Using perceptron feed-forward Artificial Neural Network (ANN) for predicting the thermal conductivity of graphene oxide-Al2O3/water-ethylene glycol hybrid nanofluid
In this paper, Artificial Neural Network (ANN) was used to investigate the influence of temperature and volume fraction of nanoparticles on the thermal conductivity of Graphene oxide-Al2O3/Water-Ethylene glycol hybrid nanofluid. Nanofluids were prepared with the volume fraction of nanoparticles 0.1,...
Saved in:
Published in | Case studies in thermal engineering Vol. 26; p. 101055 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, Artificial Neural Network (ANN) was used to investigate the influence of temperature and volume fraction of nanoparticles on the thermal conductivity of Graphene oxide-Al2O3/Water-Ethylene glycol hybrid nanofluid. Nanofluids were prepared with the volume fraction of nanoparticles 0.1, 0.2, 0.4, 0.8, and 1.6% in the temperature range of 25–55 °C. The nanofluid's thermal conductivity results were extracted from six different volume fractions of nanoparticles and seven different temperatures. Then, to generalize the data and obtain a function, the Perceptron feed-forward ANN was used, simulating the output parameter. The outcomes show that the ANN is well trained using the trainbr algorithm and has an average of 1.67e-6 for MSE and a correlation coefficient of 0.999 for thermal conductivity. Finally, we conclude that the effect of increasing the temperature of nanofluid is less against the volume fraction of nanoparticles, especially in low concentrations. This effect is negligible and in the absence of nanoparticles, increasing the temperature from 20 °C to 55 °C leads to an enhance in thermal conductivity of about 6%. However, at high concentrations of nanoparticles, increasing the temperature leads to further thermal conductivity. At volume fraction nanoparticles 1.6%, increasing the temperature from 20 °C to 55 °C increases the thermal conductivity from 0.45 to 0.54 W/m.K. |
---|---|
AbstractList | In this paper, Artificial Neural Network (ANN) was used to investigate the influence of temperature and volume fraction of nanoparticles on the thermal conductivity of Graphene oxide-Al2O3/Water-Ethylene glycol hybrid nanofluid. Nanofluids were prepared with the volume fraction of nanoparticles 0.1, 0.2, 0.4, 0.8, and 1.6% in the temperature range of 25–55 °C. The nanofluid's thermal conductivity results were extracted from six different volume fractions of nanoparticles and seven different temperatures. Then, to generalize the data and obtain a function, the Perceptron feed-forward ANN was used, simulating the output parameter. The outcomes show that the ANN is well trained using the trainbr algorithm and has an average of 1.67e-6 for MSE and a correlation coefficient of 0.999 for thermal conductivity. Finally, we conclude that the effect of increasing the temperature of nanofluid is less against the volume fraction of nanoparticles, especially in low concentrations. This effect is negligible and in the absence of nanoparticles, increasing the temperature from 20 °C to 55 °C leads to an enhance in thermal conductivity of about 6%. However, at high concentrations of nanoparticles, increasing the temperature leads to further thermal conductivity. At volume fraction nanoparticles 1.6%, increasing the temperature from 20 °C to 55 °C increases the thermal conductivity from 0.45 to 0.54 W/m.K. |
ArticleNumber | 101055 |
Author | Tian, Shaopeng Toghraie, Davood Eftekhari, S. Ali Hekmatifar, Maboud Arshad, Noreen Izza |
Author_xml | – sequence: 1 givenname: Shaopeng surname: Tian fullname: Tian, Shaopeng email: tspxijing@163.com organization: Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University, Xi'an, Shaanxi, 710123, China – sequence: 2 givenname: Noreen Izza orcidid: 0000-0002-0041-0590 surname: Arshad fullname: Arshad, Noreen Izza organization: Positive Computing Research Group, Institute of Autonomous Systems, Department of Computer & Information Sciences, Universiti Teknologi Petronas, 32610, Bandar Seri Iskandar, Perak, Malaysia – sequence: 3 givenname: Davood surname: Toghraie fullname: Toghraie, Davood email: Toghraee@iaukhsh.ac.ir organization: Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr Khomeinishahr, Iran – sequence: 4 givenname: S. Ali surname: Eftekhari fullname: Eftekhari, S. Ali organization: Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr Khomeinishahr, Iran – sequence: 5 givenname: Maboud surname: Hekmatifar fullname: Hekmatifar, Maboud organization: Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr Khomeinishahr, Iran |
BookMark | eNqFkc1uEzEUhUeoSJTSJ2DjJSwmtT32eGbBIqqAVqrSDZXYWf65ThymduRxms778KB4kgohFrCwrnV8z3fle95WZyEGqKr3BC8IJu3VdmFGn2FBMSWzgjl_VZ1TSlhNuPh-9sf9TXU5jluMMRFNRxg7r34-jD6s0Q6SgV1OMSAHYGsX00Eli5Ype-eNVwNawT4dSz7E9AN9WK5WH1HpQ7sE1ps8Y_IG5pMeS6OJwe6L_OTzhKJD66R2GwiA4rO3UC8Het9cHVSGVEPeTMP8tB4mEwe0mXTyFgUVohv23r6rXjs1jHD5Ui-qhy-fv13f1Hf3X2-vl3e1YYTlWuu-V1j3uDcd1YQr4zSnrGu4YLjvBMFWt8L2XLvWMd6KtmWkdxq4FR03trmobk9cG9VW7pJ_VGmSUXl5FGJaS1UWYgaQDWiumOCYijKc6k4ojknX0k4r19m-sJoTy6Q4jgncbx7Bcs5NbuUxNznnJk-5FVf_l8v4rLKPISflh_94P528UFb05CHJ0XgIpqSTwOTyB_9P_y_IrblK |
CitedBy_id | crossref_primary_10_1038_s41598_024_69648_1 crossref_primary_10_1080_10407790_2023_2300691 crossref_primary_10_3934_math_2024912 crossref_primary_10_1038_s41598_025_92461_3 crossref_primary_10_1016_j_csite_2021_101322 crossref_primary_10_1186_s40486_023_00195_6 crossref_primary_10_1515_jmbm_2022_0309 crossref_primary_10_1016_j_tsep_2022_101398 crossref_primary_10_1016_j_tsep_2024_102529 crossref_primary_10_1016_j_powtec_2022_117210 crossref_primary_10_1016_j_powtec_2024_119506 crossref_primary_10_1021_acsomega_2c07750 crossref_primary_10_1007_s10973_024_13984_x crossref_primary_10_1016_j_csite_2023_103196 crossref_primary_10_1016_j_engappai_2024_108932 crossref_primary_10_1016_j_jrras_2024_101133 crossref_primary_10_1016_j_tsep_2022_101391 crossref_primary_10_1016_j_rineng_2024_102858 crossref_primary_10_1016_j_egyai_2024_100453 crossref_primary_10_1142_S0218625X24500628 crossref_primary_10_1016_j_psep_2022_03_009 crossref_primary_10_1016_j_jestch_2023_101604 crossref_primary_10_1016_j_colsurfa_2022_129691 crossref_primary_10_1016_j_mseb_2022_115968 crossref_primary_10_1016_j_egyr_2022_10_238 crossref_primary_10_1016_j_matchemphys_2022_126169 crossref_primary_10_1016_j_colsurfa_2022_128886 crossref_primary_10_1016_j_sajce_2023_09_001 crossref_primary_10_1016_j_triboint_2022_108086 crossref_primary_10_1016_j_jtice_2024_105673 crossref_primary_10_1177_13506501231187017 crossref_primary_10_1016_j_eij_2022_12_006 crossref_primary_10_1016_j_applthermaleng_2024_124496 crossref_primary_10_1016_j_isatra_2023_01_034 crossref_primary_10_1002_er_7450 crossref_primary_10_1016_j_engappai_2023_107046 crossref_primary_10_1016_j_est_2023_107542 crossref_primary_10_1016_j_tsep_2025_103516 crossref_primary_10_1016_j_triboint_2023_108534 crossref_primary_10_1080_15567036_2024_2434730 crossref_primary_10_1038_s41598_024_80424_z crossref_primary_10_1016_j_triboint_2023_109185 crossref_primary_10_1007_s13369_024_09078_3 crossref_primary_10_1016_j_arabjc_2022_104285 crossref_primary_10_1080_0952813X_2023_2270995 crossref_primary_10_1016_j_csite_2021_101475 crossref_primary_10_1016_j_ijthermalsci_2022_107768 crossref_primary_10_1007_s13369_024_09189_x crossref_primary_10_1166_jon_2024_2177 crossref_primary_10_1002_er_8415 crossref_primary_10_1080_10916466_2022_2094956 crossref_primary_10_2298_TSCI221126055S crossref_primary_10_1080_15567036_2024_2331563 crossref_primary_10_1016_j_molliq_2023_122625 crossref_primary_10_1016_j_cplett_2024_141237 crossref_primary_10_1016_j_molliq_2023_122585 crossref_primary_10_1039_D4FD00113C crossref_primary_10_32604_fdmp_2023_027299 crossref_primary_10_1155_2022_2187932 crossref_primary_10_1016_j_powtec_2023_119275 crossref_primary_10_1016_j_flowmeasinst_2024_102703 crossref_primary_10_1177_23977914241289251 crossref_primary_10_1038_s41598_021_96808_4 crossref_primary_10_1007_s00894_023_05778_z crossref_primary_10_1016_j_asej_2023_102420 crossref_primary_10_2298_TSCI231010015H crossref_primary_10_2298_TSCI231130152M crossref_primary_10_1016_j_csite_2023_103275 crossref_primary_10_1016_j_cplett_2024_141344 crossref_primary_10_1016_j_cjche_2024_04_030 crossref_primary_10_1016_j_mtcomm_2023_107836 crossref_primary_10_1063_5_0171265 crossref_primary_10_1016_j_engappai_2023_107307 crossref_primary_10_1016_j_jmrt_2022_08_061 crossref_primary_10_1016_j_molliq_2023_121365 crossref_primary_10_1016_j_applthermaleng_2024_123330 crossref_primary_10_1016_j_applthermaleng_2024_123332 crossref_primary_10_1140_epjp_s13360_022_02782_9 crossref_primary_10_1016_j_applthermaleng_2024_122481 crossref_primary_10_1016_j_arabjc_2022_104508 crossref_primary_10_1177_0958305X241270239 crossref_primary_10_1016_j_ceramint_2024_05_084 crossref_primary_10_1016_j_csite_2024_104497 crossref_primary_10_1016_j_inoche_2024_112151 crossref_primary_10_1007_s10973_024_13016_8 crossref_primary_10_1016_j_triboint_2022_108161 crossref_primary_10_1007_s10973_024_13873_3 crossref_primary_10_1016_j_ijbiomac_2023_126906 crossref_primary_10_1016_j_engappai_2024_108647 crossref_primary_10_1016_j_ijheatfluidflow_2024_109712 crossref_primary_10_1007_s42341_023_00463_7 crossref_primary_10_1016_j_arabjc_2023_105469 crossref_primary_10_2298_TSCI231016105H crossref_primary_10_1016_j_rineng_2023_101284 crossref_primary_10_1016_j_powtec_2022_117472 crossref_primary_10_1016_j_heliyon_2023_e19228 crossref_primary_10_1016_j_powtec_2022_117595 crossref_primary_10_1016_j_csite_2023_103094 crossref_primary_10_1177_23977914241259084 crossref_primary_10_1007_s10765_024_03390_8 crossref_primary_10_1016_j_csite_2021_101272 crossref_primary_10_1016_j_mtcomm_2023_106807 crossref_primary_10_1002_zamm_202301049 crossref_primary_10_1016_j_csite_2024_104808 crossref_primary_10_1016_j_mtcomm_2024_108169 crossref_primary_10_1016_j_tca_2022_179418 crossref_primary_10_1016_j_csite_2021_101437 |
Cites_doi | 10.1007/BF01593790 10.1016/j.jclepro.2019.119765 10.1007/s10973-016-5725-y 10.1016/j.icheatmasstransfer.2016.06.003 10.1016/j.jhazmat.2019.05.035 10.1007/s42452-019-1610-1 10.1016/j.powtec.2020.07.056 10.1016/j.saa.2020.118272 10.1007/s00231-018-2353-z 10.1590/S0104-66322008000400002 10.1063/1.3672685 10.1162/neco.1992.4.3.415 10.1007/s11630-019-1158-9 10.1016/j.powtec.2019.07.086 10.1007/s10973-017-6696-3 10.1016/j.powtec.2018.09.076 10.1016/S0893-6080(05)80056-5 10.1016/j.icheatmasstransfer.2016.08.015 10.1115/1.1370512 10.1016/j.nanoen.2011.11.007 10.1016/j.molliq.2018.12.055 10.1016/j.powtec.2007.11.020 10.1016/S0142-727X(99)00067-3 10.1016/j.molliq.2020.113329 10.1016/j.molliq.2017.02.015 10.1016/j.powtec.2020.09.011 10.1016/j.icheatmasstransfer.2016.03.010 10.1016/j.envres.2021.110809 10.1016/j.apenergy.2015.01.125 10.1016/j.icheatmasstransfer.2020.104477 10.1016/S1359-4311(02)00155-2 10.1016/j.applthermaleng.2006.07.036 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) |
Copyright_xml | – notice: 2021 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2021.101055 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_3eb5a475027c412b87a5018628baf8d9 10_1016_j_csite_2021_101055 S2214157X21002185 |
GroupedDBID | 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c414t-bb99a0b909c82b15acfb52483574098710db67d95bf6f456766419fbe5d785cd3 |
IEDL.DBID | DOA |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:20:11 EDT 2025 Tue Jul 01 02:28:28 EDT 2025 Thu Apr 24 23:12:06 EDT 2025 Tue Jul 25 20:58:37 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Perceptron feed-forward ANN Nanofluid Thermal conductivity |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-bb99a0b909c82b15acfb52483574098710db67d95bf6f456766419fbe5d785cd3 |
ORCID | 0000-0002-0041-0590 |
OpenAccessLink | https://doaj.org/article/3eb5a475027c412b87a5018628baf8d9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3eb5a475027c412b87a5018628baf8d9 crossref_primary_10_1016_j_csite_2021_101055 crossref_citationtrail_10_1016_j_csite_2021_101055 elsevier_sciencedirect_doi_10_1016_j_csite_2021_101055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Mehdizadeh, Orooji, Amiri, Salavati-Niasari, Moayedi (bib2) 2020; 252 Esfe (bib26) 2017; 127 Rostami, Kalbasi, Sina, Goldanlou (bib30) 2020 Powell (bib40) 1977; 12 Esfe (bib25) 2017; 82 Braspenning, Thuijsman, Weijters (bib37) 1995 Karimi-Maleh, Ranjbari, Tanhaei, Ayati, Orooji, Alizadeh, Karimi, Salmanpour, Rouhi, Sillanpää, Sen (bib1) 2021; 195 Tahani, Vakili, Khosrojerdi (bib29) 2016; 76 Gill, Murray, Wright (bib41) 1981 Khodadadi, Toghraie (bib10) 2019; 342 Vakili, Yahyaei, Kalhor (bib28) 2016; 74 Elsheikh (bib32) 2020; 2 Azimi, Baniamerian (bib14) 2019; 55 Riedmiller, Braun (bib43) 1993 Mirsaeidi, Yousefi (bib35) 2019 Hassandoost, Pouran, Khataee, Orooji, Joo (bib3) 2019; 376 Tian, Kalbasi, Qi, Karimipour, Huang (bib44) 2020 A Akhgar, D Toghraie, N Sina, M Afrand., Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO Pare, Ghosh (bib33) 2020; 377 Rostamian, Biglari, Saedodin, Esfe (bib24) 2017; 231 Møller (bib42) 1993; 6 Orooji, Irani-Nezhad, Hassandoost, Khataee, Pouran, Joo (bib9) 2020; 234 Yashawantha, Vinod (bib27) 2020 Maleki, Haghighi, Shahrestani, Abdelmalek (bib34) 2020 Wei, Afrand, Kalbasi, Ali, Heidarshenas, Rostami (bib46) 2020; 374 Foresee, Hagan (bib39) 1997; vol. 3 Yang, Sen (bib20) 2000 MacKay (bib38) 1992; 4 Water-ethylene glycol hybrid nanofluid, Powder Technol. 355, 602-610. Wang, Mujumdar (bib17) 2008; 25 Yang, Sen, Diaz, Pacheco-Vega, McClain (bib21) 2000 Starace, Gomez, Wang, Pradhan, Glatzmaier (bib18) 2011; 110 Longo, Zilio, Ceseracciu, Reggiani (bib31) 2012; 1 Diaz, Sen, Yang, McClain (bib22) 2001; 123 Xie, Wang, Zeng, Luo (bib19) 2007; 27 Shahsavar, Khanmohammadi, Toghraie, Salihepour (bib12) 2019; 276 Vignarooban, Xu, Arvay, Hsu, Kannan (bib4) 2015; 146 Hwang (bib13) 2008; 186 Xuan, Li (bib16) 2000; 21 Rohsenow, Hartnett, Cho (bib5) 1998 Ho, Hsieh, Rashidi, Orooji, Yan (bib15) 2020; 112 Zadeh, Toghraie (bib7) 2018; 131 Nasrollahzadeh, Soleimani, Bidgoli, Nezafat, Orooji, Baran (bib8) 2020 Smith (bib6) 2005 Tian, Kalbasi, Jahanshahi, Qi, Huang, Rostami (bib45) 2020 Islamoglu (bib23) 2003; 23 Wang, Yan, Gao, Chen (bib36) 2020; 29 Wang (10.1016/j.csite.2021.101055_bib17) 2008; 25 Wang (10.1016/j.csite.2021.101055_bib36) 2020; 29 Ho (10.1016/j.csite.2021.101055_bib15) 2020; 112 Rostamian (10.1016/j.csite.2021.101055_bib24) 2017; 231 Rostami (10.1016/j.csite.2021.101055_bib30) 2020 Tian (10.1016/j.csite.2021.101055_bib45) 2020 Vignarooban (10.1016/j.csite.2021.101055_bib4) 2015; 146 Shahsavar (10.1016/j.csite.2021.101055_bib12) 2019; 276 Smith (10.1016/j.csite.2021.101055_bib6) 2005 Diaz (10.1016/j.csite.2021.101055_bib22) 2001; 123 Orooji (10.1016/j.csite.2021.101055_bib9) 2020; 234 Powell (10.1016/j.csite.2021.101055_bib40) 1977; 12 Foresee (10.1016/j.csite.2021.101055_bib39) 1997; vol. 3 Khodadadi (10.1016/j.csite.2021.101055_bib10) 2019; 342 Xuan (10.1016/j.csite.2021.101055_bib16) 2000; 21 Xie (10.1016/j.csite.2021.101055_bib19) 2007; 27 Zadeh (10.1016/j.csite.2021.101055_bib7) 2018; 131 Tahani (10.1016/j.csite.2021.101055_bib29) 2016; 76 Maleki (10.1016/j.csite.2021.101055_bib34) 2020 Longo (10.1016/j.csite.2021.101055_bib31) 2012; 1 Hassandoost (10.1016/j.csite.2021.101055_bib3) 2019; 376 Yang (10.1016/j.csite.2021.101055_bib21) 2000 Elsheikh (10.1016/j.csite.2021.101055_bib32) 2020; 2 Pare (10.1016/j.csite.2021.101055_bib33) 2020; 377 Mirsaeidi (10.1016/j.csite.2021.101055_bib35) 2019 Nasrollahzadeh (10.1016/j.csite.2021.101055_bib8) 2020 Wei (10.1016/j.csite.2021.101055_bib46) 2020; 374 Mehdizadeh (10.1016/j.csite.2021.101055_bib2) 2020; 252 Hwang (10.1016/j.csite.2021.101055_bib13) 2008; 186 Tian (10.1016/j.csite.2021.101055_bib44) 2020 Rohsenow (10.1016/j.csite.2021.101055_bib5) 1998 Esfe (10.1016/j.csite.2021.101055_bib25) 2017; 82 Riedmiller (10.1016/j.csite.2021.101055_bib43) 1993 Gill (10.1016/j.csite.2021.101055_bib41) 1981 Starace (10.1016/j.csite.2021.101055_bib18) 2011; 110 Yashawantha (10.1016/j.csite.2021.101055_bib27) 2020 Islamoglu (10.1016/j.csite.2021.101055_bib23) 2003; 23 Møller (10.1016/j.csite.2021.101055_bib42) 1993; 6 Azimi (10.1016/j.csite.2021.101055_bib14) 2019; 55 Vakili (10.1016/j.csite.2021.101055_bib28) 2016; 74 Braspenning (10.1016/j.csite.2021.101055_bib37) 1995 Yang (10.1016/j.csite.2021.101055_bib20) 2000 MacKay (10.1016/j.csite.2021.101055_bib38) 1992; 4 10.1016/j.csite.2021.101055_bib11 Karimi-Maleh (10.1016/j.csite.2021.101055_bib1) 2021; 195 Esfe (10.1016/j.csite.2021.101055_bib26) 2017; 127 |
References_xml | – volume: 29 start-page: 1504 year: 2020 end-page: 1512 ident: bib36 article-title: Prediction of thermal conductivity of various nanofluids with ethylene glycol using artificial neural network publication-title: J. Therm. Sci. – volume: 4 start-page: 415 year: 1992 end-page: 447 ident: bib38 article-title: Bayesian interpolation publication-title: Neural Comput. – volume: 2 start-page: 1 year: 2020 end-page: 11 ident: bib32 article-title: An artificial neural network based approach for prediction the thermal conductivity of nanofluids publication-title: SN Applied Sciences – year: 2020 ident: bib44 article-title: Efficacy of Hybrid Nano-Powder Presence on the Thermal Conductivity of the Engine Oil: an Experimental Study – volume: 27 start-page: 1096 year: 2007 end-page: 1104 ident: bib19 article-title: Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach publication-title: Appl. Therm. Eng. – volume: 342 start-page: 166 year: 2019 end-page: 180 ident: bib10 article-title: A Karimipour Effects of nanoparticles to present a statistical model for the viscosity of MgO-Water nanofluid publication-title: Powder Technol. – reference: /Water-ethylene glycol hybrid nanofluid, Powder Technol. 355, 602-610. – start-page: 1 year: 2019 end-page: 11 ident: bib35 article-title: Viscosity, thermal conductivity and density of carbon quantum dots nanofluids: an experimental investigation and development of new correlation function and ANN modeling publication-title: J. Therm. Anal. Calorim. – volume: 131 start-page: 1449 year: 2018 end-page: 1461 ident: bib7 article-title: Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions publication-title: J. Therm. Anal. Calorim. – start-page: 1 year: 2020 end-page: 10 ident: bib30 article-title: Forecasting the thermal conductivity of a nanofluid using artificial neural networks publication-title: J. Therm. Anal. Calorim. – volume: 1 start-page: 290 year: 2012 end-page: 296 ident: bib31 article-title: Application of artificial neural network (ANN) for the prediction of thermal conductivity of oxide–water nanofluids publication-title: Nanomater. Energy – volume: 195 year: 2021 ident: bib1 article-title: Novel 1-Butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: kinetic study publication-title: Environ. Res. – volume: 146 start-page: 383 year: 2015 end-page: 396 ident: bib4 article-title: Heat transfer fluids for concentrating solar power systems–a review publication-title: Appl. Energy – volume: 110 year: 2011 ident: bib18 article-title: Nanofluid heat capacities publication-title: J. Appl. Phys. – volume: 23 start-page: 243 year: 2003 end-page: 249 ident: bib23 article-title: A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger––use of an artificial neural network model publication-title: Appl. Therm. Eng. – volume: 74 start-page: 11 year: 2016 end-page: 17 ident: bib28 article-title: Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results publication-title: Int. Commun. Heat Mass Tran. – start-page: 1 year: 2020 end-page: 22 ident: bib27 article-title: ANN modelling and experimental investigation on effective thermal conductivity of ethylene glycol: water nanofluids publication-title: J. Therm. Anal. Calorim. – volume: 76 start-page: 358 year: 2016 end-page: 365 ident: bib29 article-title: Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid publication-title: Int. Commun. Heat Mass Tran. – volume: vol. 3 start-page: 1930 year: 1997 end-page: 1935 ident: bib39 article-title: Gauss-Newton approximation to Bayesian learning publication-title: Proceedings of International Conference on Neural Networks (ICNN'97) – year: 2000 ident: bib20 article-title: Artificial neural network-based dynamic modeling thermal systems and their control publication-title: Heat Transfer Science and Technology – year: 1981 ident: bib41 article-title: Practical Optimization, Acad – year: 2005 ident: bib6 article-title: Chemical Process: Design and Integration – volume: 276 start-page: 850 year: 2019 end-page: 860 ident: bib12 article-title: Experimental investigation and develop ANNs by introducing the suitable architectures and training algorithms supported by sensitivity analysis: measure thermal conductivity and viscosity for liquid paraffin based nanofluid containing Al2O3 nanoparticles publication-title: J. Mol. Liq. – volume: 12 start-page: 241 year: 1977 end-page: 254 ident: bib40 article-title: Restart procedures for the conjugate gradient method publication-title: Math. Program. – year: 1995 ident: bib37 article-title: Artificial Neural Networks: an Introduction to ANN Theory and Practice – volume: 82 start-page: 154 year: 2017 end-page: 160 ident: bib25 article-title: Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN publication-title: Int. Commun. Heat Mass Tran. – year: 1998 ident: bib5 article-title: Handbook of Heat Transfer – volume: 25 start-page: 631 year: 2008 end-page: 648 ident: bib17 article-title: A review on nanofluids-part II: experiments and applications publication-title: Braz. J. Chem. Eng. – volume: 252 year: 2020 ident: bib2 article-title: Green synthesis using cherry and orange juice and characterization of TbFeO3 ceramic nanostructures and their application as photocatalysts under uv light for removal of organic dyes in water publication-title: J. Clean. Prod. – volume: 6 start-page: 525 year: 1993 end-page: 533 ident: bib42 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Network. – start-page: 586 year: 1993 end-page: 591 ident: bib43 article-title: A direct adaptive method for faster backpropagation learning: the RPROP algorithm publication-title: IEEE International Conference on Neural Networks – volume: 21 start-page: 58 year: 2000 end-page: 64 ident: bib16 article-title: Heat transfer enhancement of nanofluids publication-title: Int. J. Heat Fluid Flow – volume: 374 start-page: 462 year: 2020 end-page: 469 ident: bib46 article-title: The effect of tungsten trioxide nanoparticles on the thermal conductivity of ethylene glycol under different sonication durations: an experimental examination publication-title: Powder Technol. – volume: 127 start-page: 2125 year: 2017 end-page: 2131 ident: bib26 article-title: Designing an artificial neural network using radial basis function (RBF-ANN) to model thermal conductivity of ethylene glycol–water-based TiO 2 nanofluids publication-title: J. Therm. Anal. Calorim. – start-page: 1 year: 2020 end-page: 10 ident: bib34 article-title: Applying different types of artificial neural network for modeling thermal conductivity of nanofluids containing silica particles publication-title: J. Therm. Anal. Calorim. – reference: A Akhgar, D Toghraie, N Sina, M Afrand., Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO – volume: 112 year: 2020 ident: bib15 article-title: Thermal-hydraulic analysis for alumina/water nanofluid inside a mini-channel heat sink with latent heat cooling ceiling-An experimental study publication-title: Int. Commun. Heat Mass Tran. – year: 2020 ident: bib45 article-title: Competition between intermolecular forces of adhesion and cohesion in the presence of graphene nanoparticles: investigation of graphene nanosheets/ethylene glycol surface tension publication-title: J. Mol. Liq. – year: 2020 ident: bib8 article-title: Recent developments in polymer-supported ruthenium nanoparticles/complexes for oxidation reactions publication-title: J. Organomet. Chem. – volume: 123 start-page: 556 year: 2001 end-page: 562 ident: bib22 article-title: Adaptive neurocontrol of heat exchangers publication-title: J. Heat Tran. – volume: 376 start-page: 200 year: 2019 end-page: 211 ident: bib3 article-title: Hierarchically structured ternary heterojunctions based on Ce3+/Ce4+ modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visible-light-active photocatalysts for decontamination of oxytetracycline publication-title: J. Hazard Mater. – volume: 231 start-page: 364 year: 2017 end-page: 369 ident: bib24 article-title: An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation publication-title: J. Mol. Liq. – volume: 234 year: 2020 ident: bib9 article-title: Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. – volume: 377 start-page: 429 year: 2020 end-page: 438 ident: bib33 article-title: A unique thermal conductivity model (ANN) for nanofluid based on experimental study publication-title: Powder Technol. – volume: 186 start-page: 145 year: 2008 end-page: 153 ident: bib13 article-title: Production and dispersion stability of nanoparticles in nanofluids publication-title: Powder Technol. – start-page: 940 year: 2000 ident: bib21 article-title: COEFFICIENT OF HEAT TRANSFER IN FIN-TUBE HEAT EXCHANGER ANALYSIS AND THE ARTIFICIAL NEURAL NETWORKS – volume: 55 start-page: 105 year: 2019 end-page: 117 ident: bib14 article-title: Effects of nanoparticles deposition on thermal behaviour of boiling nanofluids publication-title: Heat Mass Tran. – volume: 12 start-page: 241 issue: 1 year: 1977 ident: 10.1016/j.csite.2021.101055_bib40 article-title: Restart procedures for the conjugate gradient method publication-title: Math. Program. doi: 10.1007/BF01593790 – volume: 252 year: 2020 ident: 10.1016/j.csite.2021.101055_bib2 article-title: Green synthesis using cherry and orange juice and characterization of TbFeO3 ceramic nanostructures and their application as photocatalysts under uv light for removal of organic dyes in water publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119765 – volume: 127 start-page: 2125 issue: 3 year: 2017 ident: 10.1016/j.csite.2021.101055_bib26 article-title: Designing an artificial neural network using radial basis function (RBF-ANN) to model thermal conductivity of ethylene glycol–water-based TiO 2 nanofluids publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-016-5725-y – volume: 76 start-page: 358 year: 2016 ident: 10.1016/j.csite.2021.101055_bib29 article-title: Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2016.06.003 – volume: 376 start-page: 200 year: 2019 ident: 10.1016/j.csite.2021.101055_bib3 article-title: Hierarchically structured ternary heterojunctions based on Ce3+/Ce4+ modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visible-light-active photocatalysts for decontamination of oxytetracycline publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.05.035 – volume: 2 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.csite.2021.101055_bib32 article-title: An artificial neural network based approach for prediction the thermal conductivity of nanofluids publication-title: SN Applied Sciences doi: 10.1007/s42452-019-1610-1 – volume: 374 start-page: 462 year: 2020 ident: 10.1016/j.csite.2021.101055_bib46 article-title: The effect of tungsten trioxide nanoparticles on the thermal conductivity of ethylene glycol under different sonication durations: an experimental examination publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.07.056 – volume: 234 year: 2020 ident: 10.1016/j.csite.2021.101055_bib9 article-title: Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2020.118272 – volume: 55 start-page: 105 issue: 1 year: 2019 ident: 10.1016/j.csite.2021.101055_bib14 article-title: Effects of nanoparticles deposition on thermal behaviour of boiling nanofluids publication-title: Heat Mass Tran. doi: 10.1007/s00231-018-2353-z – volume: 25 start-page: 631 issue: 4 year: 2008 ident: 10.1016/j.csite.2021.101055_bib17 article-title: A review on nanofluids-part II: experiments and applications publication-title: Braz. J. Chem. Eng. doi: 10.1590/S0104-66322008000400002 – volume: 110 issue: 12 year: 2011 ident: 10.1016/j.csite.2021.101055_bib18 article-title: Nanofluid heat capacities publication-title: J. Appl. Phys. doi: 10.1063/1.3672685 – volume: 4 start-page: 415 issue: 3 year: 1992 ident: 10.1016/j.csite.2021.101055_bib38 article-title: Bayesian interpolation publication-title: Neural Comput. doi: 10.1162/neco.1992.4.3.415 – volume: 29 start-page: 1504 issue: 6 year: 2020 ident: 10.1016/j.csite.2021.101055_bib36 article-title: Prediction of thermal conductivity of various nanofluids with ethylene glycol using artificial neural network publication-title: J. Therm. Sci. doi: 10.1007/s11630-019-1158-9 – ident: 10.1016/j.csite.2021.101055_bib11 doi: 10.1016/j.powtec.2019.07.086 – volume: vol. 3 start-page: 1930 year: 1997 ident: 10.1016/j.csite.2021.101055_bib39 article-title: Gauss-Newton approximation to Bayesian learning – volume: 131 start-page: 1449 issue: 2 year: 2018 ident: 10.1016/j.csite.2021.101055_bib7 article-title: Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-017-6696-3 – volume: 342 start-page: 166 year: 2019 ident: 10.1016/j.csite.2021.101055_bib10 article-title: A Karimipour Effects of nanoparticles to present a statistical model for the viscosity of MgO-Water nanofluid publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.09.076 – volume: 6 start-page: 525 issue: 4 year: 1993 ident: 10.1016/j.csite.2021.101055_bib42 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Network. doi: 10.1016/S0893-6080(05)80056-5 – year: 1995 ident: 10.1016/j.csite.2021.101055_bib37 – year: 2020 ident: 10.1016/j.csite.2021.101055_bib44 – volume: 82 start-page: 154 year: 2017 ident: 10.1016/j.csite.2021.101055_bib25 article-title: Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2016.08.015 – start-page: 1 year: 2020 ident: 10.1016/j.csite.2021.101055_bib30 article-title: Forecasting the thermal conductivity of a nanofluid using artificial neural networks publication-title: J. Therm. Anal. Calorim. – start-page: 1 year: 2019 ident: 10.1016/j.csite.2021.101055_bib35 article-title: Viscosity, thermal conductivity and density of carbon quantum dots nanofluids: an experimental investigation and development of new correlation function and ANN modeling publication-title: J. Therm. Anal. Calorim. – volume: 123 start-page: 556 issue: 3 year: 2001 ident: 10.1016/j.csite.2021.101055_bib22 article-title: Adaptive neurocontrol of heat exchangers publication-title: J. Heat Tran. doi: 10.1115/1.1370512 – volume: 1 start-page: 290 issue: 2 year: 2012 ident: 10.1016/j.csite.2021.101055_bib31 article-title: Application of artificial neural network (ANN) for the prediction of thermal conductivity of oxide–water nanofluids publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2011.11.007 – volume: 276 start-page: 850 year: 2019 ident: 10.1016/j.csite.2021.101055_bib12 article-title: Experimental investigation and develop ANNs by introducing the suitable architectures and training algorithms supported by sensitivity analysis: measure thermal conductivity and viscosity for liquid paraffin based nanofluid containing Al2O3 nanoparticles publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.12.055 – volume: 186 start-page: 145 issue: 2 year: 2008 ident: 10.1016/j.csite.2021.101055_bib13 article-title: Production and dispersion stability of nanoparticles in nanofluids publication-title: Powder Technol. doi: 10.1016/j.powtec.2007.11.020 – volume: 21 start-page: 58 issue: 1 year: 2000 ident: 10.1016/j.csite.2021.101055_bib16 article-title: Heat transfer enhancement of nanofluids publication-title: Int. J. Heat Fluid Flow doi: 10.1016/S0142-727X(99)00067-3 – year: 2020 ident: 10.1016/j.csite.2021.101055_bib45 article-title: Competition between intermolecular forces of adhesion and cohesion in the presence of graphene nanoparticles: investigation of graphene nanosheets/ethylene glycol surface tension publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113329 – start-page: 940 year: 2000 ident: 10.1016/j.csite.2021.101055_bib21 – year: 1998 ident: 10.1016/j.csite.2021.101055_bib5 – volume: 231 start-page: 364 year: 2017 ident: 10.1016/j.csite.2021.101055_bib24 article-title: An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.02.015 – volume: 377 start-page: 429 year: 2020 ident: 10.1016/j.csite.2021.101055_bib33 article-title: A unique thermal conductivity model (ANN) for nanofluid based on experimental study publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.09.011 – volume: 74 start-page: 11 year: 2016 ident: 10.1016/j.csite.2021.101055_bib28 article-title: Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2016.03.010 – start-page: 1 year: 2020 ident: 10.1016/j.csite.2021.101055_bib27 article-title: ANN modelling and experimental investigation on effective thermal conductivity of ethylene glycol: water nanofluids publication-title: J. Therm. Anal. Calorim. – year: 2005 ident: 10.1016/j.csite.2021.101055_bib6 – start-page: 586 year: 1993 ident: 10.1016/j.csite.2021.101055_bib43 article-title: A direct adaptive method for faster backpropagation learning: the RPROP algorithm – year: 2020 ident: 10.1016/j.csite.2021.101055_bib8 article-title: Recent developments in polymer-supported ruthenium nanoparticles/complexes for oxidation reactions publication-title: J. Organomet. Chem. – volume: 195 year: 2021 ident: 10.1016/j.csite.2021.101055_bib1 article-title: Novel 1-Butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: kinetic study publication-title: Environ. Res. doi: 10.1016/j.envres.2021.110809 – year: 2000 ident: 10.1016/j.csite.2021.101055_bib20 article-title: Artificial neural network-based dynamic modeling thermal systems and their control – start-page: 1 year: 2020 ident: 10.1016/j.csite.2021.101055_bib34 article-title: Applying different types of artificial neural network for modeling thermal conductivity of nanofluids containing silica particles publication-title: J. Therm. Anal. Calorim. – volume: 146 start-page: 383 year: 2015 ident: 10.1016/j.csite.2021.101055_bib4 article-title: Heat transfer fluids for concentrating solar power systems–a review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.01.125 – year: 1981 ident: 10.1016/j.csite.2021.101055_bib41 – volume: 112 year: 2020 ident: 10.1016/j.csite.2021.101055_bib15 article-title: Thermal-hydraulic analysis for alumina/water nanofluid inside a mini-channel heat sink with latent heat cooling ceiling-An experimental study publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2020.104477 – volume: 23 start-page: 243 issue: 2 year: 2003 ident: 10.1016/j.csite.2021.101055_bib23 article-title: A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger––use of an artificial neural network model publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(02)00155-2 – volume: 27 start-page: 1096 issue: 5–6 year: 2007 ident: 10.1016/j.csite.2021.101055_bib19 article-title: Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2006.07.036 |
SSID | ssj0001738144 |
Score | 2.530057 |
Snippet | In this paper, Artificial Neural Network (ANN) was used to investigate the influence of temperature and volume fraction of nanoparticles on the thermal... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 101055 |
SubjectTerms | Nanofluid Perceptron feed-forward ANN Thermal conductivity |
SummonAdditionalLinks | – databaseName: ScienceDirect Open Access Journals (Elsevier) dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhp_ZQmrSl25-gQw8tVKwtS7J03ISGUOj20Ab2ZiRLSl2MvZgNbd4nD9oZ2U43lxxyMMbyjG1mhpmRNfOJkA8egq5TWrLcS8mEjZbZOhdMmeg5AmgFic3J39bq4lJ83cjNATmbe2GwrHLy_aNPT956GllO0lxum2b5g_Mcok-54XkKVNhoXgidmvg2p___s5QQk9KerkjPkGEGH0plXnVapOXwBBzJsOVvL0AlHP-9OLUXe86fk2dT0khX43cdkYPQHZOne1CCL8htWvun27FOZeg7GiEuMUhJsSw2sY5YERThONIp1X_Tj6v1-hMFOrodcNEGy6ApZIV4gNNuKUyYERM2bTJB-0gTxDV4SNr_bXxgq5Z_L5Z_IGUdWACtt3jrqr0BA6O_brAfjHa262N73fiX5PL8y8-zCzbtwMBqkYsdc84YmzmTmVpzl0tbRyc5CFmWMC-EuVbmnSq9kS6qCKlYqZTITXRB-lLL2hevyGHXd-E1oSF3QmfcFQXQgJswReG899FaG2uj_YLwWexVPcGT4y4ZbTXXof2ukq4q1FU16mpBPt8xbUd0jofJT1Gfd6QIrZ0G-uGqmmyrKoKTVkAixUsQAne6tAh6qLh2NmpvFkTN1lDds1R4VPPQ2988lvEteYJXY9nhO3K4G67De0iFdu4k2fo_6MoIlg priority: 102 providerName: Elsevier |
Title | Using perceptron feed-forward Artificial Neural Network (ANN) for predicting the thermal conductivity of graphene oxide-Al2O3/water-ethylene glycol hybrid nanofluid |
URI | https://dx.doi.org/10.1016/j.csite.2021.101055 https://doaj.org/article/3eb5a475027c412b87a5018628baf8d9 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTu2hAlrEQkE-9NBKtUgc24mPCwIBEttLkfYW2bFdFkXJarWI8n_6Q5mxsygnuHBIIjn-iDwjz5t4_IaQ7w6MrlWVZLmTkgkTDDNNLpjSwXEk0PISDyffzNTlrbiey_ko1RfGhCV64DRxJ4W30giwa7xsRM5tVRrkoFO8siZULh7dA5s3cqbi35USLFHM5Mo5jJzLcr6hHIrBXU3cmgXHP8eSDA_6jcxSZO8fWaeRxbnYJp8HqEin6RN3yAff7ZJPIwLBL-R_3PGnyxSdsuo7GsAaMQCiGAwbmyaGCIokHPERo77pj-ls9pNCPbpc4VYNBj9TwIJ4wVLdUnCTkQk2ppagfaCR2BrWRdr_WzjPpi3_XZw8AlBdMQ-ybvHV3_YJ1IrePeEpMNqZrg_tw8J9JbcX53_OLtmQd4HBDIs1s1Zrk1md6abiNpemCVZyAVitBG8QPKzMWVU6LW1QAQBYqZTIdbBeurKSjSv2yFbXd36fUJ9bUWXcFgXUgcVBF4V1zgVjTGh05SaEb6a9bgZScsyN0dab6LP7OsqqRlnVSVYT8uul0TJxcrxe_RTl-VIVCbVjAahZPahZ_ZaaTYjaaEM9YJOEOaCrxWujH7zH6IfkI3aZAg-_ka316sEfARha2-Oo93C_mp8-A71mCDY |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHxFMsTx84gIS1iWM78XFbUW2hXQ600t4iO7bboChZRVtB_w8_lBknKculBw5RJHvGiTyTmXE8_oaQ9w6crlWFZKmTkgkTDDNVKpjSwXEE0PISDyefrtTyXHxZy_UeOZzOwmBa5Wj7B5serfXYMh9nc76p6_l3zlPwPvmap9FRyTvkLkQDOX6dx-uDvz9acnBKsagrMjDkmNCHYp5XFXdpOQyBLQme-dvxUBHIf8dR7Tifo0fk4Rg10sXwYo_Jnm-fkAc7WIJPye-4-U83Q6JK37U0gGNiEJNiXmxkHcAiKOJxxFtMAKcfFqvVRwp0dNPjrg3mQVMIC_ECq91QWDEjKGysMkG7QCPGNZhI2v2qnWeLhn_L5j8hZu2ZB7E32HXRXIOG0ctrPBBGW9N2obmq3TNyfvT57HDJxhIMrBKp2DJrtTaJ1YmuCm5TaapgJRcQtuWwMITFVuKsyp2WNqiAs6-USHWwXrq8kJXLnpP9tmv9C0J9akWRcJtlQAN2QmeZdc4FY0yodOFmhE_TXlYjPjmWyWjKKRHtRxllVaKsykFWM_LphmkzwHPcTn6A8rwhRWzt2ND1F-WoXGXmrTQCIimewyRwW-QGUQ8VL6wJhdMzoiZtKP9RVRiqvu3pL_-X8R25tzw7PSlPjldfX5H72DPkIL4m-9v-yr-BuGhr30a9_wM2egu2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+perceptron+feed-forward+Artificial+Neural+Network+%28ANN%29+for+predicting+the+thermal+conductivity+of+graphene+oxide-Al2O3%2Fwater-ethylene+glycol+hybrid+nanofluid&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Shaopeng+Tian&rft.au=Noreen+Izza+Arshad&rft.au=Davood+Toghraie&rft.au=S.+Ali+Eftekhari&rft.date=2021-08-01&rft.pub=Elsevier&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=26&rft.spage=101055&rft_id=info:doi/10.1016%2Fj.csite.2021.101055&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3eb5a475027c412b87a5018628baf8d9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |