Learning the spatial features of a locomotor task is slowed after stroke

The capacity for humans to learn a new walking pattern has been explored with a split-belt treadmill during single sessions of adaptation, but the split-belt treadmill can also be used to study longer-term motor learning. Although the literature provides some information about motor learning after s...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 112; no. 2; pp. 480 - 489
Main Authors Tyrell, Christine M., Helm, Erin, Reisman, Darcy S.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 15.07.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The capacity for humans to learn a new walking pattern has been explored with a split-belt treadmill during single sessions of adaptation, but the split-belt treadmill can also be used to study longer-term motor learning. Although the literature provides some information about motor learning after stroke, existing studies have primarily involved the upper extremity and the results are mixed. The purpose of this study was to characterize learning of a novel locomotor task in stroke survivors. We hypothesized that the presence of neurological dysfunction from stroke would result in slower learning of a locomotor task and decreased retention of what was learned and that these deficits would be related to level of sensorimotor impairment. Sixteen participants with stroke and sixteen neurologically intact participants walked on a split-belt treadmill for 15 min on 5 consecutive days and during a retention test. Step length and limb phase were measured to capture learning of the spatial and temporal aspects of walking. Learning the spatial pattern of split-belt treadmill walking was slowed after stroke compared with neurologically intact subjects, whereas there were no differences between these two groups in learning the temporal pattern. During the retention test, poststroke participants demonstrated equal retention of the split-belt treadmill walking pattern compared with those who were neurologically intact. The results suggest that although stroke survivors are slower to learn a new spatial pattern of gait, if given sufficient time they are able to do so to the same extent as those who are neurologically intact.
AbstractList The capacity for humans to learn a new walking pattern has been explored with a split-belt treadmill during single sessions of adaptation, but the split-belt treadmill can also be used to study longer-term motor learning. Although the literature provides some information about motor learning after stroke, existing studies have primarily involved the upper extremity and the results are mixed. The purpose of this study was to characterize learning of a novel locomotor task in stroke survivors. We hypothesized that the presence of neurological dysfunction from stroke would result in slower learning of a locomotor task and decreased retention of what was learned and that these deficits would be related to level of sensorimotor impairment. Sixteen participants with stroke and sixteen neurologically intact participants walked on a split-belt treadmill for 15 min on 5 consecutive days and during a retention test. Step length and limb phase were measured to capture learning of the spatial and temporal aspects of walking. Learning the spatial pattern of split-belt treadmill walking was slowed after stroke compared with neurologically intact subjects, whereas there were no differences between these two groups in learning the temporal pattern. During the retention test, poststroke participants demonstrated equal retention of the split-belt treadmill walking pattern compared with those who were neurologically intact. The results suggest that although stroke survivors are slower to learn a new spatial pattern of gait, if given sufficient time they are able to do so to the same extent as those who are neurologically intact.
The capacity for humans to learn a new walking pattern has been explored with a split-belt treadmill during single sessions of adaptation, but the split-belt treadmill can also be used to study longer-term motor learning. Although the literature provides some information about motor learning after stroke, existing studies have primarily involved the upper extremity and the results are mixed. The purpose of this study was to characterize learning of a novel locomotor task in stroke survivors. We hypothesized that the presence of neurological dysfunction from stroke would result in slower learning of a locomotor task and decreased retention of what was learned and that these deficits would be related to level of sensorimotor impairment. Sixteen participants with stroke and sixteen neurologically intact participants walked on a split-belt treadmill for 15 min on 5 consecutive days and during a retention test. Step length and limb phase were measured to capture learning of the spatial and temporal aspects of walking. Learning the spatial pattern of split-belt treadmill walking was slowed after stroke compared with neurologically intact subjects, whereas there were no differences between these two groups in learning the temporal pattern. During the retention test, poststroke participants demonstrated equal retention of the split-belt treadmill walking pattern compared with those who were neurologically intact. The results suggest that although stroke survivors are slower to learn a new spatial pattern of gait, if given sufficient time they are able to do so to the same extent as those who are neurologically intact.The capacity for humans to learn a new walking pattern has been explored with a split-belt treadmill during single sessions of adaptation, but the split-belt treadmill can also be used to study longer-term motor learning. Although the literature provides some information about motor learning after stroke, existing studies have primarily involved the upper extremity and the results are mixed. The purpose of this study was to characterize learning of a novel locomotor task in stroke survivors. We hypothesized that the presence of neurological dysfunction from stroke would result in slower learning of a locomotor task and decreased retention of what was learned and that these deficits would be related to level of sensorimotor impairment. Sixteen participants with stroke and sixteen neurologically intact participants walked on a split-belt treadmill for 15 min on 5 consecutive days and during a retention test. Step length and limb phase were measured to capture learning of the spatial and temporal aspects of walking. Learning the spatial pattern of split-belt treadmill walking was slowed after stroke compared with neurologically intact subjects, whereas there were no differences between these two groups in learning the temporal pattern. During the retention test, poststroke participants demonstrated equal retention of the split-belt treadmill walking pattern compared with those who were neurologically intact. The results suggest that although stroke survivors are slower to learn a new spatial pattern of gait, if given sufficient time they are able to do so to the same extent as those who are neurologically intact.
Author Reisman, Darcy S.
Tyrell, Christine M.
Helm, Erin
Author_xml – sequence: 1
  givenname: Christine M.
  surname: Tyrell
  fullname: Tyrell, Christine M.
  organization: Department of Physical Therapy, School of Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania
– sequence: 2
  givenname: Erin
  surname: Helm
  fullname: Helm, Erin
  organization: Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware; and, Department of Physical Therapy, University of Delaware, Newark, Delaware
– sequence: 3
  givenname: Darcy S.
  surname: Reisman
  fullname: Reisman, Darcy S.
  organization: Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware; and, Department of Physical Therapy, University of Delaware, Newark, Delaware
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24790172$$D View this record in MEDLINE/PubMed
BookMark eNp1kctPAyEQxompsQ89ejUcvWwFll22FxNjfCVNvOiZsDxa2i1UoBr_e1lfURNPDDO_-WYy3xgMnHcagGOMphhX5GzlpgjRpp4ShMs9MMo5UuBq1gzACKEcl4ixIRjHuEIIsQqRAzAklM0QZmQEbudaBGfdAqalhnErkhUdNFqkXdARegMF7Lz0G598gEnENbQRxs6_aAWFSTrAmIJf60Owb0QX9dHnOwGP11cPl7fF_P7m7vJiXkiKaSqkUJIqpUiFZ4oZVbcCl9o0oqS4NlrRRrZt0xJclnjWkP4jm1ZJk2uyrUw5Aecfuttdu8k57VIQHd8GuxHhlXth-e-Ks0u-8M-coppSXGWB00-B4J92Oia-sVHqrhNO-13kuKIVY4yQOqMnP2d9D_k6XwaKD0AGH2PQ5hvBiPf28JXj7_bw3p7Ml394aVM-ue9Xtd0_XW_HrJXX
CitedBy_id crossref_primary_10_1177_15459683211011226
crossref_primary_10_1177_15459683241309588
crossref_primary_10_1016_j_pmr_2015_06_010
crossref_primary_10_1152_jn_00340_2020
crossref_primary_10_1016_j_jbiomech_2015_04_027
crossref_primary_10_1177_15459683211001025
crossref_primary_10_3389_fnagi_2017_00040
crossref_primary_10_1080_10749357_2017_1399527
crossref_primary_10_1097_NPT_0000000000000373
crossref_primary_10_3389_fphys_2024_1409304
crossref_primary_10_1097_NPT_0000000000000411
crossref_primary_10_1152_jn_00432_2018
crossref_primary_10_1007_s00221_015_4465_8
crossref_primary_10_1097_TGR_0000000000000433
crossref_primary_10_1177_1545968318809921
crossref_primary_10_3390_brainsci10100737
crossref_primary_10_1016_j_jbiomech_2017_11_031
crossref_primary_10_1113_JP275881
crossref_primary_10_1152_jn_00156_2024
crossref_primary_10_1152_jn_00162_2022
crossref_primary_10_1177_15459683231195039
crossref_primary_10_3390_brainsci10120982
crossref_primary_10_1097_NPT_0000000000000260
crossref_primary_10_1016_j_nlm_2017_06_003
crossref_primary_10_1186_s12984_020_00698_y
crossref_primary_10_1007_s40846_018_0456_0
crossref_primary_10_1016_j_neuroscience_2020_09_055
crossref_primary_10_1186_s12984_015_0051_3
crossref_primary_10_1186_s12984_015_0054_0
crossref_primary_10_1152_jn_00937_2014
Cites_doi 10.1016/S0304-3940(00)01734-1
10.1523/JNEUROSCI.4218-04.2005
10.1101/lm.80104
10.1016/j.neuroimage.2011.12.049
10.1152/jn.00266.2007
10.1016/j.tins.2005.10.003
10.1016/j.sleep.2007.03.011
10.1177/1545968309332880
10.1007/s002210100892
10.1152/jn.00391.2011
10.1097/01.NPT.0000282566.48050.9b
10.1037/0096-1523.30.1.212
10.1152/jn.00501.2009
10.1523/JNEUROSCI.2214-04.2004
10.1093/brain/awm035
10.2340/1650197719702239298
10.1523/JNEUROSCI.4205-10.2010
10.1152/jn.00129.2004
10.1016/0168-0102(94)90150-3
10.1093/brain/119.4.1199
10.1152/jn.1999.82.5.2108
10.1093/ptj/83.11.976
10.1523/JNEUROSCI.1367-11.2011
10.1177/1545968307300438
10.1186/1744-9081-5-36
10.1016/j.nlm.2010.01.011
10.1186/1471-2202-10-72
10.1097/NPT.0b013e31814b148e
10.1523/JNEUROSCI.2622-06.2006
10.1097/NPT.0b013e3181fd5eab
10.1002/hbm.21019
10.1152/jn.00832.2009
10.1177/1545968306298414
10.1016/S0028-3932(98)00145-6
10.1523/JNEUROSCI.3416-08.2008
10.1523/JNEUROSCI.17-01-00409.1997
10.1152/jn.2001.86.4.1666
10.1111/j.1460-9568.2008.06421.x
10.1523/JNEUROSCI.2570-07.2007
10.1080/00222899809601339
10.1007/s00221-006-0417-7
10.2340/1650197771331
10.1093/brain/119.4.1183
10.1152/jn.00089.2005
10.1152/jn.00856.2011
10.1016/j.neuron.2011.04.012
10.1097/WCO.0b013e328315a293
10.1038/nature712
ContentType Journal Article
Copyright Copyright © 2014 the American Physiological Society.
Copyright © 2014 the American Physiological Society 2014 American Physiological Society
Copyright_xml – notice: Copyright © 2014 the American Physiological Society.
– notice: Copyright © 2014 the American Physiological Society 2014 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/jn.00486.2013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 489
ExternalDocumentID PMC4064415
24790172
10_1152_jn_00486_2013
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P20 GM-103446-13
– fundername: NCRR NIH HHS
  grantid: S10 RR-022396
– fundername: NICHD NIH HHS
  grantid: T32 HD007490
– fundername: NICHD NIH HHS
  grantid: K01 HD-050582
– fundername: NIGMS NIH HHS
  grantid: P20 GM103446
GroupedDBID ---
-DZ
-~X
.55
18M
29L
2WC
39C
4.4
53G
5GY
5VS
AAYXX
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AFOSN
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
W8F
WH7
WOQ
WOW
X7M
XSW
YBH
YQT
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c414t-cadc4ddd2519d7fd6ba13ef8a3416fed48cbb8b21331982cbb8c8bdcffedcb5f3
ISSN 0022-3077
1522-1598
IngestDate Thu Aug 21 18:12:14 EDT 2025
Fri Jul 11 12:04:11 EDT 2025
Thu Apr 03 07:00:06 EDT 2025
Tue Jul 01 04:09:02 EDT 2025
Thu Apr 24 23:01:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords adaptation
learning
stroke
locomotion
Language English
License Copyright © 2014 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c414t-cadc4ddd2519d7fd6ba13ef8a3416fed48cbb8b21331982cbb8c8bdcffedcb5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24790172
PQID 1545777226
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4064415
proquest_miscellaneous_1545777226
pubmed_primary_24790172
crossref_primary_10_1152_jn_00486_2013
crossref_citationtrail_10_1152_jn_00486_2013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-15
PublicationDateYYYYMMDD 2014-07-15
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2014
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
Schmidt R (B38) 1988
Borg G (B4) 1970; 2
B30
B31
B32
B33
B34
B35
B36
B37
B1
B3
B5
B6
B7
B8
Schmidt R (B39) 2000
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
Fugl-Meyer AR (B14) 1975; 7
B50
B51
B10
B11
B12
B13
B15
Boyd LA (B9) 2003; 83
B16
B17
B18
B19
Baizer JS (B2) 1974; 236
20147417 - J Neurophysiol. 2010 Apr;103(4):1954-62
11807497 - Nature. 2002 Feb 7;415(6872):640-4
17405765 - Brain. 2007 Jul;130(Pt 7):1861-72
5523831 - Scand J Rehabil Med. 1970;2(2):92-8
22016547 - J Neurosci. 2011 Oct 19;31(42):15136-43
19307434 - Neurorehabil Neural Repair. 2009 Sep;23(7):735-44
22514286 - J Neurophysiol. 2012 Jul;108(2):578-94
15958603 - J Neurophysiol. 2005 Oct;94(4):2403-15
21159971 - J Neurosci. 2010 Dec 15;30(50):17015-22
1135616 - Scand J Rehabil Med. 1975;7(1):13-31
4206505 - J Physiol. 1974 Jan;236(1):34P-35P
11713636 - Exp Brain Res. 2001 Nov;141(2):250-3
19715593 - Behav Brain Funct. 2009 Aug 28;5:36
18025960 - J Neurol Phys Ther. 2007 Sep;31(3):145-54
19583831 - BMC Neurosci. 2009;10:72
14769078 - J Exp Psychol Hum Percept Perform. 2004 Feb;30(1):212-33
8987766 - J Neurosci. 1997 Jan 1;17(1):409-19
20725908 - Hum Brain Mapp. 2011 Feb;32(2):290-303
22514294 - J Neurophysiol. 2012 Jul;108(2):672-83
10561391 - J Neurophysiol. 1999 Nov;82(5):2108-19
17507504 - J Neurophysiol. 2007 Jul;98(1):54-62
18057199 - J Neurosci. 2007 Dec 5;27(49):13413-9
14577825 - Phys Ther. 2003 Nov;83(11):976-89
8813282 - Brain. 1996 Aug;119 ( Pt 4):1183-98
15190088 - J Neurophysiol. 2004 Oct;92(4):2497-509
10426521 - Neuropsychologia. 1999 Jul;37(8):975-87
17416874 - Neurorehabil Neural Repair. 2007 Sep-Oct;21(5):444-54
15470131 - J Neurosci. 2004 Oct 6;24(40):8662-71
8008254 - Neurosci Res. 1994 Mar;19(2):245-8
20037081 - J Mot Behav. 1998 Sep;30(3):234-48
17369514 - Neurorehabil Neural Repair. 2007 Sep-Oct;21(5):398-411
20132902 - Neurobiol Learn Mem. 2010 May;93(4):532-9
22227134 - Neuroimage. 2012 Mar;60(1):324-31
17470412 - Sleep Med. 2007 Jun;8(4):331-43
18989103 - Curr Opin Neurol. 2008 Dec;21(6):628-33
15286181 - Learn Mem. 2004 Jul-Aug;11(4):388-96
18783369 - Eur J Neurosci. 2008 Sep;28(6):1216-21
18815252 - J Neurosci. 2008 Sep 24;28(39):9664-9
16957067 - J Neurosci. 2006 Sep 6;26(36):9107-16
16796767 - J Neurol Phys Ther. 2006 Jun;30(2):46-57; discussion 58-9
16528496 - Exp Brain Res. 2006 Sep;174(1):45-52
11600630 - J Neurophysiol. 2001 Oct;86(4):1666-70
11154837 - Neurosci Lett. 2001 Jan 26;298(1):65-9
21609832 - Neuron. 2011 May 26;70(4):787-801
21084921 - J Neurol Phys Ther. 2010 Dec;34(4):202-7
8813283 - Brain. 1996 Aug;119 ( Pt 4):1199-211
19889853 - J Neurophysiol. 2010 Jan;103(1):183-91
16290273 - Trends Neurosci. 2006 Jan;29(1):58-64
15647491 - J Neurosci. 2005 Jan 12;25(2):473-8
References_xml – ident: B8
  doi: 10.1016/S0304-3940(00)01734-1
– ident: B19
  doi: 10.1523/JNEUROSCI.4218-04.2005
– ident: B10
  doi: 10.1101/lm.80104
– ident: B1
  doi: 10.1016/j.neuroimage.2011.12.049
– ident: B44
  doi: 10.1152/jn.00266.2007
– ident: B20
  doi: 10.1016/j.tins.2005.10.003
– ident: B42
  doi: 10.1016/j.sleep.2007.03.011
– ident: B37
  doi: 10.1177/1545968309332880
– ident: B51
  doi: 10.1007/s002210100892
– ident: B23
  doi: 10.1152/jn.00391.2011
– ident: B5
  doi: 10.1097/01.NPT.0000282566.48050.9b
– ident: B31
  doi: 10.1037/0096-1523.30.1.212
– ident: B45
  doi: 10.1152/jn.00501.2009
– ident: B11
  doi: 10.1523/JNEUROSCI.2214-04.2004
– ident: B36
  doi: 10.1093/brain/awm035
– volume: 2
  start-page: 92
  year: 1970
  ident: B4
  publication-title: Scand J Rehabil Med
  doi: 10.2340/1650197719702239298
– ident: B43
  doi: 10.1523/JNEUROSCI.4205-10.2010
– ident: B28
  doi: 10.1152/jn.00129.2004
– ident: B50
  doi: 10.1016/0168-0102(94)90150-3
– ident: B26
  doi: 10.1093/brain/119.4.1199
– ident: B21
  doi: 10.1152/jn.1999.82.5.2108
– volume: 236
  start-page: 34P
  year: 1974
  ident: B2
  publication-title: J Physiol
– volume: 83
  start-page: 976
  year: 2003
  ident: B9
  publication-title: Phys Ther
  doi: 10.1093/ptj/83.11.976
– ident: B24
  doi: 10.1523/JNEUROSCI.1367-11.2011
– ident: B7
  doi: 10.1177/1545968307300438
– ident: B48
  doi: 10.1186/1744-9081-5-36
– ident: B46
  doi: 10.1016/j.nlm.2010.01.011
– ident: B6
  doi: 10.1186/1471-2202-10-72
– ident: B47
  doi: 10.1097/NPT.0b013e31814b148e
– ident: B29
  doi: 10.1523/JNEUROSCI.2622-06.2006
– ident: B35
  doi: 10.1097/NPT.0b013e3181fd5eab
– volume-title: Motor Control and Learning: A Behavioral Emphasis
  year: 1988
  ident: B38
– ident: B27
  doi: 10.1002/hbm.21019
– volume-title: Motor Learning and Performance
  year: 2000
  ident: B39
– ident: B22
  doi: 10.1152/jn.00832.2009
– ident: B12
  doi: 10.1177/1545968306298414
– ident: B49
  doi: 10.1016/S0028-3932(98)00145-6
– ident: B32
  doi: 10.1523/JNEUROSCI.3416-08.2008
– ident: B40
  doi: 10.1523/JNEUROSCI.17-01-00409.1997
– ident: B13
  doi: 10.1152/jn.2001.86.4.1666
– ident: B17
  doi: 10.1111/j.1460-9568.2008.06421.x
– ident: B16
  doi: 10.1523/JNEUROSCI.2570-07.2007
– ident: B15
  doi: 10.1080/00222899809601339
– ident: B33
  doi: 10.1007/s00221-006-0417-7
– volume: 7
  start-page: 13
  year: 1975
  ident: B14
  publication-title: Scand J Rehabil Med
  doi: 10.2340/1650197771331
– ident: B25
  doi: 10.1093/brain/119.4.1183
– ident: B34
  doi: 10.1152/jn.00089.2005
– ident: B41
  doi: 10.1152/jn.00856.2011
– ident: B18
  doi: 10.1016/j.neuron.2011.04.012
– ident: B3
  doi: 10.1097/WCO.0b013e328315a293
– ident: B30
  doi: 10.1038/nature712
– reference: 17405765 - Brain. 2007 Jul;130(Pt 7):1861-72
– reference: 20725908 - Hum Brain Mapp. 2011 Feb;32(2):290-303
– reference: 18057199 - J Neurosci. 2007 Dec 5;27(49):13413-9
– reference: 18783369 - Eur J Neurosci. 2008 Sep;28(6):1216-21
– reference: 4206505 - J Physiol. 1974 Jan;236(1):34P-35P
– reference: 16796767 - J Neurol Phys Ther. 2006 Jun;30(2):46-57; discussion 58-9
– reference: 18989103 - Curr Opin Neurol. 2008 Dec;21(6):628-33
– reference: 17416874 - Neurorehabil Neural Repair. 2007 Sep-Oct;21(5):444-54
– reference: 19307434 - Neurorehabil Neural Repair. 2009 Sep;23(7):735-44
– reference: 22016547 - J Neurosci. 2011 Oct 19;31(42):15136-43
– reference: 8813283 - Brain. 1996 Aug;119 ( Pt 4):1199-211
– reference: 8008254 - Neurosci Res. 1994 Mar;19(2):245-8
– reference: 20037081 - J Mot Behav. 1998 Sep;30(3):234-48
– reference: 15286181 - Learn Mem. 2004 Jul-Aug;11(4):388-96
– reference: 19715593 - Behav Brain Funct. 2009 Aug 28;5:36
– reference: 21609832 - Neuron. 2011 May 26;70(4):787-801
– reference: 10426521 - Neuropsychologia. 1999 Jul;37(8):975-87
– reference: 1135616 - Scand J Rehabil Med. 1975;7(1):13-31
– reference: 16290273 - Trends Neurosci. 2006 Jan;29(1):58-64
– reference: 18025960 - J Neurol Phys Ther. 2007 Sep;31(3):145-54
– reference: 17507504 - J Neurophysiol. 2007 Jul;98(1):54-62
– reference: 11154837 - Neurosci Lett. 2001 Jan 26;298(1):65-9
– reference: 18815252 - J Neurosci. 2008 Sep 24;28(39):9664-9
– reference: 5523831 - Scand J Rehabil Med. 1970;2(2):92-8
– reference: 11713636 - Exp Brain Res. 2001 Nov;141(2):250-3
– reference: 20132902 - Neurobiol Learn Mem. 2010 May;93(4):532-9
– reference: 15470131 - J Neurosci. 2004 Oct 6;24(40):8662-71
– reference: 22514286 - J Neurophysiol. 2012 Jul;108(2):578-94
– reference: 14769078 - J Exp Psychol Hum Percept Perform. 2004 Feb;30(1):212-33
– reference: 19583831 - BMC Neurosci. 2009;10:72
– reference: 15958603 - J Neurophysiol. 2005 Oct;94(4):2403-15
– reference: 11807497 - Nature. 2002 Feb 7;415(6872):640-4
– reference: 19889853 - J Neurophysiol. 2010 Jan;103(1):183-91
– reference: 16957067 - J Neurosci. 2006 Sep 6;26(36):9107-16
– reference: 10561391 - J Neurophysiol. 1999 Nov;82(5):2108-19
– reference: 17470412 - Sleep Med. 2007 Jun;8(4):331-43
– reference: 21084921 - J Neurol Phys Ther. 2010 Dec;34(4):202-7
– reference: 22227134 - Neuroimage. 2012 Mar;60(1):324-31
– reference: 16528496 - Exp Brain Res. 2006 Sep;174(1):45-52
– reference: 14577825 - Phys Ther. 2003 Nov;83(11):976-89
– reference: 20147417 - J Neurophysiol. 2010 Apr;103(4):1954-62
– reference: 8813282 - Brain. 1996 Aug;119 ( Pt 4):1183-98
– reference: 17369514 - Neurorehabil Neural Repair. 2007 Sep-Oct;21(5):398-411
– reference: 21159971 - J Neurosci. 2010 Dec 15;30(50):17015-22
– reference: 8987766 - J Neurosci. 1997 Jan 1;17(1):409-19
– reference: 15647491 - J Neurosci. 2005 Jan 12;25(2):473-8
– reference: 22514294 - J Neurophysiol. 2012 Jul;108(2):672-83
– reference: 11600630 - J Neurophysiol. 2001 Oct;86(4):1666-70
– reference: 15190088 - J Neurophysiol. 2004 Oct;92(4):2497-509
SSID ssj0007502
Score 2.285587
Snippet The capacity for humans to learn a new walking pattern has been explored with a split-belt treadmill during single sessions of adaptation, but the split-belt...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 480
SubjectTerms Aged
Case-Control Studies
Female
Gait
Humans
Locomotion
Male
Middle Aged
Spatial Learning
Stroke - physiopathology
Title Learning the spatial features of a locomotor task is slowed after stroke
URI https://www.ncbi.nlm.nih.gov/pubmed/24790172
https://www.proquest.com/docview/1545777226
https://pubmed.ncbi.nlm.nih.gov/PMC4064415
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5F5cIFAeURKGiRUE842Ou1Yx-rAoqAIJBSqTfL3odIH3YVO0LpD-B3M7O7flGQoBcrsTe2st_n8ex45htCXjM_VoHiqVfoCBYooYy9NFLCY0mU-6EGRynHQuHll3hxwj-eRqeTyc9B1tK2KWbi-o91JbdBFfYBrlgl-x_IdieFHfAZ8IUtIAzbf8L4cxvXQO-xxtxoLEdURquztpWP8KzCfDvMJczrc2xfXl9UP8DLtM3B62ZTnY-zgXoP1WhdmtDHKPa-2m3cywqrTIB-6nLWB1VtlBUMbF9kpta1i7S-gxsLzNVsGG0IOIYxbb3lIMEfzXN7cUMll2E6NLRYJOC7Di3K2VbYB95TMjK-ARuwjA1MKbcdntxTmdtGQzcNfoQCsmflzGgHYqpeOBwHeF1dGvQZn6e43u2fe1024tflMbg13GgV3GGw3MBOGJ--9arz4FX1qvPwp1qt1oi9HV0ZlaXdZcZuzo21y-8puAOfZnWf3HNQ0yPLrAdkosqHZP-ozJvqckcPaTf9u32yaMlGgWzUkY22ZKOVpjntyEaRbHRdU0s2ashGLdkekZMP71fHC8-14fAED3jjiVwKLqXEGmc51zIu8iBUOsnBAYq1kjwRRZEULAjBnCcMv4ikkELDMVFEOnxM9sqqVE8JTX2RxuAwSlg0c8V0knI_Eb6fB4mY-0xPyZt21jLhNOqxVcpFZtaqEcvOyszMd4bzPSWH3fArK87yt4GvWggyMJ_4TiwvVbWtM1xBzBHyeEqeWEi6U7VYTsl8BFY3AKXZx0fK9Xcj0e749OzWv3xO7va33wHZazZb9QLc36Z4abj5C0-8tCI
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+the+spatial+features+of+a+locomotor+task+is+slowed+after+stroke&rft.jtitle=Journal+of+neurophysiology&rft.au=Tyrell%2C+Christine+M.&rft.au=Helm%2C+Erin&rft.au=Reisman%2C+Darcy+S.&rft.date=2014-07-15&rft.pub=American+Physiological+Society&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=112&rft.issue=2&rft.spage=480&rft.epage=489&rft_id=info:doi/10.1152%2Fjn.00486.2013&rft_id=info%3Apmid%2F24790172&rft.externalDocID=PMC4064415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon