Uncovering the creep deformation mechanism of rock-forming minerals using nanoindentation
The creep phenomenon of rocks is quite complex and the creep mechanisms are far from being well understood. Although laboratory creep tests have been carried out to determine the creep deformation of various rocks, these tests are expensive and time-consuming. Nanoindentation creep tests, as an alte...
Saved in:
Published in | International journal of mining science and technology Vol. 32; no. 2; pp. 283 - 294 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The creep phenomenon of rocks is quite complex and the creep mechanisms are far from being well understood. Although laboratory creep tests have been carried out to determine the creep deformation of various rocks, these tests are expensive and time-consuming. Nanoindentation creep tests, as an alternative method, can be performed to investigate the mechanical and viscoelastic properties of granite samples. In this study, the reduced Young’s modulus, hardness, fracture toughness, creep strain rate, stress exponent, activation volume and maximum creep displacement of common rock-forming minerals of granite were calculated from nanoindentation results. It was found that the hardness decreases with the increase of holding time and the initial decrease in hardness was swift, and then it decreased slowly. The stress exponent values obtained were in the range from 4.5 to 22.9, which indicates that dislocation climb is the creep deformation mechanism. In addition, fracture toughness of granite’s rock-forming minerals was calculated using energy-based method and homogenization method was adopted to upscale the micro-scale mechanical properties to macro-scale mechanical properties. Last but not least, both three-element Voigt model and Burgers model fit the nanoindentation creep curves well. This study is beneficial to the understanding of the long-term mechanical properties of rock samples from a micro-scale perspective, which is of great significance to the understanding of localized deformation processes of rocks. |
---|---|
AbstractList | The creep phenomenon of rocks is quite complex and the creep mechanisms are far from being well understood. Although laboratory creep tests have been carried out to determine the creep deformation of various rocks, these tests are expensive and time-consuming. Nanoindentation creep tests, as an alternative method, can be performed to investigate the mechanical and viscoelastic properties of granite samples. In this study, the reduced Young’s modulus, hardness, fracture toughness, creep strain rate, stress exponent, activation volume and maximum creep displacement of common rock-forming minerals of granite were calculated from nanoindentation results. It was found that the hardness decreases with the increase of holding time and the initial decrease in hardness was swift, and then it decreased slowly. The stress exponent values obtained were in the range from 4.5 to 22.9, which indicates that dislocation climb is the creep deformation mechanism. In addition, fracture toughness of granite’s rock-forming minerals was calculated using energy-based method and homogenization method was adopted to upscale the micro-scale mechanical properties to macro-scale mechanical properties. Last but not least, both three-element Voigt model and Burgers model fit the nanoindentation creep curves well. This study is beneficial to the understanding of the long-term mechanical properties of rock samples from a micro-scale perspective, which is of great significance to the understanding of localized deformation processes of rocks. |
Author | Pathegama Gamage, Ranjith Zhang, Chengpeng Ma, Zhaoyang Zhang, Guanglei |
Author_xml | – sequence: 1 givenname: Zhaoyang orcidid: 0000-0002-9590-0292 surname: Ma fullname: Ma, Zhaoyang organization: Deep Earth Energy Laboratory, Building 60, Monash University, Melbourne, Victoria 3800, Australia – sequence: 2 givenname: Chengpeng surname: Zhang fullname: Zhang, Chengpeng organization: State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China – sequence: 3 givenname: Ranjith surname: Pathegama Gamage fullname: Pathegama Gamage, Ranjith email: Ranjith.pg@monash.edu organization: Deep Earth Energy Laboratory, Building 60, Monash University, Melbourne, Victoria 3800, Australia – sequence: 4 givenname: Guanglei surname: Zhang fullname: Zhang, Guanglei email: guanglei.zhang@imperial.ac.uk organization: Department of Earth Science and Engineering, Imperial College London, London SW7 2BP, UK |
BookMark | eNp9kL1uwyAURhlSqWmaJ-jiF7ALGLAzdKii_kSK1KUZOiGMLwluDBG4kfr2xUm7dAgD6HI5n7jnBk2cd4DQHcEFwUTcd4Xt-jgUFFNSEFJggidoSvGC51TU4hrNY-xwWqJmNadT9LFx2h8hWLfNhh1kOgAcshaMD70arHdZD3qnnI195k0WvP7Mx974Pm0Q1D5mX3EsnXLeuhbccAJv0ZVJTZj_njO0eX56X77m67eX1fJxnWtG2JA3hotSVIumYXXLG0Gg5IaWUJsKKFDNW8GFEFhRUqeScI2BgeBYtKbiJS1naHXObb3q5CHYXoVv6ZWVpwsftlKFweo9SCxoLQzDugXNKkHqRlHVAOPcLKhiJGUtzlk6-BgDGKnteZohKLuXBMtRs-zkSbMcNUtCZNKc2PIf-_eXy9TDmYKk6GghyKgtOA2tDaCHNIO9yP8AM5-dYQ |
CitedBy_id | crossref_primary_10_1007_s00603_024_03922_6 crossref_primary_10_1155_2023_8870126 crossref_primary_10_1016_j_ijrmms_2024_105669 crossref_primary_10_1016_j_measurement_2025_116666 crossref_primary_10_1007_s00603_024_03982_8 crossref_primary_10_1016_j_ijmst_2022_09_027 crossref_primary_10_1016_j_ijrmms_2023_105580 crossref_primary_10_1080_10589759_2024_2327622 crossref_primary_10_1016_j_ghm_2024_02_003 crossref_primary_10_1016_j_geoen_2023_211636 crossref_primary_10_1016_j_fuel_2024_130952 crossref_primary_10_1016_j_jrmge_2024_09_050 crossref_primary_10_1016_j_jmrt_2024_02_211 crossref_primary_10_1007_s00603_024_04252_3 crossref_primary_10_1007_s11053_023_10188_2 crossref_primary_10_1007_s40789_024_00739_0 crossref_primary_10_1016_j_compgeo_2024_106845 crossref_primary_10_1002_dug2_12143 crossref_primary_10_1016_j_compgeo_2024_106129 crossref_primary_10_1088_1402_4896_acc3ca crossref_primary_10_1016_j_compgeo_2023_105875 crossref_primary_10_1007_s00603_024_04004_3 crossref_primary_10_1007_s11440_023_01824_5 crossref_primary_10_1186_s40494_024_01428_6 crossref_primary_10_1016_j_heliyon_2024_e39160 crossref_primary_10_1016_j_heliyon_2023_e22346 crossref_primary_10_1108_EC_09_2022_0604 crossref_primary_10_1016_j_jallcom_2024_177914 crossref_primary_10_3390_app12178451 crossref_primary_10_1007_s10064_024_03964_8 crossref_primary_10_1007_s00269_023_01235_8 crossref_primary_10_1016_j_compgeo_2024_106835 crossref_primary_10_1080_19386362_2024_2314894 crossref_primary_10_1016_j_rsurfi_2024_100358 crossref_primary_10_1007_s10706_024_03055_1 |
Cites_doi | 10.1007/s11665-016-2082-8 10.1086/627029 10.1016/j.commatsci.2020.110138 10.1063/1.2827987 10.1007/BF00552241 10.1093/gji/ggz577 10.1016/j.jngse.2017.02.027 10.1016/0191-8141(92)90053-Y 10.1002/2015GL065837 10.1557/jmr.2013.39 10.1016/j.msea.2014.06.011 10.1029/2021JB022229 10.1016/j.ijrmms.2020.104210 10.3390/geosciences9020079 10.1016/j.petrol.2018.04.055 10.1016/j.petrol.2018.12.039 10.1016/j.ijmst.2021.01.008 10.1016/j.softx.2019.03.001 10.1007/s10853-017-1821-z 10.1002/2015JB012310 10.1016/j.ijmst.2020.02.001 10.1088/0022-3727/42/11/115405 10.1007/s11665-019-04092-1 10.1007/s005310000152 10.1016/j.jsg.2018.06.005 10.1007/s00603-016-0952-x 10.1016/j.ijrmms.2021.104878 10.1177/0021998318808358 10.1016/j.ijmst.2020.08.001 10.1016/0040-1951(95)00011-B 10.2138/am.2007.2212 10.1016/j.ijmst.2021.01.004 10.1557/JMR.1990.1073 10.1007/s11043-006-9005-2 10.1016/j.msea.2018.01.036 10.1016/0025-5416(79)90164-2 10.1016/j.msea.2004.04.070 10.1007/s11664-009-0970-5 10.1016/0036-9748(82)90389-1 10.1016/S0921-5093(01)01116-9 10.1029/2019JB017524 10.1002/ese3.532 10.1007/s12665-016-5699-x 10.1016/j.ijrmms.2018.03.006 10.1016/j.petrol.2018.10.069 10.1557/JMR.1992.1564 10.1016/j.jallcom.2017.03.175 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.ijmst.2021.11.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 294 |
ExternalDocumentID | oai_doaj_org_article_06286f40cdec47618ba2abe455f92a41 10_1016_j_ijmst_2021_11_010 S2095268621001324 |
GroupedDBID | .~1 0R~ 0SF 1B1 1~. 1~5 2B. 2C0 4.4 457 4G. 5VR 6I. 7-5 8P~ 92H 92I 92R 93N AACTN AAEDW AAFTH AAIKJ AALRI AAXUO ACGFS ACLVX ACNNM ACSBN ADEZE ADMUD ADTZH AECPX AEKER AFTJW AFUIB AGHFR AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMRAJ BJAXD BLXMC CCEZO CDRFL CHBEP CW9 EBS EFLBG EJD EP3 FA0 FDB FIRID FNPLU GBLVA GROUPED_DOAJ HZ~ IMUCA J1W JJJVA M41 MO0 NCXOZ O-L O9- OAUVE OK1 P-8 P-9 PC. Q38 ROL SDF SES SPC SST SSZ TCJ TGT -SB -S~ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CAJEB CITATION Q-- U1G U5L |
ID | FETCH-LOGICAL-c414t-bf563679bb48d5b61e35f23e8f7e2e2c5d656660a218e2c15c0e4e6506df75323 |
IEDL.DBID | DOA |
ISSN | 2095-2686 |
IngestDate | Wed Aug 27 00:34:18 EDT 2025 Thu Apr 24 23:08:26 EDT 2025 Tue Jul 01 04:20:00 EDT 2025 Fri Feb 23 02:40:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Stress exponent Strain rate sensitivity Time-dependent creep Nanoindentation Granite Fracture toughness |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-bf563679bb48d5b61e35f23e8f7e2e2c5d656660a218e2c15c0e4e6506df75323 |
ORCID | 0000-0002-9590-0292 |
OpenAccessLink | https://doaj.org/article/06286f40cdec47618ba2abe455f92a41 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_06286f40cdec47618ba2abe455f92a41 crossref_citationtrail_10_1016_j_ijmst_2021_11_010 crossref_primary_10_1016_j_ijmst_2021_11_010 elsevier_sciencedirect_doi_10_1016_j_ijmst_2021_11_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | International journal of mining science and technology |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Li (b0130) 2002; 322 Oliver, Pharr (b0045) 1992; 7 Haghshenas, Islam, Wang, Cheng, Gupta (b0165) 2019; 53 Campbell, Grolich, Šlesinger (b0235) 2019; 9 Hashiba, Fukui (b0050) 2016; 49 Liu, Ostadhassan, Bubach (b0005) 2018; 167 Shi, Jiang, Yang, Tang, Xiao (b0120) 2020; 127 Zhang, Li, Gao, An, Yang, Nie (b0020) 2020; 8 Sun, Li, Gomah, Xu, Sun (b0035) 2020; 30 Huang, Zhang, Yan, Spearing, Li, Liu (b0255) 2021; 31 Ma, Gamage, Zhang (b0115) 2021; 147 Richter, Stünitz, Heilbronner (b0200) 2018; 114 Tomanovic (b0025) 2006; 10 Chu, Li (b0135) 1977; 12 Thom (b0075) 2019 Ping, Wen, Wang, Yuan, Yuan (b0055) 2016; 75 Fischer-Cripps (b0245) 2004; 385 Ran, Guo, Feng, Qi, Du (b0250) 2021; 31 Zeng, Feng, Xu (b0240) 2017; 42 Ma, Pathegama Gamage, Zhang (b0065) 2020; 6 Ma, Li, Zhao, Zhu, Li, Sun, Yuan (b0190) 2017; 709 Hamza, Stace (b0015) 2018; 106 Haghshenas, Wang, Cheng, Gupta (b0060) 2018; 716 Mayo, Siegel, Narayanasamy, Nix (b0145) 1990; 5 Sharma, Prakash, Abedi (b0095) 2019; 175 Ma, Gamage, Zhang (b0110) 2021; 188 Hirth, Teyssier, Dunlap (b0205) 2001; 90 Blake, Faulkner (b0160) 2016; 121 Chinh, Szommer (b0180) 2014; 611 He, Zhu, Wu, Wang, Cheng (b0030) 2016; 5 Tian, Jiao, Yuan, Ma, Wang, Yang, Zhang, Qiao (b0170) 2016; 25 Han, Jing, Nai, Xu, Tan, Wei (b0150) 2010; 39 Carter, Christie, Griggs (b0220) 1964; 72 Walser, Sherby (b0210) 1982; 16 Zhou, Xiao, Li, Song (b0215) 2019; 28 Whitney, Broz, Cook (b0230) 2007; 92 Sly, Thind, Mishra, Flores, Skemer (b0080) 2020; 221 Schneider, He, Swain (b0175) 2008; 103 Strozewski, Sly, Flores, Skemer (b0040) 2021; 126 Wang, Zhang, Nieh (b0185) 2009; 42 Mighani, Bernabé, Boulenouar, Mok, Evans (b0090) 2019; 124 Liu, Ostadhassan, Xu, Bubach (b0100) 2019; 173 Chu, Li (b0140) 1979; 39 Hirth, Tullis (b0225) 1992; 14 Thom, Goldsby (b0105) 2019; 9 Kranjc, Rouse, Flores, Skemer (b0070) 2016; 43 Liu, Ostadhassan, Bubach, Dietrich, Rasouli (b0085) 2018; 53 Maier, Merle, Göken, Durst (b0125) 2013; 28 Guo (b0155) 2017 Gleason, Tullis (b0195) 1995; 247 Taheri, Pak, Shad, Mehrgini, Razifar (b0010) 2020; 30 Sharma (10.1016/j.ijmst.2021.11.010_b0095) 2019; 175 Liu (10.1016/j.ijmst.2021.11.010_b0100) 2019; 173 Tomanovic (10.1016/j.ijmst.2021.11.010_b0025) 2006; 10 Ping (10.1016/j.ijmst.2021.11.010_b0055) 2016; 75 Strozewski (10.1016/j.ijmst.2021.11.010_b0040) 2021; 126 Ma (10.1016/j.ijmst.2021.11.010_b0110) 2021; 188 Maier (10.1016/j.ijmst.2021.11.010_b0125) 2013; 28 Blake (10.1016/j.ijmst.2021.11.010_b0160) 2016; 121 Mayo (10.1016/j.ijmst.2021.11.010_b0145) 1990; 5 Carter (10.1016/j.ijmst.2021.11.010_b0220) 1964; 72 Ma (10.1016/j.ijmst.2021.11.010_b0065) 2020; 6 Sly (10.1016/j.ijmst.2021.11.010_b0080) 2020; 221 Guo (10.1016/j.ijmst.2021.11.010_b0155) 2017 Schneider (10.1016/j.ijmst.2021.11.010_b0175) 2008; 103 Zeng (10.1016/j.ijmst.2021.11.010_b0240) 2017; 42 Haghshenas (10.1016/j.ijmst.2021.11.010_b0165) 2019; 53 Chinh (10.1016/j.ijmst.2021.11.010_b0180) 2014; 611 Hirth (10.1016/j.ijmst.2021.11.010_b0205) 2001; 90 Liu (10.1016/j.ijmst.2021.11.010_b0005) 2018; 167 Liu (10.1016/j.ijmst.2021.11.010_b0085) 2018; 53 Ma (10.1016/j.ijmst.2021.11.010_b0190) 2017; 709 Zhang (10.1016/j.ijmst.2021.11.010_b0020) 2020; 8 Thom (10.1016/j.ijmst.2021.11.010_b0105) 2019; 9 Hirth (10.1016/j.ijmst.2021.11.010_b0225) 1992; 14 Tian (10.1016/j.ijmst.2021.11.010_b0170) 2016; 25 Zhou (10.1016/j.ijmst.2021.11.010_b0215) 2019; 28 Mighani (10.1016/j.ijmst.2021.11.010_b0090) 2019; 124 Walser (10.1016/j.ijmst.2021.11.010_b0210) 1982; 16 Li (10.1016/j.ijmst.2021.11.010_b0130) 2002; 322 Hashiba (10.1016/j.ijmst.2021.11.010_b0050) 2016; 49 Gleason (10.1016/j.ijmst.2021.11.010_b0195) 1995; 247 Wang (10.1016/j.ijmst.2021.11.010_b0185) 2009; 42 He (10.1016/j.ijmst.2021.11.010_b0030) 2016; 5 Chu (10.1016/j.ijmst.2021.11.010_b0140) 1979; 39 Chu (10.1016/j.ijmst.2021.11.010_b0135) 1977; 12 Whitney (10.1016/j.ijmst.2021.11.010_b0230) 2007; 92 Hamza (10.1016/j.ijmst.2021.11.010_b0015) 2018; 106 Ran (10.1016/j.ijmst.2021.11.010_b0250) 2021; 31 Oliver (10.1016/j.ijmst.2021.11.010_b0045) 1992; 7 Huang (10.1016/j.ijmst.2021.11.010_b0255) 2021; 31 Sun (10.1016/j.ijmst.2021.11.010_b0035) 2020; 30 Ma (10.1016/j.ijmst.2021.11.010_b0115) 2021; 147 Shi (10.1016/j.ijmst.2021.11.010_b0120) 2020; 127 Campbell (10.1016/j.ijmst.2021.11.010_b0235) 2019; 9 Han (10.1016/j.ijmst.2021.11.010_b0150) 2010; 39 Taheri (10.1016/j.ijmst.2021.11.010_b0010) 2020; 30 Kranjc (10.1016/j.ijmst.2021.11.010_b0070) 2016; 43 Haghshenas (10.1016/j.ijmst.2021.11.010_b0060) 2018; 716 Thom (10.1016/j.ijmst.2021.11.010_b0075) 2019 Richter (10.1016/j.ijmst.2021.11.010_b0200) 2018; 114 Fischer-Cripps (10.1016/j.ijmst.2021.11.010_b0245) 2004; 385 |
References_xml | – volume: 5 start-page: 1 year: 2016 end-page: 10 ident: b0030 article-title: Study on time-dependent behavior of granite and the creep model based on fractional derivative approach considering temperature publication-title: Math Probl Eng – volume: 43 start-page: 176 year: 2016 end-page: 184 ident: b0070 article-title: Low-temperature plastic rheology of olivine determined by nanoindentation publication-title: Geophys Res Lett – volume: 6 start-page: 1 year: 2020 end-page: 27 ident: b0065 article-title: Application of nanoindentation technology in rocks: a review publication-title: Geomech Geophys Geo-Energy Geo-Resour – volume: 126 year: 2021 ident: b0040 article-title: Viscoplastic rheology of α-quartz investigated by nanoindentation publication-title: J Geophys Res: Solid Earth – volume: 25 start-page: 2255 year: 2016 end-page: 2260 ident: b0170 article-title: Effect of strain rate on deformation behavior of AlCoCrFeNi high-entropy alloy by nanoindentation publication-title: J Mater Eng Perform – volume: 28 start-page: 1177 year: 2013 end-page: 1188 ident: b0125 article-title: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures publication-title: J Mater Res – volume: 9 start-page: 79 year: 2019 ident: b0105 article-title: Nanoindentation studies of plasticity and dislocation creep in halite publication-title: Geosciences – volume: 114 start-page: 1 year: 2018 end-page: 21 ident: b0200 article-title: The brittle-to-viscous transition in polycrystalline quartz: an experimental study publication-title: J Struct Geol – volume: 53 start-page: 1751 year: 2019 end-page: 1763 ident: b0165 article-title: Depth sensing indentation of magnesium/boron nitride nanocomposites publication-title: J Compos Mater – volume: 127 start-page: 104210 year: 2020 ident: b0120 article-title: Modeling the viscoelasticity of shale by nanoindentation creep tests publication-title: Int J Rock Mech Min Sci – volume: 247 start-page: 1 year: 1995 end-page: 23 ident: b0195 article-title: A flow law for dislocation creep of quartz aggregates determined with the molten salt cell publication-title: Tectonophysics – volume: 53 start-page: 4417 year: 2018 end-page: 4432 ident: b0085 article-title: Nano-dynamic mechanical analysis (nano-DMA) of creep behavior of shales: Bakken case study publication-title: J Mater Sci – year: 2017 ident: b0155 article-title: Experimental Study on Nanoindentation Tests of Granite after High-temperature Heating Treatment (Master) – volume: 175 start-page: 375 year: 2019 end-page: 388 ident: b0095 article-title: Effect of temperature on nano- and microscale creep properties of organic-rich shales publication-title: J Petroleum Sci Eng – volume: 8 start-page: 501 year: 2020 end-page: 514 ident: b0020 article-title: Creep characteristics and constitutive model of coal under triaxial stress and gas pressure publication-title: Energy Sci Eng – volume: 709 start-page: 322 year: 2017 end-page: 328 ident: b0190 article-title: Indenter load effects on creep deformation behavior for Ti-10V-2Fe-3Al alloy at room temperature publication-title: J Alloy Compd – volume: 28 start-page: 2620 year: 2019 end-page: 2629 ident: b0215 article-title: Nanoindentation creep behavior of CoCrFeNiMn high-entropy alloy under different high-pressure torsion deformations publication-title: J Mater Eng Perform – volume: 10 start-page: 135 year: 2006 end-page: 154 ident: b0025 article-title: Rheological model of soft rock creep based on the tests on marl publication-title: Mech Time-Depend Mater – volume: 42 start-page: 187 year: 2017 end-page: 189 ident: b0240 article-title: A discussion of “Application of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks” by K Liu, M Osatadhassan and B Bubach publication-title: J Nat Gas Sci Eng – volume: 31 start-page: 279 year: 2021 end-page: 289 ident: b0255 article-title: Deformation response of roof in solid backfilling coal mining based on viscoelastic properties of waste gangue publication-title: Int J Min Sci Technol – volume: 147 start-page: 104878 year: 2021 ident: b0115 article-title: Mechanical properties of α-quartz using nanoindentation tests and molecular dynamics simulations publication-title: Int J Rock Mech Min Sci – volume: 16 start-page: 213 year: 1982 end-page: 219 ident: b0210 article-title: The Structure dependence of power law creep publication-title: Scr Metall – volume: 72 start-page: 687 year: 1964 end-page: 733 ident: b0220 article-title: Experimental deformation and recrystallization of quartz publication-title: J Geol – volume: 5 start-page: 1073 year: 1990 end-page: 1082 ident: b0145 article-title: Mechanical properties of nanophase TiO2 as determined by nanoindentation publication-title: J Mater Res – volume: 30 start-page: 357 year: 2020 end-page: 365 ident: b0010 article-title: Investigation of rock salt layer creep and its effects on casing collapse publication-title: Int J Min Sci Technol – volume: 31 start-page: 401 year: 2021 end-page: 412 ident: b0250 article-title: Creep properties and resistivity-ultrasonic-AE responses of cemented gangue backfill column under high-stress area publication-title: Int J Min Sci Technol – volume: 173 start-page: 733 year: 2019 end-page: 747 ident: b0100 article-title: Abnormal behavior during nanoindentation holding stage: Characterization and explanation publication-title: J Petroleum Sci Eng – volume: 611 start-page: 333 year: 2014 end-page: 336 ident: b0180 article-title: Mathematical description of indentation creep and its application for the determination of strain rate sensitivity publication-title: Mater Sci Eng: A – volume: 9 start-page: 248 year: 2019 end-page: 254 ident: b0235 article-title: Niget: Nanoindentation general evaluation tool publication-title: SoftwareX – volume: 30 start-page: 769 year: 2020 end-page: 776 ident: b0035 article-title: Creep characteristics of coal and rock investigated by nanoindentation publication-title: Int J Min Sci Technol – volume: 322 start-page: 23 year: 2002 end-page: 42 ident: b0130 article-title: Impression creep and other localized tests publication-title: Mater Sci Eng: A – volume: 167 start-page: 729 year: 2018 end-page: 736 ident: b0005 article-title: Application of nanoindentation to characterize creep behavior of oil shales publication-title: J Petroleum Sci Eng – volume: 14 start-page: 145 year: 1992 end-page: 159 ident: b0225 article-title: Dislocation creep regimes in quartz aggregates publication-title: J Struct Geol – volume: 7 start-page: 1564 year: 1992 end-page: 1583 ident: b0045 article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments publication-title: J Mater Res – volume: 716 start-page: 63 year: 2018 end-page: 71 ident: b0060 article-title: Indentation-based rate-dependent plastic deformation of polycrystalline pure magnesium publication-title: Mater Sci Eng: A – volume: 42 start-page: 115405 year: 2009 ident: b0185 article-title: Nanoindentation creep of nanocrystalline nickel at elevated temperatures publication-title: J Phys D: Appl Phys – year: 2019 ident: b0075 article-title: Scale-dependent Plasticity and Nanoindentation Creep of Geologic Materials – volume: 92 start-page: 281 year: 2007 end-page: 288 ident: b0230 article-title: Hardness, toughness, and modulus of some common metamorphic minerals publication-title: Am Mineral – volume: 103 start-page: 014701 year: 2008 ident: b0175 article-title: Viscous flow model of creep in enamel publication-title: J Appl Phys – volume: 124 start-page: 7842 year: 2019 end-page: 7868 ident: b0090 article-title: Creep deformation in Vaca muerta shale from nanoindentation to triaxial experiments publication-title: J Geophys Res: Solid Earth – volume: 49 start-page: 2569 year: 2016 end-page: 2580 ident: b0050 article-title: Time-dependent behaviors of granite: loading-rate dependence, creep, and relaxation publication-title: Rock Mech Rock Eng – volume: 221 start-page: 129 year: 2020 end-page: 141 ident: b0080 article-title: Low-temperature rheology of calcite publication-title: Geophys J Int – volume: 12 start-page: 2200 year: 1977 end-page: 2208 ident: b0135 article-title: Impression creep; a new creep test publication-title: J Mater Sci – volume: 75 start-page: 900 year: 2016 end-page: 908 ident: b0055 article-title: Study on nonlinear damage creep constitutive model for high-stress soft rock publication-title: Environ Earth Sci – volume: 121 start-page: 2382 year: 2016 end-page: 2399 ident: b0160 article-title: The effect of fracture density and stress state on the static and dynamic bulk moduli of Westerly granite publication-title: J Geophys Res: Solid Earth – volume: 39 start-page: 1 year: 1979 end-page: 10 ident: b0140 article-title: Impression creep of β-tin single crystals publication-title: Mater Sci Eng – volume: 188 start-page: 110138 year: 2021 ident: b0110 article-title: Effects of temperature and grain size on the mechanical properties of polycrystalline quartz publication-title: Comput Mater Sci – volume: 106 start-page: 109 year: 2018 end-page: 116 ident: b0015 article-title: Creep properties of intact and fractured muddy siltstone publication-title: Int J Rock Mech Min Sci – volume: 90 start-page: 77 year: 2001 end-page: 87 ident: b0205 article-title: An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks publication-title: Int J Earth Sci – volume: 385 start-page: 74 year: 2004 end-page: 82 ident: b0245 article-title: A simple phenomenological approach to nanoindentation creep publication-title: Mater Sci Eng: A – volume: 39 start-page: 223 year: 2010 end-page: 229 ident: b0150 article-title: Temperature dependence of creep and hardness of Sn-Ag-Cu lead-free solder publication-title: J Electron Mater – volume: 25 start-page: 2255 issue: 6 year: 2016 ident: 10.1016/j.ijmst.2021.11.010_b0170 article-title: Effect of strain rate on deformation behavior of AlCoCrFeNi high-entropy alloy by nanoindentation publication-title: J Mater Eng Perform doi: 10.1007/s11665-016-2082-8 – volume: 72 start-page: 687 issue: 6 year: 1964 ident: 10.1016/j.ijmst.2021.11.010_b0220 article-title: Experimental deformation and recrystallization of quartz publication-title: J Geol doi: 10.1086/627029 – volume: 188 start-page: 110138 year: 2021 ident: 10.1016/j.ijmst.2021.11.010_b0110 article-title: Effects of temperature and grain size on the mechanical properties of polycrystalline quartz publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2020.110138 – volume: 103 start-page: 014701 issue: 1 year: 2008 ident: 10.1016/j.ijmst.2021.11.010_b0175 article-title: Viscous flow model of creep in enamel publication-title: J Appl Phys doi: 10.1063/1.2827987 – volume: 12 start-page: 2200 issue: 11 year: 1977 ident: 10.1016/j.ijmst.2021.11.010_b0135 article-title: Impression creep; a new creep test publication-title: J Mater Sci doi: 10.1007/BF00552241 – volume: 221 start-page: 129 issue: 1 year: 2020 ident: 10.1016/j.ijmst.2021.11.010_b0080 article-title: Low-temperature rheology of calcite publication-title: Geophys J Int doi: 10.1093/gji/ggz577 – volume: 42 start-page: 187 year: 2017 ident: 10.1016/j.ijmst.2021.11.010_b0240 article-title: A discussion of “Application of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks” by K Liu, M Osatadhassan and B Bubach publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2017.02.027 – volume: 5 start-page: 1 year: 2016 ident: 10.1016/j.ijmst.2021.11.010_b0030 article-title: Study on time-dependent behavior of granite and the creep model based on fractional derivative approach considering temperature publication-title: Math Probl Eng – volume: 14 start-page: 145 issue: 2 year: 1992 ident: 10.1016/j.ijmst.2021.11.010_b0225 article-title: Dislocation creep regimes in quartz aggregates publication-title: J Struct Geol doi: 10.1016/0191-8141(92)90053-Y – volume: 43 start-page: 176 issue: 1 year: 2016 ident: 10.1016/j.ijmst.2021.11.010_b0070 article-title: Low-temperature plastic rheology of olivine determined by nanoindentation publication-title: Geophys Res Lett doi: 10.1002/2015GL065837 – volume: 28 start-page: 1177 issue: 9 year: 2013 ident: 10.1016/j.ijmst.2021.11.010_b0125 article-title: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures publication-title: J Mater Res doi: 10.1557/jmr.2013.39 – volume: 611 start-page: 333 year: 2014 ident: 10.1016/j.ijmst.2021.11.010_b0180 article-title: Mathematical description of indentation creep and its application for the determination of strain rate sensitivity publication-title: Mater Sci Eng: A doi: 10.1016/j.msea.2014.06.011 – volume: 126 issue: 9 year: 2021 ident: 10.1016/j.ijmst.2021.11.010_b0040 article-title: Viscoplastic rheology of α-quartz investigated by nanoindentation publication-title: J Geophys Res: Solid Earth doi: 10.1029/2021JB022229 – volume: 127 start-page: 104210 year: 2020 ident: 10.1016/j.ijmst.2021.11.010_b0120 article-title: Modeling the viscoelasticity of shale by nanoindentation creep tests publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2020.104210 – volume: 9 start-page: 79 issue: 2 year: 2019 ident: 10.1016/j.ijmst.2021.11.010_b0105 article-title: Nanoindentation studies of plasticity and dislocation creep in halite publication-title: Geosciences doi: 10.3390/geosciences9020079 – volume: 167 start-page: 729 year: 2018 ident: 10.1016/j.ijmst.2021.11.010_b0005 article-title: Application of nanoindentation to characterize creep behavior of oil shales publication-title: J Petroleum Sci Eng doi: 10.1016/j.petrol.2018.04.055 – volume: 175 start-page: 375 year: 2019 ident: 10.1016/j.ijmst.2021.11.010_b0095 article-title: Effect of temperature on nano- and microscale creep properties of organic-rich shales publication-title: J Petroleum Sci Eng doi: 10.1016/j.petrol.2018.12.039 – volume: 31 start-page: 401 issue: 3 year: 2021 ident: 10.1016/j.ijmst.2021.11.010_b0250 article-title: Creep properties and resistivity-ultrasonic-AE responses of cemented gangue backfill column under high-stress area publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2021.01.008 – volume: 6 start-page: 1 issue: 4 year: 2020 ident: 10.1016/j.ijmst.2021.11.010_b0065 article-title: Application of nanoindentation technology in rocks: a review publication-title: Geomech Geophys Geo-Energy Geo-Resour – year: 2019 ident: 10.1016/j.ijmst.2021.11.010_b0075 – volume: 9 start-page: 248 year: 2019 ident: 10.1016/j.ijmst.2021.11.010_b0235 article-title: Niget: Nanoindentation general evaluation tool publication-title: SoftwareX doi: 10.1016/j.softx.2019.03.001 – volume: 53 start-page: 4417 issue: 6 year: 2018 ident: 10.1016/j.ijmst.2021.11.010_b0085 article-title: Nano-dynamic mechanical analysis (nano-DMA) of creep behavior of shales: Bakken case study publication-title: J Mater Sci doi: 10.1007/s10853-017-1821-z – volume: 121 start-page: 2382 issue: 4 year: 2016 ident: 10.1016/j.ijmst.2021.11.010_b0160 article-title: The effect of fracture density and stress state on the static and dynamic bulk moduli of Westerly granite publication-title: J Geophys Res: Solid Earth doi: 10.1002/2015JB012310 – volume: 30 start-page: 357 issue: 3 year: 2020 ident: 10.1016/j.ijmst.2021.11.010_b0010 article-title: Investigation of rock salt layer creep and its effects on casing collapse publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2020.02.001 – volume: 42 start-page: 115405 issue: 11 year: 2009 ident: 10.1016/j.ijmst.2021.11.010_b0185 article-title: Nanoindentation creep of nanocrystalline nickel at elevated temperatures publication-title: J Phys D: Appl Phys doi: 10.1088/0022-3727/42/11/115405 – volume: 28 start-page: 2620 issue: 5 year: 2019 ident: 10.1016/j.ijmst.2021.11.010_b0215 article-title: Nanoindentation creep behavior of CoCrFeNiMn high-entropy alloy under different high-pressure torsion deformations publication-title: J Mater Eng Perform doi: 10.1007/s11665-019-04092-1 – volume: 90 start-page: 77 issue: 1 year: 2001 ident: 10.1016/j.ijmst.2021.11.010_b0205 article-title: An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks publication-title: Int J Earth Sci doi: 10.1007/s005310000152 – year: 2017 ident: 10.1016/j.ijmst.2021.11.010_b0155 – volume: 114 start-page: 1 year: 2018 ident: 10.1016/j.ijmst.2021.11.010_b0200 article-title: The brittle-to-viscous transition in polycrystalline quartz: an experimental study publication-title: J Struct Geol doi: 10.1016/j.jsg.2018.06.005 – volume: 49 start-page: 2569 issue: 7 year: 2016 ident: 10.1016/j.ijmst.2021.11.010_b0050 article-title: Time-dependent behaviors of granite: loading-rate dependence, creep, and relaxation publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-0952-x – volume: 147 start-page: 104878 year: 2021 ident: 10.1016/j.ijmst.2021.11.010_b0115 article-title: Mechanical properties of α-quartz using nanoindentation tests and molecular dynamics simulations publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2021.104878 – volume: 53 start-page: 1751 issue: 13 year: 2019 ident: 10.1016/j.ijmst.2021.11.010_b0165 article-title: Depth sensing indentation of magnesium/boron nitride nanocomposites publication-title: J Compos Mater doi: 10.1177/0021998318808358 – volume: 30 start-page: 769 issue: 6 year: 2020 ident: 10.1016/j.ijmst.2021.11.010_b0035 article-title: Creep characteristics of coal and rock investigated by nanoindentation publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2020.08.001 – volume: 247 start-page: 1 issue: 1-4 year: 1995 ident: 10.1016/j.ijmst.2021.11.010_b0195 article-title: A flow law for dislocation creep of quartz aggregates determined with the molten salt cell publication-title: Tectonophysics doi: 10.1016/0040-1951(95)00011-B – volume: 92 start-page: 281 issue: 2-3 year: 2007 ident: 10.1016/j.ijmst.2021.11.010_b0230 article-title: Hardness, toughness, and modulus of some common metamorphic minerals publication-title: Am Mineral doi: 10.2138/am.2007.2212 – volume: 31 start-page: 279 issue: 2 year: 2021 ident: 10.1016/j.ijmst.2021.11.010_b0255 article-title: Deformation response of roof in solid backfilling coal mining based on viscoelastic properties of waste gangue publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2021.01.004 – volume: 5 start-page: 1073 issue: 5 year: 1990 ident: 10.1016/j.ijmst.2021.11.010_b0145 article-title: Mechanical properties of nanophase TiO2 as determined by nanoindentation publication-title: J Mater Res doi: 10.1557/JMR.1990.1073 – volume: 10 start-page: 135 issue: 2 year: 2006 ident: 10.1016/j.ijmst.2021.11.010_b0025 article-title: Rheological model of soft rock creep based on the tests on marl publication-title: Mech Time-Depend Mater doi: 10.1007/s11043-006-9005-2 – volume: 716 start-page: 63 year: 2018 ident: 10.1016/j.ijmst.2021.11.010_b0060 article-title: Indentation-based rate-dependent plastic deformation of polycrystalline pure magnesium publication-title: Mater Sci Eng: A doi: 10.1016/j.msea.2018.01.036 – volume: 39 start-page: 1 issue: 1 year: 1979 ident: 10.1016/j.ijmst.2021.11.010_b0140 article-title: Impression creep of β-tin single crystals publication-title: Mater Sci Eng doi: 10.1016/0025-5416(79)90164-2 – volume: 385 start-page: 74 issue: 1-2 year: 2004 ident: 10.1016/j.ijmst.2021.11.010_b0245 article-title: A simple phenomenological approach to nanoindentation creep publication-title: Mater Sci Eng: A doi: 10.1016/j.msea.2004.04.070 – volume: 39 start-page: 223 issue: 2 year: 2010 ident: 10.1016/j.ijmst.2021.11.010_b0150 article-title: Temperature dependence of creep and hardness of Sn-Ag-Cu lead-free solder publication-title: J Electron Mater doi: 10.1007/s11664-009-0970-5 – volume: 16 start-page: 213 issue: 2 year: 1982 ident: 10.1016/j.ijmst.2021.11.010_b0210 article-title: The Structure dependence of power law creep publication-title: Scr Metall doi: 10.1016/0036-9748(82)90389-1 – volume: 322 start-page: 23 issue: 1-2 year: 2002 ident: 10.1016/j.ijmst.2021.11.010_b0130 article-title: Impression creep and other localized tests publication-title: Mater Sci Eng: A doi: 10.1016/S0921-5093(01)01116-9 – volume: 124 start-page: 7842 issue: 8 year: 2019 ident: 10.1016/j.ijmst.2021.11.010_b0090 article-title: Creep deformation in Vaca muerta shale from nanoindentation to triaxial experiments publication-title: J Geophys Res: Solid Earth doi: 10.1029/2019JB017524 – volume: 8 start-page: 501 issue: 2 year: 2020 ident: 10.1016/j.ijmst.2021.11.010_b0020 article-title: Creep characteristics and constitutive model of coal under triaxial stress and gas pressure publication-title: Energy Sci Eng doi: 10.1002/ese3.532 – volume: 75 start-page: 900 issue: 10 year: 2016 ident: 10.1016/j.ijmst.2021.11.010_b0055 article-title: Study on nonlinear damage creep constitutive model for high-stress soft rock publication-title: Environ Earth Sci doi: 10.1007/s12665-016-5699-x – volume: 106 start-page: 109 year: 2018 ident: 10.1016/j.ijmst.2021.11.010_b0015 article-title: Creep properties of intact and fractured muddy siltstone publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2018.03.006 – volume: 173 start-page: 733 year: 2019 ident: 10.1016/j.ijmst.2021.11.010_b0100 article-title: Abnormal behavior during nanoindentation holding stage: Characterization and explanation publication-title: J Petroleum Sci Eng doi: 10.1016/j.petrol.2018.10.069 – volume: 7 start-page: 1564 issue: 6 year: 1992 ident: 10.1016/j.ijmst.2021.11.010_b0045 article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments publication-title: J Mater Res doi: 10.1557/JMR.1992.1564 – volume: 709 start-page: 322 year: 2017 ident: 10.1016/j.ijmst.2021.11.010_b0190 article-title: Indenter load effects on creep deformation behavior for Ti-10V-2Fe-3Al alloy at room temperature publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2017.03.175 |
SSID | ssj0000684852 |
Score | 2.4397173 |
Snippet | The creep phenomenon of rocks is quite complex and the creep mechanisms are far from being well understood. Although laboratory creep tests have been carried... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 283 |
SubjectTerms | Fracture toughness Granite Nanoindentation Strain rate sensitivity Stress exponent Time-dependent creep |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqJhgQT1Fe8sCIaeLYTjICAlVIsEAlmCI_zihA04qWld-Oz02qsjAw2jkn0fnk-5zc95mQs8xniMsLBiE9MAGJY6UuE-YseKGlcBB1uu8f1HAk7p7lc49cd1wYLKts1_7Fmh5X67Zn0HpzMK3rwSMP6IAjwSGNPwxQE1SIHKP84jtdfmdJVCGKePAO2jMc0IkPxTKv-m08w5pKnl6gmicyaVcSVNTxX8lTK7nndotstqCRXi7ea5v0oNkhGytSgrvkZdRYrMYMDRowHQ1gEKbUwZKcSMeAJN96NqYTT0Paemd4De3HdZSenlEsgn-ljW4mKKK4ICU1e2R0e_N0PWTtsQnMilTMmfFSZSovjRGFk0alkEnPMyh8Dhy4lQ4xnEp0yO6hmUqbgICA1JTzYfPCs32y1kwaOCCUcy9ciSjEl6gzo72S3ica8twa48s-4Z2vKttqiuPRFh9VVzz2VkUHV-jgsNuogoP75Hw5aLqQ1Pjb_AonYWmKetixY_L5WrUBUSETVHmRWAc2xEBaGM21ASGlL7kWaZ-obgqrX-EVblX_9fTD_w48IuscmRKxXO2YrM0_v-Ak4Je5OY0B-gPZnu5o priority: 102 providerName: Elsevier |
Title | Uncovering the creep deformation mechanism of rock-forming minerals using nanoindentation |
URI | https://dx.doi.org/10.1016/j.ijmst.2021.11.010 https://doaj.org/article/06286f40cdec47618ba2abe455f92a41 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELaACQbEU5RH5YGRQOLYbjICAlVIMFEJpsiPMyrQFNGy8tu5c9IqEyyMjp3YOp9y30nffcfYaR5ywuVFAhgeEgmpT0pTpol3EKRR0kPU6b5_0MORvHtST51WX8QJa-SBG8NdUI2fDjJ1HpzEnLuwRhgLUqlQChNL1gXGvE4y1fyDC1nEdjs4STSuQi8khyK5a_w6mRGTUmTnpOFJ9bOdsBTV-zvRqRNxbrfYZgsV-WVzxG22AvUO2-gICO6y51HtiIOJA45IjiMEhA_uYVmSyCdApb3j2YRPA8dg9ZbQHK2fjKPg9IwT9f2F16aeknRiU4pU77HR7c3j9TBpmyUkTmZyntigdK4HpbWy8MrqDHIVRA5FGIAA4ZQn5KZTgzEdh5lyKUhAfKZ9wJRF5PtsrZ7WcMC4EEH6krBHKEldxgStQkgNDAbO2lD2mFjYqnKtkjg1tHivFpSx1yoauCIDY45RoYF77Gz50kcjpPH78iu6hOVSUsGOD9A3qtY3qr98o8f04gqrFlA0QAE_Nf5t98P_2P2IrQuqlYiEtWO2Nv_8ghNEMHPbZ6vn31k_uuwPuWjuqA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgAOiKdYnj5wxN3EsZ3kCBXVAm0vdKVysvwYVylsdtVdrvx2PN5ktVx64GjHk0Tjx3xO5vsM8L6KFeHyhmMKD1xiEXhr24IHj1FaJQNmne6zcz2by6-X6vIAjkcuDKVVDmv_dk3Pq_VQMx28OV113fS7SOhAEMGhzD8M5B24K9P0pdl59KfcfWgpdCObfPIOGXCyGNWHcp5Xd71YU1KlKI9IzpOotHsRKgv57wWqveBz8ggeDqiRfdy-2GM4wP4JPNjTEnwKP-a9p3TMVGAJ1LGEBnHFAu7YiWyBxPLt1gu2jCzFrZ-crlH7RZe1p9eMsuCvWG_7JakobllJ_TOYn3y-OJ7x4dwE7mUpN9xFpStdt87JJiinS6xUFBU2sUaBwqtAIE4XNoX3VCyVL1Bigmo6xLR7EdVzOOyXPb4AJkSUoSUYElsSmrFRqxgLi3XtnYvtBMToK-MHUXE62-KXGbPHrk12sCEHp-2GSQ6ewIed0WqrqXF780_UCbumJIidK5Y3V2YYEYaooDrKwgf0stZl46ywDqVSsRVWlhPQYxeaf8ZXulV329Nf_q_hO7g3uzg7Nadfzr-9gvuCaBM5d-01HG5ufuObBGY27m0erH8B0LLxgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+the+creep+deformation+mechanism+of+rock-forming+minerals+using+nanoindentation&rft.jtitle=International+journal+of+mining+science+and+technology&rft.au=Ma%2C+Zhaoyang&rft.au=Zhang%2C+Chengpeng&rft.au=Pathegama+Gamage%2C+Ranjith&rft.au=Zhang%2C+Guanglei&rft.date=2022-03-01&rft.issn=2095-2686&rft.volume=32&rft.issue=2&rft.spage=283&rft.epage=294&rft_id=info:doi/10.1016%2Fj.ijmst.2021.11.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijmst_2021_11_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2686&client=summon |