Thrust characteristics research on continuous rotating detonation engine
Detonation combustion can produce pressure enhancement effect, increasing engine thrust. In this paper, a 2D Euler control equation with chemical reaction is used to solve the periodic flow of the detonation wave in a rectangular plane. The combustion of the air-breathing continuous rotating detonat...
Saved in:
Published in | Case studies in thermal engineering Vol. 47; p. 103127 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Detonation combustion can produce pressure enhancement effect, increasing engine thrust. In this paper, a 2D Euler control equation with chemical reaction is used to solve the periodic flow of the detonation wave in a rectangular plane. The combustion of the air-breathing continuous rotating detonation engine is simulated. The RDE thrust is obtained through the outlet parameters of the engine. The fuel used is hydrogen, with the equivalent ratio to air. The calculation reflects the working condition of the engine running at low speed. The operating conditions of the engine at low speed are calculated, with a low intake pressure and temperature of 300K and 0.2/0.35 MPa respectively. It is found that the thermal efficiency of detonation wave is higher than that of the deflagration wave under low inlet pressure and temperature, and the thrust of RDE is significantly higher than that of the deflagration engine. The pressure enhancement effect of RDE is not as strong as that of detonation wave, so the pressure ratio of detonation wave can not be used to calculate the engine efficiency. |
---|---|
AbstractList | Detonation combustion can produce pressure enhancement effect, increasing engine thrust. In this paper, a 2D Euler control equation with chemical reaction is used to solve the periodic flow of the detonation wave in a rectangular plane. The combustion of the air-breathing continuous rotating detonation engine is simulated. The RDE thrust is obtained through the outlet parameters of the engine. The fuel used is hydrogen, with the equivalent ratio to air. The calculation reflects the working condition of the engine running at low speed. The operating conditions of the engine at low speed are calculated, with a low intake pressure and temperature of 300K and 0.2/0.35 MPa respectively. It is found that the thermal efficiency of detonation wave is higher than that of the deflagration wave under low inlet pressure and temperature, and the thrust of RDE is significantly higher than that of the deflagration engine. The pressure enhancement effect of RDE is not as strong as that of detonation wave, so the pressure ratio of detonation wave can not be used to calculate the engine efficiency. |
ArticleNumber | 103127 |
Author | Zhang, Shihui Wang, Qingwu |
Author_xml | – sequence: 1 givenname: Qingwu orcidid: 0000-0002-0804-1398 surname: Wang fullname: Wang, Qingwu email: wqw@ncepu.edu.cn – sequence: 2 givenname: Shihui surname: Zhang fullname: Zhang, Shihui email: physxzhang@foxmail.com |
BookMark | eNp9kM1qGzEUhUVJoa7jJ-hmXsCu_kYaLbIopm0MgWwcyE5Id-7YMo5UJLnQt69stxCyyEqHczkHne8zuYkpIiFfGF0xytTXwwpKqLjilIvmCMb1BzLjnMkl6_XzzSv9iSxKOVBKmRYDk3JG7rf7fCq1g73LDirmUGqA0mUs6DLsuxQ7SLGGeEqnZqfqmt51I9YUm2xnjLsQ8ZZ8nNyx4OLfOydPP75v1_fLh8efm_W3hyVIJuvSj72namCjEL0x3HjRc1CM90oIbwanvDLaSU2N9ANSxQYzcaCeAu0F7Y2Yk821d0zuYH_l8OLyH5tcsBcj5Z11uU04op0A0Ml-Mnqi0ivlcKBaKQCuNVf-3GWuXZBTKRknC6FeRtXswtEyas-E7cFeCNszYXsl3LLiTfb_X95P3V1T2BD9DphtgYARcAwZobYN4d38X55jl9c |
CitedBy_id | crossref_primary_10_1016_j_ijheatfluidflow_2025_109764 crossref_primary_10_1016_j_csite_2024_105726 |
Cites_doi | 10.2514/6.2010-153 10.1016/j.actaastro.2021.09.009 10.2514/6.2001-3811 10.1016/j.combustflame.2012.07.007 10.2514/6.2011-581 10.2514/6.2011-803 10.2514/1.46686 10.2514/6.2001-478 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2023.103127 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_fccea45f97f04b66ae80766cc27726b9 10_1016_j_csite_2023_103127 S2214157X23004331 |
GroupedDBID | 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c414t-bd5b0681d3359929b352c6125633b98a6b697a47094b8e06189f2c0b0c0530593 |
IEDL.DBID | DOA |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:24:58 EDT 2025 Tue Jul 01 02:28:38 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Sat Sep 30 17:11:03 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Continuous rotating detonation engine Thrust characteristics Air-breathing Pressure enhancement effect |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-bd5b0681d3359929b352c6125633b98a6b697a47094b8e06189f2c0b0c0530593 |
ORCID | 0000-0002-0804-1398 |
OpenAccessLink | https://doaj.org/article/fccea45f97f04b66ae80766cc27726b9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fccea45f97f04b66ae80766cc27726b9 crossref_citationtrail_10_1016_j_csite_2023_103127 crossref_primary_10_1016_j_csite_2023_103127 elsevier_sciencedirect_doi_10_1016_j_csite_2023_103127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Langston (bib2) 2013; 135 Dunn, Malik, Flores (bib10) 2021; 302 Wang, Liu, Liu (bib6) 2021; 189 Stull, Prophet (bib19) 1971 Yi, Lou, Turangan (bib17) 2011; 27 Akbari, Snyder (bib1) 2007 Takayuki, Hayashi, Yamada (bib13) 2010; 182 Peng, Liu, Liu (bib5) 2020; 211 Braun, Lu, Wilson (bib15) 2010 Tsuboi, Asahara, Kojima (bib7) 2018 Yamada T, Hayashi A K, Yamada E, et al. Numerical Analysis of Threshold of Limit Detonation in Rotating Detonation Engine[R]. AIAA 2010-153. Lu, Braun, Massa (bib14) 2011 Shimizu H, Tsuboi N, Hayashi A K Study of Detailed Chemical Reaction Modelon Hydrogen-Air Detonation [R]. AIAA 2001-0478. Nordeen C A, Schwer D, Schauer F, et al. Thermodynamic Modeling of a Rotating Detonation Engine [R].AIAA 2011-803. E. Wintenberger, J. M. Austin, M. Cooper, S. Jackson, and J. E. Shepherd. An analytical model for the impulse of a single cycle pulse detonation engine [C]. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit July 8-11,2001,Salt Lake City, UT. AIAA 2001-3811. Schwer D, Kailasanath K. Numerical Study of the Effects of Engine Size on Rotating Detonation Engines [R].AIAA 2011-581. Kailasanath (bib16) 2013 Rui, Jian-Ping (bib8) 2012; 159 Hua, Cx, Jl (bib4) 2020; 3 Akbari (10.1016/j.csite.2023.103127_bib1) 2007 Wang (10.1016/j.csite.2023.103127_bib6) 2021; 189 Langston (10.1016/j.csite.2023.103127_bib2) 2013; 135 Rui (10.1016/j.csite.2023.103127_bib8) 2012; 159 Braun (10.1016/j.csite.2023.103127_bib15) 2010 10.1016/j.csite.2023.103127_bib18 Tsuboi (10.1016/j.csite.2023.103127_bib7) 2018 10.1016/j.csite.2023.103127_bib9 10.1016/j.csite.2023.103127_bib12 10.1016/j.csite.2023.103127_bib11 Dunn (10.1016/j.csite.2023.103127_bib10) 2021; 302 10.1016/j.csite.2023.103127_bib3 Kailasanath (10.1016/j.csite.2023.103127_bib16) 2013 Hua (10.1016/j.csite.2023.103127_bib4) 2020; 3 Takayuki (10.1016/j.csite.2023.103127_bib13) 2010; 182 Stull (10.1016/j.csite.2023.103127_bib19) 1971 Peng (10.1016/j.csite.2023.103127_bib5) 2020; 211 Lu (10.1016/j.csite.2023.103127_bib14) 2011 Yi (10.1016/j.csite.2023.103127_bib17) 2011; 27 |
References_xml | – volume: 189 start-page: 722 year: 2021 end-page: 732 ident: bib6 article-title: Experimental verification of cylindrical air-breathing continuous rotating detonation engine fueled by non-premixed ethylene publication-title: Acta Astronaut. – reference: Yamada T, Hayashi A K, Yamada E, et al. Numerical Analysis of Threshold of Limit Detonation in Rotating Detonation Engine[R]. AIAA 2010-153. – volume: 3 start-page: 500 year: 2020 end-page: 510 ident: bib4 article-title: A theoretical and 1-D numerical investigation on a valve/valveless air-breathing pulse detonation engine - ScienceDirect publication-title: Chin. J. Aeronaut. – year: 2018 ident: bib7 article-title: Numerical Simulation on Rotating Detonation Engine: Effects of Higher-Order Scheme – year: 1971 ident: bib19 article-title: JANAF Thermochemical Tables, 2 – reference: E. Wintenberger, J. M. Austin, M. Cooper, S. Jackson, and J. E. Shepherd. An analytical model for the impulse of a single cycle pulse detonation engine [C]. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit July 8-11,2001,Salt Lake City, UT. AIAA 2001-3811. – reference: Nordeen C A, Schwer D, Schauer F, et al. Thermodynamic Modeling of a Rotating Detonation Engine [R].AIAA 2011-803. – year: 2010 ident: bib15 article-title: Airbreathing rotating detonation wave engine cycle analysis publication-title: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2010-7039 – volume: 302 year: 2021 ident: bib10 article-title: Experimental and theoretical analysis of carbon driven detonation waves in a heterogeneously premixed Rotating Detonation Engine publication-title: Fuel – volume: 27 start-page: 171 year: 2011 end-page: 181 ident: bib17 article-title: Propulsive performance of a continuously rotating detonation engine publication-title: J. Propul. Power – reference: Shimizu H, Tsuboi N, Hayashi A K Study of Detailed Chemical Reaction Modelon Hydrogen-Air Detonation [R]. AIAA 2001-0478. – reference: Schwer D, Kailasanath K. Numerical Study of the Effects of Engine Size on Rotating Detonation Engines [R].AIAA 2011-581. – year: 2013 ident: bib16 article-title: Rotating Detonation Engine Research at NRL – volume: 211 year: 2020 ident: bib5 article-title: Hydrogen-air, ethylene-air, and methane-air continuous rotating detonation in the hollow chamber publication-title: Energy – volume: 159 start-page: 3632 year: 2012 end-page: 3645 ident: bib8 article-title: Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines publication-title: Combust. Flame – year: 2007 ident: bib1 article-title: Recent Developments in Wave Rotor Combustion Technology and Future Perspectives: a Progress review[R]. AIAA 2007-5055 – volume: 135 start-page: 50 year: 2013 end-page: 54 ident: bib2 article-title: Detonation gas turbines publication-title: Mechanical engineering (New York, N.Y.: 1919) – year: 2011 ident: bib14 article-title: Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts [R]. AIAA-2011-6043 – volume: 182 start-page: 1901 year: 2010 end-page: 1914 ident: bib13 article-title: Detonation limit thresholds in H 2/O 2 rotating detonation engine publication-title: Combust. Sci. Technol. – year: 2018 ident: 10.1016/j.csite.2023.103127_bib7 – volume: 211 issue: 1 year: 2020 ident: 10.1016/j.csite.2023.103127_bib5 article-title: Hydrogen-air, ethylene-air, and methane-air continuous rotating detonation in the hollow chamber publication-title: Energy – year: 2007 ident: 10.1016/j.csite.2023.103127_bib1 – ident: 10.1016/j.csite.2023.103127_bib12 doi: 10.2514/6.2010-153 – volume: 189 start-page: 722 year: 2021 ident: 10.1016/j.csite.2023.103127_bib6 article-title: Experimental verification of cylindrical air-breathing continuous rotating detonation engine fueled by non-premixed ethylene publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2021.09.009 – ident: 10.1016/j.csite.2023.103127_bib3 doi: 10.2514/6.2001-3811 – volume: 3 start-page: 500 year: 2020 ident: 10.1016/j.csite.2023.103127_bib4 article-title: A theoretical and 1-D numerical investigation on a valve/valveless air-breathing pulse detonation engine - ScienceDirect publication-title: Chin. J. Aeronaut. – year: 2010 ident: 10.1016/j.csite.2023.103127_bib15 article-title: Airbreathing rotating detonation wave engine cycle analysis – year: 1971 ident: 10.1016/j.csite.2023.103127_bib19 – volume: 182 start-page: 1901 issue: 11–12 year: 2010 ident: 10.1016/j.csite.2023.103127_bib13 article-title: Detonation limit thresholds in H 2/O 2 rotating detonation engine publication-title: Combust. Sci. Technol. – volume: 159 start-page: 3632 issue: 12 year: 2012 ident: 10.1016/j.csite.2023.103127_bib8 article-title: Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines publication-title: Combust. Flame doi: 10.1016/j.combustflame.2012.07.007 – ident: 10.1016/j.csite.2023.103127_bib11 doi: 10.2514/6.2011-581 – volume: 302 issue: 2 year: 2021 ident: 10.1016/j.csite.2023.103127_bib10 article-title: Experimental and theoretical analysis of carbon driven detonation waves in a heterogeneously premixed Rotating Detonation Engine publication-title: Fuel – year: 2011 ident: 10.1016/j.csite.2023.103127_bib14 – year: 2013 ident: 10.1016/j.csite.2023.103127_bib16 – volume: 135 start-page: 50 issue: 12 year: 2013 ident: 10.1016/j.csite.2023.103127_bib2 article-title: Detonation gas turbines publication-title: Mechanical engineering (New York, N.Y.: 1919) – ident: 10.1016/j.csite.2023.103127_bib9 doi: 10.2514/6.2011-803 – volume: 27 start-page: 171 issue: 1 year: 2011 ident: 10.1016/j.csite.2023.103127_bib17 article-title: Propulsive performance of a continuously rotating detonation engine publication-title: J. Propul. Power doi: 10.2514/1.46686 – ident: 10.1016/j.csite.2023.103127_bib18 doi: 10.2514/6.2001-478 |
SSID | ssj0001738144 |
Score | 2.262931 |
Snippet | Detonation combustion can produce pressure enhancement effect, increasing engine thrust. In this paper, a 2D Euler control equation with chemical reaction is... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 103127 |
SubjectTerms | Air-breathing Continuous rotating detonation engine Pressure enhancement effect Thrust characteristics |
SummonAdditionalLinks | – databaseName: ScienceDirect Open Access Journals (Elsevier) dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b8MgEEVRpnao-qmmX2LoWCuOjcEem6hRVKldmkjeEGCcpKrsKHL-f--wnTpLho5GgK0Dcw-4e4-QZyN837DAeFlmkFRbhJ7WceglmQJ4kgmmnHzbxyefLdh7GqU9MmlzYTCssln76zXdrdZNybCx5nCzXg-_gmAE3kekAZJGhS6XOmSxS-JLx3_nLAJ8ktN0xfoeNmjJh1yYl3GXtCgijvnnTl2m46Acj3_HT3V8z_ScnDWgkb7W33VBera4JKcdKsErMpuvMHuCmkMCZtqQ-axoWVAMS18XO9jr022JV_DFkma2KusDQWpdf9dkMX2bT2Zeo5LgGTZilaezSPscYGcYRgmAHQ2QyiBu4WGok1hxzROhmIB9nI4tuO84yQPja9_A_4eCfjekX5SFvSU0ywFOqNyKgEVM8zzOdQx4w0TCFyZSYkCC1jTSNBTiqGTxI9tYsW_p7CnRnrK254C87BttagaN49XHaPN9VaS_dgXldimb8Ze5MVaxKE9E7sOHcmVjX3AMAYfNAtfJgPB2xOTBbIKu1sfefvffhvfkBJ_qQN4H0q-2O_sIcKXST24-_gLV--as priority: 102 providerName: Elsevier |
Title | Thrust characteristics research on continuous rotating detonation engine |
URI | https://dx.doi.org/10.1016/j.csite.2023.103127 https://doaj.org/article/fccea45f97f04b66ae80766cc27726b9 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBIRJr4kYwUUQUkmFopm2U7Ni1CCarS_8_ZTqqwlIUlQ-TY0eWi-86--z6E7jSPY00SHVWVdqTaPI2UytIoryTAk4oT6eXb3t5ZsSCvJS0HUl-uJizQAwfDPVitjSTU5tzGRDEmTQapt6v2BVzIlG_dg5g3SKb87gqHSOSVXJNkQqIJ5WVPOeSLu7Q_mnXS4a7r3GvKDMKSZ-8fRKdBxJkdocMOKuLH8IrHaM_UJ-hgQCB4ior50vVMYP2bdhl3FD5L3NTYFaOv6g1k-HjduIP3-gNXpm3CNiA2fr4ztJg9z5-KqNNGiDSZkDZSFVUxA7CZpjQHiKMASGmHVliaqjyTTLGcS8Ihe1OZgaCd5TbRsYo1_HVOxu8cjeqmNhcIVxZAhLSGJ4SChW1mVQYoQ1Mec00lH6OkN43QHXG406_4En2F2Kfw9hTOniLYc4zutw99B96M3cOnzubboY702t8AVxCdK4i_XGGMWP_FRIcfAi6AqVa7Vr_8j9Wv0L6bMpTyXqNRu96YGwAsrbr1vgnXl3L6Ax4B548 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0BPRQOqIVWLPTDh3Ij2qzj2MmBQ2mLdsvHhUXamxs7DmxVJQh2hfhd_EFmHAeWC4dKXJ3YscYTz7M9fg_gm1VxbAW3UVlaItVWSWRMlkR5WSA8KZUovHzbyakcnovfk3SyBPfdXRhKqwxzfzun-9k6lPSDNftX02n_jPMBRh814UQalSSDkFl55O5ucd12sz_6iYO8y_nhr_GPYRSkBSIrBmIWmTI1sUSsliRpjgjBIA6xFOxlkpg8K6SRuSqEwsWPyRzGvCyvuI1NbNFpSQUP212GN4g-FM0Go8nB08aOwiDoRWSpgxH1sGM78nll1p8Kk2o5XXj3cjYLEdELBywExoVgd_gO1gNKZd9bQ7yHJVdvwNoCd-EmDMeXdF2D2eeMzyywB12ypmaUBz-t580cixs6868vWOlmTbsDyZxv7wOcv4rtPsJK3dRuC1hZIX4pKqe4SIWRVVaZDAGOTVWsbFqoHvDONNoGznKSzvinu-S0v9rbU5M9dWvPHuw9VrpqKTtefv2AbP74KvFt-4Lm-kIHh9OVta4QaZWrKsaOysJlsZKUc46rE2nyHshuxPQz98Wmpi99fft_K36Ft8PxybE-Hp0e7cAqPWmziD_Byux67j4jVpqZL943Gfx57Z_hAbTrILU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thrust+characteristics+research+on+continuous+rotating+detonation+engine&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Qingwu+Wang&rft.au=Shihui+Zhang&rft.date=2023-07-01&rft.pub=Elsevier&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=47&rft.spage=103127&rft_id=info:doi/10.1016%2Fj.csite.2023.103127&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fccea45f97f04b66ae80766cc27726b9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |