Using perceptron feed-forward Artificial Neural Network (ANN) for predicting the thermal conductivity of graphene oxide-Al2O3/water-ethylene glycol hybrid nanofluid

In this paper, Artificial Neural Network (ANN) was used to investigate the influence of temperature and volume fraction of nanoparticles on the thermal conductivity of Graphene oxide-Al2O3/Water-Ethylene glycol hybrid nanofluid. Nanofluids were prepared with the volume fraction of nanoparticles 0.1,...

Full description

Saved in:
Bibliographic Details
Published inCase studies in thermal engineering Vol. 26; p. 101055
Main Authors Tian, Shaopeng, Arshad, Noreen Izza, Toghraie, Davood, Eftekhari, S. Ali, Hekmatifar, Maboud
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, Artificial Neural Network (ANN) was used to investigate the influence of temperature and volume fraction of nanoparticles on the thermal conductivity of Graphene oxide-Al2O3/Water-Ethylene glycol hybrid nanofluid. Nanofluids were prepared with the volume fraction of nanoparticles 0.1, 0.2, 0.4, 0.8, and 1.6% in the temperature range of 25–55 °C. The nanofluid's thermal conductivity results were extracted from six different volume fractions of nanoparticles and seven different temperatures. Then, to generalize the data and obtain a function, the Perceptron feed-forward ANN was used, simulating the output parameter. The outcomes show that the ANN is well trained using the trainbr algorithm and has an average of 1.67e-6 for MSE and a correlation coefficient of 0.999 for thermal conductivity. Finally, we conclude that the effect of increasing the temperature of nanofluid is less against the volume fraction of nanoparticles, especially in low concentrations. This effect is negligible and in the absence of nanoparticles, increasing the temperature from 20 °C to 55 °C leads to an enhance in thermal conductivity of about 6%. However, at high concentrations of nanoparticles, increasing the temperature leads to further thermal conductivity. At volume fraction nanoparticles 1.6%, increasing the temperature from 20 °C to 55 °C increases the thermal conductivity from 0.45 to 0.54 W/m.K.
AbstractList In this paper, Artificial Neural Network (ANN) was used to investigate the influence of temperature and volume fraction of nanoparticles on the thermal conductivity of Graphene oxide-Al2O3/Water-Ethylene glycol hybrid nanofluid. Nanofluids were prepared with the volume fraction of nanoparticles 0.1, 0.2, 0.4, 0.8, and 1.6% in the temperature range of 25–55 °C. The nanofluid's thermal conductivity results were extracted from six different volume fractions of nanoparticles and seven different temperatures. Then, to generalize the data and obtain a function, the Perceptron feed-forward ANN was used, simulating the output parameter. The outcomes show that the ANN is well trained using the trainbr algorithm and has an average of 1.67e-6 for MSE and a correlation coefficient of 0.999 for thermal conductivity. Finally, we conclude that the effect of increasing the temperature of nanofluid is less against the volume fraction of nanoparticles, especially in low concentrations. This effect is negligible and in the absence of nanoparticles, increasing the temperature from 20 °C to 55 °C leads to an enhance in thermal conductivity of about 6%. However, at high concentrations of nanoparticles, increasing the temperature leads to further thermal conductivity. At volume fraction nanoparticles 1.6%, increasing the temperature from 20 °C to 55 °C increases the thermal conductivity from 0.45 to 0.54 W/m.K.
ArticleNumber 101055
Author Tian, Shaopeng
Toghraie, Davood
Eftekhari, S. Ali
Hekmatifar, Maboud
Arshad, Noreen Izza
Author_xml – sequence: 1
  givenname: Shaopeng
  surname: Tian
  fullname: Tian, Shaopeng
  email: tspxijing@163.com
  organization: Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University, Xi'an, Shaanxi, 710123, China
– sequence: 2
  givenname: Noreen Izza
  orcidid: 0000-0002-0041-0590
  surname: Arshad
  fullname: Arshad, Noreen Izza
  organization: Positive Computing Research Group, Institute of Autonomous Systems, Department of Computer & Information Sciences, Universiti Teknologi Petronas, 32610, Bandar Seri Iskandar, Perak, Malaysia
– sequence: 3
  givenname: Davood
  surname: Toghraie
  fullname: Toghraie, Davood
  email: Toghraee@iaukhsh.ac.ir
  organization: Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr Khomeinishahr, Iran
– sequence: 4
  givenname: S. Ali
  surname: Eftekhari
  fullname: Eftekhari, S. Ali
  organization: Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr Khomeinishahr, Iran
– sequence: 5
  givenname: Maboud
  surname: Hekmatifar
  fullname: Hekmatifar, Maboud
  organization: Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr Khomeinishahr, Iran
BookMark eNqFkc1uEzEUhUeoSJTSJ2DjJSwmtT32eGbBIqqAVqrSDZXYWf65ThymduRxms778KB4kgohFrCwrnV8z3fle95WZyEGqKr3BC8IJu3VdmFGn2FBMSWzgjl_VZ1TSlhNuPh-9sf9TXU5jluMMRFNRxg7r34-jD6s0Q6SgV1OMSAHYGsX00Eli5Ype-eNVwNawT4dSz7E9AN9WK5WH1HpQ7sE1ps8Y_IG5pMeS6OJwe6L_OTzhKJD66R2GwiA4rO3UC8Het9cHVSGVEPeTMP8tB4mEwe0mXTyFgUVohv23r6rXjs1jHD5Ui-qhy-fv13f1Hf3X2-vl3e1YYTlWuu-V1j3uDcd1YQr4zSnrGu4YLjvBMFWt8L2XLvWMd6KtmWkdxq4FR03trmobk9cG9VW7pJ_VGmSUXl5FGJaS1UWYgaQDWiumOCYijKc6k4ojknX0k4r19m-sJoTy6Q4jgncbx7Bcs5NbuUxNznnJk-5FVf_l8v4rLKPISflh_94P528UFb05CHJ0XgIpqSTwOTyB_9P_y_IrblK
CitedBy_id crossref_primary_10_1038_s41598_024_69648_1
crossref_primary_10_1080_10407790_2023_2300691
crossref_primary_10_3934_math_2024912
crossref_primary_10_1038_s41598_025_92461_3
crossref_primary_10_1016_j_csite_2021_101322
crossref_primary_10_1186_s40486_023_00195_6
crossref_primary_10_1515_jmbm_2022_0309
crossref_primary_10_1016_j_tsep_2022_101398
crossref_primary_10_1016_j_tsep_2024_102529
crossref_primary_10_1016_j_powtec_2022_117210
crossref_primary_10_1016_j_powtec_2024_119506
crossref_primary_10_1021_acsomega_2c07750
crossref_primary_10_1007_s10973_024_13984_x
crossref_primary_10_1016_j_csite_2023_103196
crossref_primary_10_1016_j_engappai_2024_108932
crossref_primary_10_1016_j_jrras_2024_101133
crossref_primary_10_1016_j_tsep_2022_101391
crossref_primary_10_1016_j_rineng_2024_102858
crossref_primary_10_1016_j_egyai_2024_100453
crossref_primary_10_1142_S0218625X24500628
crossref_primary_10_1016_j_psep_2022_03_009
crossref_primary_10_1016_j_jestch_2023_101604
crossref_primary_10_1016_j_colsurfa_2022_129691
crossref_primary_10_1016_j_mseb_2022_115968
crossref_primary_10_1016_j_egyr_2022_10_238
crossref_primary_10_1016_j_matchemphys_2022_126169
crossref_primary_10_1016_j_colsurfa_2022_128886
crossref_primary_10_1016_j_sajce_2023_09_001
crossref_primary_10_1016_j_triboint_2022_108086
crossref_primary_10_1016_j_jtice_2024_105673
crossref_primary_10_1177_13506501231187017
crossref_primary_10_1016_j_eij_2022_12_006
crossref_primary_10_1016_j_applthermaleng_2024_124496
crossref_primary_10_1016_j_isatra_2023_01_034
crossref_primary_10_1002_er_7450
crossref_primary_10_1016_j_engappai_2023_107046
crossref_primary_10_1016_j_est_2023_107542
crossref_primary_10_1016_j_tsep_2025_103516
crossref_primary_10_1016_j_triboint_2023_108534
crossref_primary_10_1080_15567036_2024_2434730
crossref_primary_10_1038_s41598_024_80424_z
crossref_primary_10_1016_j_triboint_2023_109185
crossref_primary_10_1007_s13369_024_09078_3
crossref_primary_10_1016_j_arabjc_2022_104285
crossref_primary_10_1080_0952813X_2023_2270995
crossref_primary_10_1016_j_csite_2021_101475
crossref_primary_10_1016_j_ijthermalsci_2022_107768
crossref_primary_10_1007_s13369_024_09189_x
crossref_primary_10_1166_jon_2024_2177
crossref_primary_10_1002_er_8415
crossref_primary_10_1080_10916466_2022_2094956
crossref_primary_10_2298_TSCI221126055S
crossref_primary_10_1080_15567036_2024_2331563
crossref_primary_10_1016_j_molliq_2023_122625
crossref_primary_10_1016_j_cplett_2024_141237
crossref_primary_10_1016_j_molliq_2023_122585
crossref_primary_10_1039_D4FD00113C
crossref_primary_10_32604_fdmp_2023_027299
crossref_primary_10_1155_2022_2187932
crossref_primary_10_1016_j_powtec_2023_119275
crossref_primary_10_1016_j_flowmeasinst_2024_102703
crossref_primary_10_1177_23977914241289251
crossref_primary_10_1038_s41598_021_96808_4
crossref_primary_10_1007_s00894_023_05778_z
crossref_primary_10_1016_j_asej_2023_102420
crossref_primary_10_2298_TSCI231010015H
crossref_primary_10_2298_TSCI231130152M
crossref_primary_10_1016_j_csite_2023_103275
crossref_primary_10_1016_j_cplett_2024_141344
crossref_primary_10_1016_j_cjche_2024_04_030
crossref_primary_10_1016_j_mtcomm_2023_107836
crossref_primary_10_1063_5_0171265
crossref_primary_10_1016_j_engappai_2023_107307
crossref_primary_10_1016_j_jmrt_2022_08_061
crossref_primary_10_1016_j_molliq_2023_121365
crossref_primary_10_1016_j_applthermaleng_2024_123330
crossref_primary_10_1016_j_applthermaleng_2024_123332
crossref_primary_10_1140_epjp_s13360_022_02782_9
crossref_primary_10_1016_j_applthermaleng_2024_122481
crossref_primary_10_1016_j_arabjc_2022_104508
crossref_primary_10_1177_0958305X241270239
crossref_primary_10_1016_j_ceramint_2024_05_084
crossref_primary_10_1016_j_csite_2024_104497
crossref_primary_10_1016_j_inoche_2024_112151
crossref_primary_10_1007_s10973_024_13016_8
crossref_primary_10_1016_j_triboint_2022_108161
crossref_primary_10_1007_s10973_024_13873_3
crossref_primary_10_1016_j_ijbiomac_2023_126906
crossref_primary_10_1016_j_engappai_2024_108647
crossref_primary_10_1016_j_ijheatfluidflow_2024_109712
crossref_primary_10_1007_s42341_023_00463_7
crossref_primary_10_1016_j_arabjc_2023_105469
crossref_primary_10_2298_TSCI231016105H
crossref_primary_10_1016_j_rineng_2023_101284
crossref_primary_10_1016_j_powtec_2022_117472
crossref_primary_10_1016_j_heliyon_2023_e19228
crossref_primary_10_1016_j_powtec_2022_117595
crossref_primary_10_1016_j_csite_2023_103094
crossref_primary_10_1177_23977914241259084
crossref_primary_10_1007_s10765_024_03390_8
crossref_primary_10_1016_j_csite_2021_101272
crossref_primary_10_1016_j_mtcomm_2023_106807
crossref_primary_10_1002_zamm_202301049
crossref_primary_10_1016_j_csite_2024_104808
crossref_primary_10_1016_j_mtcomm_2024_108169
crossref_primary_10_1016_j_tca_2022_179418
crossref_primary_10_1016_j_csite_2021_101437
Cites_doi 10.1007/BF01593790
10.1016/j.jclepro.2019.119765
10.1007/s10973-016-5725-y
10.1016/j.icheatmasstransfer.2016.06.003
10.1016/j.jhazmat.2019.05.035
10.1007/s42452-019-1610-1
10.1016/j.powtec.2020.07.056
10.1016/j.saa.2020.118272
10.1007/s00231-018-2353-z
10.1590/S0104-66322008000400002
10.1063/1.3672685
10.1162/neco.1992.4.3.415
10.1007/s11630-019-1158-9
10.1016/j.powtec.2019.07.086
10.1007/s10973-017-6696-3
10.1016/j.powtec.2018.09.076
10.1016/S0893-6080(05)80056-5
10.1016/j.icheatmasstransfer.2016.08.015
10.1115/1.1370512
10.1016/j.nanoen.2011.11.007
10.1016/j.molliq.2018.12.055
10.1016/j.powtec.2007.11.020
10.1016/S0142-727X(99)00067-3
10.1016/j.molliq.2020.113329
10.1016/j.molliq.2017.02.015
10.1016/j.powtec.2020.09.011
10.1016/j.icheatmasstransfer.2016.03.010
10.1016/j.envres.2021.110809
10.1016/j.apenergy.2015.01.125
10.1016/j.icheatmasstransfer.2020.104477
10.1016/S1359-4311(02)00155-2
10.1016/j.applthermaleng.2006.07.036
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2021.101055
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_3eb5a475027c412b87a5018628baf8d9
10_1016_j_csite_2021_101055
S2214157X21002185
GroupedDBID 0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-bb99a0b909c82b15acfb52483574098710db67d95bf6f456766419fbe5d785cd3
IEDL.DBID DOA
ISSN 2214-157X
IngestDate Wed Aug 27 01:20:11 EDT 2025
Tue Jul 01 02:28:28 EDT 2025
Thu Apr 24 23:12:06 EDT 2025
Tue Jul 25 20:58:37 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Perceptron feed-forward ANN
Nanofluid
Thermal conductivity
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-bb99a0b909c82b15acfb52483574098710db67d95bf6f456766419fbe5d785cd3
ORCID 0000-0002-0041-0590
OpenAccessLink https://doaj.org/article/3eb5a475027c412b87a5018628baf8d9
ParticipantIDs doaj_primary_oai_doaj_org_article_3eb5a475027c412b87a5018628baf8d9
crossref_primary_10_1016_j_csite_2021_101055
crossref_citationtrail_10_1016_j_csite_2021_101055
elsevier_sciencedirect_doi_10_1016_j_csite_2021_101055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Mehdizadeh, Orooji, Amiri, Salavati-Niasari, Moayedi (bib2) 2020; 252
Esfe (bib26) 2017; 127
Rostami, Kalbasi, Sina, Goldanlou (bib30) 2020
Powell (bib40) 1977; 12
Esfe (bib25) 2017; 82
Braspenning, Thuijsman, Weijters (bib37) 1995
Karimi-Maleh, Ranjbari, Tanhaei, Ayati, Orooji, Alizadeh, Karimi, Salmanpour, Rouhi, Sillanpää, Sen (bib1) 2021; 195
Tahani, Vakili, Khosrojerdi (bib29) 2016; 76
Gill, Murray, Wright (bib41) 1981
Khodadadi, Toghraie (bib10) 2019; 342
Vakili, Yahyaei, Kalhor (bib28) 2016; 74
Elsheikh (bib32) 2020; 2
Azimi, Baniamerian (bib14) 2019; 55
Riedmiller, Braun (bib43) 1993
Mirsaeidi, Yousefi (bib35) 2019
Hassandoost, Pouran, Khataee, Orooji, Joo (bib3) 2019; 376
Tian, Kalbasi, Qi, Karimipour, Huang (bib44) 2020
A Akhgar, D Toghraie, N Sina, M Afrand., Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO
Pare, Ghosh (bib33) 2020; 377
Rostamian, Biglari, Saedodin, Esfe (bib24) 2017; 231
Møller (bib42) 1993; 6
Orooji, Irani-Nezhad, Hassandoost, Khataee, Pouran, Joo (bib9) 2020; 234
Yashawantha, Vinod (bib27) 2020
Maleki, Haghighi, Shahrestani, Abdelmalek (bib34) 2020
Wei, Afrand, Kalbasi, Ali, Heidarshenas, Rostami (bib46) 2020; 374
Foresee, Hagan (bib39) 1997; vol. 3
Yang, Sen (bib20) 2000
MacKay (bib38) 1992; 4
Water-ethylene glycol hybrid nanofluid, Powder Technol. 355, 602-610.
Wang, Mujumdar (bib17) 2008; 25
Yang, Sen, Diaz, Pacheco-Vega, McClain (bib21) 2000
Starace, Gomez, Wang, Pradhan, Glatzmaier (bib18) 2011; 110
Longo, Zilio, Ceseracciu, Reggiani (bib31) 2012; 1
Diaz, Sen, Yang, McClain (bib22) 2001; 123
Xie, Wang, Zeng, Luo (bib19) 2007; 27
Shahsavar, Khanmohammadi, Toghraie, Salihepour (bib12) 2019; 276
Vignarooban, Xu, Arvay, Hsu, Kannan (bib4) 2015; 146
Hwang (bib13) 2008; 186
Xuan, Li (bib16) 2000; 21
Rohsenow, Hartnett, Cho (bib5) 1998
Ho, Hsieh, Rashidi, Orooji, Yan (bib15) 2020; 112
Zadeh, Toghraie (bib7) 2018; 131
Nasrollahzadeh, Soleimani, Bidgoli, Nezafat, Orooji, Baran (bib8) 2020
Smith (bib6) 2005
Tian, Kalbasi, Jahanshahi, Qi, Huang, Rostami (bib45) 2020
Islamoglu (bib23) 2003; 23
Wang, Yan, Gao, Chen (bib36) 2020; 29
Wang (10.1016/j.csite.2021.101055_bib17) 2008; 25
Wang (10.1016/j.csite.2021.101055_bib36) 2020; 29
Ho (10.1016/j.csite.2021.101055_bib15) 2020; 112
Rostamian (10.1016/j.csite.2021.101055_bib24) 2017; 231
Rostami (10.1016/j.csite.2021.101055_bib30) 2020
Tian (10.1016/j.csite.2021.101055_bib45) 2020
Vignarooban (10.1016/j.csite.2021.101055_bib4) 2015; 146
Shahsavar (10.1016/j.csite.2021.101055_bib12) 2019; 276
Smith (10.1016/j.csite.2021.101055_bib6) 2005
Diaz (10.1016/j.csite.2021.101055_bib22) 2001; 123
Orooji (10.1016/j.csite.2021.101055_bib9) 2020; 234
Powell (10.1016/j.csite.2021.101055_bib40) 1977; 12
Foresee (10.1016/j.csite.2021.101055_bib39) 1997; vol. 3
Khodadadi (10.1016/j.csite.2021.101055_bib10) 2019; 342
Xuan (10.1016/j.csite.2021.101055_bib16) 2000; 21
Xie (10.1016/j.csite.2021.101055_bib19) 2007; 27
Zadeh (10.1016/j.csite.2021.101055_bib7) 2018; 131
Tahani (10.1016/j.csite.2021.101055_bib29) 2016; 76
Maleki (10.1016/j.csite.2021.101055_bib34) 2020
Longo (10.1016/j.csite.2021.101055_bib31) 2012; 1
Hassandoost (10.1016/j.csite.2021.101055_bib3) 2019; 376
Yang (10.1016/j.csite.2021.101055_bib21) 2000
Elsheikh (10.1016/j.csite.2021.101055_bib32) 2020; 2
Pare (10.1016/j.csite.2021.101055_bib33) 2020; 377
Mirsaeidi (10.1016/j.csite.2021.101055_bib35) 2019
Nasrollahzadeh (10.1016/j.csite.2021.101055_bib8) 2020
Wei (10.1016/j.csite.2021.101055_bib46) 2020; 374
Mehdizadeh (10.1016/j.csite.2021.101055_bib2) 2020; 252
Hwang (10.1016/j.csite.2021.101055_bib13) 2008; 186
Tian (10.1016/j.csite.2021.101055_bib44) 2020
Rohsenow (10.1016/j.csite.2021.101055_bib5) 1998
Esfe (10.1016/j.csite.2021.101055_bib25) 2017; 82
Riedmiller (10.1016/j.csite.2021.101055_bib43) 1993
Gill (10.1016/j.csite.2021.101055_bib41) 1981
Starace (10.1016/j.csite.2021.101055_bib18) 2011; 110
Yashawantha (10.1016/j.csite.2021.101055_bib27) 2020
Islamoglu (10.1016/j.csite.2021.101055_bib23) 2003; 23
Møller (10.1016/j.csite.2021.101055_bib42) 1993; 6
Azimi (10.1016/j.csite.2021.101055_bib14) 2019; 55
Vakili (10.1016/j.csite.2021.101055_bib28) 2016; 74
Braspenning (10.1016/j.csite.2021.101055_bib37) 1995
Yang (10.1016/j.csite.2021.101055_bib20) 2000
MacKay (10.1016/j.csite.2021.101055_bib38) 1992; 4
10.1016/j.csite.2021.101055_bib11
Karimi-Maleh (10.1016/j.csite.2021.101055_bib1) 2021; 195
Esfe (10.1016/j.csite.2021.101055_bib26) 2017; 127
References_xml – volume: 29
  start-page: 1504
  year: 2020
  end-page: 1512
  ident: bib36
  article-title: Prediction of thermal conductivity of various nanofluids with ethylene glycol using artificial neural network
  publication-title: J. Therm. Sci.
– volume: 4
  start-page: 415
  year: 1992
  end-page: 447
  ident: bib38
  article-title: Bayesian interpolation
  publication-title: Neural Comput.
– volume: 2
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib32
  article-title: An artificial neural network based approach for prediction the thermal conductivity of nanofluids
  publication-title: SN Applied Sciences
– year: 2020
  ident: bib44
  article-title: Efficacy of Hybrid Nano-Powder Presence on the Thermal Conductivity of the Engine Oil: an Experimental Study
– volume: 27
  start-page: 1096
  year: 2007
  end-page: 1104
  ident: bib19
  article-title: Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach
  publication-title: Appl. Therm. Eng.
– volume: 342
  start-page: 166
  year: 2019
  end-page: 180
  ident: bib10
  article-title: A Karimipour Effects of nanoparticles to present a statistical model for the viscosity of MgO-Water nanofluid
  publication-title: Powder Technol.
– reference: /Water-ethylene glycol hybrid nanofluid, Powder Technol. 355, 602-610.
– start-page: 1
  year: 2019
  end-page: 11
  ident: bib35
  article-title: Viscosity, thermal conductivity and density of carbon quantum dots nanofluids: an experimental investigation and development of new correlation function and ANN modeling
  publication-title: J. Therm. Anal. Calorim.
– volume: 131
  start-page: 1449
  year: 2018
  end-page: 1461
  ident: bib7
  article-title: Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions
  publication-title: J. Therm. Anal. Calorim.
– start-page: 1
  year: 2020
  end-page: 10
  ident: bib30
  article-title: Forecasting the thermal conductivity of a nanofluid using artificial neural networks
  publication-title: J. Therm. Anal. Calorim.
– volume: 1
  start-page: 290
  year: 2012
  end-page: 296
  ident: bib31
  article-title: Application of artificial neural network (ANN) for the prediction of thermal conductivity of oxide–water nanofluids
  publication-title: Nanomater. Energy
– volume: 195
  year: 2021
  ident: bib1
  article-title: Novel 1-Butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: kinetic study
  publication-title: Environ. Res.
– volume: 146
  start-page: 383
  year: 2015
  end-page: 396
  ident: bib4
  article-title: Heat transfer fluids for concentrating solar power systems–a review
  publication-title: Appl. Energy
– volume: 110
  year: 2011
  ident: bib18
  article-title: Nanofluid heat capacities
  publication-title: J. Appl. Phys.
– volume: 23
  start-page: 243
  year: 2003
  end-page: 249
  ident: bib23
  article-title: A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger––use of an artificial neural network model
  publication-title: Appl. Therm. Eng.
– volume: 74
  start-page: 11
  year: 2016
  end-page: 17
  ident: bib28
  article-title: Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results
  publication-title: Int. Commun. Heat Mass Tran.
– start-page: 1
  year: 2020
  end-page: 22
  ident: bib27
  article-title: ANN modelling and experimental investigation on effective thermal conductivity of ethylene glycol: water nanofluids
  publication-title: J. Therm. Anal. Calorim.
– volume: 76
  start-page: 358
  year: 2016
  end-page: 365
  ident: bib29
  article-title: Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid
  publication-title: Int. Commun. Heat Mass Tran.
– volume: vol. 3
  start-page: 1930
  year: 1997
  end-page: 1935
  ident: bib39
  article-title: Gauss-Newton approximation to Bayesian learning
  publication-title: Proceedings of International Conference on Neural Networks (ICNN'97)
– year: 2000
  ident: bib20
  article-title: Artificial neural network-based dynamic modeling thermal systems and their control
  publication-title: Heat Transfer Science and Technology
– year: 1981
  ident: bib41
  article-title: Practical Optimization, Acad
– year: 2005
  ident: bib6
  article-title: Chemical Process: Design and Integration
– volume: 276
  start-page: 850
  year: 2019
  end-page: 860
  ident: bib12
  article-title: Experimental investigation and develop ANNs by introducing the suitable architectures and training algorithms supported by sensitivity analysis: measure thermal conductivity and viscosity for liquid paraffin based nanofluid containing Al2O3 nanoparticles
  publication-title: J. Mol. Liq.
– volume: 12
  start-page: 241
  year: 1977
  end-page: 254
  ident: bib40
  article-title: Restart procedures for the conjugate gradient method
  publication-title: Math. Program.
– year: 1995
  ident: bib37
  article-title: Artificial Neural Networks: an Introduction to ANN Theory and Practice
– volume: 82
  start-page: 154
  year: 2017
  end-page: 160
  ident: bib25
  article-title: Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN
  publication-title: Int. Commun. Heat Mass Tran.
– year: 1998
  ident: bib5
  article-title: Handbook of Heat Transfer
– volume: 25
  start-page: 631
  year: 2008
  end-page: 648
  ident: bib17
  article-title: A review on nanofluids-part II: experiments and applications
  publication-title: Braz. J. Chem. Eng.
– volume: 252
  year: 2020
  ident: bib2
  article-title: Green synthesis using cherry and orange juice and characterization of TbFeO3 ceramic nanostructures and their application as photocatalysts under uv light for removal of organic dyes in water
  publication-title: J. Clean. Prod.
– volume: 6
  start-page: 525
  year: 1993
  end-page: 533
  ident: bib42
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Network.
– start-page: 586
  year: 1993
  end-page: 591
  ident: bib43
  article-title: A direct adaptive method for faster backpropagation learning: the RPROP algorithm
  publication-title: IEEE International Conference on Neural Networks
– volume: 21
  start-page: 58
  year: 2000
  end-page: 64
  ident: bib16
  article-title: Heat transfer enhancement of nanofluids
  publication-title: Int. J. Heat Fluid Flow
– volume: 374
  start-page: 462
  year: 2020
  end-page: 469
  ident: bib46
  article-title: The effect of tungsten trioxide nanoparticles on the thermal conductivity of ethylene glycol under different sonication durations: an experimental examination
  publication-title: Powder Technol.
– volume: 127
  start-page: 2125
  year: 2017
  end-page: 2131
  ident: bib26
  article-title: Designing an artificial neural network using radial basis function (RBF-ANN) to model thermal conductivity of ethylene glycol–water-based TiO 2 nanofluids
  publication-title: J. Therm. Anal. Calorim.
– start-page: 1
  year: 2020
  end-page: 10
  ident: bib34
  article-title: Applying different types of artificial neural network for modeling thermal conductivity of nanofluids containing silica particles
  publication-title: J. Therm. Anal. Calorim.
– reference: A Akhgar, D Toghraie, N Sina, M Afrand., Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO
– volume: 112
  year: 2020
  ident: bib15
  article-title: Thermal-hydraulic analysis for alumina/water nanofluid inside a mini-channel heat sink with latent heat cooling ceiling-An experimental study
  publication-title: Int. Commun. Heat Mass Tran.
– year: 2020
  ident: bib45
  article-title: Competition between intermolecular forces of adhesion and cohesion in the presence of graphene nanoparticles: investigation of graphene nanosheets/ethylene glycol surface tension
  publication-title: J. Mol. Liq.
– year: 2020
  ident: bib8
  article-title: Recent developments in polymer-supported ruthenium nanoparticles/complexes for oxidation reactions
  publication-title: J. Organomet. Chem.
– volume: 123
  start-page: 556
  year: 2001
  end-page: 562
  ident: bib22
  article-title: Adaptive neurocontrol of heat exchangers
  publication-title: J. Heat Tran.
– volume: 376
  start-page: 200
  year: 2019
  end-page: 211
  ident: bib3
  article-title: Hierarchically structured ternary heterojunctions based on Ce3+/Ce4+ modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visible-light-active photocatalysts for decontamination of oxytetracycline
  publication-title: J. Hazard Mater.
– volume: 231
  start-page: 364
  year: 2017
  end-page: 369
  ident: bib24
  article-title: An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation
  publication-title: J. Mol. Liq.
– volume: 234
  year: 2020
  ident: bib9
  article-title: Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
– volume: 377
  start-page: 429
  year: 2020
  end-page: 438
  ident: bib33
  article-title: A unique thermal conductivity model (ANN) for nanofluid based on experimental study
  publication-title: Powder Technol.
– volume: 186
  start-page: 145
  year: 2008
  end-page: 153
  ident: bib13
  article-title: Production and dispersion stability of nanoparticles in nanofluids
  publication-title: Powder Technol.
– start-page: 940
  year: 2000
  ident: bib21
  article-title: COEFFICIENT OF HEAT TRANSFER IN FIN-TUBE HEAT EXCHANGER ANALYSIS AND THE ARTIFICIAL NEURAL NETWORKS
– volume: 55
  start-page: 105
  year: 2019
  end-page: 117
  ident: bib14
  article-title: Effects of nanoparticles deposition on thermal behaviour of boiling nanofluids
  publication-title: Heat Mass Tran.
– volume: 12
  start-page: 241
  issue: 1
  year: 1977
  ident: 10.1016/j.csite.2021.101055_bib40
  article-title: Restart procedures for the conjugate gradient method
  publication-title: Math. Program.
  doi: 10.1007/BF01593790
– volume: 252
  year: 2020
  ident: 10.1016/j.csite.2021.101055_bib2
  article-title: Green synthesis using cherry and orange juice and characterization of TbFeO3 ceramic nanostructures and their application as photocatalysts under uv light for removal of organic dyes in water
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119765
– volume: 127
  start-page: 2125
  issue: 3
  year: 2017
  ident: 10.1016/j.csite.2021.101055_bib26
  article-title: Designing an artificial neural network using radial basis function (RBF-ANN) to model thermal conductivity of ethylene glycol–water-based TiO 2 nanofluids
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-016-5725-y
– volume: 76
  start-page: 358
  year: 2016
  ident: 10.1016/j.csite.2021.101055_bib29
  article-title: Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2016.06.003
– volume: 376
  start-page: 200
  year: 2019
  ident: 10.1016/j.csite.2021.101055_bib3
  article-title: Hierarchically structured ternary heterojunctions based on Ce3+/Ce4+ modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visible-light-active photocatalysts for decontamination of oxytetracycline
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.05.035
– volume: 2
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.csite.2021.101055_bib32
  article-title: An artificial neural network based approach for prediction the thermal conductivity of nanofluids
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-019-1610-1
– volume: 374
  start-page: 462
  year: 2020
  ident: 10.1016/j.csite.2021.101055_bib46
  article-title: The effect of tungsten trioxide nanoparticles on the thermal conductivity of ethylene glycol under different sonication durations: an experimental examination
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.07.056
– volume: 234
  year: 2020
  ident: 10.1016/j.csite.2021.101055_bib9
  article-title: Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2020.118272
– volume: 55
  start-page: 105
  issue: 1
  year: 2019
  ident: 10.1016/j.csite.2021.101055_bib14
  article-title: Effects of nanoparticles deposition on thermal behaviour of boiling nanofluids
  publication-title: Heat Mass Tran.
  doi: 10.1007/s00231-018-2353-z
– volume: 25
  start-page: 631
  issue: 4
  year: 2008
  ident: 10.1016/j.csite.2021.101055_bib17
  article-title: A review on nanofluids-part II: experiments and applications
  publication-title: Braz. J. Chem. Eng.
  doi: 10.1590/S0104-66322008000400002
– volume: 110
  issue: 12
  year: 2011
  ident: 10.1016/j.csite.2021.101055_bib18
  article-title: Nanofluid heat capacities
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3672685
– volume: 4
  start-page: 415
  issue: 3
  year: 1992
  ident: 10.1016/j.csite.2021.101055_bib38
  article-title: Bayesian interpolation
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.415
– volume: 29
  start-page: 1504
  issue: 6
  year: 2020
  ident: 10.1016/j.csite.2021.101055_bib36
  article-title: Prediction of thermal conductivity of various nanofluids with ethylene glycol using artificial neural network
  publication-title: J. Therm. Sci.
  doi: 10.1007/s11630-019-1158-9
– ident: 10.1016/j.csite.2021.101055_bib11
  doi: 10.1016/j.powtec.2019.07.086
– volume: vol. 3
  start-page: 1930
  year: 1997
  ident: 10.1016/j.csite.2021.101055_bib39
  article-title: Gauss-Newton approximation to Bayesian learning
– volume: 131
  start-page: 1449
  issue: 2
  year: 2018
  ident: 10.1016/j.csite.2021.101055_bib7
  article-title: Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-017-6696-3
– volume: 342
  start-page: 166
  year: 2019
  ident: 10.1016/j.csite.2021.101055_bib10
  article-title: A Karimipour Effects of nanoparticles to present a statistical model for the viscosity of MgO-Water nanofluid
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.09.076
– volume: 6
  start-page: 525
  issue: 4
  year: 1993
  ident: 10.1016/j.csite.2021.101055_bib42
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Network.
  doi: 10.1016/S0893-6080(05)80056-5
– year: 1995
  ident: 10.1016/j.csite.2021.101055_bib37
– year: 2020
  ident: 10.1016/j.csite.2021.101055_bib44
– volume: 82
  start-page: 154
  year: 2017
  ident: 10.1016/j.csite.2021.101055_bib25
  article-title: Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2016.08.015
– start-page: 1
  year: 2020
  ident: 10.1016/j.csite.2021.101055_bib30
  article-title: Forecasting the thermal conductivity of a nanofluid using artificial neural networks
  publication-title: J. Therm. Anal. Calorim.
– start-page: 1
  year: 2019
  ident: 10.1016/j.csite.2021.101055_bib35
  article-title: Viscosity, thermal conductivity and density of carbon quantum dots nanofluids: an experimental investigation and development of new correlation function and ANN modeling
  publication-title: J. Therm. Anal. Calorim.
– volume: 123
  start-page: 556
  issue: 3
  year: 2001
  ident: 10.1016/j.csite.2021.101055_bib22
  article-title: Adaptive neurocontrol of heat exchangers
  publication-title: J. Heat Tran.
  doi: 10.1115/1.1370512
– volume: 1
  start-page: 290
  issue: 2
  year: 2012
  ident: 10.1016/j.csite.2021.101055_bib31
  article-title: Application of artificial neural network (ANN) for the prediction of thermal conductivity of oxide–water nanofluids
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2011.11.007
– volume: 276
  start-page: 850
  year: 2019
  ident: 10.1016/j.csite.2021.101055_bib12
  article-title: Experimental investigation and develop ANNs by introducing the suitable architectures and training algorithms supported by sensitivity analysis: measure thermal conductivity and viscosity for liquid paraffin based nanofluid containing Al2O3 nanoparticles
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.12.055
– volume: 186
  start-page: 145
  issue: 2
  year: 2008
  ident: 10.1016/j.csite.2021.101055_bib13
  article-title: Production and dispersion stability of nanoparticles in nanofluids
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2007.11.020
– volume: 21
  start-page: 58
  issue: 1
  year: 2000
  ident: 10.1016/j.csite.2021.101055_bib16
  article-title: Heat transfer enhancement of nanofluids
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/S0142-727X(99)00067-3
– year: 2020
  ident: 10.1016/j.csite.2021.101055_bib45
  article-title: Competition between intermolecular forces of adhesion and cohesion in the presence of graphene nanoparticles: investigation of graphene nanosheets/ethylene glycol surface tension
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.113329
– start-page: 940
  year: 2000
  ident: 10.1016/j.csite.2021.101055_bib21
– year: 1998
  ident: 10.1016/j.csite.2021.101055_bib5
– volume: 231
  start-page: 364
  year: 2017
  ident: 10.1016/j.csite.2021.101055_bib24
  article-title: An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.02.015
– volume: 377
  start-page: 429
  year: 2020
  ident: 10.1016/j.csite.2021.101055_bib33
  article-title: A unique thermal conductivity model (ANN) for nanofluid based on experimental study
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.09.011
– volume: 74
  start-page: 11
  year: 2016
  ident: 10.1016/j.csite.2021.101055_bib28
  article-title: Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2016.03.010
– start-page: 1
  year: 2020
  ident: 10.1016/j.csite.2021.101055_bib27
  article-title: ANN modelling and experimental investigation on effective thermal conductivity of ethylene glycol: water nanofluids
  publication-title: J. Therm. Anal. Calorim.
– year: 2005
  ident: 10.1016/j.csite.2021.101055_bib6
– start-page: 586
  year: 1993
  ident: 10.1016/j.csite.2021.101055_bib43
  article-title: A direct adaptive method for faster backpropagation learning: the RPROP algorithm
– year: 2020
  ident: 10.1016/j.csite.2021.101055_bib8
  article-title: Recent developments in polymer-supported ruthenium nanoparticles/complexes for oxidation reactions
  publication-title: J. Organomet. Chem.
– volume: 195
  year: 2021
  ident: 10.1016/j.csite.2021.101055_bib1
  article-title: Novel 1-Butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: kinetic study
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.110809
– year: 2000
  ident: 10.1016/j.csite.2021.101055_bib20
  article-title: Artificial neural network-based dynamic modeling thermal systems and their control
– start-page: 1
  year: 2020
  ident: 10.1016/j.csite.2021.101055_bib34
  article-title: Applying different types of artificial neural network for modeling thermal conductivity of nanofluids containing silica particles
  publication-title: J. Therm. Anal. Calorim.
– volume: 146
  start-page: 383
  year: 2015
  ident: 10.1016/j.csite.2021.101055_bib4
  article-title: Heat transfer fluids for concentrating solar power systems–a review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.01.125
– year: 1981
  ident: 10.1016/j.csite.2021.101055_bib41
– volume: 112
  year: 2020
  ident: 10.1016/j.csite.2021.101055_bib15
  article-title: Thermal-hydraulic analysis for alumina/water nanofluid inside a mini-channel heat sink with latent heat cooling ceiling-An experimental study
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2020.104477
– volume: 23
  start-page: 243
  issue: 2
  year: 2003
  ident: 10.1016/j.csite.2021.101055_bib23
  article-title: A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger––use of an artificial neural network model
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(02)00155-2
– volume: 27
  start-page: 1096
  issue: 5–6
  year: 2007
  ident: 10.1016/j.csite.2021.101055_bib19
  article-title: Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2006.07.036
SSID ssj0001738144
Score 2.530057
Snippet In this paper, Artificial Neural Network (ANN) was used to investigate the influence of temperature and volume fraction of nanoparticles on the thermal...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 101055
SubjectTerms Nanofluid
Perceptron feed-forward ANN
Thermal conductivity
SummonAdditionalLinks – databaseName: ScienceDirect Open Access Journals (Elsevier)
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhp_ZQmrSl25-gQw8tVKwtS7J03ISGUOj20Ab2ZiRLSl2MvZgNbd4nD9oZ2U43lxxyMMbyjG1mhpmRNfOJkA8egq5TWrLcS8mEjZbZOhdMmeg5AmgFic3J39bq4lJ83cjNATmbe2GwrHLy_aNPT956GllO0lxum2b5g_Mcok-54XkKVNhoXgidmvg2p___s5QQk9KerkjPkGEGH0plXnVapOXwBBzJsOVvL0AlHP-9OLUXe86fk2dT0khX43cdkYPQHZOne1CCL8htWvun27FOZeg7GiEuMUhJsSw2sY5YERThONIp1X_Tj6v1-hMFOrodcNEGy6ApZIV4gNNuKUyYERM2bTJB-0gTxDV4SNr_bXxgq5Z_L5Z_IGUdWACtt3jrqr0BA6O_brAfjHa262N73fiX5PL8y8-zCzbtwMBqkYsdc84YmzmTmVpzl0tbRyc5CFmWMC-EuVbmnSq9kS6qCKlYqZTITXRB-lLL2hevyGHXd-E1oSF3QmfcFQXQgJswReG899FaG2uj_YLwWexVPcGT4y4ZbTXXof2ukq4q1FU16mpBPt8xbUd0jofJT1Gfd6QIrZ0G-uGqmmyrKoKTVkAixUsQAne6tAh6qLh2NmpvFkTN1lDds1R4VPPQ2988lvEteYJXY9nhO3K4G67De0iFdu4k2fo_6MoIlg
  priority: 102
  providerName: Elsevier
Title Using perceptron feed-forward Artificial Neural Network (ANN) for predicting the thermal conductivity of graphene oxide-Al2O3/water-ethylene glycol hybrid nanofluid
URI https://dx.doi.org/10.1016/j.csite.2021.101055
https://doaj.org/article/3eb5a475027c412b87a5018628baf8d9
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTu2hAlrEQkE-9NBKtUgc24mPCwIBEttLkfYW2bFdFkXJarWI8n_6Q5mxsygnuHBIIjn-iDwjz5t4_IaQ7w6MrlWVZLmTkgkTDDNNLpjSwXEk0PISDyffzNTlrbiey_ko1RfGhCV64DRxJ4W30giwa7xsRM5tVRrkoFO8siZULh7dA5s3cqbi35USLFHM5Mo5jJzLcr6hHIrBXU3cmgXHP8eSDA_6jcxSZO8fWaeRxbnYJp8HqEin6RN3yAff7ZJPIwLBL-R_3PGnyxSdsuo7GsAaMQCiGAwbmyaGCIokHPERo77pj-ls9pNCPbpc4VYNBj9TwIJ4wVLdUnCTkQk2ppagfaCR2BrWRdr_WzjPpi3_XZw8AlBdMQ-ybvHV3_YJ1IrePeEpMNqZrg_tw8J9JbcX53_OLtmQd4HBDIs1s1Zrk1md6abiNpemCVZyAVitBG8QPKzMWVU6LW1QAQBYqZTIdbBeurKSjSv2yFbXd36fUJ9bUWXcFgXUgcVBF4V1zgVjTGh05SaEb6a9bgZScsyN0dab6LP7OsqqRlnVSVYT8uul0TJxcrxe_RTl-VIVCbVjAahZPahZ_ZaaTYjaaEM9YJOEOaCrxWujH7zH6IfkI3aZAg-_ka316sEfARha2-Oo93C_mp8-A71mCDY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHxFMsTx84gIS1iWM78XFbUW2hXQ600t4iO7bboChZRVtB_w8_lBknKculBw5RJHvGiTyTmXE8_oaQ9w6crlWFZKmTkgkTDDNVKpjSwXEE0PISDyefrtTyXHxZy_UeOZzOwmBa5Wj7B5serfXYMh9nc76p6_l3zlPwPvmap9FRyTvkLkQDOX6dx-uDvz9acnBKsagrMjDkmNCHYp5XFXdpOQyBLQme-dvxUBHIf8dR7Tifo0fk4Rg10sXwYo_Jnm-fkAc7WIJPye-4-U83Q6JK37U0gGNiEJNiXmxkHcAiKOJxxFtMAKcfFqvVRwp0dNPjrg3mQVMIC_ECq91QWDEjKGysMkG7QCPGNZhI2v2qnWeLhn_L5j8hZu2ZB7E32HXRXIOG0ctrPBBGW9N2obmq3TNyfvT57HDJxhIMrBKp2DJrtTaJ1YmuCm5TaapgJRcQtuWwMITFVuKsyp2WNqiAs6-USHWwXrq8kJXLnpP9tmv9C0J9akWRcJtlQAN2QmeZdc4FY0yodOFmhE_TXlYjPjmWyWjKKRHtRxllVaKsykFWM_LphmkzwHPcTn6A8rwhRWzt2ND1F-WoXGXmrTQCIimewyRwW-QGUQ8VL6wJhdMzoiZtKP9RVRiqvu3pL_-X8R25tzw7PSlPjldfX5H72DPkIL4m-9v-yr-BuGhr30a9_wM2egu2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+perceptron+feed-forward+Artificial+Neural+Network+%28ANN%29+for+predicting+the+thermal+conductivity+of+graphene+oxide-Al2O3%2Fwater-ethylene+glycol+hybrid+nanofluid&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Shaopeng+Tian&rft.au=Noreen+Izza+Arshad&rft.au=Davood+Toghraie&rft.au=S.+Ali+Eftekhari&rft.date=2021-08-01&rft.pub=Elsevier&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=26&rft.spage=101055&rft_id=info:doi/10.1016%2Fj.csite.2021.101055&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3eb5a475027c412b87a5018628baf8d9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon