PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles

This paper presents the concept of a passive thermal management system (TMS), including natural convection, heat pipe, and phase change material (PCM) for electric vehicles. Experimental and numerical tests are described to predict the thermal behavior of a lithium-titanate (LTO) battery cell in a h...

Full description

Saved in:
Bibliographic Details
Published inCase studies in thermal engineering Vol. 25; p. 100920
Main Authors Behi, Hamidreza, Karimi, Danial, Gandoman, Foad Heidari, Akbarzadeh, Mohsen, Khaleghi, Sahar, Kalogiannis, Theodoros, Hosen, Md Sazzad, Jaguemont, Joris, Van Mierlo, Joeri, Berecibar, Maitane
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents the concept of a passive thermal management system (TMS), including natural convection, heat pipe, and phase change material (PCM) for electric vehicles. Experimental and numerical tests are described to predict the thermal behavior of a lithium-titanate (LTO) battery cell in a high current discharging process. Details of various thermal management techniques are discussed and compared with each other. The mathematical models are solved by COMSOL Multiphysics®, the commercial computational fluid dynamics (CFD) software. The simulation results are validated against experimental data with an acceptable error range. Results indicate that the maximum cell temperature for the cooling strategies of natural convection, heat pipe, and PCM assisted heat pipe reaches 56 °C, 46.3 °C, and 33.2 °C, respectively. It is found that the maximum cell temperature experienced a 17.3% and 40.7% reduction by heat pipe and PCM assisted heat pipe cooling system compared with natural convection.
AbstractList This paper presents the concept of a passive thermal management system (TMS), including natural convection, heat pipe, and phase change material (PCM) for electric vehicles. Experimental and numerical tests are described to predict the thermal behavior of a lithium-titanate (LTO) battery cell in a high current discharging process. Details of various thermal management techniques are discussed and compared with each other. The mathematical models are solved by COMSOL Multiphysics®, the commercial computational fluid dynamics (CFD) software. The simulation results are validated against experimental data with an acceptable error range. Results indicate that the maximum cell temperature for the cooling strategies of natural convection, heat pipe, and PCM assisted heat pipe reaches 56 °C, 46.3 °C, and 33.2 °C, respectively. It is found that the maximum cell temperature experienced a 17.3% and 40.7% reduction by heat pipe and PCM assisted heat pipe cooling system compared with natural convection.
ArticleNumber 100920
Author Hosen, Md Sazzad
Behi, Hamidreza
Akbarzadeh, Mohsen
Kalogiannis, Theodoros
Jaguemont, Joris
Khaleghi, Sahar
Van Mierlo, Joeri
Gandoman, Foad Heidari
Berecibar, Maitane
Karimi, Danial
Author_xml – sequence: 1
  givenname: Hamidreza
  orcidid: 0000-0002-4311-4927
  surname: Behi
  fullname: Behi, Hamidreza
  email: hamidreza.behi@vub.ac.be
  organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
– sequence: 2
  givenname: Danial
  orcidid: 0000-0003-3093-6371
  surname: Karimi
  fullname: Karimi, Danial
  organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
– sequence: 3
  givenname: Foad Heidari
  orcidid: 0000-0003-3814-4547
  surname: Gandoman
  fullname: Gandoman, Foad Heidari
  organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
– sequence: 4
  givenname: Mohsen
  orcidid: 0000-0001-7464-9425
  surname: Akbarzadeh
  fullname: Akbarzadeh, Mohsen
  organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
– sequence: 5
  givenname: Sahar
  surname: Khaleghi
  fullname: Khaleghi, Sahar
  organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
– sequence: 6
  givenname: Theodoros
  surname: Kalogiannis
  fullname: Kalogiannis, Theodoros
  organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
– sequence: 7
  givenname: Md Sazzad
  orcidid: 0000-0001-8487-2452
  surname: Hosen
  fullname: Hosen, Md Sazzad
  organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
– sequence: 8
  givenname: Joris
  surname: Jaguemont
  fullname: Jaguemont, Joris
  organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
– sequence: 9
  givenname: Joeri
  surname: Van Mierlo
  fullname: Van Mierlo, Joeri
  organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
– sequence: 10
  givenname: Maitane
  surname: Berecibar
  fullname: Berecibar, Maitane
  organization: Research Group MOBI – Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
BookMark eNqFkM9qGzEQh0VJoWmaJ8hFL7Cu_nm1e-ihmDYNOCSHBHITs7MjW2Z3ZSQlkLfv2i6l9JAcxIiZ-X4w32d2NsWJGLuSYiGFrL_uFphDoYUSSs4d0SrxgZ0rJU0ll_bp7J__J3aZ804IIa1upDHnLNyvbjnkHHKhnm8JCt-HPXGMcQjThufXeTByHxMvWzq8NMLAR5hgQyNNhUfPYeLrhzuONAzHzW3YbCt8Tukw36fow0D5C_voYch0-adesMefPx5Wv6r13fXN6vu6QiNNqRCh1h6tluRBt4qs6Ro0tgPVt52oLUm9xKbxtgEQWkBnBAEtrVeqB1D6gt2ccvsIO7dPYYT06iIEd2zEtHGQSsCBnFQeyei-w7Yx3taNgRqtlAC9qoUwc5Y-ZWGKOSfyf_OkcAf5bueO8t1BvjvJn6n2PwpDgRLiVBKE4R3224mlWdFLoOQyBpqQ-pAIy3xDeJP_DTJtpB4
CitedBy_id crossref_primary_10_1002_ente_202301247
crossref_primary_10_1016_j_rser_2025_115614
crossref_primary_10_1016_j_icheatmasstransfer_2021_105367
crossref_primary_10_1016_j_applthermaleng_2021_117503
crossref_primary_10_1016_j_rineng_2022_100486
crossref_primary_10_1016_j_est_2025_115475
crossref_primary_10_1016_j_est_2025_115399
crossref_primary_10_3390_en14102907
crossref_primary_10_1016_j_enconman_2022_116359
crossref_primary_10_3390_en14206477
crossref_primary_10_1016_j_applthermaleng_2023_120070
crossref_primary_10_3390_wevj13050086
crossref_primary_10_1016_j_heliyon_2021_e07773
crossref_primary_10_1016_j_est_2024_112994
crossref_primary_10_3390_wevj15070302
crossref_primary_10_1016_j_csite_2023_103307
crossref_primary_10_3390_designs6050070
crossref_primary_10_1016_j_est_2023_109586
crossref_primary_10_3390_en14185924
crossref_primary_10_3390_en16196915
crossref_primary_10_1016_j_apenergy_2021_118348
crossref_primary_10_1080_08916152_2022_2071359
crossref_primary_10_1021_acs_energyfuels_3c03973
crossref_primary_10_2514_1_T6696
crossref_primary_10_1016_j_ijft_2023_100370
crossref_primary_10_1016_j_est_2022_104384
crossref_primary_10_1016_j_renene_2024_120331
crossref_primary_10_1088_1742_6596_2454_1_012006
crossref_primary_10_3390_en15197213
crossref_primary_10_1002_aenm_202202944
crossref_primary_10_30521_jes_1159281
crossref_primary_10_1016_j_est_2023_109054
crossref_primary_10_12677_japc_2024_134064
crossref_primary_10_1016_j_cej_2021_132741
crossref_primary_10_1021_acs_iecr_3c00706
crossref_primary_10_1016_j_est_2023_109852
crossref_primary_10_1016_j_csite_2021_101539
crossref_primary_10_1088_2053_1591_ad1949
crossref_primary_10_1080_15435075_2024_2319229
crossref_primary_10_1016_j_applthermaleng_2024_122438
crossref_primary_10_1016_j_fub_2025_100035
crossref_primary_10_1016_j_rser_2023_114224
crossref_primary_10_1016_j_rser_2021_111513
crossref_primary_10_1177_09576509231193195
crossref_primary_10_3390_electricity2040030
crossref_primary_10_1007_s10973_024_13580_z
crossref_primary_10_1007_s41918_024_00232_x
crossref_primary_10_3390_batteries9020101
crossref_primary_10_3390_en14217150
crossref_primary_10_3390_en15072515
crossref_primary_10_1002_ente_202101135
crossref_primary_10_1016_j_apenergy_2023_120987
crossref_primary_10_1080_01457632_2023_2234770
crossref_primary_10_1088_1742_6596_2047_1_012018
crossref_primary_10_3390_en14196176
crossref_primary_10_1016_j_est_2023_108749
crossref_primary_10_1088_1742_6596_2193_1_012025
crossref_primary_10_1016_j_icheatmasstransfer_2024_107856
crossref_primary_10_1088_1742_6596_2671_1_012021
crossref_primary_10_3390_mi15030310
crossref_primary_10_1016_j_est_2024_111814
crossref_primary_10_1016_j_enconman_2024_118644
crossref_primary_10_1016_j_est_2023_109081
crossref_primary_10_3390_app13148415
crossref_primary_10_3390_molecules27103119
crossref_primary_10_1016_j_seta_2022_102533
crossref_primary_10_1016_j_applthermaleng_2022_119495
crossref_primary_10_1016_j_jcis_2022_10_014
crossref_primary_10_3390_en14133881
crossref_primary_10_1016_j_nexus_2023_100227
crossref_primary_10_1016_j_jclepro_2022_132489
crossref_primary_10_1007_s10973_022_11241_7
crossref_primary_10_3390_designs6030053
crossref_primary_10_1016_j_csite_2022_101938
crossref_primary_10_1016_j_energy_2023_127323
crossref_primary_10_1016_j_enconman_2024_118085
Cites_doi 10.1016/j.jpowsour.2016.08.054
10.1016/j.est.2020.101508
10.1016/j.jpowsour.2011.11.075
10.1016/j.energy.2021.120165
10.1016/j.rser.2016.05.033
10.3390/batteries6040061
10.1016/j.enconman.2017.08.016
10.1016/j.energy.2015.12.064
10.1103/PhysRevE.99.043109
10.1016/j.est.2020.101893
10.1016/j.applthermaleng.2019.114679
10.1016/j.apenergy.2016.05.122
10.1016/j.applthermaleng.2018.06.048
10.1016/j.apenergy.2020.116159
10.1016/j.icheatmasstransfer.2017.07.004
10.1016/j.energy.2014.03.012
10.1016/j.est.2020.101645
10.1016/j.jpowsour.2020.228820
10.1016/j.jpowsour.2018.08.094
10.1016/j.est.2019.101155
10.1016/j.applthermaleng.2019.114183
10.1016/j.energy.2014.04.046
10.1016/j.jclepro.2019.02.086
10.1016/j.energy.2016.09.120
10.1016/j.jpowsour.2014.10.007
10.1016/j.applthermaleng.2020.116449
10.1016/j.ijheatmasstransfer.2020.120307
10.1016/j.apenergy.2016.03.108
10.1109/TVT.2015.2391053
10.1016/j.tca.2015.04.028
10.1016/j.energy.2018.08.166
10.1016/j.est.2018.01.001
10.1016/j.apenergy.2019.03.043
10.1016/j.solener.2011.02.007
10.1016/j.enconman.2016.08.090
10.1016/j.jpowsour.2008.03.082
10.1016/j.applthermaleng.2020.115280
10.1016/j.ijheatmasstransfer.2016.05.126
10.1016/j.jpowsour.2017.09.046
10.1016/j.applthermaleng.2017.08.109
10.1016/j.energy.2020.119564
10.1016/j.applthermaleng.2019.114571
10.1016/j.enconman.2017.02.022
10.1016/j.energy.2019.116658
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2021.100920
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_12fce43dbc984f7684a6c711aad26004
10_1016_j_csite_2021_100920
S2214157X21000836
GroupedDBID 0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-cca63fc731efa392e74b8c47ba2d9b067e135c88f78aa030ab40eae57f22daa23
IEDL.DBID DOA
ISSN 2214-157X
IngestDate Wed Aug 27 01:29:30 EDT 2025
Tue Jul 01 02:28:27 EDT 2025
Thu Apr 24 23:02:11 EDT 2025
Tue Jul 25 21:03:36 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Phase change material (PCM)
Thermal management system (TMS)
Heat pipe
Computational fluid dynamic (CFD)
Lithium-titanate (LTO) battery
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-cca63fc731efa392e74b8c47ba2d9b067e135c88f78aa030ab40eae57f22daa23
ORCID 0000-0003-3093-6371
0000-0002-4311-4927
0000-0003-3814-4547
0000-0001-7464-9425
0000-0001-8487-2452
OpenAccessLink https://doaj.org/article/12fce43dbc984f7684a6c711aad26004
ParticipantIDs doaj_primary_oai_doaj_org_article_12fce43dbc984f7684a6c711aad26004
crossref_primary_10_1016_j_csite_2021_100920
crossref_citationtrail_10_1016_j_csite_2021_100920
elsevier_sciencedirect_doi_10_1016_j_csite_2021_100920
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Behi, Mirmohammadi, Suma, Palm (bib24) 2014
Ghanbarpour (bib40) 2017
Sabbah, Kizilel, Selman, Al-Hallaj (bib9) 2008; 182
Xu, Liu, Wang, Hu (bib5) 2016; 172
Manikandan, Selvam, Poddar, Pranjyal, Lamba, Kaushik (bib55) 2019; 219
Behi, Mirmohammadi, Ghanbarpour, Behi, Palm (bib25) 2018; 164
Patel, Rathod (bib11) 2020; 480
Wang, Jiang, Li, Yan (bib3) 2016; 64
Mirmohammadi, Behi, Gan, Shen (bib36) 2019; 99
Liu, Wei, He, Zhao (bib23) 2017; 150
Ghanbarpour, Khodabandeh (bib57) 2015; 610
Jaguemont, Boulon, Dubé (bib54) 2016; 65
Karimi, Behi, Jaguemont, Sokkeh, Kalogiannis, Hosen, Berecibar, Van Mierlo (bib33) 2020; 30
Lu, Zhang, Ji, Xu, Zhang (bib1) 2020; 27
Samimi, Babapoor, Azizi, Karimi (bib29) 2016; 96
Ashwin, Chung, Wang (bib48) 2016; 328
Sheikholeslami, Ganji (bib50) 2016; 116
Fathabadi (bib17) 2014; 70
Samimi, Babapoor, Azizi, Karimi (bib26) 2016; 96
Mirmohammadi, Behi (bib32) 2012
Behi, Shakorian-poor, Mirmohammadi, Behi, Rubio, Nikkam, Farzaneh-Gord, Gan, Behnia (bib31) 2020; 193
Soltani, Ronsmans, Jaguemont, Van Mierlo, Van Den Bossche, Omar (bib53) 2019
Mevawalla, Panchal, Tran, Fowler, Fraser (bib6) 2020; 6
Gandoman, Behi, Berecibar, Jaguemont, Aleem, Behi, Van Mierlo (bib39) 2021
Jaguemont, Karimi, Van Mierlo (bib34) 2019
Saw, Ye, Tay, Chong, Kuan, Yew (bib7) 2016; 177
Siddique, Mahmud, Van Heyst (bib22) 2018; 401
Liu, Zhu, Wang, Huang, Sun, Yin (bib52) 2011; 85
Xia, Cao, Bi (bib21) 2017; 367
Panchal, Dincer, Agelin-Chaab, Fraser, Fowler (bib19) 2016; 101
Karimi, Behi, Hosen, Jaguemont, Berecibar, Van Mierlo (bib20) 2021; 185
Zhao, Wang, Li, Liu, Li (bib56) 2019; 11
Khaleghi, Karimi, Beheshti, Hosen, Behi, Berecibar, Van Mierlo (bib2) 2021; 282
Yang, Zhou, Zhou, Liu (bib12) 2020; 161
Cheng, Garg, Jishnu, Gao (bib14) 2020; 31
Jilte, Afzal, Panchal (bib35) 2021; 219
Zhang, Zhao, Liu, Gu (bib4) 2014; 68
Behi, Behi, Karimi, Jaguemont, Ghanbarpour, Behnia, Berecibar, Van Mierlo (bib38) 2020
Huang, Li, Zhang, Zhang, He, Li (bib47) 2018; 141
Behi, Karimi, Jaguemont, Gandoman, Khaleghi, Van Mierlo, Berecibar (bib8) 2020
Wu, Yang, Zhang, Chen, Wang (bib28) 2017; 138
Behi, Ghanbarpour, Behi (bib30) 2017; 127
Sheikholeslami, Ganji (bib49) 2016; 127
Dan, Yao, Zhang, Zhang, Zeng, Xu (bib16) 2019; 162
Behi, Karimi, Behi, Jaguemont, Ghanbarpour, Behnia, Berecibar, Van Mierlo (bib43) 2020; 32
Kariya (bib51) 2012
Nikkam, Saleemi, Behi, Khodabandeh, Toprak (bib37) 2017; 87
Chen, Chen, She, Song, Wang, Chen (bib13) 2020; 166
Behi, Karimi, Jaguemont, Gandoman, Kalogiannis, Berecibar, Van Mierlo (bib15) 2021
Karimi, Behi, Jaguemont, El Baghdadi, Van Mierlo, Hegazy (bib18) 2019
Zhao, Gu, Liu (bib44) 2015; 273
Somasundaram, Birgersson, Mujumdar (bib10) 2012; 203
Feng, Zhou, Li, Wang, Zhao, Luo, Wang, Yan (bib42) 2018; 16
Behi (bib27) 2015
Zhang, Qiu, Yin, Wang (bib45) 2020; 165
Jiang, Qu (bib46) 2019; 242
Behi, Karimi, Behi, Ghanbarpour, Jaguemont, Akbarzadeh Sokkeh, Heidari Gandoman, Berecibar, Van Mierlo (bib41) 2020
Chen (10.1016/j.csite.2021.100920_bib13) 2020; 166
Samimi (10.1016/j.csite.2021.100920_bib26) 2016; 96
Nikkam (10.1016/j.csite.2021.100920_bib37) 2017; 87
Behi (10.1016/j.csite.2021.100920_bib31) 2020; 193
Huang (10.1016/j.csite.2021.100920_bib47) 2018; 141
Behi (10.1016/j.csite.2021.100920_bib30) 2017; 127
Mevawalla (10.1016/j.csite.2021.100920_bib6) 2020; 6
Jilte (10.1016/j.csite.2021.100920_bib35) 2021; 219
Sheikholeslami (10.1016/j.csite.2021.100920_bib49) 2016; 127
Behi (10.1016/j.csite.2021.100920_bib27) 2015
Saw (10.1016/j.csite.2021.100920_bib7) 2016; 177
Behi (10.1016/j.csite.2021.100920_bib43) 2020; 32
Kariya (10.1016/j.csite.2021.100920_bib51)
Soltani (10.1016/j.csite.2021.100920_bib53) 2019
Jiang (10.1016/j.csite.2021.100920_bib46) 2019; 242
Jaguemont (10.1016/j.csite.2021.100920_bib54) 2016; 65
Behi (10.1016/j.csite.2021.100920_bib24) 2014
Ghanbarpour (10.1016/j.csite.2021.100920_bib40) 2017
Feng (10.1016/j.csite.2021.100920_bib42) 2018; 16
Ashwin (10.1016/j.csite.2021.100920_bib48) 2016; 328
Khaleghi (10.1016/j.csite.2021.100920_bib2) 2021; 282
Karimi (10.1016/j.csite.2021.100920_bib18) 2019
Yang (10.1016/j.csite.2021.100920_bib12) 2020; 161
Behi (10.1016/j.csite.2021.100920_bib38) 2020
Dan (10.1016/j.csite.2021.100920_bib16) 2019; 162
Gandoman (10.1016/j.csite.2021.100920_bib39) 2021
Somasundaram (10.1016/j.csite.2021.100920_bib10) 2012; 203
Zhang (10.1016/j.csite.2021.100920_bib45) 2020; 165
Patel (10.1016/j.csite.2021.100920_bib11) 2020; 480
Manikandan (10.1016/j.csite.2021.100920_bib55) 2019; 219
Jaguemont (10.1016/j.csite.2021.100920_bib34) 2019
Zhao (10.1016/j.csite.2021.100920_bib44) 2015; 273
Karimi (10.1016/j.csite.2021.100920_bib33) 2020; 30
Fathabadi (10.1016/j.csite.2021.100920_bib17) 2014; 70
Behi (10.1016/j.csite.2021.100920_bib8) 2020
Panchal (10.1016/j.csite.2021.100920_bib19) 2016; 101
Mirmohammadi (10.1016/j.csite.2021.100920_bib36) 2019; 99
Behi (10.1016/j.csite.2021.100920_bib15) 2021
Cheng (10.1016/j.csite.2021.100920_bib14) 2020; 31
Wu (10.1016/j.csite.2021.100920_bib28) 2017; 138
Lu (10.1016/j.csite.2021.100920_bib1) 2020; 27
Liu (10.1016/j.csite.2021.100920_bib52) 2011; 85
Liu (10.1016/j.csite.2021.100920_bib23) 2017; 150
Mirmohammadi (10.1016/j.csite.2021.100920_bib32)
Zhang (10.1016/j.csite.2021.100920_bib4) 2014; 68
Samimi (10.1016/j.csite.2021.100920_bib29) 2016; 96
Ghanbarpour (10.1016/j.csite.2021.100920_bib57) 2015; 610
Behi (10.1016/j.csite.2021.100920_bib25) 2018; 164
Karimi (10.1016/j.csite.2021.100920_bib20) 2021; 185
Xu (10.1016/j.csite.2021.100920_bib5) 2016; 172
Wang (10.1016/j.csite.2021.100920_bib3) 2016; 64
Sabbah (10.1016/j.csite.2021.100920_bib9) 2008; 182
Xia (10.1016/j.csite.2021.100920_bib21) 2017; 367
Behi (10.1016/j.csite.2021.100920_bib41) 2020
Zhao (10.1016/j.csite.2021.100920_bib56) 2019; 11
Siddique (10.1016/j.csite.2021.100920_bib22) 2018; 401
Sheikholeslami (10.1016/j.csite.2021.100920_bib50) 2016; 116
References_xml – volume: 116
  start-page: 341
  year: 2016
  end-page: 352
  ident: bib50
  article-title: Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies
  publication-title: Energy
– start-page: 1
  year: 2020
  end-page: 6
  ident: bib8
  article-title: Aluminum heat sink assisted air-cooling thermal management system for high current applications in electric vehicles
  publication-title: 2020 AEIT Int. Conf. Electr. Electron. Technol. Automot. (AEIT AUTOMOTIVE)
– year: 2012
  ident: bib51
  article-title: Development of an air-cooled, loop-type heat pipe with multiple condensers
– volume: 30
  start-page: 101508
  year: 2020
  ident: bib33
  article-title: Thermal performance enhancement of phase change material using aluminum-mesh grid foil for lithium-capacitor modules
  publication-title: J. Energy Storage
– volume: 161
  start-page: 120307
  year: 2020
  ident: bib12
  article-title: Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module
  publication-title: Int. J. Heat Mass Tran.
– volume: 85
  start-page: 922
  year: 2011
  end-page: 930
  ident: bib52
  article-title: Heat dissipation performance of silicon solar cells by direct dielectric liquid immersion under intensified illuminations
  publication-title: Sol. Energy
– volume: 610
  start-page: 37
  year: 2015
  end-page: 46
  ident: bib57
  article-title: Entropy generation analysis of cylindrical heat pipe using nanofluid
  publication-title: Thermochim. Acta
– volume: 177
  start-page: 783
  year: 2016
  end-page: 792
  ident: bib7
  article-title: Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling
  publication-title: Appl. Energy
– start-page: 120165
  year: 2021
  ident: bib15
  article-title: Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications
  publication-title: Energy
– volume: 65
  start-page: 1
  year: 2016
  end-page: 14
  ident: bib54
  article-title: Characterization and modeling of a hybrid-electric-vehicle lithium-ion battery pack at low temperatures
  publication-title: IEEE Trans. Veh. Technol.
– volume: 219
  start-page: 119564
  year: 2021
  ident: bib35
  article-title: A novel battery thermal management system using nano-enhanced phase change materials
  publication-title: Energy
– volume: 162
  start-page: 114183
  year: 2019
  ident: bib16
  article-title: Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model
  publication-title: Appl. Therm. Eng.
– volume: 164
  start-page: 449
  year: 2018
  end-page: 464
  ident: bib25
  article-title: Evaluation of a novel solar driven sorption cooling/heating system integrated with PCM storage compartment
  publication-title: Energy
– volume: 127
  start-page: 1132
  year: 2017
  end-page: 1142
  ident: bib30
  article-title: Investigation of PCM-assisted heat pipe for electronic cooling
  publication-title: Appl. Therm. Eng.
– volume: 27
  start-page: 101155
  year: 2020
  ident: bib1
  article-title: Research progress on power battery cooling technology for electric vehicles
  publication-title: J. Energy Storage
– volume: 182
  start-page: 630
  year: 2008
  end-page: 638
  ident: bib9
  article-title: Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution
  publication-title: J. Power Sources
– start-page: 1126
  year: 2019
  end-page: 1131
  ident: bib53
  article-title: A Three-dimensional thermal model for a commercial lithium-ion capacitor battery pack with non-uniform temperature distribution
  publication-title: Proc. IEEE Int. Conf. Ind. Technol. 2019-Febru
– volume: 367
  start-page: 90
  year: 2017
  end-page: 105
  ident: bib21
  article-title: A review on battery thermal management in electric vehicle application
  publication-title: J. Power Sources
– volume: 328
  start-page: 586
  year: 2016
  end-page: 598
  ident: bib48
  article-title: Capacity fade modelling of lithium-ion battery under cyclic loading conditions
  publication-title: J. Power Sources
– volume: 6
  start-page: 1
  year: 2020
  end-page: 26
  ident: bib6
  article-title: Mathematical heat transfer modeling and experimental validation of lithium-ion battery considering: tab and surface temperature, separator, electrolyte resistance, anode-cathode irreversible and reversible heat
  publication-title: Batteries
– volume: 185
  start-page: 116449
  year: 2021
  ident: bib20
  article-title: A compact and optimized liquid-cooled thermal management system for high power lithium-ion capacitors
  publication-title: Appl. Therm. Eng.
– year: 2014
  ident: bib24
  article-title: Optimized Energy Recovery in Line with Balancing of an ATES
– volume: 64
  start-page: 106
  year: 2016
  end-page: 128
  ident: bib3
  article-title: A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles
  publication-title: Renew. Sustain. Energy Rev.
– volume: 31
  start-page: 101645
  year: 2020
  ident: bib14
  article-title: Surrogate based multi-objective design optimization of lithium-ion battery air-cooled system in electric vehicles
  publication-title: J. Energy Storage
– volume: 87
  start-page: 164
  year: 2017
  end-page: 168
  ident: bib37
  article-title: Experimental investigation on the effect of SiO2 secondary phase on thermo-physical properties of SiC nanofluids
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 68
  start-page: 854
  year: 2014
  end-page: 861
  ident: bib4
  article-title: Investigation on a hydrogel based passive thermal management system for lithium ion batteries
  publication-title: Energy
– volume: 203
  start-page: 84
  year: 2012
  end-page: 96
  ident: bib10
  article-title: Thermal-electrochemical model for passive thermal management of a spiral-wound lithium-ion battery
  publication-title: J. Power Sources
– volume: 16
  start-page: 84
  year: 2018
  end-page: 92
  ident: bib42
  article-title: Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling
  publication-title: J. Energy Storage
– volume: 401
  start-page: 224
  year: 2018
  end-page: 237
  ident: bib22
  article-title: A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations
  publication-title: J. Power Sources
– volume: 96
  start-page: 355
  year: 2016
  end-page: 371
  ident: bib29
  article-title: Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers
  publication-title: Energy
– volume: 99
  start-page: 43109
  year: 2019
  ident: bib36
  article-title: Particle-shape-, temperature-, and concentration-dependent thermal conductivity and viscosity of nanofluids
  publication-title: Phys. Rev. E.
– start-page: 1
  year: 2019
  end-page: 8
  ident: bib34
  article-title: Optimal Passive Thermal Management of Lithium-Ion Capacitors for Automotive Applications
– volume: 32
  start-page: 101893
  year: 2020
  ident: bib43
  article-title: Thermal management analysis using heat pipe in the high current discharging of lithium-ion battery in electric vehicles
  publication-title: J. Energy Storage
– year: 2012
  ident: bib32
  article-title: Investigation on thermal conductivity, viscosity and stability of nanofluids
– year: 2017
  ident: bib40
  article-title: Investigation of Thermal Performance of Cylindrical Heat Pipes Operated with Nanofluids
– volume: 11
  year: 2019
  ident: bib56
  article-title: Experimental investigation of a lithium battery cooling system
  publication-title: Sustain. Times
– volume: 101
  start-page: 1093
  year: 2016
  end-page: 1102
  ident: bib19
  article-title: Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery
  publication-title: Int. J. Heat Mass Tran.
– volume: 219
  start-page: 359
  year: 2019
  end-page: 367
  ident: bib55
  article-title: Thermal management of low concentrated photovoltaic module with phase change material
  publication-title: J. Clean. Prod.
– volume: 96
  start-page: 355
  year: 2016
  end-page: 371
  ident: bib26
  article-title: Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers
  publication-title: Energy
– volume: 242
  start-page: 378
  year: 2019
  end-page: 392
  ident: bib46
  article-title: Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: a comprehensive numerical study
  publication-title: Appl. Energy
– volume: 127
  start-page: 112
  year: 2016
  end-page: 123
  ident: bib49
  article-title: Heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators
  publication-title: Energy Convers. Manag.
– volume: 165
  start-page: 114571
  year: 2020
  ident: bib45
  article-title: A novel heat pipe assisted separation type battery thermal management system based on phase change material
  publication-title: Appl. Therm. Eng.
– start-page: 563
  year: 2021
  end-page: 587
  ident: bib39
  article-title: Chapter 16 - reliability evaluation of Li-ion batteries for electric vehicles applications from the thermal perspectives
  publication-title: Uncertainties Mod. Power Syst.
– start-page: 115280
  year: 2020
  ident: bib41
  article-title: A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles
  publication-title: Appl. Therm. Eng.
– volume: 282
  start-page: 116159
  year: 2021
  ident: bib2
  article-title: Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network
  publication-title: Appl. Energy
– volume: 273
  start-page: 1089
  year: 2015
  end-page: 1097
  ident: bib44
  article-title: An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries
  publication-title: J. Power Sources
– start-page: 116240
  year: 2020
  ident: bib38
  article-title: Heat pipe air-cooled thermal management system for lithium-ion batteries: high power applications
  publication-title: Appl. Therm. Eng.
– volume: 193
  start-page: 116658
  year: 2020
  ident: bib31
  article-title: Experimental and numerical investigation on hydrothermal performance of nanofluids in micro-tubes
  publication-title: Energy
– volume: 141
  start-page: 1092
  year: 2018
  end-page: 1100
  ident: bib47
  article-title: Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system
  publication-title: Appl. Therm. Eng.
– volume: 172
  start-page: 180
  year: 2016
  end-page: 189
  ident: bib5
  article-title: Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies
  publication-title: Appl. Energy
– volume: 480
  start-page: 228820
  year: 2020
  ident: bib11
  article-title: Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries
  publication-title: J. Power Sources
– volume: 138
  start-page: 486
  year: 2017
  end-page: 492
  ident: bib28
  article-title: Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system
  publication-title: Energy Convers. Manag.
– volume: 166
  start-page: 114679
  year: 2020
  ident: bib13
  article-title: Construction of effective symmetrical air-cooled system for battery thermal management
  publication-title: Appl. Therm. Eng.
– volume: 70
  start-page: 529
  year: 2014
  end-page: 538
  ident: bib17
  article-title: High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles
  publication-title: Energy
– year: 2019
  ident: bib18
  article-title: Thermal Concept Design of MOSFET Power Modules in Inverter Subsystems for Electric Vehicles
– year: 2015
  ident: bib27
  article-title: Experimental and Numerical Study on Heat Pipe Assisted PCM Storage System
– volume: 150
  start-page: 304
  year: 2017
  end-page: 330
  ident: bib23
  article-title: Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review
  publication-title: Energy Convers. Manag.
– volume: 328
  start-page: 586
  year: 2016
  ident: 10.1016/j.csite.2021.100920_bib48
  article-title: Capacity fade modelling of lithium-ion battery under cyclic loading conditions
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.08.054
– volume: 11
  year: 2019
  ident: 10.1016/j.csite.2021.100920_bib56
  article-title: Experimental investigation of a lithium battery cooling system
  publication-title: Sustain. Times
– year: 2019
  ident: 10.1016/j.csite.2021.100920_bib18
– volume: 30
  start-page: 101508
  year: 2020
  ident: 10.1016/j.csite.2021.100920_bib33
  article-title: Thermal performance enhancement of phase change material using aluminum-mesh grid foil for lithium-capacitor modules
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101508
– volume: 203
  start-page: 84
  year: 2012
  ident: 10.1016/j.csite.2021.100920_bib10
  article-title: Thermal-electrochemical model for passive thermal management of a spiral-wound lithium-ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.11.075
– ident: 10.1016/j.csite.2021.100920_bib32
– start-page: 120165
  year: 2021
  ident: 10.1016/j.csite.2021.100920_bib15
  article-title: Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120165
– volume: 64
  start-page: 106
  year: 2016
  ident: 10.1016/j.csite.2021.100920_bib3
  article-title: A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.05.033
– volume: 6
  start-page: 1
  year: 2020
  ident: 10.1016/j.csite.2021.100920_bib6
  article-title: Mathematical heat transfer modeling and experimental validation of lithium-ion battery considering: tab and surface temperature, separator, electrolyte resistance, anode-cathode irreversible and reversible heat
  publication-title: Batteries
  doi: 10.3390/batteries6040061
– volume: 150
  start-page: 304
  year: 2017
  ident: 10.1016/j.csite.2021.100920_bib23
  article-title: Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.08.016
– volume: 96
  start-page: 355
  year: 2016
  ident: 10.1016/j.csite.2021.100920_bib29
  article-title: Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers
  publication-title: Energy
  doi: 10.1016/j.energy.2015.12.064
– volume: 99
  start-page: 43109
  year: 2019
  ident: 10.1016/j.csite.2021.100920_bib36
  article-title: Particle-shape-, temperature-, and concentration-dependent thermal conductivity and viscosity of nanofluids
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.99.043109
– volume: 32
  start-page: 101893
  year: 2020
  ident: 10.1016/j.csite.2021.100920_bib43
  article-title: Thermal management analysis using heat pipe in the high current discharging of lithium-ion battery in electric vehicles
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101893
– volume: 166
  start-page: 114679
  year: 2020
  ident: 10.1016/j.csite.2021.100920_bib13
  article-title: Construction of effective symmetrical air-cooled system for battery thermal management
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114679
– volume: 177
  start-page: 783
  year: 2016
  ident: 10.1016/j.csite.2021.100920_bib7
  article-title: Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.05.122
– volume: 141
  start-page: 1092
  year: 2018
  ident: 10.1016/j.csite.2021.100920_bib47
  article-title: Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.06.048
– year: 2014
  ident: 10.1016/j.csite.2021.100920_bib24
– volume: 96
  start-page: 355
  year: 2016
  ident: 10.1016/j.csite.2021.100920_bib26
  article-title: Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers
  publication-title: Energy
  doi: 10.1016/j.energy.2015.12.064
– start-page: 1
  year: 2019
  ident: 10.1016/j.csite.2021.100920_bib34
– volume: 282
  start-page: 116159
  year: 2021
  ident: 10.1016/j.csite.2021.100920_bib2
  article-title: Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.116159
– start-page: 563
  year: 2021
  ident: 10.1016/j.csite.2021.100920_bib39
  article-title: Chapter 16 - reliability evaluation of Li-ion batteries for electric vehicles applications from the thermal perspectives
– volume: 87
  start-page: 164
  year: 2017
  ident: 10.1016/j.csite.2021.100920_bib37
  article-title: Experimental investigation on the effect of SiO2 secondary phase on thermo-physical properties of SiC nanofluids
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2017.07.004
– volume: 68
  start-page: 854
  year: 2014
  ident: 10.1016/j.csite.2021.100920_bib4
  article-title: Investigation on a hydrogel based passive thermal management system for lithium ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2014.03.012
– volume: 31
  start-page: 101645
  year: 2020
  ident: 10.1016/j.csite.2021.100920_bib14
  article-title: Surrogate based multi-objective design optimization of lithium-ion battery air-cooled system in electric vehicles
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101645
– volume: 480
  start-page: 228820
  year: 2020
  ident: 10.1016/j.csite.2021.100920_bib11
  article-title: Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228820
– volume: 401
  start-page: 224
  year: 2018
  ident: 10.1016/j.csite.2021.100920_bib22
  article-title: A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.08.094
– volume: 27
  start-page: 101155
  year: 2020
  ident: 10.1016/j.csite.2021.100920_bib1
  article-title: Research progress on power battery cooling technology for electric vehicles
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.101155
– year: 2017
  ident: 10.1016/j.csite.2021.100920_bib40
– volume: 162
  start-page: 114183
  year: 2019
  ident: 10.1016/j.csite.2021.100920_bib16
  article-title: Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114183
– volume: 70
  start-page: 529
  year: 2014
  ident: 10.1016/j.csite.2021.100920_bib17
  article-title: High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2014.04.046
– volume: 219
  start-page: 359
  year: 2019
  ident: 10.1016/j.csite.2021.100920_bib55
  article-title: Thermal management of low concentrated photovoltaic module with phase change material
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.02.086
– volume: 116
  start-page: 341
  year: 2016
  ident: 10.1016/j.csite.2021.100920_bib50
  article-title: Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies
  publication-title: Energy
  doi: 10.1016/j.energy.2016.09.120
– volume: 273
  start-page: 1089
  year: 2015
  ident: 10.1016/j.csite.2021.100920_bib44
  article-title: An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.10.007
– volume: 185
  start-page: 116449
  year: 2021
  ident: 10.1016/j.csite.2021.100920_bib20
  article-title: A compact and optimized liquid-cooled thermal management system for high power lithium-ion capacitors
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116449
– volume: 161
  start-page: 120307
  year: 2020
  ident: 10.1016/j.csite.2021.100920_bib12
  article-title: Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2020.120307
– volume: 172
  start-page: 180
  year: 2016
  ident: 10.1016/j.csite.2021.100920_bib5
  article-title: Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.03.108
– volume: 65
  start-page: 1
  year: 2016
  ident: 10.1016/j.csite.2021.100920_bib54
  article-title: Characterization and modeling of a hybrid-electric-vehicle lithium-ion battery pack at low temperatures
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2015.2391053
– volume: 610
  start-page: 37
  year: 2015
  ident: 10.1016/j.csite.2021.100920_bib57
  article-title: Entropy generation analysis of cylindrical heat pipe using nanofluid
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2015.04.028
– volume: 164
  start-page: 449
  year: 2018
  ident: 10.1016/j.csite.2021.100920_bib25
  article-title: Evaluation of a novel solar driven sorption cooling/heating system integrated with PCM storage compartment
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.166
– start-page: 1
  year: 2020
  ident: 10.1016/j.csite.2021.100920_bib8
  article-title: Aluminum heat sink assisted air-cooling thermal management system for high current applications in electric vehicles
– volume: 16
  start-page: 84
  year: 2018
  ident: 10.1016/j.csite.2021.100920_bib42
  article-title: Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.01.001
– volume: 242
  start-page: 378
  year: 2019
  ident: 10.1016/j.csite.2021.100920_bib46
  article-title: Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: a comprehensive numerical study
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.043
– volume: 85
  start-page: 922
  year: 2011
  ident: 10.1016/j.csite.2021.100920_bib52
  article-title: Heat dissipation performance of silicon solar cells by direct dielectric liquid immersion under intensified illuminations
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.02.007
– ident: 10.1016/j.csite.2021.100920_bib51
– volume: 127
  start-page: 112
  year: 2016
  ident: 10.1016/j.csite.2021.100920_bib49
  article-title: Heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.08.090
– volume: 182
  start-page: 630
  year: 2008
  ident: 10.1016/j.csite.2021.100920_bib9
  article-title: Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.03.082
– start-page: 116240
  year: 2020
  ident: 10.1016/j.csite.2021.100920_bib38
  article-title: Heat pipe air-cooled thermal management system for lithium-ion batteries: high power applications
  publication-title: Appl. Therm. Eng.
– start-page: 115280
  year: 2020
  ident: 10.1016/j.csite.2021.100920_bib41
  article-title: A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115280
– volume: 101
  start-page: 1093
  year: 2016
  ident: 10.1016/j.csite.2021.100920_bib19
  article-title: Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2016.05.126
– volume: 367
  start-page: 90
  year: 2017
  ident: 10.1016/j.csite.2021.100920_bib21
  article-title: A review on battery thermal management in electric vehicle application
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.09.046
– volume: 127
  start-page: 1132
  year: 2017
  ident: 10.1016/j.csite.2021.100920_bib30
  article-title: Investigation of PCM-assisted heat pipe for electronic cooling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.08.109
– volume: 219
  start-page: 119564
  year: 2021
  ident: 10.1016/j.csite.2021.100920_bib35
  article-title: A novel battery thermal management system using nano-enhanced phase change materials
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119564
– volume: 165
  start-page: 114571
  year: 2020
  ident: 10.1016/j.csite.2021.100920_bib45
  article-title: A novel heat pipe assisted separation type battery thermal management system based on phase change material
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114571
– year: 2015
  ident: 10.1016/j.csite.2021.100920_bib27
– volume: 138
  start-page: 486
  year: 2017
  ident: 10.1016/j.csite.2021.100920_bib28
  article-title: Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.02.022
– volume: 193
  start-page: 116658
  year: 2020
  ident: 10.1016/j.csite.2021.100920_bib31
  article-title: Experimental and numerical investigation on hydrothermal performance of nanofluids in micro-tubes
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116658
– start-page: 1126
  year: 2019
  ident: 10.1016/j.csite.2021.100920_bib53
  article-title: A Three-dimensional thermal model for a commercial lithium-ion capacitor battery pack with non-uniform temperature distribution
SSID ssj0001738144
Score 2.4759486
Snippet This paper presents the concept of a passive thermal management system (TMS), including natural convection, heat pipe, and phase change material (PCM) for...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100920
SubjectTerms Computational fluid dynamic (CFD)
Heat pipe
Lithium-titanate (LTO) battery
Phase change material (PCM)
Thermal management system (TMS)
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqTjAgnqK85IERq8R27GSEigohCkgUqVt0dmwUVNoKyv_H5ySlLAwMGWKdk-jucvfJPn9HyLlXLk3BCAZcKyZFaRiUqWFWqFQGPF9C3D0fPajbF3k3SScdMmjPwmBZZRP765geo3Uz0m-02V9UVf-Z8yRkHz3hSQQSSLstZBYP8U2uf9ZZdMhJsacryjOc0JIPxTIvGzdpeUh1WDCQY9_vtQQVefzX8tRa7hluk60GNNKr-rt2SMfNdsnmGpXgHqmeBiMagDBaraQYYemiWjhq59iV55XWjM00QFQaIB9eISJP6fuq-oXOPYUZvR8_UlzMj5LIZcxszeBEm-7en_vkZXgzHtyypo0CszKRSxZspIS3WiTOQ4BDTkuTWakN8DI3IVu5RKQ2y7zOAMI_D0ZeOnCp9pyXAFwckO5sPnOHhILPrTJaAUgdhDikxucQgp4U3DiZ9whvdVfYhmMcW11Mi7aY7K2ICi9Q4UWt8B65WE1a1BQbf4tfo1FWosiPHQfmH69F4yBFwr116Hk2z6THzUZQVicJQImM_LJHVGvS4pe7hUdVf7396L8Tj8kG3tVVZieku_z4cqcBzyzNWXTYb8Si80Q
  priority: 102
  providerName: Elsevier
Title PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles
URI https://dx.doi.org/10.1016/j.csite.2021.100920
https://doaj.org/article/12fce43dbc984f7684a6c711aad26004
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJzhUpVB1C6184FiL2vFHcmRRESC27WGR9haNHbvaCnZXsPx_ZuzsKie4cEgO0cSOZiaeZ8_oDWOnyUZjwFcClLNCV50X0BkvQmWNRjzfQc6eT37bqzt9MzOzQasvqgkr9MBFcWdSpRBpjNDUOlHaCGxwUgJ0xK2emUAx5g02U_l0xWEkyp1clZJaSONmG8qhXNwVcmoWN_6SygQa6vY9CEuZvX8QnQYR5_Ij-9BDRX5ePvGA7cTFJ7Y_IBA8ZPO_FxOO8Jds1XFaV_lqvoo8LKkXzz9eeJo5AlOOQI8uXIfv-cO25oUvE4cFv53-4XSEnyWJwViEwtvE-57eT0fs7vLX9OJK9M0TRNBSrwVaxlYpuErGBAiCotO-Dtp5UF3jMUZFWZlQ18nVAPing9c_I0TjklIdgKo-s93FchG_MA6pCdY7C6AdCikwPjWAS52ulI-6GTG10V0bemZxanBx325KyP63WeEtKbwtCh-xH9uXVoVY43XxMRllK0qs2PkB-krb-0r7lq-MmN2YtO0BRgEOONT8tdm_vsfsx2yPhix1Zidsd_34HL8holn779l58X49G78AZszzlQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtswDBW67rDtMHTrhmVbNx16rJBZliX72AYr0i1pBzQFchMoWSpcdEnQZf9fUrbT9NJDD77IlG2QFPkg0Y-MHUYdigJcLkAaLVReOwF14YTPdaEQz9eQTs-n53p8pX7Ni_kOG_X_wlBZZRf725ieonU3Muy0OVw1zfBSygyzj5nLLAEJ_YK9RDRgaHWezU8eNloMJqXU1JUmCJrRsw-lOi-fTmkl5jqqGKio8fdWhkpE_luJaiv5nO6xtx1q5Mfth71jO2Hxnr3Z4hLcZ82f0ZQjEiaz1ZxCLF81q8D9ktryXPOWspkjRuWI-ejCkHzL_27KX_gycljwyeyC025-kiQyY-FbCifetff-94Fdnf6cjcai66MgvMrUWqCRdB69ybMQAfFQMMqVXhkHsq4cpquQ5YUvy2hKAFz04NSPAKEwUcoaQOYf2e5iuQifGIdYee2MBlAGhSQULlaAUU_l0gVVDZjsdWd9RzJOvS5ubV9NdmOTwi0p3LYKH7CjzaRVy7HxtPgJGWUjSgTZaWB5d207D7GZjD6Q6_mqVJFOG0F7k2UANVHyqwHTvUntI3_DRzVPvf3zcyd-Z6_Gs-nETs7Of39hr-lOW3L2le2u7_6HAwQ3a_ctOe89BuX2ZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PCM+assisted+heat+pipe+cooling+system+for+the+thermal+management+of+an+LTO+cell+for+high-current+profiles&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Hamidreza+Behi&rft.au=Danial+Karimi&rft.au=Foad+Heidari+Gandoman&rft.au=Mohsen+Akbarzadeh&rft.date=2021-06-01&rft.pub=Elsevier&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=25&rft.spage=100920&rft_id=info:doi/10.1016%2Fj.csite.2021.100920&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_12fce43dbc984f7684a6c711aad26004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon