Thrust characteristics research on continuous rotating detonation engine

Detonation combustion can produce pressure enhancement effect, increasing engine thrust. In this paper, a 2D Euler control equation with chemical reaction is used to solve the periodic flow of the detonation wave in a rectangular plane. The combustion of the air-breathing continuous rotating detonat...

Full description

Saved in:
Bibliographic Details
Published inCase studies in thermal engineering Vol. 47; p. 103127
Main Authors Wang, Qingwu, Zhang, Shihui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detonation combustion can produce pressure enhancement effect, increasing engine thrust. In this paper, a 2D Euler control equation with chemical reaction is used to solve the periodic flow of the detonation wave in a rectangular plane. The combustion of the air-breathing continuous rotating detonation engine is simulated. The RDE thrust is obtained through the outlet parameters of the engine. The fuel used is hydrogen, with the equivalent ratio to air. The calculation reflects the working condition of the engine running at low speed. The operating conditions of the engine at low speed are calculated, with a low intake pressure and temperature of 300K and 0.2/0.35 MPa respectively. It is found that the thermal efficiency of detonation wave is higher than that of the deflagration wave under low inlet pressure and temperature, and the thrust of RDE is significantly higher than that of the deflagration engine. The pressure enhancement effect of RDE is not as strong as that of detonation wave, so the pressure ratio of detonation wave can not be used to calculate the engine efficiency.
AbstractList Detonation combustion can produce pressure enhancement effect, increasing engine thrust. In this paper, a 2D Euler control equation with chemical reaction is used to solve the periodic flow of the detonation wave in a rectangular plane. The combustion of the air-breathing continuous rotating detonation engine is simulated. The RDE thrust is obtained through the outlet parameters of the engine. The fuel used is hydrogen, with the equivalent ratio to air. The calculation reflects the working condition of the engine running at low speed. The operating conditions of the engine at low speed are calculated, with a low intake pressure and temperature of 300K and 0.2/0.35 MPa respectively. It is found that the thermal efficiency of detonation wave is higher than that of the deflagration wave under low inlet pressure and temperature, and the thrust of RDE is significantly higher than that of the deflagration engine. The pressure enhancement effect of RDE is not as strong as that of detonation wave, so the pressure ratio of detonation wave can not be used to calculate the engine efficiency.
ArticleNumber 103127
Author Zhang, Shihui
Wang, Qingwu
Author_xml – sequence: 1
  givenname: Qingwu
  orcidid: 0000-0002-0804-1398
  surname: Wang
  fullname: Wang, Qingwu
  email: wqw@ncepu.edu.cn
– sequence: 2
  givenname: Shihui
  surname: Zhang
  fullname: Zhang, Shihui
  email: physxzhang@foxmail.com
BookMark eNp9kM1qGzEUhUVJoa7jJ-hmXsCu_kYaLbIopm0MgWwcyE5Id-7YMo5UJLnQt69stxCyyEqHczkHne8zuYkpIiFfGF0xytTXwwpKqLjilIvmCMb1BzLjnMkl6_XzzSv9iSxKOVBKmRYDk3JG7rf7fCq1g73LDirmUGqA0mUs6DLsuxQ7SLGGeEqnZqfqmt51I9YUm2xnjLsQ8ZZ8nNyx4OLfOydPP75v1_fLh8efm_W3hyVIJuvSj72namCjEL0x3HjRc1CM90oIbwanvDLaSU2N9ANSxQYzcaCeAu0F7Y2Yk821d0zuYH_l8OLyH5tcsBcj5Z11uU04op0A0Ml-Mnqi0ivlcKBaKQCuNVf-3GWuXZBTKRknC6FeRtXswtEyas-E7cFeCNszYXsl3LLiTfb_X95P3V1T2BD9DphtgYARcAwZobYN4d38X55jl9c
CitedBy_id crossref_primary_10_1016_j_ijheatfluidflow_2025_109764
crossref_primary_10_1016_j_csite_2024_105726
Cites_doi 10.2514/6.2010-153
10.1016/j.actaastro.2021.09.009
10.2514/6.2001-3811
10.1016/j.combustflame.2012.07.007
10.2514/6.2011-581
10.2514/6.2011-803
10.2514/1.46686
10.2514/6.2001-478
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2023.103127
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_fccea45f97f04b66ae80766cc27726b9
10_1016_j_csite_2023_103127
S2214157X23004331
GroupedDBID 0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-bd5b0681d3359929b352c6125633b98a6b697a47094b8e06189f2c0b0c0530593
IEDL.DBID DOA
ISSN 2214-157X
IngestDate Wed Aug 27 01:24:58 EDT 2025
Tue Jul 01 02:28:38 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Sat Sep 30 17:11:03 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Continuous rotating detonation engine
Thrust characteristics
Air-breathing
Pressure enhancement effect
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-bd5b0681d3359929b352c6125633b98a6b697a47094b8e06189f2c0b0c0530593
ORCID 0000-0002-0804-1398
OpenAccessLink https://doaj.org/article/fccea45f97f04b66ae80766cc27726b9
ParticipantIDs doaj_primary_oai_doaj_org_article_fccea45f97f04b66ae80766cc27726b9
crossref_citationtrail_10_1016_j_csite_2023_103127
crossref_primary_10_1016_j_csite_2023_103127
elsevier_sciencedirect_doi_10_1016_j_csite_2023_103127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Langston (bib2) 2013; 135
Dunn, Malik, Flores (bib10) 2021; 302
Wang, Liu, Liu (bib6) 2021; 189
Stull, Prophet (bib19) 1971
Yi, Lou, Turangan (bib17) 2011; 27
Akbari, Snyder (bib1) 2007
Takayuki, Hayashi, Yamada (bib13) 2010; 182
Peng, Liu, Liu (bib5) 2020; 211
Braun, Lu, Wilson (bib15) 2010
Tsuboi, Asahara, Kojima (bib7) 2018
Yamada T, Hayashi A K, Yamada E, et al. Numerical Analysis of Threshold of Limit Detonation in Rotating Detonation Engine[R]. AIAA 2010-153.
Lu, Braun, Massa (bib14) 2011
Shimizu H, Tsuboi N, Hayashi A K Study of Detailed Chemical Reaction Modelon Hydrogen-Air Detonation [R]. AIAA 2001-0478.
Nordeen C A, Schwer D, Schauer F, et al. Thermodynamic Modeling of a Rotating Detonation Engine [R].AIAA 2011-803.
E. Wintenberger, J. M. Austin, M. Cooper, S. Jackson, and J. E. Shepherd. An analytical model for the impulse of a single cycle pulse detonation engine [C]. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit July 8-11,2001,Salt Lake City, UT. AIAA 2001-3811.
Schwer D, Kailasanath K. Numerical Study of the Effects of Engine Size on Rotating Detonation Engines [R].AIAA 2011-581.
Kailasanath (bib16) 2013
Rui, Jian-Ping (bib8) 2012; 159
Hua, Cx, Jl (bib4) 2020; 3
Akbari (10.1016/j.csite.2023.103127_bib1) 2007
Wang (10.1016/j.csite.2023.103127_bib6) 2021; 189
Langston (10.1016/j.csite.2023.103127_bib2) 2013; 135
Rui (10.1016/j.csite.2023.103127_bib8) 2012; 159
Braun (10.1016/j.csite.2023.103127_bib15) 2010
10.1016/j.csite.2023.103127_bib18
Tsuboi (10.1016/j.csite.2023.103127_bib7) 2018
10.1016/j.csite.2023.103127_bib9
10.1016/j.csite.2023.103127_bib12
10.1016/j.csite.2023.103127_bib11
Dunn (10.1016/j.csite.2023.103127_bib10) 2021; 302
10.1016/j.csite.2023.103127_bib3
Kailasanath (10.1016/j.csite.2023.103127_bib16) 2013
Hua (10.1016/j.csite.2023.103127_bib4) 2020; 3
Takayuki (10.1016/j.csite.2023.103127_bib13) 2010; 182
Stull (10.1016/j.csite.2023.103127_bib19) 1971
Peng (10.1016/j.csite.2023.103127_bib5) 2020; 211
Lu (10.1016/j.csite.2023.103127_bib14) 2011
Yi (10.1016/j.csite.2023.103127_bib17) 2011; 27
References_xml – volume: 189
  start-page: 722
  year: 2021
  end-page: 732
  ident: bib6
  article-title: Experimental verification of cylindrical air-breathing continuous rotating detonation engine fueled by non-premixed ethylene
  publication-title: Acta Astronaut.
– reference: Yamada T, Hayashi A K, Yamada E, et al. Numerical Analysis of Threshold of Limit Detonation in Rotating Detonation Engine[R]. AIAA 2010-153.
– volume: 3
  start-page: 500
  year: 2020
  end-page: 510
  ident: bib4
  article-title: A theoretical and 1-D numerical investigation on a valve/valveless air-breathing pulse detonation engine - ScienceDirect
  publication-title: Chin. J. Aeronaut.
– year: 2018
  ident: bib7
  article-title: Numerical Simulation on Rotating Detonation Engine: Effects of Higher-Order Scheme
– year: 1971
  ident: bib19
  article-title: JANAF Thermochemical Tables, 2
– reference: E. Wintenberger, J. M. Austin, M. Cooper, S. Jackson, and J. E. Shepherd. An analytical model for the impulse of a single cycle pulse detonation engine [C]. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit July 8-11,2001,Salt Lake City, UT. AIAA 2001-3811.
– reference: Nordeen C A, Schwer D, Schauer F, et al. Thermodynamic Modeling of a Rotating Detonation Engine [R].AIAA 2011-803.
– year: 2010
  ident: bib15
  article-title: Airbreathing rotating detonation wave engine cycle analysis
  publication-title: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2010-7039
– volume: 302
  year: 2021
  ident: bib10
  article-title: Experimental and theoretical analysis of carbon driven detonation waves in a heterogeneously premixed Rotating Detonation Engine
  publication-title: Fuel
– volume: 27
  start-page: 171
  year: 2011
  end-page: 181
  ident: bib17
  article-title: Propulsive performance of a continuously rotating detonation engine
  publication-title: J. Propul. Power
– reference: Shimizu H, Tsuboi N, Hayashi A K Study of Detailed Chemical Reaction Modelon Hydrogen-Air Detonation [R]. AIAA 2001-0478.
– reference: Schwer D, Kailasanath K. Numerical Study of the Effects of Engine Size on Rotating Detonation Engines [R].AIAA 2011-581.
– year: 2013
  ident: bib16
  article-title: Rotating Detonation Engine Research at NRL
– volume: 211
  year: 2020
  ident: bib5
  article-title: Hydrogen-air, ethylene-air, and methane-air continuous rotating detonation in the hollow chamber
  publication-title: Energy
– volume: 159
  start-page: 3632
  year: 2012
  end-page: 3645
  ident: bib8
  article-title: Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines
  publication-title: Combust. Flame
– year: 2007
  ident: bib1
  article-title: Recent Developments in Wave Rotor Combustion Technology and Future Perspectives: a Progress review[R]. AIAA 2007-5055
– volume: 135
  start-page: 50
  year: 2013
  end-page: 54
  ident: bib2
  article-title: Detonation gas turbines
  publication-title: Mechanical engineering (New York, N.Y.: 1919)
– year: 2011
  ident: bib14
  article-title: Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts [R]. AIAA-2011-6043
– volume: 182
  start-page: 1901
  year: 2010
  end-page: 1914
  ident: bib13
  article-title: Detonation limit thresholds in H 2/O 2 rotating detonation engine
  publication-title: Combust. Sci. Technol.
– year: 2018
  ident: 10.1016/j.csite.2023.103127_bib7
– volume: 211
  issue: 1
  year: 2020
  ident: 10.1016/j.csite.2023.103127_bib5
  article-title: Hydrogen-air, ethylene-air, and methane-air continuous rotating detonation in the hollow chamber
  publication-title: Energy
– year: 2007
  ident: 10.1016/j.csite.2023.103127_bib1
– ident: 10.1016/j.csite.2023.103127_bib12
  doi: 10.2514/6.2010-153
– volume: 189
  start-page: 722
  year: 2021
  ident: 10.1016/j.csite.2023.103127_bib6
  article-title: Experimental verification of cylindrical air-breathing continuous rotating detonation engine fueled by non-premixed ethylene
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2021.09.009
– ident: 10.1016/j.csite.2023.103127_bib3
  doi: 10.2514/6.2001-3811
– volume: 3
  start-page: 500
  year: 2020
  ident: 10.1016/j.csite.2023.103127_bib4
  article-title: A theoretical and 1-D numerical investigation on a valve/valveless air-breathing pulse detonation engine - ScienceDirect
  publication-title: Chin. J. Aeronaut.
– year: 2010
  ident: 10.1016/j.csite.2023.103127_bib15
  article-title: Airbreathing rotating detonation wave engine cycle analysis
– year: 1971
  ident: 10.1016/j.csite.2023.103127_bib19
– volume: 182
  start-page: 1901
  issue: 11–12
  year: 2010
  ident: 10.1016/j.csite.2023.103127_bib13
  article-title: Detonation limit thresholds in H 2/O 2 rotating detonation engine
  publication-title: Combust. Sci. Technol.
– volume: 159
  start-page: 3632
  issue: 12
  year: 2012
  ident: 10.1016/j.csite.2023.103127_bib8
  article-title: Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2012.07.007
– ident: 10.1016/j.csite.2023.103127_bib11
  doi: 10.2514/6.2011-581
– volume: 302
  issue: 2
  year: 2021
  ident: 10.1016/j.csite.2023.103127_bib10
  article-title: Experimental and theoretical analysis of carbon driven detonation waves in a heterogeneously premixed Rotating Detonation Engine
  publication-title: Fuel
– year: 2011
  ident: 10.1016/j.csite.2023.103127_bib14
– year: 2013
  ident: 10.1016/j.csite.2023.103127_bib16
– volume: 135
  start-page: 50
  issue: 12
  year: 2013
  ident: 10.1016/j.csite.2023.103127_bib2
  article-title: Detonation gas turbines
  publication-title: Mechanical engineering (New York, N.Y.: 1919)
– ident: 10.1016/j.csite.2023.103127_bib9
  doi: 10.2514/6.2011-803
– volume: 27
  start-page: 171
  issue: 1
  year: 2011
  ident: 10.1016/j.csite.2023.103127_bib17
  article-title: Propulsive performance of a continuously rotating detonation engine
  publication-title: J. Propul. Power
  doi: 10.2514/1.46686
– ident: 10.1016/j.csite.2023.103127_bib18
  doi: 10.2514/6.2001-478
SSID ssj0001738144
Score 2.262931
Snippet Detonation combustion can produce pressure enhancement effect, increasing engine thrust. In this paper, a 2D Euler control equation with chemical reaction is...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 103127
SubjectTerms Air-breathing
Continuous rotating detonation engine
Pressure enhancement effect
Thrust characteristics
SummonAdditionalLinks – databaseName: ScienceDirect Open Access Journals (Elsevier)
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b8MgEEVRpnao-qmmX2LoWCuOjcEem6hRVKldmkjeEGCcpKrsKHL-f--wnTpLho5GgK0Dcw-4e4-QZyN837DAeFlmkFRbhJ7WceglmQJ4kgmmnHzbxyefLdh7GqU9MmlzYTCssln76zXdrdZNybCx5nCzXg-_gmAE3kekAZJGhS6XOmSxS-JLx3_nLAJ8ktN0xfoeNmjJh1yYl3GXtCgijvnnTl2m46Acj3_HT3V8z_ScnDWgkb7W33VBera4JKcdKsErMpuvMHuCmkMCZtqQ-axoWVAMS18XO9jr022JV_DFkma2KusDQWpdf9dkMX2bT2Zeo5LgGTZilaezSPscYGcYRgmAHQ2QyiBu4WGok1hxzROhmIB9nI4tuO84yQPja9_A_4eCfjekX5SFvSU0ywFOqNyKgEVM8zzOdQx4w0TCFyZSYkCC1jTSNBTiqGTxI9tYsW_p7CnRnrK254C87BttagaN49XHaPN9VaS_dgXldimb8Ze5MVaxKE9E7sOHcmVjX3AMAYfNAtfJgPB2xOTBbIKu1sfefvffhvfkBJ_qQN4H0q-2O_sIcKXST24-_gLV--as
  priority: 102
  providerName: Elsevier
Title Thrust characteristics research on continuous rotating detonation engine
URI https://dx.doi.org/10.1016/j.csite.2023.103127
https://doaj.org/article/fccea45f97f04b66ae80766cc27726b9
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBIRJr4kYwUUQUkmFopm2U7Ni1CCarS_8_ZTqqwlIUlQ-TY0eWi-86--z6E7jSPY00SHVWVdqTaPI2UytIoryTAk4oT6eXb3t5ZsSCvJS0HUl-uJizQAwfDPVitjSTU5tzGRDEmTQapt6v2BVzIlG_dg5g3SKb87gqHSOSVXJNkQqIJ5WVPOeSLu7Q_mnXS4a7r3GvKDMKSZ-8fRKdBxJkdocMOKuLH8IrHaM_UJ-hgQCB4ior50vVMYP2bdhl3FD5L3NTYFaOv6g1k-HjduIP3-gNXpm3CNiA2fr4ztJg9z5-KqNNGiDSZkDZSFVUxA7CZpjQHiKMASGmHVliaqjyTTLGcS8Ihe1OZgaCd5TbRsYo1_HVOxu8cjeqmNhcIVxZAhLSGJ4SChW1mVQYoQ1Mec00lH6OkN43QHXG406_4En2F2Kfw9hTOniLYc4zutw99B96M3cOnzubboY702t8AVxCdK4i_XGGMWP_FRIcfAi6AqVa7Vr_8j9Wv0L6bMpTyXqNRu96YGwAsrbr1vgnXl3L6Ax4B548
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0BPRQOqIVWLPTDh3Ij2qzj2MmBQ2mLdsvHhUXamxs7DmxVJQh2hfhd_EFmHAeWC4dKXJ3YscYTz7M9fg_gm1VxbAW3UVlaItVWSWRMlkR5WSA8KZUovHzbyakcnovfk3SyBPfdXRhKqwxzfzun-9k6lPSDNftX02n_jPMBRh814UQalSSDkFl55O5ucd12sz_6iYO8y_nhr_GPYRSkBSIrBmIWmTI1sUSsliRpjgjBIA6xFOxlkpg8K6SRuSqEwsWPyRzGvCyvuI1NbNFpSQUP212GN4g-FM0Go8nB08aOwiDoRWSpgxH1sGM78nll1p8Kk2o5XXj3cjYLEdELBywExoVgd_gO1gNKZd9bQ7yHJVdvwNoCd-EmDMeXdF2D2eeMzyywB12ypmaUBz-t580cixs6868vWOlmTbsDyZxv7wOcv4rtPsJK3dRuC1hZIX4pKqe4SIWRVVaZDAGOTVWsbFqoHvDONNoGznKSzvinu-S0v9rbU5M9dWvPHuw9VrpqKTtefv2AbP74KvFt-4Lm-kIHh9OVta4QaZWrKsaOysJlsZKUc46rE2nyHshuxPQz98Wmpi99fft_K36Ft8PxybE-Hp0e7cAqPWmziD_Byux67j4jVpqZL943Gfx57Z_hAbTrILU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thrust+characteristics+research+on+continuous+rotating+detonation+engine&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Qingwu+Wang&rft.au=Shihui+Zhang&rft.date=2023-07-01&rft.pub=Elsevier&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=47&rft.spage=103127&rft_id=info:doi/10.1016%2Fj.csite.2023.103127&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fccea45f97f04b66ae80766cc27726b9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon