Learning the spatial features of a locomotor task is slowed after stroke
The capacity for humans to learn a new walking pattern has been explored with a split-belt treadmill during single sessions of adaptation, but the split-belt treadmill can also be used to study longer-term motor learning. Although the literature provides some information about motor learning after s...
Saved in:
Published in | Journal of neurophysiology Vol. 112; no. 2; pp. 480 - 489 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
15.07.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The capacity for humans to learn a new walking pattern has been explored with a split-belt treadmill during single sessions of adaptation, but the split-belt treadmill can also be used to study longer-term motor learning. Although the literature provides some information about motor learning after stroke, existing studies have primarily involved the upper extremity and the results are mixed. The purpose of this study was to characterize learning of a novel locomotor task in stroke survivors. We hypothesized that the presence of neurological dysfunction from stroke would result in slower learning of a locomotor task and decreased retention of what was learned and that these deficits would be related to level of sensorimotor impairment. Sixteen participants with stroke and sixteen neurologically intact participants walked on a split-belt treadmill for 15 min on 5 consecutive days and during a retention test. Step length and limb phase were measured to capture learning of the spatial and temporal aspects of walking. Learning the spatial pattern of split-belt treadmill walking was slowed after stroke compared with neurologically intact subjects, whereas there were no differences between these two groups in learning the temporal pattern. During the retention test, poststroke participants demonstrated equal retention of the split-belt treadmill walking pattern compared with those who were neurologically intact. The results suggest that although stroke survivors are slower to learn a new spatial pattern of gait, if given sufficient time they are able to do so to the same extent as those who are neurologically intact. |
---|---|
AbstractList | The capacity for humans to learn a new walking pattern has been explored with a split-belt treadmill during single sessions of adaptation, but the split-belt treadmill can also be used to study longer-term motor learning. Although the literature provides some information about motor learning after stroke, existing studies have primarily involved the upper extremity and the results are mixed. The purpose of this study was to characterize learning of a novel locomotor task in stroke survivors. We hypothesized that the presence of neurological dysfunction from stroke would result in slower learning of a locomotor task and decreased retention of what was learned and that these deficits would be related to level of sensorimotor impairment. Sixteen participants with stroke and sixteen neurologically intact participants walked on a split-belt treadmill for 15 min on 5 consecutive days and during a retention test. Step length and limb phase were measured to capture learning of the spatial and temporal aspects of walking. Learning the spatial pattern of split-belt treadmill walking was slowed after stroke compared with neurologically intact subjects, whereas there were no differences between these two groups in learning the temporal pattern. During the retention test, poststroke participants demonstrated equal retention of the split-belt treadmill walking pattern compared with those who were neurologically intact. The results suggest that although stroke survivors are slower to learn a new spatial pattern of gait, if given sufficient time they are able to do so to the same extent as those who are neurologically intact. The capacity for humans to learn a new walking pattern has been explored with a split-belt treadmill during single sessions of adaptation, but the split-belt treadmill can also be used to study longer-term motor learning. Although the literature provides some information about motor learning after stroke, existing studies have primarily involved the upper extremity and the results are mixed. The purpose of this study was to characterize learning of a novel locomotor task in stroke survivors. We hypothesized that the presence of neurological dysfunction from stroke would result in slower learning of a locomotor task and decreased retention of what was learned and that these deficits would be related to level of sensorimotor impairment. Sixteen participants with stroke and sixteen neurologically intact participants walked on a split-belt treadmill for 15 min on 5 consecutive days and during a retention test. Step length and limb phase were measured to capture learning of the spatial and temporal aspects of walking. Learning the spatial pattern of split-belt treadmill walking was slowed after stroke compared with neurologically intact subjects, whereas there were no differences between these two groups in learning the temporal pattern. During the retention test, poststroke participants demonstrated equal retention of the split-belt treadmill walking pattern compared with those who were neurologically intact. The results suggest that although stroke survivors are slower to learn a new spatial pattern of gait, if given sufficient time they are able to do so to the same extent as those who are neurologically intact.The capacity for humans to learn a new walking pattern has been explored with a split-belt treadmill during single sessions of adaptation, but the split-belt treadmill can also be used to study longer-term motor learning. Although the literature provides some information about motor learning after stroke, existing studies have primarily involved the upper extremity and the results are mixed. The purpose of this study was to characterize learning of a novel locomotor task in stroke survivors. We hypothesized that the presence of neurological dysfunction from stroke would result in slower learning of a locomotor task and decreased retention of what was learned and that these deficits would be related to level of sensorimotor impairment. Sixteen participants with stroke and sixteen neurologically intact participants walked on a split-belt treadmill for 15 min on 5 consecutive days and during a retention test. Step length and limb phase were measured to capture learning of the spatial and temporal aspects of walking. Learning the spatial pattern of split-belt treadmill walking was slowed after stroke compared with neurologically intact subjects, whereas there were no differences between these two groups in learning the temporal pattern. During the retention test, poststroke participants demonstrated equal retention of the split-belt treadmill walking pattern compared with those who were neurologically intact. The results suggest that although stroke survivors are slower to learn a new spatial pattern of gait, if given sufficient time they are able to do so to the same extent as those who are neurologically intact. |
Author | Reisman, Darcy S. Tyrell, Christine M. Helm, Erin |
Author_xml | – sequence: 1 givenname: Christine M. surname: Tyrell fullname: Tyrell, Christine M. organization: Department of Physical Therapy, School of Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania – sequence: 2 givenname: Erin surname: Helm fullname: Helm, Erin organization: Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware; and, Department of Physical Therapy, University of Delaware, Newark, Delaware – sequence: 3 givenname: Darcy S. surname: Reisman fullname: Reisman, Darcy S. organization: Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware; and, Department of Physical Therapy, University of Delaware, Newark, Delaware |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24790172$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctPAyEQxompsQ89ejUcvWwFll22FxNjfCVNvOiZsDxa2i1UoBr_e1lfURNPDDO_-WYy3xgMnHcagGOMphhX5GzlpgjRpp4ShMs9MMo5UuBq1gzACKEcl4ixIRjHuEIIsQqRAzAklM0QZmQEbudaBGfdAqalhnErkhUdNFqkXdARegMF7Lz0G598gEnENbQRxs6_aAWFSTrAmIJf60Owb0QX9dHnOwGP11cPl7fF_P7m7vJiXkiKaSqkUJIqpUiFZ4oZVbcCl9o0oqS4NlrRRrZt0xJclnjWkP4jm1ZJk2uyrUw5Aecfuttdu8k57VIQHd8GuxHhlXth-e-Ks0u-8M-coppSXGWB00-B4J92Oia-sVHqrhNO-13kuKIVY4yQOqMnP2d9D_k6XwaKD0AGH2PQ5hvBiPf28JXj7_bw3p7Ml394aVM-ue9Xtd0_XW_HrJXX |
CitedBy_id | crossref_primary_10_1177_15459683211011226 crossref_primary_10_1177_15459683241309588 crossref_primary_10_1016_j_pmr_2015_06_010 crossref_primary_10_1152_jn_00340_2020 crossref_primary_10_1016_j_jbiomech_2015_04_027 crossref_primary_10_1177_15459683211001025 crossref_primary_10_3389_fnagi_2017_00040 crossref_primary_10_1080_10749357_2017_1399527 crossref_primary_10_1097_NPT_0000000000000373 crossref_primary_10_3389_fphys_2024_1409304 crossref_primary_10_1097_NPT_0000000000000411 crossref_primary_10_1152_jn_00432_2018 crossref_primary_10_1007_s00221_015_4465_8 crossref_primary_10_1097_TGR_0000000000000433 crossref_primary_10_1177_1545968318809921 crossref_primary_10_3390_brainsci10100737 crossref_primary_10_1016_j_jbiomech_2017_11_031 crossref_primary_10_1113_JP275881 crossref_primary_10_1152_jn_00156_2024 crossref_primary_10_1152_jn_00162_2022 crossref_primary_10_1177_15459683231195039 crossref_primary_10_3390_brainsci10120982 crossref_primary_10_1097_NPT_0000000000000260 crossref_primary_10_1016_j_nlm_2017_06_003 crossref_primary_10_1186_s12984_020_00698_y crossref_primary_10_1007_s40846_018_0456_0 crossref_primary_10_1016_j_neuroscience_2020_09_055 crossref_primary_10_1186_s12984_015_0051_3 crossref_primary_10_1186_s12984_015_0054_0 crossref_primary_10_1152_jn_00937_2014 |
Cites_doi | 10.1016/S0304-3940(00)01734-1 10.1523/JNEUROSCI.4218-04.2005 10.1101/lm.80104 10.1016/j.neuroimage.2011.12.049 10.1152/jn.00266.2007 10.1016/j.tins.2005.10.003 10.1016/j.sleep.2007.03.011 10.1177/1545968309332880 10.1007/s002210100892 10.1152/jn.00391.2011 10.1097/01.NPT.0000282566.48050.9b 10.1037/0096-1523.30.1.212 10.1152/jn.00501.2009 10.1523/JNEUROSCI.2214-04.2004 10.1093/brain/awm035 10.2340/1650197719702239298 10.1523/JNEUROSCI.4205-10.2010 10.1152/jn.00129.2004 10.1016/0168-0102(94)90150-3 10.1093/brain/119.4.1199 10.1152/jn.1999.82.5.2108 10.1093/ptj/83.11.976 10.1523/JNEUROSCI.1367-11.2011 10.1177/1545968307300438 10.1186/1744-9081-5-36 10.1016/j.nlm.2010.01.011 10.1186/1471-2202-10-72 10.1097/NPT.0b013e31814b148e 10.1523/JNEUROSCI.2622-06.2006 10.1097/NPT.0b013e3181fd5eab 10.1002/hbm.21019 10.1152/jn.00832.2009 10.1177/1545968306298414 10.1016/S0028-3932(98)00145-6 10.1523/JNEUROSCI.3416-08.2008 10.1523/JNEUROSCI.17-01-00409.1997 10.1152/jn.2001.86.4.1666 10.1111/j.1460-9568.2008.06421.x 10.1523/JNEUROSCI.2570-07.2007 10.1080/00222899809601339 10.1007/s00221-006-0417-7 10.2340/1650197771331 10.1093/brain/119.4.1183 10.1152/jn.00089.2005 10.1152/jn.00856.2011 10.1016/j.neuron.2011.04.012 10.1097/WCO.0b013e328315a293 10.1038/nature712 |
ContentType | Journal Article |
Copyright | Copyright © 2014 the American Physiological Society. Copyright © 2014 the American Physiological Society 2014 American Physiological Society |
Copyright_xml | – notice: Copyright © 2014 the American Physiological Society. – notice: Copyright © 2014 the American Physiological Society 2014 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1152/jn.00486.2013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 489 |
ExternalDocumentID | PMC4064415 24790172 10_1152_jn_00486_2013 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM-103446-13 – fundername: NCRR NIH HHS grantid: S10 RR-022396 – fundername: NICHD NIH HHS grantid: T32 HD007490 – fundername: NICHD NIH HHS grantid: K01 HD-050582 – fundername: NIGMS NIH HHS grantid: P20 GM103446 |
GroupedDBID | --- -DZ -~X .55 18M 29L 2WC 39C 4.4 53G 5GY 5VS AAYXX ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AETEA AFFNX AFOSN AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P H13 H~9 ITBOX KQ8 L7B OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT W8F WH7 WOQ WOW X7M XSW YBH YQT YSK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c414t-cadc4ddd2519d7fd6ba13ef8a3416fed48cbb8b21331982cbb8c8bdcffedcb5f3 |
ISSN | 0022-3077 1522-1598 |
IngestDate | Thu Aug 21 18:12:14 EDT 2025 Fri Jul 11 12:04:11 EDT 2025 Thu Apr 03 07:00:06 EDT 2025 Tue Jul 01 04:09:02 EDT 2025 Thu Apr 24 23:01:18 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | adaptation learning stroke locomotion |
Language | English |
License | Copyright © 2014 the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c414t-cadc4ddd2519d7fd6ba13ef8a3416fed48cbb8b21331982cbb8c8bdcffedcb5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24790172 |
PQID | 1545777226 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4064415 proquest_miscellaneous_1545777226 pubmed_primary_24790172 crossref_primary_10_1152_jn_00486_2013 crossref_citationtrail_10_1152_jn_00486_2013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-15 |
PublicationDateYYYYMMDD | 2014-07-15 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2014 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 Schmidt R (B38) 1988 Borg G (B4) 1970; 2 B30 B31 B32 B33 B34 B35 B36 B37 B1 B3 B5 B6 B7 B8 Schmidt R (B39) 2000 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 Fugl-Meyer AR (B14) 1975; 7 B50 B51 B10 B11 B12 B13 B15 Boyd LA (B9) 2003; 83 B16 B17 B18 B19 Baizer JS (B2) 1974; 236 20147417 - J Neurophysiol. 2010 Apr;103(4):1954-62 11807497 - Nature. 2002 Feb 7;415(6872):640-4 17405765 - Brain. 2007 Jul;130(Pt 7):1861-72 5523831 - Scand J Rehabil Med. 1970;2(2):92-8 22016547 - J Neurosci. 2011 Oct 19;31(42):15136-43 19307434 - Neurorehabil Neural Repair. 2009 Sep;23(7):735-44 22514286 - J Neurophysiol. 2012 Jul;108(2):578-94 15958603 - J Neurophysiol. 2005 Oct;94(4):2403-15 21159971 - J Neurosci. 2010 Dec 15;30(50):17015-22 1135616 - Scand J Rehabil Med. 1975;7(1):13-31 4206505 - J Physiol. 1974 Jan;236(1):34P-35P 11713636 - Exp Brain Res. 2001 Nov;141(2):250-3 19715593 - Behav Brain Funct. 2009 Aug 28;5:36 18025960 - J Neurol Phys Ther. 2007 Sep;31(3):145-54 19583831 - BMC Neurosci. 2009;10:72 14769078 - J Exp Psychol Hum Percept Perform. 2004 Feb;30(1):212-33 8987766 - J Neurosci. 1997 Jan 1;17(1):409-19 20725908 - Hum Brain Mapp. 2011 Feb;32(2):290-303 22514294 - J Neurophysiol. 2012 Jul;108(2):672-83 10561391 - J Neurophysiol. 1999 Nov;82(5):2108-19 17507504 - J Neurophysiol. 2007 Jul;98(1):54-62 18057199 - J Neurosci. 2007 Dec 5;27(49):13413-9 14577825 - Phys Ther. 2003 Nov;83(11):976-89 8813282 - Brain. 1996 Aug;119 ( Pt 4):1183-98 15190088 - J Neurophysiol. 2004 Oct;92(4):2497-509 10426521 - Neuropsychologia. 1999 Jul;37(8):975-87 17416874 - Neurorehabil Neural Repair. 2007 Sep-Oct;21(5):444-54 15470131 - J Neurosci. 2004 Oct 6;24(40):8662-71 8008254 - Neurosci Res. 1994 Mar;19(2):245-8 20037081 - J Mot Behav. 1998 Sep;30(3):234-48 17369514 - Neurorehabil Neural Repair. 2007 Sep-Oct;21(5):398-411 20132902 - Neurobiol Learn Mem. 2010 May;93(4):532-9 22227134 - Neuroimage. 2012 Mar;60(1):324-31 17470412 - Sleep Med. 2007 Jun;8(4):331-43 18989103 - Curr Opin Neurol. 2008 Dec;21(6):628-33 15286181 - Learn Mem. 2004 Jul-Aug;11(4):388-96 18783369 - Eur J Neurosci. 2008 Sep;28(6):1216-21 18815252 - J Neurosci. 2008 Sep 24;28(39):9664-9 16957067 - J Neurosci. 2006 Sep 6;26(36):9107-16 16796767 - J Neurol Phys Ther. 2006 Jun;30(2):46-57; discussion 58-9 16528496 - Exp Brain Res. 2006 Sep;174(1):45-52 11600630 - J Neurophysiol. 2001 Oct;86(4):1666-70 11154837 - Neurosci Lett. 2001 Jan 26;298(1):65-9 21609832 - Neuron. 2011 May 26;70(4):787-801 21084921 - J Neurol Phys Ther. 2010 Dec;34(4):202-7 8813283 - Brain. 1996 Aug;119 ( Pt 4):1199-211 19889853 - J Neurophysiol. 2010 Jan;103(1):183-91 16290273 - Trends Neurosci. 2006 Jan;29(1):58-64 15647491 - J Neurosci. 2005 Jan 12;25(2):473-8 |
References_xml | – ident: B8 doi: 10.1016/S0304-3940(00)01734-1 – ident: B19 doi: 10.1523/JNEUROSCI.4218-04.2005 – ident: B10 doi: 10.1101/lm.80104 – ident: B1 doi: 10.1016/j.neuroimage.2011.12.049 – ident: B44 doi: 10.1152/jn.00266.2007 – ident: B20 doi: 10.1016/j.tins.2005.10.003 – ident: B42 doi: 10.1016/j.sleep.2007.03.011 – ident: B37 doi: 10.1177/1545968309332880 – ident: B51 doi: 10.1007/s002210100892 – ident: B23 doi: 10.1152/jn.00391.2011 – ident: B5 doi: 10.1097/01.NPT.0000282566.48050.9b – ident: B31 doi: 10.1037/0096-1523.30.1.212 – ident: B45 doi: 10.1152/jn.00501.2009 – ident: B11 doi: 10.1523/JNEUROSCI.2214-04.2004 – ident: B36 doi: 10.1093/brain/awm035 – volume: 2 start-page: 92 year: 1970 ident: B4 publication-title: Scand J Rehabil Med doi: 10.2340/1650197719702239298 – ident: B43 doi: 10.1523/JNEUROSCI.4205-10.2010 – ident: B28 doi: 10.1152/jn.00129.2004 – ident: B50 doi: 10.1016/0168-0102(94)90150-3 – ident: B26 doi: 10.1093/brain/119.4.1199 – ident: B21 doi: 10.1152/jn.1999.82.5.2108 – volume: 236 start-page: 34P year: 1974 ident: B2 publication-title: J Physiol – volume: 83 start-page: 976 year: 2003 ident: B9 publication-title: Phys Ther doi: 10.1093/ptj/83.11.976 – ident: B24 doi: 10.1523/JNEUROSCI.1367-11.2011 – ident: B7 doi: 10.1177/1545968307300438 – ident: B48 doi: 10.1186/1744-9081-5-36 – ident: B46 doi: 10.1016/j.nlm.2010.01.011 – ident: B6 doi: 10.1186/1471-2202-10-72 – ident: B47 doi: 10.1097/NPT.0b013e31814b148e – ident: B29 doi: 10.1523/JNEUROSCI.2622-06.2006 – ident: B35 doi: 10.1097/NPT.0b013e3181fd5eab – volume-title: Motor Control and Learning: A Behavioral Emphasis year: 1988 ident: B38 – ident: B27 doi: 10.1002/hbm.21019 – volume-title: Motor Learning and Performance year: 2000 ident: B39 – ident: B22 doi: 10.1152/jn.00832.2009 – ident: B12 doi: 10.1177/1545968306298414 – ident: B49 doi: 10.1016/S0028-3932(98)00145-6 – ident: B32 doi: 10.1523/JNEUROSCI.3416-08.2008 – ident: B40 doi: 10.1523/JNEUROSCI.17-01-00409.1997 – ident: B13 doi: 10.1152/jn.2001.86.4.1666 – ident: B17 doi: 10.1111/j.1460-9568.2008.06421.x – ident: B16 doi: 10.1523/JNEUROSCI.2570-07.2007 – ident: B15 doi: 10.1080/00222899809601339 – ident: B33 doi: 10.1007/s00221-006-0417-7 – volume: 7 start-page: 13 year: 1975 ident: B14 publication-title: Scand J Rehabil Med doi: 10.2340/1650197771331 – ident: B25 doi: 10.1093/brain/119.4.1183 – ident: B34 doi: 10.1152/jn.00089.2005 – ident: B41 doi: 10.1152/jn.00856.2011 – ident: B18 doi: 10.1016/j.neuron.2011.04.012 – ident: B3 doi: 10.1097/WCO.0b013e328315a293 – ident: B30 doi: 10.1038/nature712 – reference: 17405765 - Brain. 2007 Jul;130(Pt 7):1861-72 – reference: 20725908 - Hum Brain Mapp. 2011 Feb;32(2):290-303 – reference: 18057199 - J Neurosci. 2007 Dec 5;27(49):13413-9 – reference: 18783369 - Eur J Neurosci. 2008 Sep;28(6):1216-21 – reference: 4206505 - J Physiol. 1974 Jan;236(1):34P-35P – reference: 16796767 - J Neurol Phys Ther. 2006 Jun;30(2):46-57; discussion 58-9 – reference: 18989103 - Curr Opin Neurol. 2008 Dec;21(6):628-33 – reference: 17416874 - Neurorehabil Neural Repair. 2007 Sep-Oct;21(5):444-54 – reference: 19307434 - Neurorehabil Neural Repair. 2009 Sep;23(7):735-44 – reference: 22016547 - J Neurosci. 2011 Oct 19;31(42):15136-43 – reference: 8813283 - Brain. 1996 Aug;119 ( Pt 4):1199-211 – reference: 8008254 - Neurosci Res. 1994 Mar;19(2):245-8 – reference: 20037081 - J Mot Behav. 1998 Sep;30(3):234-48 – reference: 15286181 - Learn Mem. 2004 Jul-Aug;11(4):388-96 – reference: 19715593 - Behav Brain Funct. 2009 Aug 28;5:36 – reference: 21609832 - Neuron. 2011 May 26;70(4):787-801 – reference: 10426521 - Neuropsychologia. 1999 Jul;37(8):975-87 – reference: 1135616 - Scand J Rehabil Med. 1975;7(1):13-31 – reference: 16290273 - Trends Neurosci. 2006 Jan;29(1):58-64 – reference: 18025960 - J Neurol Phys Ther. 2007 Sep;31(3):145-54 – reference: 17507504 - J Neurophysiol. 2007 Jul;98(1):54-62 – reference: 11154837 - Neurosci Lett. 2001 Jan 26;298(1):65-9 – reference: 18815252 - J Neurosci. 2008 Sep 24;28(39):9664-9 – reference: 5523831 - Scand J Rehabil Med. 1970;2(2):92-8 – reference: 11713636 - Exp Brain Res. 2001 Nov;141(2):250-3 – reference: 20132902 - Neurobiol Learn Mem. 2010 May;93(4):532-9 – reference: 15470131 - J Neurosci. 2004 Oct 6;24(40):8662-71 – reference: 22514286 - J Neurophysiol. 2012 Jul;108(2):578-94 – reference: 14769078 - J Exp Psychol Hum Percept Perform. 2004 Feb;30(1):212-33 – reference: 19583831 - BMC Neurosci. 2009;10:72 – reference: 15958603 - J Neurophysiol. 2005 Oct;94(4):2403-15 – reference: 11807497 - Nature. 2002 Feb 7;415(6872):640-4 – reference: 19889853 - J Neurophysiol. 2010 Jan;103(1):183-91 – reference: 16957067 - J Neurosci. 2006 Sep 6;26(36):9107-16 – reference: 10561391 - J Neurophysiol. 1999 Nov;82(5):2108-19 – reference: 17470412 - Sleep Med. 2007 Jun;8(4):331-43 – reference: 21084921 - J Neurol Phys Ther. 2010 Dec;34(4):202-7 – reference: 22227134 - Neuroimage. 2012 Mar;60(1):324-31 – reference: 16528496 - Exp Brain Res. 2006 Sep;174(1):45-52 – reference: 14577825 - Phys Ther. 2003 Nov;83(11):976-89 – reference: 20147417 - J Neurophysiol. 2010 Apr;103(4):1954-62 – reference: 8813282 - Brain. 1996 Aug;119 ( Pt 4):1183-98 – reference: 17369514 - Neurorehabil Neural Repair. 2007 Sep-Oct;21(5):398-411 – reference: 21159971 - J Neurosci. 2010 Dec 15;30(50):17015-22 – reference: 8987766 - J Neurosci. 1997 Jan 1;17(1):409-19 – reference: 15647491 - J Neurosci. 2005 Jan 12;25(2):473-8 – reference: 22514294 - J Neurophysiol. 2012 Jul;108(2):672-83 – reference: 11600630 - J Neurophysiol. 2001 Oct;86(4):1666-70 – reference: 15190088 - J Neurophysiol. 2004 Oct;92(4):2497-509 |
SSID | ssj0007502 |
Score | 2.285587 |
Snippet | The capacity for humans to learn a new walking pattern has been explored with a split-belt treadmill during single sessions of adaptation, but the split-belt... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 480 |
SubjectTerms | Aged Case-Control Studies Female Gait Humans Locomotion Male Middle Aged Spatial Learning Stroke - physiopathology |
Title | Learning the spatial features of a locomotor task is slowed after stroke |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24790172 https://www.proquest.com/docview/1545777226 https://pubmed.ncbi.nlm.nih.gov/PMC4064415 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5F5cIFAeURKGiRUE842Ou1Yx-rAoqAIJBSqTfL3odIH3YVO0LpD-B3M7O7flGQoBcrsTe2st_n8ex45htCXjM_VoHiqVfoCBYooYy9NFLCY0mU-6EGRynHQuHll3hxwj-eRqeTyc9B1tK2KWbi-o91JbdBFfYBrlgl-x_IdieFHfAZ8IUtIAzbf8L4cxvXQO-xxtxoLEdURquztpWP8KzCfDvMJczrc2xfXl9UP8DLtM3B62ZTnY-zgXoP1WhdmtDHKPa-2m3cywqrTIB-6nLWB1VtlBUMbF9kpta1i7S-gxsLzNVsGG0IOIYxbb3lIMEfzXN7cUMll2E6NLRYJOC7Di3K2VbYB95TMjK-ARuwjA1MKbcdntxTmdtGQzcNfoQCsmflzGgHYqpeOBwHeF1dGvQZn6e43u2fe1024tflMbg13GgV3GGw3MBOGJ--9arz4FX1qvPwp1qt1oi9HV0ZlaXdZcZuzo21y-8puAOfZnWf3HNQ0yPLrAdkosqHZP-ozJvqckcPaTf9u32yaMlGgWzUkY22ZKOVpjntyEaRbHRdU0s2ashGLdkekZMP71fHC8-14fAED3jjiVwKLqXEGmc51zIu8iBUOsnBAYq1kjwRRZEULAjBnCcMv4ikkELDMVFEOnxM9sqqVE8JTX2RxuAwSlg0c8V0knI_Eb6fB4mY-0xPyZt21jLhNOqxVcpFZtaqEcvOyszMd4bzPSWH3fArK87yt4GvWggyMJ_4TiwvVbWtM1xBzBHyeEqeWEi6U7VYTsl8BFY3AKXZx0fK9Xcj0e749OzWv3xO7va33wHZazZb9QLc36Z4abj5C0-8tCI |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+the+spatial+features+of+a+locomotor+task+is+slowed+after+stroke&rft.jtitle=Journal+of+neurophysiology&rft.au=Tyrell%2C+Christine+M.&rft.au=Helm%2C+Erin&rft.au=Reisman%2C+Darcy+S.&rft.date=2014-07-15&rft.pub=American+Physiological+Society&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=112&rft.issue=2&rft.spage=480&rft.epage=489&rft_id=info:doi/10.1152%2Fjn.00486.2013&rft_id=info%3Apmid%2F24790172&rft.externalDocID=PMC4064415 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |