Top-Down Crawl: a method for the ultra-rapid and motif-free alignment of sequences with associated binding metrics

Several high-throughput protein-DNA binding methods currently available produce highly reproducible measurements of binding affinity at the level of the k-mer. However, understanding where a k-mer is positioned along a binding site sequence depends on alignment. Here, we present Top-Down Crawl (TDC)...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 38; no. 22; pp. 5121 - 5123
Main Authors Cooper, Brendon H, Chiu, Tsu-Pei, Rohs, Remo
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Several high-throughput protein-DNA binding methods currently available produce highly reproducible measurements of binding affinity at the level of the k-mer. However, understanding where a k-mer is positioned along a binding site sequence depends on alignment. Here, we present Top-Down Crawl (TDC), an ultra-rapid tool designed for the alignment of k-mer level data in a rank-dependent and position weight matrix (PWM)-independent manner. As the framework only depends on the rank of the input, the method can accept input from many types of experiments (protein binding microarray, SELEX-seq, SMiLE-seq, etc.) without the need for specialized parameterization. Measuring the performance of the alignment using multiple linear regression with 5-fold cross-validation, we find TDC to perform as well as or better than computationally expensive PWM-based methods. TDC can be run online at https://topdowncrawl.usc.edu or locally as a python package available through pip at https://pypi.org/project/TopDownCrawl. Supplementary data are available at Bioinformatics online.
AbstractList Abstract Summary Several high-throughput protein–DNA binding methods currently available produce highly reproducible measurements of binding affinity at the level of the k-mer. However, understanding where a k-mer is positioned along a binding site sequence depends on alignment. Here, we present Top-Down Crawl (TDC), an ultra-rapid tool designed for the alignment of k-mer level data in a rank-dependent and position weight matrix (PWM)-independent manner. As the framework only depends on the rank of the input, the method can accept input from many types of experiments (protein binding microarray, SELEX-seq, SMiLE-seq, etc.) without the need for specialized parameterization. Measuring the performance of the alignment using multiple linear regression with 5-fold cross-validation, we find TDC to perform as well as or better than computationally expensive PWM-based methods. Availability and implementation TDC can be run online at https://topdowncrawl.usc.edu or locally as a python package available through pip at https://pypi.org/project/TopDownCrawl. Supplementary information Supplementary data are available at Bioinformatics online.
Several high-throughput protein-DNA binding methods currently available produce highly reproducible measurements of binding affinity at the level of the k-mer. However, understanding where a k-mer is positioned along a binding site sequence depends on alignment. Here, we present Top-Down Crawl (TDC), an ultra-rapid tool designed for the alignment of k-mer level data in a rank-dependent and position weight matrix (PWM)-independent manner. As the framework only depends on the rank of the input, the method can accept input from many types of experiments (protein binding microarray, SELEX-seq, SMiLE-seq, etc.) without the need for specialized parameterization. Measuring the performance of the alignment using multiple linear regression with 5-fold cross-validation, we find TDC to perform as well as or better than computationally expensive PWM-based methods. TDC can be run online at https://topdowncrawl.usc.edu or locally as a python package available through pip at https://pypi.org/project/TopDownCrawl. Supplementary data are available at Bioinformatics online.
SUMMARYSeveral high-throughput protein-DNA binding methods currently available produce highly reproducible measurements of binding affinity at the level of the k-mer. However, understanding where a k-mer is positioned along a binding site sequence depends on alignment. Here, we present Top-Down Crawl (TDC), an ultra-rapid tool designed for the alignment of k-mer level data in a rank-dependent and position weight matrix (PWM)-independent manner. As the framework only depends on the rank of the input, the method can accept input from many types of experiments (protein binding microarray, SELEX-seq, SMiLE-seq, etc.) without the need for specialized parameterization. Measuring the performance of the alignment using multiple linear regression with 5-fold cross-validation, we find TDC to perform as well as or better than computationally expensive PWM-based methods. AVAILABILITY AND IMPLEMENTATIONTDC can be run online at https://topdowncrawl.usc.edu or locally as a python package available through pip at https://pypi.org/project/TopDownCrawl. CONTACT SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Author Rohs, Remo
Chiu, Tsu-Pei
Cooper, Brendon H
Author_xml – sequence: 1
  givenname: Brendon H
  surname: Cooper
  fullname: Cooper, Brendon H
  organization: Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
– sequence: 2
  givenname: Tsu-Pei
  surname: Chiu
  fullname: Chiu, Tsu-Pei
  organization: Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
– sequence: 3
  givenname: Remo
  orcidid: 0000-0003-1752-1884
  surname: Rohs
  fullname: Rohs, Remo
  organization: Departments of Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36179084$$D View this record in MEDLINE/PubMed
BookMark eNpVkcFOHDEMhqOKqrC0r4By5DIlmcwmkx4qVUsLSEhc6DnyJM5uqplkm2S74u0ZxHYFJ1uy_fm3_wU5iSkiIRecfeVMi6shpBB9yhPUYMvVUMHKpfhAzriQqul6zk-OOROnZFHKH8bYki3lJ3IqJFea9d0ZyY9p21ynfaSrDPvxGwU6Yd0kR2c4rRuku7FmaDJsg6MQHZ1SDb7xGZHCGNZxwlhp8rTg3x1Gi4XuQ91QKCXZABUdHUJ0Ia5fwHkW-5l89DAW_HKI5-T3r5-Pq9vm_uHmbvXjvrEd72ozyN5xyfhgfceQK6-FBmF70WstOuUAtG2VVUq1EgfUTjlnred64Fzalotz8v2Vu90NEzo768wwmm0OE-QnkyCY95UYNmad_hkt5bKXagZcHgA5zbeVaqZQLI4jREy7YlrVsk608x_nVvnaanMqJaM_ruHMvBhm3htmDobNgxdvRR7H_jskngFoopy8
CitedBy_id crossref_primary_10_1016_j_bpj_2023_12_013
crossref_primary_10_1093_nar_gkad372
Cites_doi 10.1016/j.cell.2011.10.053
10.1093/bioinformatics/btv735
10.1016/j.cell.2015.02.008
10.15252/msb.20167238
10.1093/nar/gkaa642
10.1038/nbt1246
10.1101/gr.222844.117
10.1093/bioinformatics/btx191
10.1038/nmeth.4143
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press.
The Author(s) 2022. Published by Oxford University Press. 2022
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press.
– notice: The Author(s) 2022. Published by Oxford University Press. 2022
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1093/bioinformatics/btac653
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
Editor Alkan, Can
Editor_xml – sequence: 1
  givenname: Can
  surname: Alkan
  fullname: Alkan, Can
EndPage 5123
ExternalDocumentID 10_1093_bioinformatics_btac653
36179084
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Human Frontier Science Program
  grantid: RGP0021/2018
– fundername: NIGMS NIH HHS
  grantid: R35 GM130376
– fundername: ;
  grantid: R35GM130376
– fundername: ;
  grantid: RGP0021/2018
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAVAP
AAVLN
ABEUO
ABIXL
ABNKS
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADRIX
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CGR
CS3
CUY
CVF
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
ECM
EE~
EIF
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NPM
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNS
ROL
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
AASNB
AAYXX
CITATION
7X8
5PM
ADGKP
ADRDM
ADVEK
AFGWE
AJEEA
ID FETCH-LOGICAL-c414t-b68d1601bcf40e17f939a3c83899347daa9c27c77726ebe9d7ddccf19b116c213
IEDL.DBID RPM
ISSN 1367-4803
IngestDate Tue Sep 17 21:35:11 EDT 2024
Fri Oct 25 09:45:10 EDT 2024
Fri Aug 23 02:36:26 EDT 2024
Wed Oct 16 00:40:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-b68d1601bcf40e17f939a3c83899347daa9c27c77726ebe9d7ddccf19b116c213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1752-1884
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9665867/
PMID 36179084
PQID 2720432084
PQPubID 23479
PageCount 3
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9665867
proquest_miscellaneous_2720432084
crossref_primary_10_1093_bioinformatics_btac653
pubmed_primary_36179084
PublicationCentury 2000
PublicationDate 2022-11-15
PublicationDateYYYYMMDD 2022-11-15
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Abe (2022112014194924000_btac653-B1) 2015; 161
Bailey (2022112014194924000_btac653-B2) 1994; 2
Dantas Machado (2022112014194924000_btac653-B5) 2020; 48
Yang (2022112014194924000_btac653-B10) 2017; 13
Zhang (2022112014194924000_btac653-B11) 2018; 28
Chiu (2022112014194924000_btac653-B4) 2016; 32
Ruan (2022112014194924000_btac653-B8) 2017; 33
Berger (2022112014194924000_btac653-B3) 2006; 24
Riley (2022112014194924000_btac653-B7) 2014
Slattery (2022112014194924000_btac653-B9) 2011; 147
Isakova (2022112014194924000_btac653-B6) 2017; 14
References_xml – volume: 147
  start-page: 1270
  year: 2011
  ident: 2022112014194924000_btac653-B9
  article-title: Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.053
  contributor:
    fullname: Slattery
– volume: 32
  start-page: 1211
  year: 2016
  ident: 2022112014194924000_btac653-B4
  article-title: DNAshapeR: an R/bioconductor package for DNA shape prediction and feature encoding
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv735
  contributor:
    fullname: Chiu
– volume: 161
  start-page: 307
  year: 2015
  ident: 2022112014194924000_btac653-B1
  article-title: Deconvolving the recognition of DNA shape from sequence
  publication-title: Cell
  doi: 10.1016/j.cell.2015.02.008
  contributor:
    fullname: Abe
– volume: 13
  start-page: 910
  year: 2017
  ident: 2022112014194924000_btac653-B10
  article-title: Transcription factor family-specific DNA shape readout revealed by quantitative specificity models
  publication-title: Mol. Syst. Biol
  doi: 10.15252/msb.20167238
  contributor:
    fullname: Yang
– volume: 48
  start-page: 8529
  year: 2020
  ident: 2022112014194924000_btac653-B5
  article-title: Landscape of DNA binding signatures of myocyte enhancer factor-2B reveals a unique interplay of base and shape readout
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa642
  contributor:
    fullname: Dantas Machado
– volume: 24
  start-page: 1429
  year: 2006
  ident: 2022112014194924000_btac653-B3
  article-title: Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt1246
  contributor:
    fullname: Berger
– volume: 28
  start-page: 111
  year: 2018
  ident: 2022112014194924000_btac653-B11
  article-title: SelexGLM differentiates androgen and glucocorticoid receptor DNA-binding preference over an extended binding site
  publication-title: Genome Res
  doi: 10.1101/gr.222844.117
  contributor:
    fullname: Zhang
– volume: 33
  start-page: 2288
  year: 2017
  ident: 2022112014194924000_btac653-B8
  article-title: BEESEM: estimation of binding energy models using HT-SELEX data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx191
  contributor:
    fullname: Ruan
– volume: 14
  start-page: 316
  year: 2017
  ident: 2022112014194924000_btac653-B6
  article-title: SMiLE-seq identifies binding motifs of single and dimeric transcription factors
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4143
  contributor:
    fullname: Isakova
– start-page: 255
  year: 2014
  ident: 2022112014194924000_btac653-B7
  contributor:
    fullname: Riley
– volume: 2
  start-page: 28
  year: 1994
  ident: 2022112014194924000_btac653-B2
  article-title: Fitting a mixture model by expectation maximization to discover motifs in biopolymers
  publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol
  contributor:
    fullname: Bailey
SSID ssj0005056
Score 2.4603925
Snippet Several high-throughput protein-DNA binding methods currently available produce highly reproducible measurements of binding affinity at the level of the k-mer....
Abstract Summary Several high-throughput protein–DNA binding methods currently available produce highly reproducible measurements of binding affinity at the...
SUMMARYSeveral high-throughput protein-DNA binding methods currently available produce highly reproducible measurements of binding affinity at the level of the...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 5121
SubjectTerms Applications Note
Binding Sites
Position-Specific Scoring Matrices
Protein Binding
Sequence Analysis, DNA - methods
Software
Title Top-Down Crawl: a method for the ultra-rapid and motif-free alignment of sequences with associated binding metrics
URI https://www.ncbi.nlm.nih.gov/pubmed/36179084
https://search.proquest.com/docview/2720432084
https://pubmed.ncbi.nlm.nih.gov/PMC9665867
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SQKCXkjZ9bNoGBXpV_JBkWb2VbUPaktBDArkZPVvDxl6cXUL-fUZ-LN3mlrNtIfwN1jeeb74B-BxU4bnPOZXKWsqDiPVdoykyba-ES50SscH54rI4v-Y_b8TNDoipF6YX7VtTnzaL29Om_ttrK5e3Npl0YsnvizlSdFEWMtmFXQzQKUWfdB1pP7I1WpFRXqZsagtWLDF1O9qRRgvkxKy0LUScpMOKaFRV8u3D6Qnj_F84-c9JdHYAL0cKSb4OW30FO755DfvDUMmHQ-iu2iX9hsk1mXf6fvGFaDKMiSa4J4J8j6wXuCzt9LJ2RDeORD1eoKHzniAr_9PrA0gbyEZmTeLfWqJHJL0jpu6bYeLC-B29ewPXZ9-v5ud0nKxALc_4ipqidBmmYsYGnvpMBsWUZraMZnuMS6e1srm0Eql3gSgrJ52zNmTKZFlh84y9hb2mbfx7IKW0RoVoop8GnrugS8x6lRA6N1LaMp1BMr3SajkYaFRD4ZtV23hUIx4zOJnefIWxHgsYuvHt-q6KNWPOcgRqBu8GJDZrThDOQG5htLkh-mhvX8Hw6v20x3A6evaTH-BFHrsiojpQfIS9Vbf2n5CrrMwxsvQfv477CH0Ean_vfQ
link.rule.ids 230,315,730,783,787,888,27937,27938,53805,53807
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qRQg2vB_D00hsPXnZcdxdNVAN0KlYTFF3kZ8lYpqM0oxQ-_XYSTxiygrWSaxY5zo-Nz73XIAPlueGmJRgxpXCxFJ_visFdkzbcKpjzakvcF6c5PNT8uWMnu0BDbUwvWhfyWpary6mdfWj11auL1QUdGLRt8XMUXRa5Cy6Bbfdeo1pSNKDsiPum7Z6MzJMijgLhcE8i2TVjIak3gQ5kp1QOfW9dLLcW1UVZHd7-otz3pRO_rEXHT2A72EWgwTl53TTyam6vmHw-M_TfAj3R3aKDofLj2DP1I_hztCv8uoJtMtmjT-6vB3NWvFrdYAEGjpQIzdZ5Kgk2qzc--JWrCuNRK2Rl_pZbFtjkCP85730ADUWbRXcyP8IRmIMEqORrPo6Gz-w-0RfPoXTo0_L2RyPTRuwIgnpsMwLnbgsTypLYpMwyzMuMlV4H7-MMC0EVylTzLH63AUQ10xrpWzCZZLkKk2yZ7BfN7V5AahgSnLr_fljS1JtReESak6pSCVjqognEAWsyvXgzVEOZ-pZuQt0OQI9gfcB0tItI382ImrTbC5LfxxNstRFwASeDxBvxwyxMQG2A_72Bm_RvXvFQdpbdY8QvvzvJ9_B3flycVwefz75-grupb74wosQ6WvY79qNeeMoUSff9gvgN9MQEJk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEYgL5c3SAkbi6s3Ddhxzq7asyqNVD61UcYn8hIhtEqVZIfj12HmsuuXWcxwr1oztbzLffAPwwYnMUptSzIXWmDoW8rtKYo-0rWAmNoKFAufjk-zonH65YBfXWn31pH2tynm1upxX5c-eW9lc6mjiiUWnxwsP0Vme8agxLroL91gQTZ8C9YndEfeNW4MgGaZ5TKbiYEEiVdajKGkQQo5UJ3XGQj8dkgW5qpxuX1H_4c6b9Mlr99FyF75PKxloKL_m607N9d8bIo-3WupjeDSiVHQwDHkCd2z1FO4PfSv_PIP2rG7woY_f0aKVv1cfkURDJ2rkF4w8pETrlf9m3MqmNEhWBgXKn8OutRZ54P-jpyCg2qENkxuFH8JIjs5iDVJlX28TJvZH9dVzOF9-Olsc4bF5A9Y0oR1WWW4SH-0p7WhsE-4EEZLoPOj5EcqNlEKnXHOP7jPvSMJwY7R2iVBJkuk0IS9gp6or-wpQzrUSLuj0x46mxsncB9aCMZkqznUezyCa7FU0g0ZHMeTWSbFt7GI09gzeT2Yt_HYKORJZ2Xp9VYS0NCWp94IZvBzMvJlz8o8Z8C0H2AwIUt3bT7xZe8nu0Yyvb_3mO3hwergsvn0--boHD9NQgxG4iGwfdrp2bd94ZNSpt_0e-Ac6PBMZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Top-Down+Crawl%3A+a+method+for+the+ultra-rapid+and+motif-free+alignment+of+sequences+with+associated+binding+metrics&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Cooper%2C+Brendon+H&rft.au=Chiu%2C+Tsu-Pei&rft.au=Rohs%2C+Remo&rft.date=2022-11-15&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=38&rft.issue=22&rft.spage=5121&rft.epage=5123&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtac653&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btac653
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon