103562_bib0063 article-title: Drought modeling–a review publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2011.03.049 – volume: 573 start-page: 281 year: 2019 ident: 10.1016/j.advwatres.2020.103562_bib0005 article-title: Fidelity assessment of general circulation model simulated precipitation and temperature over Pakistan using a feature selection method publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2019.03.092 – volume: 17 start-page: 1408 year: 2012 ident: 10.1016/j.advwatres.2020.103562_bib0008 article-title: Artificial neural network–based drought forecasting using a nonlinear aggregated drought index publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000574 – volume: 137 start-page: 2755 year: 2019 ident: 10.1016/j.advwatres.2020.103562_bib0041 article-title: Spatial distribution of the trends in precipitation and precipitation extremes in the sub-Himalayan region of Pakistan publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-019-02773-4 – volume: 221 start-page: 1 year: 2019 ident: 10.1016/j.advwatres.2020.103562_bib0050 article-title: Prediction of heat waves in Pakistan using quantile regression forests publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2019.01.024 – volume: 19 start-page: 3088 year: 2006 ident: 10.1016/j.advwatres.2020.103562_bib0083 article-title: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling publication-title: J. Clim. doi: 10.1175/JCLI3790.1 – year: 2013 ident: 10.1016/j.advwatres.2020.103562_bib0053 – volume: 216 start-page: 288 year: 2019 ident: 10.1016/j.advwatres.2020.103562_bib0033 article-title: Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cites of queensland Australia publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.01.158 – volume: 46 start-page: 391 year: 2008 ident: 10.1016/j.advwatres.2020.103562_bib0081 article-title: Drought risk assessment in the western part of Bangladesh publication-title: Nat. Hazards doi: 10.1007/s11069-007-9191-5 – volume: 233 year: 2020 ident: 10.1016/j.advwatres.2020.103562_bib0046 article-title: Selection of GCMs for the projection of spatial distribution of heat waves in Pakistan publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2019.104688 – start-page: 631 year: 2005 ident: 10.1016/j.advwatres.2020.103562_bib0104 article-title: Monitoring k-nearest neighbor queries over moving objects – volume: 49 start-page: 1040 year: 2013 ident: 10.1016/j.advwatres.2020.103562_bib0092 article-title: The millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society publication-title: Water Resour. Res. doi: 10.1002/wrcr.20123 – start-page: 655 year: 2019 ident: 10.1016/j.advwatres.2020.103562_bib0044 article-title: Spatial distribution of secular trends in rainfall indices of Peninsular Malaysia in the presence of long-term persistence publication-title: Meteorol. Appl. doi: 10.1002/met.1792 – volume: 12 start-page: 626 year: 2007 ident: 10.1016/j.advwatres.2020.103562_bib0062 article-title: Drought forecasting using a hybrid stochastic and neural network model publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2007)12:6(626) – volume: 153 start-page: 512 year: 2015 ident: 10.1016/j.advwatres.2020.103562_bib0019 article-title: Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2014.10.016 – volume: 9 start-page: 301 year: 2018 ident: 10.1016/j.advwatres.2020.103562_bib0014 article-title: Decision variants for the automatic determination of optimal feature subset in RF-RFE publication-title: Genes (Basel) doi: 10.3390/genes9060301 – volume: 23 start-page: 1696 year: 2010 ident: 10.1016/j.advwatres.2020.103562_bib0094 article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index publication-title: J. Clim. doi: 10.1175/2009JCLI2909.1 – volume: 23 start-page: 953 year: 2018 ident: 10.1016/j.advwatres.2020.103562_bib0902 article-title: Groundwater-dependent irrigation costs and benefits for adaptation to global change publication-title: Mitig Adapt Strateg Glob Change doi: 10.1007/s11027-017-9767-7 – volume: 10 start-page: 871 year: 2018 ident: 10.1016/j.advwatres.2020.103562_bib0084 article-title: Trend analysis of droughts during crop growing seasons of Nigeria publication-title: Sustainability doi: 10.3390/su10030871 – volume: 87 start-page: 395 year: 2017 ident: 10.1016/j.advwatres.2020.103562_bib0020 article-title: Analysis and prediction of a catastrophic Indian coastal heat wave of 2015 publication-title: Nat. Hazards doi: 10.1007/s11069-017-2769-7 – volume: 12 year: 2017 ident: 10.1016/j.advwatres.2020.103562_bib0090 article-title: Summer drought predictability over Europe: empirical versus dynamical forecasts publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aa7859 – volume: 29 start-page: 2635 year: 2015 ident: 10.1016/j.advwatres.2020.103562_bib0101 article-title: Drought projection based on a hybrid drought index using artificial neural networks publication-title: Hydrol. Process. doi: 10.1002/hyp.10394 – volume: 330 start-page: 621 year: 2006 ident: 10.1016/j.advwatres.2020.103562_bib0089 article-title: Downscaling of precipitation for climate change scenarios: a support vector machine approach publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2006.04.030 – volume: 94 start-page: S1 year: 2013 ident: 10.1016/j.advwatres.2020.103562_bib0072 article-title: Explaining extreme events of 2012 from a climate perspective publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-13-00085.1 – volume: 33 start-page: 1497 year: 2019 ident: 10.1016/j.advwatres.2020.103562_bib0077 article-title: Machine learning for downscaling: the use of parallel multiple populations in genetic programming publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-019-01721-y – volume: 34 start-page: 3654 year: 2014 ident: 10.1016/j.advwatres.2020.103562_bib0009 article-title: Statistical downscaling of multi‐site daily rainfall in a South Australian catchment using a generalized linear model publication-title: Int. J. Climatol. doi: 10.1002/joc.3933 – volume: 43 start-page: 787 year: 2014 ident: 10.1016/j.advwatres.2020.103562_bib0031 article-title: Variability and predictability of Northeast China climate during 1948–2012 publication-title: Clim. Dyn. doi: 10.1007/s00382-013-1944-0 – start-page: II year: 2004 ident: 10.1016/j.advwatres.2020.103562_bib0098 article-title: Feature selection for classifying high-dimensional numerical data – volume: 19 start-page: 372 year: 2014 ident: 10.1016/j.advwatres.2020.103562_bib0075 article-title: Support vector machine applications in the field of hydrology: a review publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.02.002 – volume: 6 start-page: e21750 year: 2011 ident: 10.1016/j.advwatres.2020.103562_bib0055 article-title: Prediction of drought-resistant genes in Arabidopsis thaliana using SVM-RFE publication-title: PLoS ONE doi: 10.1371/journal.pone.0021750 – volume: 172 start-page: 37 year: 2016 ident: 10.1016/j.advwatres.2020.103562_bib0011 article-title: Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2015.12.017 – volume: 10 start-page: 1793 year: 2018 ident: 10.1016/j.advwatres.2020.103562_bib0045 article-title: Performance assessment of general circulation model in simulating daily precipitation and temperature using multiple gridded datasets publication-title: Water (Basel) – volume: 75 start-page: 685 year: 2016 ident: 10.1016/j.advwatres.2020.103562_bib0035 article-title: Modeling river discharge time series using support vector machine and artificial neural networks publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-5435-6 – volume: 4 start-page: 448 year: 1992 ident: 10.1016/j.advwatres.2020.103562_bib0057 article-title: A practical Bayesian framework for backpropagation networks publication-title: Neural Comput. doi: 10.1162/neco.1992.4.3.448 – volume: 147 start-page: 607 year: 2019 ident: 10.1016/j.advwatres.2020.103562_bib0086 article-title: Application of a hybrid statistical–dynamical system to seasonal prediction of North American temperature and precipitation publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-18-0156.1 – volume: 25 start-page: 457 year: 2011 ident: 10.1016/j.advwatres.2020.103562_bib0043 article-title: Prediction of daily rainfall state in a river basin using statistical downscaling from GCM output publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-010-0415-y – volume: 284 start-page: 2156 year: 1999 ident: 10.1016/j.advwatres.2020.103562_bib0052 article-title: On the weakening relationship between the Indian monsoon and ENSO publication-title: Science doi: 10.1126/science.284.5423.2156 – volume: 51 start-page: 1885 year: 2018 ident: 10.1016/j.advwatres.2020.103562_bib0001 article-title: Comparison of various drought indices to monitor drought status in Pakistan publication-title: Clim. Dyn. doi: 10.1007/s00382-017-3987-0 – volume: 94 start-page: 776 year: 2013 ident: 10.1016/j.advwatres.2020.103562_bib0073 article-title: Toward global drought early warning capability: expanding international cooperation for the development of a framework for monitoring and forecasting publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-11-00176.1 – volume: 11 start-page: 1033 year: 2010 ident: 10.1016/j.advwatres.2020.103562_bib0095 article-title: A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index publication-title: J. Hydrometeorol. doi: 10.1175/2010JHM1224.1 – volume: 31 start-page: 2185 year: 2018 ident: 10.1016/j.advwatres.2020.103562_bib0030 article-title: Are peak summer sultry heat wave days over the Yangtze–Huaihe river basin predictable? publication-title: J. Clim. doi: 10.1175/JCLI-D-17-0342.1 – year: 2017 ident: 10.1016/j.advwatres.2020.103562_bib0071 article-title: Machine learning techniques for rainfall prediction: a review. 2017 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.advwatres.2020.103562_bib0016 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – start-page: 156 year: 1998 ident: 10.1016/j.advwatres.2020.103562_bib0093 – volume: 18 start-page: 2117 year: 2017 ident: 10.1016/j.advwatres.2020.103562_bib0105 article-title: A global gridded dataset of grace drought severity index for 2002–14: comparison with PDSI and SPEI and a case study of the Australia millennium drought publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-16-0182.1 – volume: 181 start-page: 23 year: 1996 ident: 10.1016/j.advwatres.2020.103562_bib0102 article-title: Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data publication-title: J. Hydrol. (Amst) doi: 10.1016/0022-1694(95)02918-4 – volume: 30 start-page: 747 year: 2016 ident: 10.1016/j.advwatres.2020.103562_bib0003 article-title: Characterization of seasonal droughts in Balochistan Province, Pakistan publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-015-1117-2 – volume: 622 start-page: 710 year: 2018 ident: 10.1016/j.advwatres.2020.103562_bib0087 article-title: Agricultural drought prediction using climate indices based on support vector regression in Xiangjiang River basin publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.025 – volume: 566 start-page: 235 year: 2018 ident: 10.1016/j.advwatres.2020.103562_bib0100 article-title: An evaluation of statistical, NMME and hybrid models for drought prediction in China publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2018.09.020 – volume: 40 start-page: 5501 year: 2013 ident: 10.1016/j.advwatres.2020.103562_bib0088 article-title: ABayesian regularized artificial neural network for stock market forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.04.013 – volume: 50 start-page: 507 year: 2012 ident: 10.1016/j.advwatres.2020.103562_bib0012 article-title: Streamflow modelling: a primer on applications, approaches and challenges publication-title: Atmos. Ocean. doi: 10.1080/07055900.2012.734276 – start-page: 455 year: 2012 ident: 10.1016/j.advwatres.2020.103562_bib0015 article-title: Reservoir drought prediction using support vector machines – year: 2019 ident: 10.1016/j.advwatres.2020.103562_bib0002 – volume: 1 start-page: 55 year: 2009 ident: 10.1016/j.advwatres.2020.103562_bib0074 article-title: Atmospheric temperature prediction using support vector machines publication-title: Int. J. Comput. Theory Eng. doi: 10.7763/IJCTE.2009.V1.9 – volume: 13 start-page: 21 year: 1967 ident: 10.1016/j.advwatres.2020.103562_bib0017 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – volume: 136 start-page: 899 year: 2019 ident: 10.1016/j.advwatres.2020.103562_bib0047 article-title: Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-018-2520-7 – volume: 2 start-page: 184 year: 1981 ident: 10.1016/j.advwatres.2020.103562_bib0097 article-title: On the validation of models publication-title: Phys. Geograph. doi: 10.1080/02723646.1981.10642213 – volume: 46 start-page: 416 year: 2019 ident: 10.1016/j.advwatres.2020.103562_bib0099 article-title: Subseasonal week 3–5 surface air temperature prediction during boreal wintertime in a GFDL model publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL081314 – volume: 214 start-page: 364 year: 2018 ident: 10.1016/j.advwatres.2020.103562_bib0004 article-title: Impacts of climate variability and change on seasonal drought characteristics of Pakistan publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2018.08.020 – volume: 9 start-page: 143 year: 1995 ident: 10.1016/j.advwatres.2020.103562_bib0036 article-title: Back-propagation neural networks for modeling complex systems publication-title: Artif. Intell. Eng. doi: 10.1016/0954-1810(94)00011-S – volume: 77 start-page: 437 year: 1996 ident: 10.1016/j.advwatres.2020.103562_bib0042 article-title: The NCEP/NCAR 40-year reanalysis project publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – volume: 128 start-page: 875 year: 2017 ident: 10.1016/j.advwatres.2020.103562_bib0023 article-title: Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-016-1735-8 – ident: 10.1016/j.advwatres.2020.103562_bib0054 doi: 10.1007/s00704-015-1530-y – start-page: 2785 year: 2002 ident: 10.1016/j.advwatres.2020.103562_bib0085 article-title: Improved SVM regression using mixtures of kernels – volume: 198 start-page: 127 year: 2006 ident: 10.1016/j.advwatres.2020.103562_bib0061 article-title: Drought forecasting using feed-forward recursive neural network publication-title: Ecol. Modell. doi: 10.1016/j.ecolmodel.2006.04.017 – volume: 212 start-page: 130 year: 2018 ident: 10.1016/j.advwatres.2020.103562_bib0065 article-title: Input selection and data-driven model performance optimization to predict the standardized precipitation and evaporation index in a drought-prone region publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2018.05.012 – volume: 18 start-page: 938 year: 2003 ident: 10.1016/j.advwatres.2020.103562_bib0059 article-title: Forecasting maximum and minimum temperatures by statistical interpretation of numerical weather prediction model output publication-title: Weather Forecast. doi: 10.1175/1520-0434(2003)018<0938:FMAMTB>2.0.CO;2 – volume: 144 start-page: 278 year: 2018 ident: 10.1016/j.advwatres.2020.103562_bib0040 article-title: The evolution, seasonality and impacts of western disturbances publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.3200 – volume: 36 start-page: 8352 year: 1997 ident: 10.1016/j.advwatres.2020.103562_bib0026 article-title: Invariant error metrics for image reconstruction publication-title: Appl. Opt. doi: 10.1364/AO.36.008352 – volume: 28 start-page: 1 year: 2008 ident: 10.1016/j.advwatres.2020.103562_bib0051 article-title: Building predictive models in R using the caret package publication-title: J. Stat. Softw. doi: 10.18637/jss.v028.i05 – year: 2004 ident: 10.1016/j.advwatres.2020.103562_bib0082 – year: 2019 ident: 10.1016/j.advwatres.2020.103562_bib0028 article-title: Drought forecasting: a review of modelling approaches 2007–2017 publication-title: J. Water Clim. Change doi: 10.2166/wcc.2019.236 – volume: 30 start-page: 2299 year: 2010 ident: 10.1016/j.advwatres.2020.103562_bib0079 article-title: Rainfall variability and the trends of wet and dry periods in Bangladesh publication-title: Int. J. Climatol. doi: 10.1002/joc.2053 – volume: 212 start-page: 240 year: 2018 ident: 10.1016/j.advwatres.2020.103562_bib0903 article-title: Statistical downscaling of precipitation using machine learning techniques publication-title: Atmospheric Research doi: 10.1016/j.atmosres.2018.05.022 – volume: 33 start-page: 277 year: 2013 ident: 10.1016/j.advwatres.2020.103562_bib0018 article-title: Recent mean temperature trends in Pakistan and links with teleconnection patterns publication-title: Int. J. Climatol. doi: 10.1002/joc.3423 – start-page: 287 year: 2019 ident: 10.1016/j.advwatres.2020.103562_bib0049 article-title: Trends in heat wave related indices in Pakistan publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-018-1605-2 – volume: 34 start-page: 3001 year: 2014 ident: 10.1016/j.advwatres.2020.103562_bib0010 article-title: Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring publication-title: Int. J. Climatol. doi: 10.1002/joc.3887 – volume: 94 start-page: ES186 year: 2013 ident: 10.1016/j.advwatres.2020.103562_bib0060 article-title: Advancing drought understanding, monitoring, and prediction publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-12-00248.1 – volume: 27 start-page: 2103 year: 2007 ident: 10.1016/j.advwatres.2020.103562_bib0064 article-title: Drought forecasting using artificial neural networks and time series of drought indices publication-title: Int. J. Climatol. doi: 10.1002/joc.1498 – volume: 237 start-page: 105 year: 2017 ident: 10.1016/j.advwatres.2020.103562_bib0076 article-title: Meteorological drought forecasting for ungauged areas based on machine learning: using long-range climate forecast and remote sensing data publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.02.011 – volume: 29 start-page: 583 year: 2009 ident: 10.1016/j.advwatres.2020.103562_bib0007 article-title: Role of predictors in downscaling surface temperature to river basin in India for IPCC SRES scenarios using support vector machine publication-title: Int. J. Climatol. doi: 10.1002/joc.1719 – volume: 6 start-page: 46 year: 1991 ident: 10.1016/j.advwatres.2020.103562_bib0032 article-title: Interpreting neural-network connection weights publication-title: AI Expert – volume: 173 start-page: 303 year: 2019 ident: 10.1016/j.advwatres.2020.103562_bib0025 article-title: Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia publication-title: Agric. Syst. doi: 10.1016/j.agsy.2019.03.015 – volume: 16 start-page: 650 year: 2010 ident: 10.1016/j.advwatres.2020.103562_bib0068 article-title: Statistical downscaling of precipitation using machine learning with optimal predictor selection publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000355 – volume: 217 start-page: 303 year: 2019 ident: 10.1016/j.advwatres.2020.103562_bib0037 article-title: Evapotranspiration evaluation models based on machine learning algorithms—a comparative study publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2019.03.015 – volume: 95 start-page: 269 year: 2014 ident: 10.1016/j.advwatres.2020.103562_bib0039 article-title: Causes and predictability of the 2012 Great Plains drought publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-13-00055.1 – volume: 33 start-page: 1720 year: 2013 ident: 10.1016/j.advwatres.2020.103562_bib0022 article-title: The 2010–2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products publication-title: Int. J. Climatol. doi: 10.1002/joc.3545 – start-page: 1 year: 2017 ident: 10.1016/j.advwatres.2020.103562_bib0106 article-title: Simulations of the impact of lakes on local and regional climate over the Tibetan Plateau publication-title: Atmos. Ocean – volume: 12 start-page: 25 year: 2019 ident: 10.1016/j.advwatres.2020.103562_bib0006 article-title: Future predictions of precipitation and temperature in Iraq using the statistical downscaling model publication-title: Arab. J. Geosci. doi: 10.1007/s12517-018-4187-x – start-page: 23 year: 2008 ident: 10.1016/j.advwatres.2020.103562_bib0013 article-title: Bayesian regularization of neural networks – ident: 10.1016/j.advwatres.2020.103562_bib0901 doi: 10.3390/su11082287 – volume: 78 start-page: 691 year: 1991 ident: 10.1016/j.advwatres.2020.103562_bib0067 article-title: A note on a general definition of the coefficient of determination publication-title: Biometrika doi: 10.1093/biomet/78.3.691 |
SSID | ssj0008472 |
Score | 2.6476517 |
Snippet | •For the first time drought prediction models were developed for Pakistan.•Support Vector Machine better captured spatiotemporal characteristics of... Climate change has increased frequency, severity and areal extent of droughts across the world in the last few decades magnifying their adverse impacts.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103562 |
SubjectTerms | Arabian Sea Artificial Neural Network Bay of Bengal Caspian Sea climate change drought Drought prediction evaporation humid zones Indian Ocean k-Nearest Neighbour Machine learning Mediterranean Sea neural networks Pakistan prediction relative humidity Support Vector Machines temperature water resources wind speed |
Title | Prediction of droughts over Pakistan using machine learning algorithms |
URI | https://dx.doi.org/10.1016/j.advwatres.2020.103562 https://www.proquest.com/docview/2400517766 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuL8GBG81vUzTbyN4ZiKQ9DBbiVNmjnZ2rF1evNvN69NpxNkB48tCS0v6fv90vd77yF0RZktlD5mWHHIqeUrRSxOQ2EpYguNV5z7Rfu2xz7pDfz7YTCsoU6VCwOySuP7S59eeGtzp2Ws2ZqNx61nCA44IUAa0F4GGeVQvU7v6evPb5mH9r6rSAKMXtN4cfn-wSEnQx8U3SIBPSDuXwj1y1cXANTdQ7uGOeJ2-XL7qJakB2jnRz3BQ9R9mkPcBWyNM4Vl0YInX2CQaWLDFVMMUvcRnhYqygSbthEjzCejbD7OX6eLIzTo3r50epZplGAJ3_FzS0gmvVifL2ONtppfaEh3uMtDZvtKSpvGPNFEw2PU4UooCf99Yo3chNocArXMO0b1NEuTE4SZJ0I3DjzhSB-4Gg-oSJhg3PWIChPaQKQyTiRMFXFoZjGJKrnYW7SyagRWjUqrNpC9mjgrC2lsnnJTWT9a2xORdvebJ19W6xXpLwbCIDxNsqUe5BeFyUJCTv_zgDO0DVel-PEc1fP5MrnQBCWPm8UObKKt9t1Dr_8FtvnmEg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HtSD-MT6XMFraB6bTdZbEUvrowgq9LZsNtlaqam0qf59d5JNUUE8eE0yJHzZzHyb-WYG4DzmrtJmm-EkkYwdqjVzZBwpRzNXmXglJS3Ht931WfeJXg_CwRJc1rUwKKu0vr_y6aW3tkdaFs3W22jUesDkgBdhSEPay6NlWMHuVLQBK-3eTbe_cMjGAS-SCWjwTeYl0_cPiWUZZq_olzXoIfN_C1I_3HUZgzqbsGHJI2lXz7cFS1m-DetfWgruQOd-iqkXhJtMNEnLKTzFjKBSk1i6mBNUuw_JaymkzIidHDEkcjycTEfF8-tsF546V4-XXcfOSnAU9WjhqJSnQWK2mIkJuIZimKjuSV9G3KU6Td04kZnhGgGPPamVTvHXT2KCN4tdiblaHuxBI5_k2T4QHqjIT8JAeSlFuibDWGVccekHTEdZ3ARWgyOUbSSO8yzGolaMvYgFqgJRFRWqTXAXhm9VL42_TS5q9MW3ZSGMx__b-Kx-X8J8NJgJkXk2mZuLaNmbLGLs4D83OIXV7uPdrbjt9W8OYQ3PVFrII2gU03l2bPhKkZzY9fgJnnboww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+droughts+over+Pakistan+using+machine+learning+algorithms&rft.jtitle=Advances+in+water+resources&rft.au=Khan%2C+Najeebullah&rft.au=Sachindra%2C+D.A.&rft.au=Shahid%2C+Shamsuddin&rft.au=Ahmed%2C+Kamal&rft.date=2020-05-01&rft.pub=Elsevier+Ltd&rft.issn=0309-1708&rft.eissn=1872-9657&rft.volume=139&rft_id=info:doi/10.1016%2Fj.advwatres.2020.103562&rft.externalDocID=S0309170819306797 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0309-1708&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0309-1708&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0309-1708&client=summon |