PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles
This paper presents the concept of a passive thermal management system (TMS), including natural convection, heat pipe, and phase change material (PCM) for electric vehicles. Experimental and numerical tests are described to predict the thermal behavior of a lithium-titanate (LTO) battery cell in a h...
Saved in:
Published in | Case studies in thermal engineering Vol. 25; p. 100920 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents the concept of a passive thermal management system (TMS), including natural convection, heat pipe, and phase change material (PCM) for electric vehicles. Experimental and numerical tests are described to predict the thermal behavior of a lithium-titanate (LTO) battery cell in a high current discharging process. Details of various thermal management techniques are discussed and compared with each other. The mathematical models are solved by COMSOL Multiphysics®, the commercial computational fluid dynamics (CFD) software. The simulation results are validated against experimental data with an acceptable error range. Results indicate that the maximum cell temperature for the cooling strategies of natural convection, heat pipe, and PCM assisted heat pipe reaches 56 °C, 46.3 °C, and 33.2 °C, respectively. It is found that the maximum cell temperature experienced a 17.3% and 40.7% reduction by heat pipe and PCM assisted heat pipe cooling system compared with natural convection. |
---|---|
AbstractList | This paper presents the concept of a passive thermal management system (TMS), including natural convection, heat pipe, and phase change material (PCM) for electric vehicles. Experimental and numerical tests are described to predict the thermal behavior of a lithium-titanate (LTO) battery cell in a high current discharging process. Details of various thermal management techniques are discussed and compared with each other. The mathematical models are solved by COMSOL Multiphysics®, the commercial computational fluid dynamics (CFD) software. The simulation results are validated against experimental data with an acceptable error range. Results indicate that the maximum cell temperature for the cooling strategies of natural convection, heat pipe, and PCM assisted heat pipe reaches 56 °C, 46.3 °C, and 33.2 °C, respectively. It is found that the maximum cell temperature experienced a 17.3% and 40.7% reduction by heat pipe and PCM assisted heat pipe cooling system compared with natural convection. |
ArticleNumber | 100920 |
Author | Hosen, Md Sazzad Behi, Hamidreza Akbarzadeh, Mohsen Kalogiannis, Theodoros Jaguemont, Joris Khaleghi, Sahar Van Mierlo, Joeri Gandoman, Foad Heidari Berecibar, Maitane Karimi, Danial |
Author_xml | – sequence: 1 givenname: Hamidreza orcidid: 0000-0002-4311-4927 surname: Behi fullname: Behi, Hamidreza email: hamidreza.behi@vub.ac.be organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium – sequence: 2 givenname: Danial orcidid: 0000-0003-3093-6371 surname: Karimi fullname: Karimi, Danial organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium – sequence: 3 givenname: Foad Heidari orcidid: 0000-0003-3814-4547 surname: Gandoman fullname: Gandoman, Foad Heidari organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium – sequence: 4 givenname: Mohsen orcidid: 0000-0001-7464-9425 surname: Akbarzadeh fullname: Akbarzadeh, Mohsen organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium – sequence: 5 givenname: Sahar surname: Khaleghi fullname: Khaleghi, Sahar organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium – sequence: 6 givenname: Theodoros surname: Kalogiannis fullname: Kalogiannis, Theodoros organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium – sequence: 7 givenname: Md Sazzad orcidid: 0000-0001-8487-2452 surname: Hosen fullname: Hosen, Md Sazzad organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium – sequence: 8 givenname: Joris surname: Jaguemont fullname: Jaguemont, Joris organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium – sequence: 9 givenname: Joeri surname: Van Mierlo fullname: Van Mierlo, Joeri organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium – sequence: 10 givenname: Maitane surname: Berecibar fullname: Berecibar, Maitane organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium |
BookMark | eNqFkM9qGzEQh0VJoWmaJ8hFL7Cu_nm1e-ihmDYNOCSHBHITs7MjW2Z3ZSQlkLfv2i6l9JAcxIiZ-X4w32d2NsWJGLuSYiGFrL_uFphDoYUSSs4d0SrxgZ0rJU0ll_bp7J__J3aZ804IIa1upDHnLNyvbjnkHHKhnm8JCt-HPXGMcQjThufXeTByHxMvWzq8NMLAR5hgQyNNhUfPYeLrhzuONAzHzW3YbCt8Tukw36fow0D5C_voYch0-adesMefPx5Wv6r13fXN6vu6QiNNqRCh1h6tluRBt4qs6Ro0tgPVt52oLUm9xKbxtgEQWkBnBAEtrVeqB1D6gt2ccvsIO7dPYYT06iIEd2zEtHGQSsCBnFQeyei-w7Yx3taNgRqtlAC9qoUwc5Y-ZWGKOSfyf_OkcAf5bueO8t1BvjvJn6n2PwpDgRLiVBKE4R3224mlWdFLoOQyBpqQ-pAIy3xDeJP_DTJtpB4 |
CitedBy_id | crossref_primary_10_1002_ente_202301247 crossref_primary_10_1016_j_rser_2025_115614 crossref_primary_10_1016_j_icheatmasstransfer_2021_105367 crossref_primary_10_1016_j_applthermaleng_2021_117503 crossref_primary_10_1016_j_rineng_2022_100486 crossref_primary_10_1016_j_est_2025_115475 crossref_primary_10_1016_j_est_2025_115399 crossref_primary_10_3390_en14102907 crossref_primary_10_1016_j_enconman_2022_116359 crossref_primary_10_3390_en14206477 crossref_primary_10_1016_j_applthermaleng_2023_120070 crossref_primary_10_3390_wevj13050086 crossref_primary_10_1016_j_heliyon_2021_e07773 crossref_primary_10_1016_j_est_2024_112994 crossref_primary_10_3390_wevj15070302 crossref_primary_10_1016_j_csite_2023_103307 crossref_primary_10_3390_designs6050070 crossref_primary_10_1016_j_est_2023_109586 crossref_primary_10_3390_en14185924 crossref_primary_10_3390_en16196915 crossref_primary_10_1016_j_apenergy_2021_118348 crossref_primary_10_1080_08916152_2022_2071359 crossref_primary_10_1021_acs_energyfuels_3c03973 crossref_primary_10_2514_1_T6696 crossref_primary_10_1016_j_ijft_2023_100370 crossref_primary_10_1016_j_est_2022_104384 crossref_primary_10_1016_j_renene_2024_120331 crossref_primary_10_1088_1742_6596_2454_1_012006 crossref_primary_10_3390_en15197213 crossref_primary_10_1002_aenm_202202944 crossref_primary_10_30521_jes_1159281 crossref_primary_10_1016_j_est_2023_109054 crossref_primary_10_12677_japc_2024_134064 crossref_primary_10_1016_j_cej_2021_132741 crossref_primary_10_1021_acs_iecr_3c00706 crossref_primary_10_1016_j_est_2023_109852 crossref_primary_10_1016_j_csite_2021_101539 crossref_primary_10_1088_2053_1591_ad1949 crossref_primary_10_1080_15435075_2024_2319229 crossref_primary_10_1016_j_applthermaleng_2024_122438 crossref_primary_10_1016_j_fub_2025_100035 crossref_primary_10_1016_j_rser_2023_114224 crossref_primary_10_1016_j_rser_2021_111513 crossref_primary_10_1177_09576509231193195 crossref_primary_10_3390_electricity2040030 crossref_primary_10_1007_s10973_024_13580_z crossref_primary_10_1007_s41918_024_00232_x crossref_primary_10_3390_batteries9020101 crossref_primary_10_3390_en14217150 crossref_primary_10_3390_en15072515 crossref_primary_10_1002_ente_202101135 crossref_primary_10_1016_j_apenergy_2023_120987 crossref_primary_10_1080_01457632_2023_2234770 crossref_primary_10_1088_1742_6596_2047_1_012018 crossref_primary_10_3390_en14196176 crossref_primary_10_1016_j_est_2023_108749 crossref_primary_10_1088_1742_6596_2193_1_012025 crossref_primary_10_1016_j_icheatmasstransfer_2024_107856 crossref_primary_10_1088_1742_6596_2671_1_012021 crossref_primary_10_3390_mi15030310 crossref_primary_10_1016_j_est_2024_111814 crossref_primary_10_1016_j_enconman_2024_118644 crossref_primary_10_1016_j_est_2023_109081 crossref_primary_10_3390_app13148415 crossref_primary_10_3390_molecules27103119 crossref_primary_10_1016_j_seta_2022_102533 crossref_primary_10_1016_j_applthermaleng_2022_119495 crossref_primary_10_1016_j_jcis_2022_10_014 crossref_primary_10_3390_en14133881 crossref_primary_10_1016_j_nexus_2023_100227 crossref_primary_10_1016_j_jclepro_2022_132489 crossref_primary_10_1007_s10973_022_11241_7 crossref_primary_10_3390_designs6030053 crossref_primary_10_1016_j_csite_2022_101938 crossref_primary_10_1016_j_energy_2023_127323 crossref_primary_10_1016_j_enconman_2024_118085 |
Cites_doi | 10.1016/j.jpowsour.2016.08.054 10.1016/j.est.2020.101508 10.1016/j.jpowsour.2011.11.075 10.1016/j.energy.2021.120165 10.1016/j.rser.2016.05.033 10.3390/batteries6040061 10.1016/j.enconman.2017.08.016 10.1016/j.energy.2015.12.064 10.1103/PhysRevE.99.043109 10.1016/j.est.2020.101893 10.1016/j.applthermaleng.2019.114679 10.1016/j.apenergy.2016.05.122 10.1016/j.applthermaleng.2018.06.048 10.1016/j.apenergy.2020.116159 10.1016/j.icheatmasstransfer.2017.07.004 10.1016/j.energy.2014.03.012 10.1016/j.est.2020.101645 10.1016/j.jpowsour.2020.228820 10.1016/j.jpowsour.2018.08.094 10.1016/j.est.2019.101155 10.1016/j.applthermaleng.2019.114183 10.1016/j.energy.2014.04.046 10.1016/j.jclepro.2019.02.086 10.1016/j.energy.2016.09.120 10.1016/j.jpowsour.2014.10.007 10.1016/j.applthermaleng.2020.116449 10.1016/j.ijheatmasstransfer.2020.120307 10.1016/j.apenergy.2016.03.108 10.1109/TVT.2015.2391053 10.1016/j.tca.2015.04.028 10.1016/j.energy.2018.08.166 10.1016/j.est.2018.01.001 10.1016/j.apenergy.2019.03.043 10.1016/j.solener.2011.02.007 10.1016/j.enconman.2016.08.090 10.1016/j.jpowsour.2008.03.082 10.1016/j.applthermaleng.2020.115280 10.1016/j.ijheatmasstransfer.2016.05.126 10.1016/j.jpowsour.2017.09.046 10.1016/j.applthermaleng.2017.08.109 10.1016/j.energy.2020.119564 10.1016/j.applthermaleng.2019.114571 10.1016/j.enconman.2017.02.022 10.1016/j.energy.2019.116658 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) |
Copyright_xml | – notice: 2021 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2021.100920 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_12fce43dbc984f7684a6c711aad26004 10_1016_j_csite_2021_100920 S2214157X21000836 |
GroupedDBID | 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c414t-cca63fc731efa392e74b8c47ba2d9b067e135c88f78aa030ab40eae57f22daa23 |
IEDL.DBID | DOA |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:29:30 EDT 2025 Tue Jul 01 02:28:27 EDT 2025 Thu Apr 24 23:02:11 EDT 2025 Tue Jul 25 21:03:36 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phase change material (PCM) Thermal management system (TMS) Heat pipe Computational fluid dynamic (CFD) Lithium-titanate (LTO) battery |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-cca63fc731efa392e74b8c47ba2d9b067e135c88f78aa030ab40eae57f22daa23 |
ORCID | 0000-0003-3093-6371 0000-0002-4311-4927 0000-0003-3814-4547 0000-0001-7464-9425 0000-0001-8487-2452 |
OpenAccessLink | https://doaj.org/article/12fce43dbc984f7684a6c711aad26004 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_12fce43dbc984f7684a6c711aad26004 crossref_primary_10_1016_j_csite_2021_100920 crossref_citationtrail_10_1016_j_csite_2021_100920 elsevier_sciencedirect_doi_10_1016_j_csite_2021_100920 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Behi, Mirmohammadi, Suma, Palm (bib24) 2014 Ghanbarpour (bib40) 2017 Sabbah, Kizilel, Selman, Al-Hallaj (bib9) 2008; 182 Xu, Liu, Wang, Hu (bib5) 2016; 172 Manikandan, Selvam, Poddar, Pranjyal, Lamba, Kaushik (bib55) 2019; 219 Behi, Mirmohammadi, Ghanbarpour, Behi, Palm (bib25) 2018; 164 Patel, Rathod (bib11) 2020; 480 Wang, Jiang, Li, Yan (bib3) 2016; 64 Mirmohammadi, Behi, Gan, Shen (bib36) 2019; 99 Liu, Wei, He, Zhao (bib23) 2017; 150 Ghanbarpour, Khodabandeh (bib57) 2015; 610 Jaguemont, Boulon, Dubé (bib54) 2016; 65 Karimi, Behi, Jaguemont, Sokkeh, Kalogiannis, Hosen, Berecibar, Van Mierlo (bib33) 2020; 30 Lu, Zhang, Ji, Xu, Zhang (bib1) 2020; 27 Samimi, Babapoor, Azizi, Karimi (bib29) 2016; 96 Ashwin, Chung, Wang (bib48) 2016; 328 Sheikholeslami, Ganji (bib50) 2016; 116 Fathabadi (bib17) 2014; 70 Samimi, Babapoor, Azizi, Karimi (bib26) 2016; 96 Mirmohammadi, Behi (bib32) 2012 Behi, Shakorian-poor, Mirmohammadi, Behi, Rubio, Nikkam, Farzaneh-Gord, Gan, Behnia (bib31) 2020; 193 Soltani, Ronsmans, Jaguemont, Van Mierlo, Van Den Bossche, Omar (bib53) 2019 Mevawalla, Panchal, Tran, Fowler, Fraser (bib6) 2020; 6 Gandoman, Behi, Berecibar, Jaguemont, Aleem, Behi, Van Mierlo (bib39) 2021 Jaguemont, Karimi, Van Mierlo (bib34) 2019 Saw, Ye, Tay, Chong, Kuan, Yew (bib7) 2016; 177 Siddique, Mahmud, Van Heyst (bib22) 2018; 401 Liu, Zhu, Wang, Huang, Sun, Yin (bib52) 2011; 85 Xia, Cao, Bi (bib21) 2017; 367 Panchal, Dincer, Agelin-Chaab, Fraser, Fowler (bib19) 2016; 101 Karimi, Behi, Hosen, Jaguemont, Berecibar, Van Mierlo (bib20) 2021; 185 Zhao, Wang, Li, Liu, Li (bib56) 2019; 11 Khaleghi, Karimi, Beheshti, Hosen, Behi, Berecibar, Van Mierlo (bib2) 2021; 282 Yang, Zhou, Zhou, Liu (bib12) 2020; 161 Cheng, Garg, Jishnu, Gao (bib14) 2020; 31 Jilte, Afzal, Panchal (bib35) 2021; 219 Zhang, Zhao, Liu, Gu (bib4) 2014; 68 Behi, Behi, Karimi, Jaguemont, Ghanbarpour, Behnia, Berecibar, Van Mierlo (bib38) 2020 Huang, Li, Zhang, Zhang, He, Li (bib47) 2018; 141 Behi, Karimi, Jaguemont, Gandoman, Khaleghi, Van Mierlo, Berecibar (bib8) 2020 Wu, Yang, Zhang, Chen, Wang (bib28) 2017; 138 Behi, Ghanbarpour, Behi (bib30) 2017; 127 Sheikholeslami, Ganji (bib49) 2016; 127 Dan, Yao, Zhang, Zhang, Zeng, Xu (bib16) 2019; 162 Behi, Karimi, Behi, Jaguemont, Ghanbarpour, Behnia, Berecibar, Van Mierlo (bib43) 2020; 32 Kariya (bib51) 2012 Nikkam, Saleemi, Behi, Khodabandeh, Toprak (bib37) 2017; 87 Chen, Chen, She, Song, Wang, Chen (bib13) 2020; 166 Behi, Karimi, Jaguemont, Gandoman, Kalogiannis, Berecibar, Van Mierlo (bib15) 2021 Karimi, Behi, Jaguemont, El Baghdadi, Van Mierlo, Hegazy (bib18) 2019 Zhao, Gu, Liu (bib44) 2015; 273 Somasundaram, Birgersson, Mujumdar (bib10) 2012; 203 Feng, Zhou, Li, Wang, Zhao, Luo, Wang, Yan (bib42) 2018; 16 Behi (bib27) 2015 Zhang, Qiu, Yin, Wang (bib45) 2020; 165 Jiang, Qu (bib46) 2019; 242 Behi, Karimi, Behi, Ghanbarpour, Jaguemont, Akbarzadeh Sokkeh, Heidari Gandoman, Berecibar, Van Mierlo (bib41) 2020 Chen (10.1016/j.csite.2021.100920_bib13) 2020; 166 Samimi (10.1016/j.csite.2021.100920_bib26) 2016; 96 Nikkam (10.1016/j.csite.2021.100920_bib37) 2017; 87 Behi (10.1016/j.csite.2021.100920_bib31) 2020; 193 Huang (10.1016/j.csite.2021.100920_bib47) 2018; 141 Behi (10.1016/j.csite.2021.100920_bib30) 2017; 127 Mevawalla (10.1016/j.csite.2021.100920_bib6) 2020; 6 Jilte (10.1016/j.csite.2021.100920_bib35) 2021; 219 Sheikholeslami (10.1016/j.csite.2021.100920_bib49) 2016; 127 Behi (10.1016/j.csite.2021.100920_bib27) 2015 Saw (10.1016/j.csite.2021.100920_bib7) 2016; 177 Behi (10.1016/j.csite.2021.100920_bib43) 2020; 32 Kariya (10.1016/j.csite.2021.100920_bib51) Soltani (10.1016/j.csite.2021.100920_bib53) 2019 Jiang (10.1016/j.csite.2021.100920_bib46) 2019; 242 Jaguemont (10.1016/j.csite.2021.100920_bib54) 2016; 65 Behi (10.1016/j.csite.2021.100920_bib24) 2014 Ghanbarpour (10.1016/j.csite.2021.100920_bib40) 2017 Feng (10.1016/j.csite.2021.100920_bib42) 2018; 16 Ashwin (10.1016/j.csite.2021.100920_bib48) 2016; 328 Khaleghi (10.1016/j.csite.2021.100920_bib2) 2021; 282 Karimi (10.1016/j.csite.2021.100920_bib18) 2019 Yang (10.1016/j.csite.2021.100920_bib12) 2020; 161 Behi (10.1016/j.csite.2021.100920_bib38) 2020 Dan (10.1016/j.csite.2021.100920_bib16) 2019; 162 Gandoman (10.1016/j.csite.2021.100920_bib39) 2021 Somasundaram (10.1016/j.csite.2021.100920_bib10) 2012; 203 Zhang (10.1016/j.csite.2021.100920_bib45) 2020; 165 Patel (10.1016/j.csite.2021.100920_bib11) 2020; 480 Manikandan (10.1016/j.csite.2021.100920_bib55) 2019; 219 Jaguemont (10.1016/j.csite.2021.100920_bib34) 2019 Zhao (10.1016/j.csite.2021.100920_bib44) 2015; 273 Karimi (10.1016/j.csite.2021.100920_bib33) 2020; 30 Fathabadi (10.1016/j.csite.2021.100920_bib17) 2014; 70 Behi (10.1016/j.csite.2021.100920_bib8) 2020 Panchal (10.1016/j.csite.2021.100920_bib19) 2016; 101 Mirmohammadi (10.1016/j.csite.2021.100920_bib36) 2019; 99 Behi (10.1016/j.csite.2021.100920_bib15) 2021 Cheng (10.1016/j.csite.2021.100920_bib14) 2020; 31 Wu (10.1016/j.csite.2021.100920_bib28) 2017; 138 Lu (10.1016/j.csite.2021.100920_bib1) 2020; 27 Liu (10.1016/j.csite.2021.100920_bib52) 2011; 85 Liu (10.1016/j.csite.2021.100920_bib23) 2017; 150 Mirmohammadi (10.1016/j.csite.2021.100920_bib32) Zhang (10.1016/j.csite.2021.100920_bib4) 2014; 68 Samimi (10.1016/j.csite.2021.100920_bib29) 2016; 96 Ghanbarpour (10.1016/j.csite.2021.100920_bib57) 2015; 610 Behi (10.1016/j.csite.2021.100920_bib25) 2018; 164 Karimi (10.1016/j.csite.2021.100920_bib20) 2021; 185 Xu (10.1016/j.csite.2021.100920_bib5) 2016; 172 Wang (10.1016/j.csite.2021.100920_bib3) 2016; 64 Sabbah (10.1016/j.csite.2021.100920_bib9) 2008; 182 Xia (10.1016/j.csite.2021.100920_bib21) 2017; 367 Behi (10.1016/j.csite.2021.100920_bib41) 2020 Zhao (10.1016/j.csite.2021.100920_bib56) 2019; 11 Siddique (10.1016/j.csite.2021.100920_bib22) 2018; 401 Sheikholeslami (10.1016/j.csite.2021.100920_bib50) 2016; 116 |
References_xml | – volume: 116 start-page: 341 year: 2016 end-page: 352 ident: bib50 article-title: Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies publication-title: Energy – start-page: 1 year: 2020 end-page: 6 ident: bib8 article-title: Aluminum heat sink assisted air-cooling thermal management system for high current applications in electric vehicles publication-title: 2020 AEIT Int. Conf. Electr. Electron. Technol. Automot. (AEIT AUTOMOTIVE) – year: 2012 ident: bib51 article-title: Development of an air-cooled, loop-type heat pipe with multiple condensers – volume: 30 start-page: 101508 year: 2020 ident: bib33 article-title: Thermal performance enhancement of phase change material using aluminum-mesh grid foil for lithium-capacitor modules publication-title: J. Energy Storage – volume: 161 start-page: 120307 year: 2020 ident: bib12 article-title: Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module publication-title: Int. J. Heat Mass Tran. – volume: 85 start-page: 922 year: 2011 end-page: 930 ident: bib52 article-title: Heat dissipation performance of silicon solar cells by direct dielectric liquid immersion under intensified illuminations publication-title: Sol. Energy – volume: 610 start-page: 37 year: 2015 end-page: 46 ident: bib57 article-title: Entropy generation analysis of cylindrical heat pipe using nanofluid publication-title: Thermochim. Acta – volume: 177 start-page: 783 year: 2016 end-page: 792 ident: bib7 article-title: Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling publication-title: Appl. Energy – start-page: 120165 year: 2021 ident: bib15 article-title: Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications publication-title: Energy – volume: 65 start-page: 1 year: 2016 end-page: 14 ident: bib54 article-title: Characterization and modeling of a hybrid-electric-vehicle lithium-ion battery pack at low temperatures publication-title: IEEE Trans. Veh. Technol. – volume: 219 start-page: 119564 year: 2021 ident: bib35 article-title: A novel battery thermal management system using nano-enhanced phase change materials publication-title: Energy – volume: 162 start-page: 114183 year: 2019 ident: bib16 article-title: Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model publication-title: Appl. Therm. Eng. – volume: 164 start-page: 449 year: 2018 end-page: 464 ident: bib25 article-title: Evaluation of a novel solar driven sorption cooling/heating system integrated with PCM storage compartment publication-title: Energy – volume: 127 start-page: 1132 year: 2017 end-page: 1142 ident: bib30 article-title: Investigation of PCM-assisted heat pipe for electronic cooling publication-title: Appl. Therm. Eng. – volume: 27 start-page: 101155 year: 2020 ident: bib1 article-title: Research progress on power battery cooling technology for electric vehicles publication-title: J. Energy Storage – volume: 182 start-page: 630 year: 2008 end-page: 638 ident: bib9 article-title: Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution publication-title: J. Power Sources – start-page: 1126 year: 2019 end-page: 1131 ident: bib53 article-title: A Three-dimensional thermal model for a commercial lithium-ion capacitor battery pack with non-uniform temperature distribution publication-title: Proc. IEEE Int. Conf. Ind. Technol. 2019-Febru – volume: 367 start-page: 90 year: 2017 end-page: 105 ident: bib21 article-title: A review on battery thermal management in electric vehicle application publication-title: J. Power Sources – volume: 328 start-page: 586 year: 2016 end-page: 598 ident: bib48 article-title: Capacity fade modelling of lithium-ion battery under cyclic loading conditions publication-title: J. Power Sources – volume: 6 start-page: 1 year: 2020 end-page: 26 ident: bib6 article-title: Mathematical heat transfer modeling and experimental validation of lithium-ion battery considering: tab and surface temperature, separator, electrolyte resistance, anode-cathode irreversible and reversible heat publication-title: Batteries – volume: 185 start-page: 116449 year: 2021 ident: bib20 article-title: A compact and optimized liquid-cooled thermal management system for high power lithium-ion capacitors publication-title: Appl. Therm. Eng. – year: 2014 ident: bib24 article-title: Optimized Energy Recovery in Line with Balancing of an ATES – volume: 64 start-page: 106 year: 2016 end-page: 128 ident: bib3 article-title: A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles publication-title: Renew. Sustain. Energy Rev. – volume: 31 start-page: 101645 year: 2020 ident: bib14 article-title: Surrogate based multi-objective design optimization of lithium-ion battery air-cooled system in electric vehicles publication-title: J. Energy Storage – volume: 87 start-page: 164 year: 2017 end-page: 168 ident: bib37 article-title: Experimental investigation on the effect of SiO2 secondary phase on thermo-physical properties of SiC nanofluids publication-title: Int. Commun. Heat Mass Transf. – volume: 68 start-page: 854 year: 2014 end-page: 861 ident: bib4 article-title: Investigation on a hydrogel based passive thermal management system for lithium ion batteries publication-title: Energy – volume: 203 start-page: 84 year: 2012 end-page: 96 ident: bib10 article-title: Thermal-electrochemical model for passive thermal management of a spiral-wound lithium-ion battery publication-title: J. Power Sources – volume: 16 start-page: 84 year: 2018 end-page: 92 ident: bib42 article-title: Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling publication-title: J. Energy Storage – volume: 401 start-page: 224 year: 2018 end-page: 237 ident: bib22 article-title: A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations publication-title: J. Power Sources – volume: 96 start-page: 355 year: 2016 end-page: 371 ident: bib29 article-title: Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers publication-title: Energy – volume: 99 start-page: 43109 year: 2019 ident: bib36 article-title: Particle-shape-, temperature-, and concentration-dependent thermal conductivity and viscosity of nanofluids publication-title: Phys. Rev. E. – start-page: 1 year: 2019 end-page: 8 ident: bib34 article-title: Optimal Passive Thermal Management of Lithium-Ion Capacitors for Automotive Applications – volume: 32 start-page: 101893 year: 2020 ident: bib43 article-title: Thermal management analysis using heat pipe in the high current discharging of lithium-ion battery in electric vehicles publication-title: J. Energy Storage – year: 2012 ident: bib32 article-title: Investigation on thermal conductivity, viscosity and stability of nanofluids – year: 2017 ident: bib40 article-title: Investigation of Thermal Performance of Cylindrical Heat Pipes Operated with Nanofluids – volume: 11 year: 2019 ident: bib56 article-title: Experimental investigation of a lithium battery cooling system publication-title: Sustain. Times – volume: 101 start-page: 1093 year: 2016 end-page: 1102 ident: bib19 article-title: Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery publication-title: Int. J. Heat Mass Tran. – volume: 219 start-page: 359 year: 2019 end-page: 367 ident: bib55 article-title: Thermal management of low concentrated photovoltaic module with phase change material publication-title: J. Clean. Prod. – volume: 96 start-page: 355 year: 2016 end-page: 371 ident: bib26 article-title: Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers publication-title: Energy – volume: 242 start-page: 378 year: 2019 end-page: 392 ident: bib46 article-title: Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: a comprehensive numerical study publication-title: Appl. Energy – volume: 127 start-page: 112 year: 2016 end-page: 123 ident: bib49 article-title: Heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators publication-title: Energy Convers. Manag. – volume: 165 start-page: 114571 year: 2020 ident: bib45 article-title: A novel heat pipe assisted separation type battery thermal management system based on phase change material publication-title: Appl. Therm. Eng. – start-page: 563 year: 2021 end-page: 587 ident: bib39 article-title: Chapter 16 - reliability evaluation of Li-ion batteries for electric vehicles applications from the thermal perspectives publication-title: Uncertainties Mod. Power Syst. – start-page: 115280 year: 2020 ident: bib41 article-title: A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles publication-title: Appl. Therm. Eng. – volume: 282 start-page: 116159 year: 2021 ident: bib2 article-title: Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network publication-title: Appl. Energy – volume: 273 start-page: 1089 year: 2015 end-page: 1097 ident: bib44 article-title: An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries publication-title: J. Power Sources – start-page: 116240 year: 2020 ident: bib38 article-title: Heat pipe air-cooled thermal management system for lithium-ion batteries: high power applications publication-title: Appl. Therm. Eng. – volume: 193 start-page: 116658 year: 2020 ident: bib31 article-title: Experimental and numerical investigation on hydrothermal performance of nanofluids in micro-tubes publication-title: Energy – volume: 141 start-page: 1092 year: 2018 end-page: 1100 ident: bib47 article-title: Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system publication-title: Appl. Therm. Eng. – volume: 172 start-page: 180 year: 2016 end-page: 189 ident: bib5 article-title: Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies publication-title: Appl. Energy – volume: 480 start-page: 228820 year: 2020 ident: bib11 article-title: Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries publication-title: J. Power Sources – volume: 138 start-page: 486 year: 2017 end-page: 492 ident: bib28 article-title: Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system publication-title: Energy Convers. Manag. – volume: 166 start-page: 114679 year: 2020 ident: bib13 article-title: Construction of effective symmetrical air-cooled system for battery thermal management publication-title: Appl. Therm. Eng. – volume: 70 start-page: 529 year: 2014 end-page: 538 ident: bib17 article-title: High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles publication-title: Energy – year: 2019 ident: bib18 article-title: Thermal Concept Design of MOSFET Power Modules in Inverter Subsystems for Electric Vehicles – year: 2015 ident: bib27 article-title: Experimental and Numerical Study on Heat Pipe Assisted PCM Storage System – volume: 150 start-page: 304 year: 2017 end-page: 330 ident: bib23 article-title: Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review publication-title: Energy Convers. Manag. – volume: 328 start-page: 586 year: 2016 ident: 10.1016/j.csite.2021.100920_bib48 article-title: Capacity fade modelling of lithium-ion battery under cyclic loading conditions publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.08.054 – volume: 11 year: 2019 ident: 10.1016/j.csite.2021.100920_bib56 article-title: Experimental investigation of a lithium battery cooling system publication-title: Sustain. Times – year: 2019 ident: 10.1016/j.csite.2021.100920_bib18 – volume: 30 start-page: 101508 year: 2020 ident: 10.1016/j.csite.2021.100920_bib33 article-title: Thermal performance enhancement of phase change material using aluminum-mesh grid foil for lithium-capacitor modules publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101508 – volume: 203 start-page: 84 year: 2012 ident: 10.1016/j.csite.2021.100920_bib10 article-title: Thermal-electrochemical model for passive thermal management of a spiral-wound lithium-ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.11.075 – ident: 10.1016/j.csite.2021.100920_bib32 – start-page: 120165 year: 2021 ident: 10.1016/j.csite.2021.100920_bib15 article-title: Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications publication-title: Energy doi: 10.1016/j.energy.2021.120165 – volume: 64 start-page: 106 year: 2016 ident: 10.1016/j.csite.2021.100920_bib3 article-title: A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.05.033 – volume: 6 start-page: 1 year: 2020 ident: 10.1016/j.csite.2021.100920_bib6 article-title: Mathematical heat transfer modeling and experimental validation of lithium-ion battery considering: tab and surface temperature, separator, electrolyte resistance, anode-cathode irreversible and reversible heat publication-title: Batteries doi: 10.3390/batteries6040061 – volume: 150 start-page: 304 year: 2017 ident: 10.1016/j.csite.2021.100920_bib23 article-title: Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.08.016 – volume: 96 start-page: 355 year: 2016 ident: 10.1016/j.csite.2021.100920_bib29 article-title: Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers publication-title: Energy doi: 10.1016/j.energy.2015.12.064 – volume: 99 start-page: 43109 year: 2019 ident: 10.1016/j.csite.2021.100920_bib36 article-title: Particle-shape-, temperature-, and concentration-dependent thermal conductivity and viscosity of nanofluids publication-title: Phys. Rev. E. doi: 10.1103/PhysRevE.99.043109 – volume: 32 start-page: 101893 year: 2020 ident: 10.1016/j.csite.2021.100920_bib43 article-title: Thermal management analysis using heat pipe in the high current discharging of lithium-ion battery in electric vehicles publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101893 – volume: 166 start-page: 114679 year: 2020 ident: 10.1016/j.csite.2021.100920_bib13 article-title: Construction of effective symmetrical air-cooled system for battery thermal management publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114679 – volume: 177 start-page: 783 year: 2016 ident: 10.1016/j.csite.2021.100920_bib7 article-title: Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.05.122 – volume: 141 start-page: 1092 year: 2018 ident: 10.1016/j.csite.2021.100920_bib47 article-title: Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.06.048 – year: 2014 ident: 10.1016/j.csite.2021.100920_bib24 – volume: 96 start-page: 355 year: 2016 ident: 10.1016/j.csite.2021.100920_bib26 article-title: Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers publication-title: Energy doi: 10.1016/j.energy.2015.12.064 – start-page: 1 year: 2019 ident: 10.1016/j.csite.2021.100920_bib34 – volume: 282 start-page: 116159 year: 2021 ident: 10.1016/j.csite.2021.100920_bib2 article-title: Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.116159 – start-page: 563 year: 2021 ident: 10.1016/j.csite.2021.100920_bib39 article-title: Chapter 16 - reliability evaluation of Li-ion batteries for electric vehicles applications from the thermal perspectives – volume: 87 start-page: 164 year: 2017 ident: 10.1016/j.csite.2021.100920_bib37 article-title: Experimental investigation on the effect of SiO2 secondary phase on thermo-physical properties of SiC nanofluids publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2017.07.004 – volume: 68 start-page: 854 year: 2014 ident: 10.1016/j.csite.2021.100920_bib4 article-title: Investigation on a hydrogel based passive thermal management system for lithium ion batteries publication-title: Energy doi: 10.1016/j.energy.2014.03.012 – volume: 31 start-page: 101645 year: 2020 ident: 10.1016/j.csite.2021.100920_bib14 article-title: Surrogate based multi-objective design optimization of lithium-ion battery air-cooled system in electric vehicles publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101645 – volume: 480 start-page: 228820 year: 2020 ident: 10.1016/j.csite.2021.100920_bib11 article-title: Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228820 – volume: 401 start-page: 224 year: 2018 ident: 10.1016/j.csite.2021.100920_bib22 article-title: A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.08.094 – volume: 27 start-page: 101155 year: 2020 ident: 10.1016/j.csite.2021.100920_bib1 article-title: Research progress on power battery cooling technology for electric vehicles publication-title: J. Energy Storage doi: 10.1016/j.est.2019.101155 – year: 2017 ident: 10.1016/j.csite.2021.100920_bib40 – volume: 162 start-page: 114183 year: 2019 ident: 10.1016/j.csite.2021.100920_bib16 article-title: Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114183 – volume: 70 start-page: 529 year: 2014 ident: 10.1016/j.csite.2021.100920_bib17 article-title: High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles publication-title: Energy doi: 10.1016/j.energy.2014.04.046 – volume: 219 start-page: 359 year: 2019 ident: 10.1016/j.csite.2021.100920_bib55 article-title: Thermal management of low concentrated photovoltaic module with phase change material publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.02.086 – volume: 116 start-page: 341 year: 2016 ident: 10.1016/j.csite.2021.100920_bib50 article-title: Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies publication-title: Energy doi: 10.1016/j.energy.2016.09.120 – volume: 273 start-page: 1089 year: 2015 ident: 10.1016/j.csite.2021.100920_bib44 article-title: An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.10.007 – volume: 185 start-page: 116449 year: 2021 ident: 10.1016/j.csite.2021.100920_bib20 article-title: A compact and optimized liquid-cooled thermal management system for high power lithium-ion capacitors publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116449 – volume: 161 start-page: 120307 year: 2020 ident: 10.1016/j.csite.2021.100920_bib12 article-title: Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2020.120307 – volume: 172 start-page: 180 year: 2016 ident: 10.1016/j.csite.2021.100920_bib5 article-title: Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.03.108 – volume: 65 start-page: 1 year: 2016 ident: 10.1016/j.csite.2021.100920_bib54 article-title: Characterization and modeling of a hybrid-electric-vehicle lithium-ion battery pack at low temperatures publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2015.2391053 – volume: 610 start-page: 37 year: 2015 ident: 10.1016/j.csite.2021.100920_bib57 article-title: Entropy generation analysis of cylindrical heat pipe using nanofluid publication-title: Thermochim. Acta doi: 10.1016/j.tca.2015.04.028 – volume: 164 start-page: 449 year: 2018 ident: 10.1016/j.csite.2021.100920_bib25 article-title: Evaluation of a novel solar driven sorption cooling/heating system integrated with PCM storage compartment publication-title: Energy doi: 10.1016/j.energy.2018.08.166 – start-page: 1 year: 2020 ident: 10.1016/j.csite.2021.100920_bib8 article-title: Aluminum heat sink assisted air-cooling thermal management system for high current applications in electric vehicles – volume: 16 start-page: 84 year: 2018 ident: 10.1016/j.csite.2021.100920_bib42 article-title: Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling publication-title: J. Energy Storage doi: 10.1016/j.est.2018.01.001 – volume: 242 start-page: 378 year: 2019 ident: 10.1016/j.csite.2021.100920_bib46 article-title: Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: a comprehensive numerical study publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.03.043 – volume: 85 start-page: 922 year: 2011 ident: 10.1016/j.csite.2021.100920_bib52 article-title: Heat dissipation performance of silicon solar cells by direct dielectric liquid immersion under intensified illuminations publication-title: Sol. Energy doi: 10.1016/j.solener.2011.02.007 – ident: 10.1016/j.csite.2021.100920_bib51 – volume: 127 start-page: 112 year: 2016 ident: 10.1016/j.csite.2021.100920_bib49 article-title: Heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.08.090 – volume: 182 start-page: 630 year: 2008 ident: 10.1016/j.csite.2021.100920_bib9 article-title: Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.03.082 – start-page: 116240 year: 2020 ident: 10.1016/j.csite.2021.100920_bib38 article-title: Heat pipe air-cooled thermal management system for lithium-ion batteries: high power applications publication-title: Appl. Therm. Eng. – start-page: 115280 year: 2020 ident: 10.1016/j.csite.2021.100920_bib41 article-title: A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115280 – volume: 101 start-page: 1093 year: 2016 ident: 10.1016/j.csite.2021.100920_bib19 article-title: Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2016.05.126 – volume: 367 start-page: 90 year: 2017 ident: 10.1016/j.csite.2021.100920_bib21 article-title: A review on battery thermal management in electric vehicle application publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.09.046 – volume: 127 start-page: 1132 year: 2017 ident: 10.1016/j.csite.2021.100920_bib30 article-title: Investigation of PCM-assisted heat pipe for electronic cooling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.08.109 – volume: 219 start-page: 119564 year: 2021 ident: 10.1016/j.csite.2021.100920_bib35 article-title: A novel battery thermal management system using nano-enhanced phase change materials publication-title: Energy doi: 10.1016/j.energy.2020.119564 – volume: 165 start-page: 114571 year: 2020 ident: 10.1016/j.csite.2021.100920_bib45 article-title: A novel heat pipe assisted separation type battery thermal management system based on phase change material publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114571 – year: 2015 ident: 10.1016/j.csite.2021.100920_bib27 – volume: 138 start-page: 486 year: 2017 ident: 10.1016/j.csite.2021.100920_bib28 article-title: Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.02.022 – volume: 193 start-page: 116658 year: 2020 ident: 10.1016/j.csite.2021.100920_bib31 article-title: Experimental and numerical investigation on hydrothermal performance of nanofluids in micro-tubes publication-title: Energy doi: 10.1016/j.energy.2019.116658 – start-page: 1126 year: 2019 ident: 10.1016/j.csite.2021.100920_bib53 article-title: A Three-dimensional thermal model for a commercial lithium-ion capacitor battery pack with non-uniform temperature distribution |
SSID | ssj0001738144 |
Score | 2.4759486 |
Snippet | This paper presents the concept of a passive thermal management system (TMS), including natural convection, heat pipe, and phase change material (PCM) for... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100920 |
SubjectTerms | Computational fluid dynamic (CFD) Heat pipe Lithium-titanate (LTO) battery Phase change material (PCM) Thermal management system (TMS) |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqTjAgnqK85IERq8R27GSEigohCkgUqVt0dmwUVNoKyv_H5ySlLAwMGWKdk-jucvfJPn9HyLlXLk3BCAZcKyZFaRiUqWFWqFQGPF9C3D0fPajbF3k3SScdMmjPwmBZZRP765geo3Uz0m-02V9UVf-Z8yRkHz3hSQQSSLstZBYP8U2uf9ZZdMhJsacryjOc0JIPxTIvGzdpeUh1WDCQY9_vtQQVefzX8tRa7hluk60GNNKr-rt2SMfNdsnmGpXgHqmeBiMagDBaraQYYemiWjhq59iV55XWjM00QFQaIB9eISJP6fuq-oXOPYUZvR8_UlzMj5LIZcxszeBEm-7en_vkZXgzHtyypo0CszKRSxZspIS3WiTOQ4BDTkuTWakN8DI3IVu5RKQ2y7zOAMI_D0ZeOnCp9pyXAFwckO5sPnOHhILPrTJaAUgdhDikxucQgp4U3DiZ9whvdVfYhmMcW11Mi7aY7K2ICi9Q4UWt8B65WE1a1BQbf4tfo1FWosiPHQfmH69F4yBFwr116Hk2z6THzUZQVicJQImM_LJHVGvS4pe7hUdVf7396L8Tj8kG3tVVZieku_z4cqcBzyzNWXTYb8Si80Q priority: 102 providerName: Elsevier |
Title | PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles |
URI | https://dx.doi.org/10.1016/j.csite.2021.100920 https://doaj.org/article/12fce43dbc984f7684a6c711aad26004 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJzhUpVB1C6184FiL2vFHcmRRESC27WGR9haNHbvaCnZXsPx_ZuzsKie4cEgO0cSOZiaeZ8_oDWOnyUZjwFcClLNCV50X0BkvQmWNRjzfQc6eT37bqzt9MzOzQasvqgkr9MBFcWdSpRBpjNDUOlHaCGxwUgJ0xK2emUAx5g02U_l0xWEkyp1clZJaSONmG8qhXNwVcmoWN_6SygQa6vY9CEuZvX8QnQYR5_Ij-9BDRX5ePvGA7cTFJ7Y_IBA8ZPO_FxOO8Jds1XFaV_lqvoo8LKkXzz9eeJo5AlOOQI8uXIfv-cO25oUvE4cFv53-4XSEnyWJwViEwtvE-57eT0fs7vLX9OJK9M0TRNBSrwVaxlYpuErGBAiCotO-Dtp5UF3jMUZFWZlQ18nVAPing9c_I0TjklIdgKo-s93FchG_MA6pCdY7C6AdCikwPjWAS52ulI-6GTG10V0bemZxanBx325KyP63WeEtKbwtCh-xH9uXVoVY43XxMRllK0qs2PkB-krb-0r7lq-MmN2YtO0BRgEOONT8tdm_vsfsx2yPhix1Zidsd_34HL8holn779l58X49G78AZszzlQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtswDBW67rDtMHTrhmVbNx16rJBZliX72AYr0i1pBzQFchMoWSpcdEnQZf9fUrbT9NJDD77IlG2QFPkg0Y-MHUYdigJcLkAaLVReOwF14YTPdaEQz9eQTs-n53p8pX7Ni_kOG_X_wlBZZRf725ieonU3Muy0OVw1zfBSygyzj5nLLAEJ_YK9RDRgaHWezU8eNloMJqXU1JUmCJrRsw-lOi-fTmkl5jqqGKio8fdWhkpE_luJaiv5nO6xtx1q5Mfth71jO2Hxnr3Z4hLcZ82f0ZQjEiaz1ZxCLF81q8D9ktryXPOWspkjRuWI-ejCkHzL_27KX_gycljwyeyC025-kiQyY-FbCifetff-94Fdnf6cjcai66MgvMrUWqCRdB69ybMQAfFQMMqVXhkHsq4cpquQ5YUvy2hKAFz04NSPAKEwUcoaQOYf2e5iuQifGIdYee2MBlAGhSQULlaAUU_l0gVVDZjsdWd9RzJOvS5ubV9NdmOTwi0p3LYKH7CjzaRVy7HxtPgJGWUjSgTZaWB5d207D7GZjD6Q6_mqVJFOG0F7k2UANVHyqwHTvUntI3_DRzVPvf3zcyd-Z6_Gs-nETs7Of39hr-lOW3L2le2u7_6HAwQ3a_ctOe89BuX2ZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PCM+assisted+heat+pipe+cooling+system+for+the+thermal+management+of+an+LTO+cell+for+high-current+profiles&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Hamidreza+Behi&rft.au=Danial+Karimi&rft.au=Foad+Heidari+Gandoman&rft.au=Mohsen+Akbarzadeh&rft.date=2021-06-01&rft.pub=Elsevier&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=25&rft.spage=100920&rft_id=info:doi/10.1016%2Fj.csite.2021.100920&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_12fce43dbc984f7684a6c711aad26004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |