Uncovering the creep deformation mechanism of rock-forming minerals using nanoindentation

The creep phenomenon of rocks is quite complex and the creep mechanisms are far from being well understood. Although laboratory creep tests have been carried out to determine the creep deformation of various rocks, these tests are expensive and time-consuming. Nanoindentation creep tests, as an alte...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mining science and technology Vol. 32; no. 2; pp. 283 - 294
Main Authors Ma, Zhaoyang, Zhang, Chengpeng, Pathegama Gamage, Ranjith, Zhang, Guanglei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The creep phenomenon of rocks is quite complex and the creep mechanisms are far from being well understood. Although laboratory creep tests have been carried out to determine the creep deformation of various rocks, these tests are expensive and time-consuming. Nanoindentation creep tests, as an alternative method, can be performed to investigate the mechanical and viscoelastic properties of granite samples. In this study, the reduced Young’s modulus, hardness, fracture toughness, creep strain rate, stress exponent, activation volume and maximum creep displacement of common rock-forming minerals of granite were calculated from nanoindentation results. It was found that the hardness decreases with the increase of holding time and the initial decrease in hardness was swift, and then it decreased slowly. The stress exponent values obtained were in the range from 4.5 to 22.9, which indicates that dislocation climb is the creep deformation mechanism. In addition, fracture toughness of granite’s rock-forming minerals was calculated using energy-based method and homogenization method was adopted to upscale the micro-scale mechanical properties to macro-scale mechanical properties. Last but not least, both three-element Voigt model and Burgers model fit the nanoindentation creep curves well. This study is beneficial to the understanding of the long-term mechanical properties of rock samples from a micro-scale perspective, which is of great significance to the understanding of localized deformation processes of rocks.
AbstractList The creep phenomenon of rocks is quite complex and the creep mechanisms are far from being well understood. Although laboratory creep tests have been carried out to determine the creep deformation of various rocks, these tests are expensive and time-consuming. Nanoindentation creep tests, as an alternative method, can be performed to investigate the mechanical and viscoelastic properties of granite samples. In this study, the reduced Young’s modulus, hardness, fracture toughness, creep strain rate, stress exponent, activation volume and maximum creep displacement of common rock-forming minerals of granite were calculated from nanoindentation results. It was found that the hardness decreases with the increase of holding time and the initial decrease in hardness was swift, and then it decreased slowly. The stress exponent values obtained were in the range from 4.5 to 22.9, which indicates that dislocation climb is the creep deformation mechanism. In addition, fracture toughness of granite’s rock-forming minerals was calculated using energy-based method and homogenization method was adopted to upscale the micro-scale mechanical properties to macro-scale mechanical properties. Last but not least, both three-element Voigt model and Burgers model fit the nanoindentation creep curves well. This study is beneficial to the understanding of the long-term mechanical properties of rock samples from a micro-scale perspective, which is of great significance to the understanding of localized deformation processes of rocks.
Author Pathegama Gamage, Ranjith
Zhang, Chengpeng
Ma, Zhaoyang
Zhang, Guanglei
Author_xml – sequence: 1
  givenname: Zhaoyang
  orcidid: 0000-0002-9590-0292
  surname: Ma
  fullname: Ma, Zhaoyang
  organization: Deep Earth Energy Laboratory, Building 60, Monash University, Melbourne, Victoria 3800, Australia
– sequence: 2
  givenname: Chengpeng
  surname: Zhang
  fullname: Zhang, Chengpeng
  organization: State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
– sequence: 3
  givenname: Ranjith
  surname: Pathegama Gamage
  fullname: Pathegama Gamage, Ranjith
  email: Ranjith.pg@monash.edu
  organization: Deep Earth Energy Laboratory, Building 60, Monash University, Melbourne, Victoria 3800, Australia
– sequence: 4
  givenname: Guanglei
  surname: Zhang
  fullname: Zhang, Guanglei
  email: guanglei.zhang@imperial.ac.uk
  organization: Department of Earth Science and Engineering, Imperial College London, London SW7 2BP, UK
BookMark eNp9kL1uwyAURhlSqWmaJ-jiF7ALGLAzdKii_kSK1KUZOiGMLwluDBG4kfr2xUm7dAgD6HI5n7jnBk2cd4DQHcEFwUTcd4Xt-jgUFFNSEFJggidoSvGC51TU4hrNY-xwWqJmNadT9LFx2h8hWLfNhh1kOgAcshaMD70arHdZD3qnnI195k0WvP7Mx974Pm0Q1D5mX3EsnXLeuhbccAJv0ZVJTZj_njO0eX56X77m67eX1fJxnWtG2JA3hotSVIumYXXLG0Gg5IaWUJsKKFDNW8GFEFhRUqeScI2BgeBYtKbiJS1naHXObb3q5CHYXoVv6ZWVpwsftlKFweo9SCxoLQzDugXNKkHqRlHVAOPcLKhiJGUtzlk6-BgDGKnteZohKLuXBMtRs-zkSbMcNUtCZNKc2PIf-_eXy9TDmYKk6GghyKgtOA2tDaCHNIO9yP8AM5-dYQ
CitedBy_id crossref_primary_10_1007_s00603_024_03922_6
crossref_primary_10_1155_2023_8870126
crossref_primary_10_1016_j_ijrmms_2024_105669
crossref_primary_10_1016_j_measurement_2025_116666
crossref_primary_10_1007_s00603_024_03982_8
crossref_primary_10_1016_j_ijmst_2022_09_027
crossref_primary_10_1016_j_ijrmms_2023_105580
crossref_primary_10_1080_10589759_2024_2327622
crossref_primary_10_1016_j_ghm_2024_02_003
crossref_primary_10_1016_j_geoen_2023_211636
crossref_primary_10_1016_j_fuel_2024_130952
crossref_primary_10_1016_j_jrmge_2024_09_050
crossref_primary_10_1016_j_jmrt_2024_02_211
crossref_primary_10_1007_s00603_024_04252_3
crossref_primary_10_1007_s11053_023_10188_2
crossref_primary_10_1007_s40789_024_00739_0
crossref_primary_10_1016_j_compgeo_2024_106845
crossref_primary_10_1002_dug2_12143
crossref_primary_10_1016_j_compgeo_2024_106129
crossref_primary_10_1088_1402_4896_acc3ca
crossref_primary_10_1016_j_compgeo_2023_105875
crossref_primary_10_1007_s00603_024_04004_3
crossref_primary_10_1007_s11440_023_01824_5
crossref_primary_10_1186_s40494_024_01428_6
crossref_primary_10_1016_j_heliyon_2024_e39160
crossref_primary_10_1016_j_heliyon_2023_e22346
crossref_primary_10_1108_EC_09_2022_0604
crossref_primary_10_1016_j_jallcom_2024_177914
crossref_primary_10_3390_app12178451
crossref_primary_10_1007_s10064_024_03964_8
crossref_primary_10_1007_s00269_023_01235_8
crossref_primary_10_1016_j_compgeo_2024_106835
crossref_primary_10_1080_19386362_2024_2314894
crossref_primary_10_1016_j_rsurfi_2024_100358
crossref_primary_10_1007_s10706_024_03055_1
Cites_doi 10.1007/s11665-016-2082-8
10.1086/627029
10.1016/j.commatsci.2020.110138
10.1063/1.2827987
10.1007/BF00552241
10.1093/gji/ggz577
10.1016/j.jngse.2017.02.027
10.1016/0191-8141(92)90053-Y
10.1002/2015GL065837
10.1557/jmr.2013.39
10.1016/j.msea.2014.06.011
10.1029/2021JB022229
10.1016/j.ijrmms.2020.104210
10.3390/geosciences9020079
10.1016/j.petrol.2018.04.055
10.1016/j.petrol.2018.12.039
10.1016/j.ijmst.2021.01.008
10.1016/j.softx.2019.03.001
10.1007/s10853-017-1821-z
10.1002/2015JB012310
10.1016/j.ijmst.2020.02.001
10.1088/0022-3727/42/11/115405
10.1007/s11665-019-04092-1
10.1007/s005310000152
10.1016/j.jsg.2018.06.005
10.1007/s00603-016-0952-x
10.1016/j.ijrmms.2021.104878
10.1177/0021998318808358
10.1016/j.ijmst.2020.08.001
10.1016/0040-1951(95)00011-B
10.2138/am.2007.2212
10.1016/j.ijmst.2021.01.004
10.1557/JMR.1990.1073
10.1007/s11043-006-9005-2
10.1016/j.msea.2018.01.036
10.1016/0025-5416(79)90164-2
10.1016/j.msea.2004.04.070
10.1007/s11664-009-0970-5
10.1016/0036-9748(82)90389-1
10.1016/S0921-5093(01)01116-9
10.1029/2019JB017524
10.1002/ese3.532
10.1007/s12665-016-5699-x
10.1016/j.ijrmms.2018.03.006
10.1016/j.petrol.2018.10.069
10.1557/JMR.1992.1564
10.1016/j.jallcom.2017.03.175
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.ijmst.2021.11.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 294
ExternalDocumentID oai_doaj_org_article_06286f40cdec47618ba2abe455f92a41
10_1016_j_ijmst_2021_11_010
S2095268621001324
GroupedDBID .~1
0R~
0SF
1B1
1~.
1~5
2B.
2C0
4.4
457
4G.
5VR
6I.
7-5
8P~
92H
92I
92R
93N
AACTN
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ACGFS
ACLVX
ACNNM
ACSBN
ADEZE
ADMUD
ADTZH
AECPX
AEKER
AFTJW
AFUIB
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BJAXD
BLXMC
CCEZO
CDRFL
CHBEP
CW9
EBS
EFLBG
EJD
EP3
FA0
FDB
FIRID
FNPLU
GBLVA
GROUPED_DOAJ
HZ~
IMUCA
J1W
JJJVA
M41
MO0
NCXOZ
O-L
O9-
OAUVE
OK1
P-8
P-9
PC.
Q38
ROL
SDF
SES
SPC
SST
SSZ
TCJ
TGT
-SB
-S~
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CAJEB
CITATION
Q--
U1G
U5L
ID FETCH-LOGICAL-c414t-bf563679bb48d5b61e35f23e8f7e2e2c5d656660a218e2c15c0e4e6506df75323
IEDL.DBID DOA
ISSN 2095-2686
IngestDate Wed Aug 27 00:34:18 EDT 2025
Thu Apr 24 23:08:26 EDT 2025
Tue Jul 01 04:20:00 EDT 2025
Fri Feb 23 02:40:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Stress exponent
Strain rate sensitivity
Time-dependent creep
Nanoindentation
Granite
Fracture toughness
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-bf563679bb48d5b61e35f23e8f7e2e2c5d656660a218e2c15c0e4e6506df75323
ORCID 0000-0002-9590-0292
OpenAccessLink https://doaj.org/article/06286f40cdec47618ba2abe455f92a41
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_06286f40cdec47618ba2abe455f92a41
crossref_citationtrail_10_1016_j_ijmst_2021_11_010
crossref_primary_10_1016_j_ijmst_2021_11_010
elsevier_sciencedirect_doi_10_1016_j_ijmst_2021_11_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of mining science and technology
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Li (b0130) 2002; 322
Oliver, Pharr (b0045) 1992; 7
Haghshenas, Islam, Wang, Cheng, Gupta (b0165) 2019; 53
Campbell, Grolich, Šlesinger (b0235) 2019; 9
Hashiba, Fukui (b0050) 2016; 49
Liu, Ostadhassan, Bubach (b0005) 2018; 167
Shi, Jiang, Yang, Tang, Xiao (b0120) 2020; 127
Zhang, Li, Gao, An, Yang, Nie (b0020) 2020; 8
Sun, Li, Gomah, Xu, Sun (b0035) 2020; 30
Huang, Zhang, Yan, Spearing, Li, Liu (b0255) 2021; 31
Ma, Gamage, Zhang (b0115) 2021; 147
Richter, Stünitz, Heilbronner (b0200) 2018; 114
Tomanovic (b0025) 2006; 10
Chu, Li (b0135) 1977; 12
Thom (b0075) 2019
Ping, Wen, Wang, Yuan, Yuan (b0055) 2016; 75
Fischer-Cripps (b0245) 2004; 385
Ran, Guo, Feng, Qi, Du (b0250) 2021; 31
Zeng, Feng, Xu (b0240) 2017; 42
Ma, Pathegama Gamage, Zhang (b0065) 2020; 6
Ma, Li, Zhao, Zhu, Li, Sun, Yuan (b0190) 2017; 709
Hamza, Stace (b0015) 2018; 106
Haghshenas, Wang, Cheng, Gupta (b0060) 2018; 716
Mayo, Siegel, Narayanasamy, Nix (b0145) 1990; 5
Sharma, Prakash, Abedi (b0095) 2019; 175
Ma, Gamage, Zhang (b0110) 2021; 188
Hirth, Teyssier, Dunlap (b0205) 2001; 90
Blake, Faulkner (b0160) 2016; 121
Chinh, Szommer (b0180) 2014; 611
He, Zhu, Wu, Wang, Cheng (b0030) 2016; 5
Tian, Jiao, Yuan, Ma, Wang, Yang, Zhang, Qiao (b0170) 2016; 25
Han, Jing, Nai, Xu, Tan, Wei (b0150) 2010; 39
Carter, Christie, Griggs (b0220) 1964; 72
Walser, Sherby (b0210) 1982; 16
Zhou, Xiao, Li, Song (b0215) 2019; 28
Whitney, Broz, Cook (b0230) 2007; 92
Sly, Thind, Mishra, Flores, Skemer (b0080) 2020; 221
Schneider, He, Swain (b0175) 2008; 103
Strozewski, Sly, Flores, Skemer (b0040) 2021; 126
Wang, Zhang, Nieh (b0185) 2009; 42
Mighani, Bernabé, Boulenouar, Mok, Evans (b0090) 2019; 124
Liu, Ostadhassan, Xu, Bubach (b0100) 2019; 173
Chu, Li (b0140) 1979; 39
Hirth, Tullis (b0225) 1992; 14
Thom, Goldsby (b0105) 2019; 9
Kranjc, Rouse, Flores, Skemer (b0070) 2016; 43
Liu, Ostadhassan, Bubach, Dietrich, Rasouli (b0085) 2018; 53
Maier, Merle, Göken, Durst (b0125) 2013; 28
Guo (b0155) 2017
Gleason, Tullis (b0195) 1995; 247
Taheri, Pak, Shad, Mehrgini, Razifar (b0010) 2020; 30
Sharma (10.1016/j.ijmst.2021.11.010_b0095) 2019; 175
Liu (10.1016/j.ijmst.2021.11.010_b0100) 2019; 173
Tomanovic (10.1016/j.ijmst.2021.11.010_b0025) 2006; 10
Ping (10.1016/j.ijmst.2021.11.010_b0055) 2016; 75
Strozewski (10.1016/j.ijmst.2021.11.010_b0040) 2021; 126
Ma (10.1016/j.ijmst.2021.11.010_b0110) 2021; 188
Maier (10.1016/j.ijmst.2021.11.010_b0125) 2013; 28
Blake (10.1016/j.ijmst.2021.11.010_b0160) 2016; 121
Mayo (10.1016/j.ijmst.2021.11.010_b0145) 1990; 5
Carter (10.1016/j.ijmst.2021.11.010_b0220) 1964; 72
Ma (10.1016/j.ijmst.2021.11.010_b0065) 2020; 6
Sly (10.1016/j.ijmst.2021.11.010_b0080) 2020; 221
Guo (10.1016/j.ijmst.2021.11.010_b0155) 2017
Schneider (10.1016/j.ijmst.2021.11.010_b0175) 2008; 103
Zeng (10.1016/j.ijmst.2021.11.010_b0240) 2017; 42
Haghshenas (10.1016/j.ijmst.2021.11.010_b0165) 2019; 53
Chinh (10.1016/j.ijmst.2021.11.010_b0180) 2014; 611
Hirth (10.1016/j.ijmst.2021.11.010_b0205) 2001; 90
Liu (10.1016/j.ijmst.2021.11.010_b0005) 2018; 167
Liu (10.1016/j.ijmst.2021.11.010_b0085) 2018; 53
Ma (10.1016/j.ijmst.2021.11.010_b0190) 2017; 709
Zhang (10.1016/j.ijmst.2021.11.010_b0020) 2020; 8
Thom (10.1016/j.ijmst.2021.11.010_b0105) 2019; 9
Hirth (10.1016/j.ijmst.2021.11.010_b0225) 1992; 14
Tian (10.1016/j.ijmst.2021.11.010_b0170) 2016; 25
Zhou (10.1016/j.ijmst.2021.11.010_b0215) 2019; 28
Mighani (10.1016/j.ijmst.2021.11.010_b0090) 2019; 124
Walser (10.1016/j.ijmst.2021.11.010_b0210) 1982; 16
Li (10.1016/j.ijmst.2021.11.010_b0130) 2002; 322
Hashiba (10.1016/j.ijmst.2021.11.010_b0050) 2016; 49
Gleason (10.1016/j.ijmst.2021.11.010_b0195) 1995; 247
Wang (10.1016/j.ijmst.2021.11.010_b0185) 2009; 42
He (10.1016/j.ijmst.2021.11.010_b0030) 2016; 5
Chu (10.1016/j.ijmst.2021.11.010_b0140) 1979; 39
Chu (10.1016/j.ijmst.2021.11.010_b0135) 1977; 12
Whitney (10.1016/j.ijmst.2021.11.010_b0230) 2007; 92
Hamza (10.1016/j.ijmst.2021.11.010_b0015) 2018; 106
Ran (10.1016/j.ijmst.2021.11.010_b0250) 2021; 31
Oliver (10.1016/j.ijmst.2021.11.010_b0045) 1992; 7
Huang (10.1016/j.ijmst.2021.11.010_b0255) 2021; 31
Sun (10.1016/j.ijmst.2021.11.010_b0035) 2020; 30
Ma (10.1016/j.ijmst.2021.11.010_b0115) 2021; 147
Shi (10.1016/j.ijmst.2021.11.010_b0120) 2020; 127
Campbell (10.1016/j.ijmst.2021.11.010_b0235) 2019; 9
Han (10.1016/j.ijmst.2021.11.010_b0150) 2010; 39
Taheri (10.1016/j.ijmst.2021.11.010_b0010) 2020; 30
Kranjc (10.1016/j.ijmst.2021.11.010_b0070) 2016; 43
Haghshenas (10.1016/j.ijmst.2021.11.010_b0060) 2018; 716
Thom (10.1016/j.ijmst.2021.11.010_b0075) 2019
Richter (10.1016/j.ijmst.2021.11.010_b0200) 2018; 114
Fischer-Cripps (10.1016/j.ijmst.2021.11.010_b0245) 2004; 385
References_xml – volume: 5
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0030
  article-title: Study on time-dependent behavior of granite and the creep model based on fractional derivative approach considering temperature
  publication-title: Math Probl Eng
– volume: 43
  start-page: 176
  year: 2016
  end-page: 184
  ident: b0070
  article-title: Low-temperature plastic rheology of olivine determined by nanoindentation
  publication-title: Geophys Res Lett
– volume: 6
  start-page: 1
  year: 2020
  end-page: 27
  ident: b0065
  article-title: Application of nanoindentation technology in rocks: a review
  publication-title: Geomech Geophys Geo-Energy Geo-Resour
– volume: 126
  year: 2021
  ident: b0040
  article-title: Viscoplastic rheology of α-quartz investigated by nanoindentation
  publication-title: J Geophys Res: Solid Earth
– volume: 25
  start-page: 2255
  year: 2016
  end-page: 2260
  ident: b0170
  article-title: Effect of strain rate on deformation behavior of AlCoCrFeNi high-entropy alloy by nanoindentation
  publication-title: J Mater Eng Perform
– volume: 28
  start-page: 1177
  year: 2013
  end-page: 1188
  ident: b0125
  article-title: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures
  publication-title: J Mater Res
– volume: 9
  start-page: 79
  year: 2019
  ident: b0105
  article-title: Nanoindentation studies of plasticity and dislocation creep in halite
  publication-title: Geosciences
– volume: 114
  start-page: 1
  year: 2018
  end-page: 21
  ident: b0200
  article-title: The brittle-to-viscous transition in polycrystalline quartz: an experimental study
  publication-title: J Struct Geol
– volume: 53
  start-page: 1751
  year: 2019
  end-page: 1763
  ident: b0165
  article-title: Depth sensing indentation of magnesium/boron nitride nanocomposites
  publication-title: J Compos Mater
– volume: 127
  start-page: 104210
  year: 2020
  ident: b0120
  article-title: Modeling the viscoelasticity of shale by nanoindentation creep tests
  publication-title: Int J Rock Mech Min Sci
– volume: 247
  start-page: 1
  year: 1995
  end-page: 23
  ident: b0195
  article-title: A flow law for dislocation creep of quartz aggregates determined with the molten salt cell
  publication-title: Tectonophysics
– volume: 53
  start-page: 4417
  year: 2018
  end-page: 4432
  ident: b0085
  article-title: Nano-dynamic mechanical analysis (nano-DMA) of creep behavior of shales: Bakken case study
  publication-title: J Mater Sci
– year: 2017
  ident: b0155
  article-title: Experimental Study on Nanoindentation Tests of Granite after High-temperature Heating Treatment (Master)
– volume: 175
  start-page: 375
  year: 2019
  end-page: 388
  ident: b0095
  article-title: Effect of temperature on nano- and microscale creep properties of organic-rich shales
  publication-title: J Petroleum Sci Eng
– volume: 8
  start-page: 501
  year: 2020
  end-page: 514
  ident: b0020
  article-title: Creep characteristics and constitutive model of coal under triaxial stress and gas pressure
  publication-title: Energy Sci Eng
– volume: 709
  start-page: 322
  year: 2017
  end-page: 328
  ident: b0190
  article-title: Indenter load effects on creep deformation behavior for Ti-10V-2Fe-3Al alloy at room temperature
  publication-title: J Alloy Compd
– volume: 28
  start-page: 2620
  year: 2019
  end-page: 2629
  ident: b0215
  article-title: Nanoindentation creep behavior of CoCrFeNiMn high-entropy alloy under different high-pressure torsion deformations
  publication-title: J Mater Eng Perform
– volume: 10
  start-page: 135
  year: 2006
  end-page: 154
  ident: b0025
  article-title: Rheological model of soft rock creep based on the tests on marl
  publication-title: Mech Time-Depend Mater
– volume: 42
  start-page: 187
  year: 2017
  end-page: 189
  ident: b0240
  article-title: A discussion of “Application of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks” by K Liu, M Osatadhassan and B Bubach
  publication-title: J Nat Gas Sci Eng
– volume: 31
  start-page: 279
  year: 2021
  end-page: 289
  ident: b0255
  article-title: Deformation response of roof in solid backfilling coal mining based on viscoelastic properties of waste gangue
  publication-title: Int J Min Sci Technol
– volume: 147
  start-page: 104878
  year: 2021
  ident: b0115
  article-title: Mechanical properties of α-quartz using nanoindentation tests and molecular dynamics simulations
  publication-title: Int J Rock Mech Min Sci
– volume: 16
  start-page: 213
  year: 1982
  end-page: 219
  ident: b0210
  article-title: The Structure dependence of power law creep
  publication-title: Scr Metall
– volume: 72
  start-page: 687
  year: 1964
  end-page: 733
  ident: b0220
  article-title: Experimental deformation and recrystallization of quartz
  publication-title: J Geol
– volume: 5
  start-page: 1073
  year: 1990
  end-page: 1082
  ident: b0145
  article-title: Mechanical properties of nanophase TiO2 as determined by nanoindentation
  publication-title: J Mater Res
– volume: 30
  start-page: 357
  year: 2020
  end-page: 365
  ident: b0010
  article-title: Investigation of rock salt layer creep and its effects on casing collapse
  publication-title: Int J Min Sci Technol
– volume: 31
  start-page: 401
  year: 2021
  end-page: 412
  ident: b0250
  article-title: Creep properties and resistivity-ultrasonic-AE responses of cemented gangue backfill column under high-stress area
  publication-title: Int J Min Sci Technol
– volume: 173
  start-page: 733
  year: 2019
  end-page: 747
  ident: b0100
  article-title: Abnormal behavior during nanoindentation holding stage: Characterization and explanation
  publication-title: J Petroleum Sci Eng
– volume: 611
  start-page: 333
  year: 2014
  end-page: 336
  ident: b0180
  article-title: Mathematical description of indentation creep and its application for the determination of strain rate sensitivity
  publication-title: Mater Sci Eng: A
– volume: 9
  start-page: 248
  year: 2019
  end-page: 254
  ident: b0235
  article-title: Niget: Nanoindentation general evaluation tool
  publication-title: SoftwareX
– volume: 30
  start-page: 769
  year: 2020
  end-page: 776
  ident: b0035
  article-title: Creep characteristics of coal and rock investigated by nanoindentation
  publication-title: Int J Min Sci Technol
– volume: 322
  start-page: 23
  year: 2002
  end-page: 42
  ident: b0130
  article-title: Impression creep and other localized tests
  publication-title: Mater Sci Eng: A
– volume: 167
  start-page: 729
  year: 2018
  end-page: 736
  ident: b0005
  article-title: Application of nanoindentation to characterize creep behavior of oil shales
  publication-title: J Petroleum Sci Eng
– volume: 14
  start-page: 145
  year: 1992
  end-page: 159
  ident: b0225
  article-title: Dislocation creep regimes in quartz aggregates
  publication-title: J Struct Geol
– volume: 7
  start-page: 1564
  year: 1992
  end-page: 1583
  ident: b0045
  article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
  publication-title: J Mater Res
– volume: 716
  start-page: 63
  year: 2018
  end-page: 71
  ident: b0060
  article-title: Indentation-based rate-dependent plastic deformation of polycrystalline pure magnesium
  publication-title: Mater Sci Eng: A
– volume: 42
  start-page: 115405
  year: 2009
  ident: b0185
  article-title: Nanoindentation creep of nanocrystalline nickel at elevated temperatures
  publication-title: J Phys D: Appl Phys
– year: 2019
  ident: b0075
  article-title: Scale-dependent Plasticity and Nanoindentation Creep of Geologic Materials
– volume: 92
  start-page: 281
  year: 2007
  end-page: 288
  ident: b0230
  article-title: Hardness, toughness, and modulus of some common metamorphic minerals
  publication-title: Am Mineral
– volume: 103
  start-page: 014701
  year: 2008
  ident: b0175
  article-title: Viscous flow model of creep in enamel
  publication-title: J Appl Phys
– volume: 124
  start-page: 7842
  year: 2019
  end-page: 7868
  ident: b0090
  article-title: Creep deformation in Vaca muerta shale from nanoindentation to triaxial experiments
  publication-title: J Geophys Res: Solid Earth
– volume: 49
  start-page: 2569
  year: 2016
  end-page: 2580
  ident: b0050
  article-title: Time-dependent behaviors of granite: loading-rate dependence, creep, and relaxation
  publication-title: Rock Mech Rock Eng
– volume: 221
  start-page: 129
  year: 2020
  end-page: 141
  ident: b0080
  article-title: Low-temperature rheology of calcite
  publication-title: Geophys J Int
– volume: 12
  start-page: 2200
  year: 1977
  end-page: 2208
  ident: b0135
  article-title: Impression creep; a new creep test
  publication-title: J Mater Sci
– volume: 75
  start-page: 900
  year: 2016
  end-page: 908
  ident: b0055
  article-title: Study on nonlinear damage creep constitutive model for high-stress soft rock
  publication-title: Environ Earth Sci
– volume: 121
  start-page: 2382
  year: 2016
  end-page: 2399
  ident: b0160
  article-title: The effect of fracture density and stress state on the static and dynamic bulk moduli of Westerly granite
  publication-title: J Geophys Res: Solid Earth
– volume: 39
  start-page: 1
  year: 1979
  end-page: 10
  ident: b0140
  article-title: Impression creep of β-tin single crystals
  publication-title: Mater Sci Eng
– volume: 188
  start-page: 110138
  year: 2021
  ident: b0110
  article-title: Effects of temperature and grain size on the mechanical properties of polycrystalline quartz
  publication-title: Comput Mater Sci
– volume: 106
  start-page: 109
  year: 2018
  end-page: 116
  ident: b0015
  article-title: Creep properties of intact and fractured muddy siltstone
  publication-title: Int J Rock Mech Min Sci
– volume: 90
  start-page: 77
  year: 2001
  end-page: 87
  ident: b0205
  article-title: An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks
  publication-title: Int J Earth Sci
– volume: 385
  start-page: 74
  year: 2004
  end-page: 82
  ident: b0245
  article-title: A simple phenomenological approach to nanoindentation creep
  publication-title: Mater Sci Eng: A
– volume: 39
  start-page: 223
  year: 2010
  end-page: 229
  ident: b0150
  article-title: Temperature dependence of creep and hardness of Sn-Ag-Cu lead-free solder
  publication-title: J Electron Mater
– volume: 25
  start-page: 2255
  issue: 6
  year: 2016
  ident: 10.1016/j.ijmst.2021.11.010_b0170
  article-title: Effect of strain rate on deformation behavior of AlCoCrFeNi high-entropy alloy by nanoindentation
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-016-2082-8
– volume: 72
  start-page: 687
  issue: 6
  year: 1964
  ident: 10.1016/j.ijmst.2021.11.010_b0220
  article-title: Experimental deformation and recrystallization of quartz
  publication-title: J Geol
  doi: 10.1086/627029
– volume: 188
  start-page: 110138
  year: 2021
  ident: 10.1016/j.ijmst.2021.11.010_b0110
  article-title: Effects of temperature and grain size on the mechanical properties of polycrystalline quartz
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2020.110138
– volume: 103
  start-page: 014701
  issue: 1
  year: 2008
  ident: 10.1016/j.ijmst.2021.11.010_b0175
  article-title: Viscous flow model of creep in enamel
  publication-title: J Appl Phys
  doi: 10.1063/1.2827987
– volume: 12
  start-page: 2200
  issue: 11
  year: 1977
  ident: 10.1016/j.ijmst.2021.11.010_b0135
  article-title: Impression creep; a new creep test
  publication-title: J Mater Sci
  doi: 10.1007/BF00552241
– volume: 221
  start-page: 129
  issue: 1
  year: 2020
  ident: 10.1016/j.ijmst.2021.11.010_b0080
  article-title: Low-temperature rheology of calcite
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggz577
– volume: 42
  start-page: 187
  year: 2017
  ident: 10.1016/j.ijmst.2021.11.010_b0240
  article-title: A discussion of “Application of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks” by K Liu, M Osatadhassan and B Bubach
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2017.02.027
– volume: 5
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijmst.2021.11.010_b0030
  article-title: Study on time-dependent behavior of granite and the creep model based on fractional derivative approach considering temperature
  publication-title: Math Probl Eng
– volume: 14
  start-page: 145
  issue: 2
  year: 1992
  ident: 10.1016/j.ijmst.2021.11.010_b0225
  article-title: Dislocation creep regimes in quartz aggregates
  publication-title: J Struct Geol
  doi: 10.1016/0191-8141(92)90053-Y
– volume: 43
  start-page: 176
  issue: 1
  year: 2016
  ident: 10.1016/j.ijmst.2021.11.010_b0070
  article-title: Low-temperature plastic rheology of olivine determined by nanoindentation
  publication-title: Geophys Res Lett
  doi: 10.1002/2015GL065837
– volume: 28
  start-page: 1177
  issue: 9
  year: 2013
  ident: 10.1016/j.ijmst.2021.11.010_b0125
  article-title: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures
  publication-title: J Mater Res
  doi: 10.1557/jmr.2013.39
– volume: 611
  start-page: 333
  year: 2014
  ident: 10.1016/j.ijmst.2021.11.010_b0180
  article-title: Mathematical description of indentation creep and its application for the determination of strain rate sensitivity
  publication-title: Mater Sci Eng: A
  doi: 10.1016/j.msea.2014.06.011
– volume: 126
  issue: 9
  year: 2021
  ident: 10.1016/j.ijmst.2021.11.010_b0040
  article-title: Viscoplastic rheology of α-quartz investigated by nanoindentation
  publication-title: J Geophys Res: Solid Earth
  doi: 10.1029/2021JB022229
– volume: 127
  start-page: 104210
  year: 2020
  ident: 10.1016/j.ijmst.2021.11.010_b0120
  article-title: Modeling the viscoelasticity of shale by nanoindentation creep tests
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2020.104210
– volume: 9
  start-page: 79
  issue: 2
  year: 2019
  ident: 10.1016/j.ijmst.2021.11.010_b0105
  article-title: Nanoindentation studies of plasticity and dislocation creep in halite
  publication-title: Geosciences
  doi: 10.3390/geosciences9020079
– volume: 167
  start-page: 729
  year: 2018
  ident: 10.1016/j.ijmst.2021.11.010_b0005
  article-title: Application of nanoindentation to characterize creep behavior of oil shales
  publication-title: J Petroleum Sci Eng
  doi: 10.1016/j.petrol.2018.04.055
– volume: 175
  start-page: 375
  year: 2019
  ident: 10.1016/j.ijmst.2021.11.010_b0095
  article-title: Effect of temperature on nano- and microscale creep properties of organic-rich shales
  publication-title: J Petroleum Sci Eng
  doi: 10.1016/j.petrol.2018.12.039
– volume: 31
  start-page: 401
  issue: 3
  year: 2021
  ident: 10.1016/j.ijmst.2021.11.010_b0250
  article-title: Creep properties and resistivity-ultrasonic-AE responses of cemented gangue backfill column under high-stress area
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2021.01.008
– volume: 6
  start-page: 1
  issue: 4
  year: 2020
  ident: 10.1016/j.ijmst.2021.11.010_b0065
  article-title: Application of nanoindentation technology in rocks: a review
  publication-title: Geomech Geophys Geo-Energy Geo-Resour
– year: 2019
  ident: 10.1016/j.ijmst.2021.11.010_b0075
– volume: 9
  start-page: 248
  year: 2019
  ident: 10.1016/j.ijmst.2021.11.010_b0235
  article-title: Niget: Nanoindentation general evaluation tool
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2019.03.001
– volume: 53
  start-page: 4417
  issue: 6
  year: 2018
  ident: 10.1016/j.ijmst.2021.11.010_b0085
  article-title: Nano-dynamic mechanical analysis (nano-DMA) of creep behavior of shales: Bakken case study
  publication-title: J Mater Sci
  doi: 10.1007/s10853-017-1821-z
– volume: 121
  start-page: 2382
  issue: 4
  year: 2016
  ident: 10.1016/j.ijmst.2021.11.010_b0160
  article-title: The effect of fracture density and stress state on the static and dynamic bulk moduli of Westerly granite
  publication-title: J Geophys Res: Solid Earth
  doi: 10.1002/2015JB012310
– volume: 30
  start-page: 357
  issue: 3
  year: 2020
  ident: 10.1016/j.ijmst.2021.11.010_b0010
  article-title: Investigation of rock salt layer creep and its effects on casing collapse
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2020.02.001
– volume: 42
  start-page: 115405
  issue: 11
  year: 2009
  ident: 10.1016/j.ijmst.2021.11.010_b0185
  article-title: Nanoindentation creep of nanocrystalline nickel at elevated temperatures
  publication-title: J Phys D: Appl Phys
  doi: 10.1088/0022-3727/42/11/115405
– volume: 28
  start-page: 2620
  issue: 5
  year: 2019
  ident: 10.1016/j.ijmst.2021.11.010_b0215
  article-title: Nanoindentation creep behavior of CoCrFeNiMn high-entropy alloy under different high-pressure torsion deformations
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-019-04092-1
– volume: 90
  start-page: 77
  issue: 1
  year: 2001
  ident: 10.1016/j.ijmst.2021.11.010_b0205
  article-title: An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks
  publication-title: Int J Earth Sci
  doi: 10.1007/s005310000152
– year: 2017
  ident: 10.1016/j.ijmst.2021.11.010_b0155
– volume: 114
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijmst.2021.11.010_b0200
  article-title: The brittle-to-viscous transition in polycrystalline quartz: an experimental study
  publication-title: J Struct Geol
  doi: 10.1016/j.jsg.2018.06.005
– volume: 49
  start-page: 2569
  issue: 7
  year: 2016
  ident: 10.1016/j.ijmst.2021.11.010_b0050
  article-title: Time-dependent behaviors of granite: loading-rate dependence, creep, and relaxation
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-0952-x
– volume: 147
  start-page: 104878
  year: 2021
  ident: 10.1016/j.ijmst.2021.11.010_b0115
  article-title: Mechanical properties of α-quartz using nanoindentation tests and molecular dynamics simulations
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2021.104878
– volume: 53
  start-page: 1751
  issue: 13
  year: 2019
  ident: 10.1016/j.ijmst.2021.11.010_b0165
  article-title: Depth sensing indentation of magnesium/boron nitride nanocomposites
  publication-title: J Compos Mater
  doi: 10.1177/0021998318808358
– volume: 30
  start-page: 769
  issue: 6
  year: 2020
  ident: 10.1016/j.ijmst.2021.11.010_b0035
  article-title: Creep characteristics of coal and rock investigated by nanoindentation
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2020.08.001
– volume: 247
  start-page: 1
  issue: 1-4
  year: 1995
  ident: 10.1016/j.ijmst.2021.11.010_b0195
  article-title: A flow law for dislocation creep of quartz aggregates determined with the molten salt cell
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(95)00011-B
– volume: 92
  start-page: 281
  issue: 2-3
  year: 2007
  ident: 10.1016/j.ijmst.2021.11.010_b0230
  article-title: Hardness, toughness, and modulus of some common metamorphic minerals
  publication-title: Am Mineral
  doi: 10.2138/am.2007.2212
– volume: 31
  start-page: 279
  issue: 2
  year: 2021
  ident: 10.1016/j.ijmst.2021.11.010_b0255
  article-title: Deformation response of roof in solid backfilling coal mining based on viscoelastic properties of waste gangue
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2021.01.004
– volume: 5
  start-page: 1073
  issue: 5
  year: 1990
  ident: 10.1016/j.ijmst.2021.11.010_b0145
  article-title: Mechanical properties of nanophase TiO2 as determined by nanoindentation
  publication-title: J Mater Res
  doi: 10.1557/JMR.1990.1073
– volume: 10
  start-page: 135
  issue: 2
  year: 2006
  ident: 10.1016/j.ijmst.2021.11.010_b0025
  article-title: Rheological model of soft rock creep based on the tests on marl
  publication-title: Mech Time-Depend Mater
  doi: 10.1007/s11043-006-9005-2
– volume: 716
  start-page: 63
  year: 2018
  ident: 10.1016/j.ijmst.2021.11.010_b0060
  article-title: Indentation-based rate-dependent plastic deformation of polycrystalline pure magnesium
  publication-title: Mater Sci Eng: A
  doi: 10.1016/j.msea.2018.01.036
– volume: 39
  start-page: 1
  issue: 1
  year: 1979
  ident: 10.1016/j.ijmst.2021.11.010_b0140
  article-title: Impression creep of β-tin single crystals
  publication-title: Mater Sci Eng
  doi: 10.1016/0025-5416(79)90164-2
– volume: 385
  start-page: 74
  issue: 1-2
  year: 2004
  ident: 10.1016/j.ijmst.2021.11.010_b0245
  article-title: A simple phenomenological approach to nanoindentation creep
  publication-title: Mater Sci Eng: A
  doi: 10.1016/j.msea.2004.04.070
– volume: 39
  start-page: 223
  issue: 2
  year: 2010
  ident: 10.1016/j.ijmst.2021.11.010_b0150
  article-title: Temperature dependence of creep and hardness of Sn-Ag-Cu lead-free solder
  publication-title: J Electron Mater
  doi: 10.1007/s11664-009-0970-5
– volume: 16
  start-page: 213
  issue: 2
  year: 1982
  ident: 10.1016/j.ijmst.2021.11.010_b0210
  article-title: The Structure dependence of power law creep
  publication-title: Scr Metall
  doi: 10.1016/0036-9748(82)90389-1
– volume: 322
  start-page: 23
  issue: 1-2
  year: 2002
  ident: 10.1016/j.ijmst.2021.11.010_b0130
  article-title: Impression creep and other localized tests
  publication-title: Mater Sci Eng: A
  doi: 10.1016/S0921-5093(01)01116-9
– volume: 124
  start-page: 7842
  issue: 8
  year: 2019
  ident: 10.1016/j.ijmst.2021.11.010_b0090
  article-title: Creep deformation in Vaca muerta shale from nanoindentation to triaxial experiments
  publication-title: J Geophys Res: Solid Earth
  doi: 10.1029/2019JB017524
– volume: 8
  start-page: 501
  issue: 2
  year: 2020
  ident: 10.1016/j.ijmst.2021.11.010_b0020
  article-title: Creep characteristics and constitutive model of coal under triaxial stress and gas pressure
  publication-title: Energy Sci Eng
  doi: 10.1002/ese3.532
– volume: 75
  start-page: 900
  issue: 10
  year: 2016
  ident: 10.1016/j.ijmst.2021.11.010_b0055
  article-title: Study on nonlinear damage creep constitutive model for high-stress soft rock
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-5699-x
– volume: 106
  start-page: 109
  year: 2018
  ident: 10.1016/j.ijmst.2021.11.010_b0015
  article-title: Creep properties of intact and fractured muddy siltstone
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2018.03.006
– volume: 173
  start-page: 733
  year: 2019
  ident: 10.1016/j.ijmst.2021.11.010_b0100
  article-title: Abnormal behavior during nanoindentation holding stage: Characterization and explanation
  publication-title: J Petroleum Sci Eng
  doi: 10.1016/j.petrol.2018.10.069
– volume: 7
  start-page: 1564
  issue: 6
  year: 1992
  ident: 10.1016/j.ijmst.2021.11.010_b0045
  article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
  publication-title: J Mater Res
  doi: 10.1557/JMR.1992.1564
– volume: 709
  start-page: 322
  year: 2017
  ident: 10.1016/j.ijmst.2021.11.010_b0190
  article-title: Indenter load effects on creep deformation behavior for Ti-10V-2Fe-3Al alloy at room temperature
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2017.03.175
SSID ssj0000684852
Score 2.4397173
Snippet The creep phenomenon of rocks is quite complex and the creep mechanisms are far from being well understood. Although laboratory creep tests have been carried...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 283
SubjectTerms Fracture toughness
Granite
Nanoindentation
Strain rate sensitivity
Stress exponent
Time-dependent creep
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqJhgQT1Fe8sCIaeLYTjICAlVIsEAlmCI_zihA04qWld-Oz02qsjAw2jkn0fnk-5zc95mQs8xniMsLBiE9MAGJY6UuE-YseKGlcBB1uu8f1HAk7p7lc49cd1wYLKts1_7Fmh5X67Zn0HpzMK3rwSMP6IAjwSGNPwxQE1SIHKP84jtdfmdJVCGKePAO2jMc0IkPxTKv-m08w5pKnl6gmicyaVcSVNTxX8lTK7nndotstqCRXi7ea5v0oNkhGytSgrvkZdRYrMYMDRowHQ1gEKbUwZKcSMeAJN96NqYTT0Paemd4De3HdZSenlEsgn-ljW4mKKK4ICU1e2R0e_N0PWTtsQnMilTMmfFSZSovjRGFk0alkEnPMyh8Dhy4lQ4xnEp0yO6hmUqbgICA1JTzYfPCs32y1kwaOCCUcy9ciSjEl6gzo72S3ica8twa48s-4Z2vKttqiuPRFh9VVzz2VkUHV-jgsNuogoP75Hw5aLqQ1Pjb_AonYWmKetixY_L5WrUBUSETVHmRWAc2xEBaGM21ASGlL7kWaZ-obgqrX-EVblX_9fTD_w48IuscmRKxXO2YrM0_v-Ak4Je5OY0B-gPZnu5o
  priority: 102
  providerName: Elsevier
Title Uncovering the creep deformation mechanism of rock-forming minerals using nanoindentation
URI https://dx.doi.org/10.1016/j.ijmst.2021.11.010
https://doaj.org/article/06286f40cdec47618ba2abe455f92a41
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELaACQbEU5RH5YGRQOLYbjICAlVIMFEJpsiPMyrQFNGy8tu5c9IqEyyMjp3YOp9y30nffcfYaR5ywuVFAhgeEgmpT0pTpol3EKRR0kPU6b5_0MORvHtST51WX8QJa-SBG8NdUI2fDjJ1HpzEnLuwRhgLUqlQChNL1gXGvE4y1fyDC1nEdjs4STSuQi8khyK5a_w6mRGTUmTnpOFJ9bOdsBTV-zvRqRNxbrfYZgsV-WVzxG22AvUO2-gICO6y51HtiIOJA45IjiMEhA_uYVmSyCdApb3j2YRPA8dg9ZbQHK2fjKPg9IwT9f2F16aeknRiU4pU77HR7c3j9TBpmyUkTmZyntigdK4HpbWy8MrqDHIVRA5FGIAA4ZQn5KZTgzEdh5lyKUhAfKZ9wJRF5PtsrZ7WcMC4EEH6krBHKEldxgStQkgNDAbO2lD2mFjYqnKtkjg1tHivFpSx1yoauCIDY45RoYF77Gz50kcjpPH78iu6hOVSUsGOD9A3qtY3qr98o8f04gqrFlA0QAE_Nf5t98P_2P2IrQuqlYiEtWO2Nv_8ghNEMHPbZ6vn31k_uuwPuWjuqA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgAOiKdYnj5wxN3EsZ3kCBXVAm0vdKVysvwYVylsdtVdrvx2PN5ktVx64GjHk0Tjx3xO5vsM8L6KFeHyhmMKD1xiEXhr24IHj1FaJQNmne6zcz2by6-X6vIAjkcuDKVVDmv_dk3Pq_VQMx28OV113fS7SOhAEMGhzD8M5B24K9P0pdl59KfcfWgpdCObfPIOGXCyGNWHcp5Xd71YU1KlKI9IzpOotHsRKgv57wWqveBz8ggeDqiRfdy-2GM4wP4JPNjTEnwKP-a9p3TMVGAJ1LGEBnHFAu7YiWyBxPLt1gu2jCzFrZ-crlH7RZe1p9eMsuCvWG_7JakobllJ_TOYn3y-OJ7x4dwE7mUpN9xFpStdt87JJiinS6xUFBU2sUaBwqtAIE4XNoX3VCyVL1Bigmo6xLR7EdVzOOyXPb4AJkSUoSUYElsSmrFRqxgLi3XtnYvtBMToK-MHUXE62-KXGbPHrk12sCEHp-2GSQ6ewIed0WqrqXF780_UCbumJIidK5Y3V2YYEYaooDrKwgf0stZl46ywDqVSsRVWlhPQYxeaf8ZXulV329Nf_q_hO7g3uzg7Nadfzr-9gvuCaBM5d-01HG5ufuObBGY27m0erH8B0LLxgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+the+creep+deformation+mechanism+of+rock-forming+minerals+using+nanoindentation&rft.jtitle=International+journal+of+mining+science+and+technology&rft.au=Ma%2C+Zhaoyang&rft.au=Zhang%2C+Chengpeng&rft.au=Pathegama+Gamage%2C+Ranjith&rft.au=Zhang%2C+Guanglei&rft.date=2022-03-01&rft.issn=2095-2686&rft.volume=32&rft.issue=2&rft.spage=283&rft.epage=294&rft_id=info:doi/10.1016%2Fj.ijmst.2021.11.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijmst_2021_11_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2686&client=summon