Breaking new ground in mica exfoliation: Harnessing biaxial straining principles through H2 and N2 intercalation for enhanced layer separation
This study introduces a novel method for mica exfoliation using biaxial straining principles through H2 and N2 intercalation. Our two-stage approach combines microwave irradiation with biaxial straining triggered by H2 and N2. Our first principles simulations showed that N2 leads to a larger drop in...
Saved in:
Published in | Materials today advances Vol. 19; p. 100406 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study introduces a novel method for mica exfoliation using biaxial straining principles through H2 and N2 intercalation. Our two-stage approach combines microwave irradiation with biaxial straining triggered by H2 and N2. Our first principles simulations showed that N2 leads to a larger drop in bulk modulus per tensile strain than H2, resulting in decreased mica strain entropy (or less disordering) and ineffective exfoliation due to the resulting positive (H2) and negative (N2) Poisson ratio. Therefore, we applied H2 and performed SEM, FT-IR, and XRD analyses. The results indicate that our pre-treatment methods did not alter the mica's crystalline structure, and our two-step treatment method increased the interlayer distances of bulk mica particles. TEM analysis revealed the presence of mica nanosheets in single layers. This study represents a significant breakthrough in 2D exfoliation research not only for mica but also for non-van der Waals bonded crystals. By utilizing innovative biaxial straining principles through H2 and N2 interclation, our approach offers a promising avenue for achieving enhanced layer separation in layered materials.
[Display omitted]
•Exfoliation of layered materials using 2-stage intercalation process.•Intercalation of H2 and N2 gas molecules caused biaxial strain to layered mica.•H2 increased the strain entropy on mica layers to promote exfoliation.•Single layer mica nanosheets were observed experimentally through characterization. |
---|---|
AbstractList | This study introduces a novel method for mica exfoliation using biaxial straining principles through H2 and N2 intercalation. Our two-stage approach combines microwave irradiation with biaxial straining triggered by H2 and N2. Our first principles simulations showed that N2 leads to a larger drop in bulk modulus per tensile strain than H2, resulting in decreased mica strain entropy (or less disordering) and ineffective exfoliation due to the resulting positive (H2) and negative (N2) Poisson ratio. Therefore, we applied H2 and performed SEM, FT-IR, and XRD analyses. The results indicate that our pre-treatment methods did not alter the mica's crystalline structure, and our two-step treatment method increased the interlayer distances of bulk mica particles. TEM analysis revealed the presence of mica nanosheets in single layers. This study represents a significant breakthrough in 2D exfoliation research not only for mica but also for non-van der Waals bonded crystals. By utilizing innovative biaxial straining principles through H2 and N2 interclation, our approach offers a promising avenue for achieving enhanced layer separation in layered materials. This study introduces a novel method for mica exfoliation using biaxial straining principles through H2 and N2 intercalation. Our two-stage approach combines microwave irradiation with biaxial straining triggered by H2 and N2. Our first principles simulations showed that N2 leads to a larger drop in bulk modulus per tensile strain than H2, resulting in decreased mica strain entropy (or less disordering) and ineffective exfoliation due to the resulting positive (H2) and negative (N2) Poisson ratio. Therefore, we applied H2 and performed SEM, FT-IR, and XRD analyses. The results indicate that our pre-treatment methods did not alter the mica's crystalline structure, and our two-step treatment method increased the interlayer distances of bulk mica particles. TEM analysis revealed the presence of mica nanosheets in single layers. This study represents a significant breakthrough in 2D exfoliation research not only for mica but also for non-van der Waals bonded crystals. By utilizing innovative biaxial straining principles through H2 and N2 interclation, our approach offers a promising avenue for achieving enhanced layer separation in layered materials. [Display omitted] •Exfoliation of layered materials using 2-stage intercalation process.•Intercalation of H2 and N2 gas molecules caused biaxial strain to layered mica.•H2 increased the strain entropy on mica layers to promote exfoliation.•Single layer mica nanosheets were observed experimentally through characterization. |
ArticleNumber | 100406 |
Author | Wu, Ping Wu, Shunnian Anariba, Franklin Lee, W.P. Cathie |
Author_xml | – sequence: 1 givenname: W.P. Cathie surname: Lee fullname: Lee, W.P. Cathie organization: Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore – sequence: 2 givenname: Shunnian surname: Wu fullname: Wu, Shunnian organization: Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore – sequence: 3 givenname: Franklin surname: Anariba fullname: Anariba, Franklin organization: Anariba Brands Group, Science, Mathematics and Technology, Affiliated to Engineering Product Development, Singapore University of Technology and Design, Singapore – sequence: 4 givenname: Ping orcidid: 0000-0002-0788-6268 surname: Wu fullname: Wu, Ping email: wuping@sutd.edu.sg organization: Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore |
BookMark | eNp9kc9uEzEQxi1UJErpE3DxCySM_6x3F4kDVJRUquACZ2vWO04cNnZkL6V9CZ4Zb4IQJ04z-jzfTzP-XrKLmCIx9lrAWoAwb_brw4zjw1qCVFUBDeYZu5RNDyvQfXfxT_-CXZeyBwDZVavSl-zXh0z4PcQtj_STb3P6EUceIj8Eh5wefZoCziHFt3yDOVIpy-gQ8DHgxMucMcRFOeYQXThOVPi8q5Dtjm8kx8r6LCtupuxwOoG4T5lT3GF0NPIJnyjzQkfMp9dX7LnHqdD1n3rFvt1-_HqzWd1_-XR38_5-5bTQ8wr7wQ8AQyOFbEQjFQkzopYwGGjMOBjSTurO4TB46Byo1nlQhghag9SCumJ3Z-6YcG_r9gfMTzZhsCch5a3FPAc3kQXATqge22b02vV97ZSHpuu1aM2gfGWpM8vlVEom_5cnwC4J2b09JWSXhOw5oep6d3ZRPfMhULbFBVo-JWRyc90j_Nf_G85cni4 |
CitedBy_id | crossref_primary_10_1016_j_flatc_2023_100540 crossref_primary_10_1039_D3MA00837A crossref_primary_10_1016_j_flatc_2023_100565 |
Cites_doi | 10.1016/j.carbon.2021.01.120 10.1002/smll.202005913 10.1103/PhysRevB.59.7413 10.1038/s41598-022-06820-5 10.1016/0927-0256(96)00008-0 10.1039/D1DT00236H 10.1038/353124a0 10.1016/j.jallcom.2020.155054 10.1039/C9NR03721G 10.1021/acs.jpclett.9b00204 10.1103/PhysRevB.59.1758 10.1016/j.flatc.2021.100305 10.1021/acs.chemmater.6b01203 10.1103/PhysRevB.13.5188 10.1016/j.rineng.2022.100349 10.1039/c0jm01876g 10.1002/adma.202202164 10.1007/s12034-019-1931-0 10.1002/2013JB010550 10.1039/C9CP01052A 10.1039/C5RA07749D 10.1103/PhysRevB.54.11169 10.1038/s41467-018-05355-6 10.1002/adma.201601363 10.1126/science.1102896 10.1142/S0218625X14300019 10.1021/cm504802j |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.mtadv.2023.100406 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2590-0498 |
ExternalDocumentID | oai_doaj_org_article_00a8139a75df4c999a73f05894176b3f 10_1016_j_mtadv_2023_100406 S2590049823000668 |
GroupedDBID | 0SF 6I. AAEDW AAFTH AALRI AAXUO AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL SSZ 0R~ AAYXX ADVLN AFJKZ CITATION |
ID | FETCH-LOGICAL-c414t-a9bfb00b521251523e16da420b6056db6e4c248cabbf08c037cf036ee076ae703 |
IEDL.DBID | DOA |
ISSN | 2590-0498 |
IngestDate | Tue Oct 22 14:57:00 EDT 2024 Thu Sep 26 19:21:21 EDT 2024 Sat Aug 05 16:01:05 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 2D material Exfoliation Mica Biaxial straining Gas intercalation |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-a9bfb00b521251523e16da420b6056db6e4c248cabbf08c037cf036ee076ae703 |
ORCID | 0000-0002-0788-6268 |
OpenAccessLink | https://doaj.org/article/00a8139a75df4c999a73f05894176b3f |
ParticipantIDs | doaj_primary_oai_doaj_org_article_00a8139a75df4c999a73f05894176b3f crossref_primary_10_1016_j_mtadv_2023_100406 elsevier_sciencedirect_doi_10_1016_j_mtadv_2023_100406 |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationTitle | Materials today advances |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Jia, Song (bib12) 2015; 5 Cao (bib4) 2019; 10 Si (bib11) 2020; 833 Pan (bib33) 2018; 9 Novoselov (bib1) 2004; 306 Grimme (bib17) 2010; 132 Briggs (bib8) 2019; 11 Manna (bib28) 2016; 28 Evans (bib32) 1991; 353 Jia, Song (bib34) 2014; 21 Wu (bib19) 2022; 12 Zhu (bib10) 2016; 55 Huang, Chen (bib30) 2016; 28 Kaniyoor (bib21) 2010; 20 Qi (bib29) 2019; 21 Weng-Lip (bib22) 2019; 42 Tan (bib6) 2022; 13 Hammer (bib14) 1999; 59 Kresse, Furthmüller (bib13) 1996; 54 Kaur, Coleman (bib3) 2022; 34 Kim (bib25) 2015; 27 Kresse, Furthmüller (bib16) 1996; 6 Yu (bib31) 2017; 8 Raza (bib27) 2021; 50 Monkhorst, Pack (bib18) 1976; 13 Moriyasu (bib24) 1997; 36 Kim (bib7) 2014; 118 Sakuma (bib20) 2013; 118 Alam (bib2) 2021; 30 Vatti (bib23) 2016 Del Puppo (bib9) 2021; 176 Kresse, Joubert (bib15) 1999; 59 Li (bib5) 2020; 14 Gao (bib26) 2021; 17 Sakuma (10.1016/j.mtadv.2023.100406_bib20) 2013; 118 Jia (10.1016/j.mtadv.2023.100406_bib34) 2014; 21 Novoselov (10.1016/j.mtadv.2023.100406_bib1) 2004; 306 Tan (10.1016/j.mtadv.2023.100406_bib6) 2022; 13 Alam (10.1016/j.mtadv.2023.100406_bib2) 2021; 30 Yu (10.1016/j.mtadv.2023.100406_bib31) 2017; 8 Briggs (10.1016/j.mtadv.2023.100406_bib8) 2019; 11 Hammer (10.1016/j.mtadv.2023.100406_bib14) 1999; 59 Wu (10.1016/j.mtadv.2023.100406_bib19) 2022; 12 Monkhorst (10.1016/j.mtadv.2023.100406_bib18) 1976; 13 Qi (10.1016/j.mtadv.2023.100406_bib29) 2019; 21 Kresse (10.1016/j.mtadv.2023.100406_bib15) 1999; 59 Weng-Lip (10.1016/j.mtadv.2023.100406_bib22) 2019; 42 Grimme (10.1016/j.mtadv.2023.100406_bib17) 2010; 132 Manna (10.1016/j.mtadv.2023.100406_bib28) 2016; 28 Kresse (10.1016/j.mtadv.2023.100406_bib16) 1996; 6 Kaur (10.1016/j.mtadv.2023.100406_bib3) 2022; 34 Moriyasu (10.1016/j.mtadv.2023.100406_bib24) 1997; 36 Li (10.1016/j.mtadv.2023.100406_bib5) 2020; 14 Cao (10.1016/j.mtadv.2023.100406_bib4) 2019; 10 Kim (10.1016/j.mtadv.2023.100406_bib7) 2014; 118 Kim (10.1016/j.mtadv.2023.100406_bib25) 2015; 27 Kresse (10.1016/j.mtadv.2023.100406_bib13) 1996; 54 Evans (10.1016/j.mtadv.2023.100406_bib32) 1991; 353 Huang (10.1016/j.mtadv.2023.100406_bib30) 2016; 28 Pan (10.1016/j.mtadv.2023.100406_bib33) 2018; 9 Jia (10.1016/j.mtadv.2023.100406_bib12) 2015; 5 Si (10.1016/j.mtadv.2023.100406_bib11) 2020; 833 Zhu (10.1016/j.mtadv.2023.100406_bib10) 2016; 55 Kaniyoor (10.1016/j.mtadv.2023.100406_bib21) 2010; 20 Gao (10.1016/j.mtadv.2023.100406_bib26) 2021; 17 Vatti (10.1016/j.mtadv.2023.100406_bib23) 2016 Del Puppo (10.1016/j.mtadv.2023.100406_bib9) 2021; 176 Raza (10.1016/j.mtadv.2023.100406_bib27) 2021; 50 |
References_xml | – volume: 353 start-page: 124 year: 1991 ident: bib32 publication-title: Nature contributor: fullname: Evans – volume: 50 start-page: 6598 year: 2021 ident: bib27 publication-title: Dalton Trans. contributor: fullname: Raza – volume: 8 year: 2017 ident: bib31 publication-title: Nat. Commun. contributor: fullname: Yu – volume: 5 year: 2015 ident: bib12 publication-title: RSC Adv. contributor: fullname: Song – volume: 20 start-page: 8467 year: 2010 ident: bib21 publication-title: J. Mater. Chem. contributor: fullname: Kaniyoor – volume: 833 year: 2020 ident: bib11 publication-title: J. Alloys Compd. contributor: fullname: Si – volume: 118 start-page: 6066 year: 2013 ident: bib20 publication-title: J. Geophys. Res. Solid Earth contributor: fullname: Sakuma – volume: 28 start-page: 7586 year: 2016 ident: bib28 publication-title: Chem. Mater. contributor: fullname: Manna – volume: 17 year: 2021 ident: bib26 publication-title: Small contributor: fullname: Gao – volume: 11 year: 2019 ident: bib8 publication-title: Nanoscale contributor: fullname: Briggs – volume: 21 year: 2019 ident: bib29 publication-title: Phys. Chem. Chem. Phys. contributor: fullname: Qi – volume: 10 start-page: 981 year: 2019 ident: bib4 publication-title: J. Phys. Chem. Lett. contributor: fullname: Cao – volume: 30 year: 2021 ident: bib2 publication-title: FlatChem contributor: fullname: Alam – volume: 176 start-page: 253 year: 2021 ident: bib9 publication-title: Carbon contributor: fullname: Del Puppo – volume: 27 start-page: 4222 year: 2015 ident: bib25 publication-title: Chem. Mater. contributor: fullname: Kim – volume: 6 start-page: 15 year: 1996 ident: bib16 publication-title: Comput. Mater. Sci. contributor: fullname: Furthmüller – volume: 306 start-page: 666 year: 2004 ident: bib1 publication-title: Science contributor: fullname: Novoselov – volume: 54 year: 1996 ident: bib13 publication-title: Phys. Rev. B contributor: fullname: Furthmüller – volume: 9 start-page: 2974 year: 2018 ident: bib33 publication-title: Nat. Commun. contributor: fullname: Pan – volume: 12 start-page: 2868 year: 2022 ident: bib19 publication-title: Sci. Rep. contributor: fullname: Wu – volume: 42 start-page: 242 year: 2019 ident: bib22 publication-title: Bull. Mater. Sci. contributor: fullname: Weng-Lip – volume: 36 start-page: 3932 year: 1997 ident: bib24 publication-title: Japanese J. Appl. Phys. Part 1-Regular Papers Brief Commun. Rev. Papers contributor: fullname: Moriyasu – volume: 59 start-page: 7413 year: 1999 ident: bib14 publication-title: Phys. Rev. B contributor: fullname: Hammer – volume: 13 start-page: 5188 year: 1976 ident: bib18 publication-title: Phys. Rev. B contributor: fullname: Pack – volume: 55 year: 2016 ident: bib10 publication-title: Angew. Chem. Int. Ed. contributor: fullname: Zhu – year: 2016 ident: bib23 article-title: An contributor: fullname: Vatti – volume: 34 year: 2022 ident: bib3 publication-title: Adv. Mater. contributor: fullname: Coleman – volume: 13 year: 2022 ident: bib6 publication-title: Results in Engineering contributor: fullname: Tan – volume: 14 year: 2020 ident: bib5 publication-title: ACS Nano contributor: fullname: Li – volume: 59 start-page: 1758 year: 1999 ident: bib15 publication-title: Phys. Rev. B contributor: fullname: Joubert – volume: 132 start-page: 19 year: 2010 ident: bib17 publication-title: J. Chem. Phys. contributor: fullname: Grimme – volume: 118 year: 2014 ident: bib7 publication-title: J. Phys. Chem. C contributor: fullname: Kim – volume: 28 start-page: 8079 year: 2016 ident: bib30 publication-title: Adv. Mater. contributor: fullname: Chen – volume: 21 year: 2014 ident: bib34 publication-title: Surf. Rev. Lett. contributor: fullname: Song – volume: 14 issue: 9 year: 2020 ident: 10.1016/j.mtadv.2023.100406_bib5 publication-title: ACS Nano contributor: fullname: Li – volume: 176 start-page: 253 year: 2021 ident: 10.1016/j.mtadv.2023.100406_bib9 publication-title: Carbon doi: 10.1016/j.carbon.2021.01.120 contributor: fullname: Del Puppo – volume: 17 issue: 5 year: 2021 ident: 10.1016/j.mtadv.2023.100406_bib26 publication-title: Small doi: 10.1002/smll.202005913 contributor: fullname: Gao – volume: 59 start-page: 7413 issue: 11 year: 1999 ident: 10.1016/j.mtadv.2023.100406_bib14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.7413 contributor: fullname: Hammer – volume: 36 start-page: 3932 issue: 6B year: 1997 ident: 10.1016/j.mtadv.2023.100406_bib24 publication-title: Japanese J. Appl. Phys. Part 1-Regular Papers Brief Commun. Rev. Papers contributor: fullname: Moriyasu – volume: 12 start-page: 2868 issue: 1 year: 2022 ident: 10.1016/j.mtadv.2023.100406_bib19 publication-title: Sci. Rep. doi: 10.1038/s41598-022-06820-5 contributor: fullname: Wu – volume: 6 start-page: 15 issue: 1 year: 1996 ident: 10.1016/j.mtadv.2023.100406_bib16 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 contributor: fullname: Kresse – volume: 8 issue: 1 year: 2017 ident: 10.1016/j.mtadv.2023.100406_bib31 publication-title: Nat. Commun. contributor: fullname: Yu – volume: 132 start-page: 19 issue: 15 year: 2010 ident: 10.1016/j.mtadv.2023.100406_bib17 publication-title: J. Chem. Phys. contributor: fullname: Grimme – volume: 50 start-page: 6598 issue: 19 year: 2021 ident: 10.1016/j.mtadv.2023.100406_bib27 publication-title: Dalton Trans. doi: 10.1039/D1DT00236H contributor: fullname: Raza – year: 2016 ident: 10.1016/j.mtadv.2023.100406_bib23 contributor: fullname: Vatti – volume: 353 start-page: 124 issue: 6340 year: 1991 ident: 10.1016/j.mtadv.2023.100406_bib32 publication-title: Nature doi: 10.1038/353124a0 contributor: fullname: Evans – volume: 833 year: 2020 ident: 10.1016/j.mtadv.2023.100406_bib11 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.155054 contributor: fullname: Si – volume: 55 issue: 36 year: 2016 ident: 10.1016/j.mtadv.2023.100406_bib10 publication-title: Angew. Chem. Int. Ed. contributor: fullname: Zhu – volume: 11 issue: 33 year: 2019 ident: 10.1016/j.mtadv.2023.100406_bib8 publication-title: Nanoscale doi: 10.1039/C9NR03721G contributor: fullname: Briggs – volume: 10 start-page: 981 issue: 5 year: 2019 ident: 10.1016/j.mtadv.2023.100406_bib4 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b00204 contributor: fullname: Cao – volume: 59 start-page: 1758 issue: 3 year: 1999 ident: 10.1016/j.mtadv.2023.100406_bib15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 contributor: fullname: Kresse – volume: 30 year: 2021 ident: 10.1016/j.mtadv.2023.100406_bib2 publication-title: FlatChem doi: 10.1016/j.flatc.2021.100305 contributor: fullname: Alam – volume: 118 issue: 20 year: 2014 ident: 10.1016/j.mtadv.2023.100406_bib7 publication-title: J. Phys. Chem. C contributor: fullname: Kim – volume: 28 start-page: 7586 issue: 21 year: 2016 ident: 10.1016/j.mtadv.2023.100406_bib28 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01203 contributor: fullname: Manna – volume: 13 start-page: 5188 issue: 12 year: 1976 ident: 10.1016/j.mtadv.2023.100406_bib18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 contributor: fullname: Monkhorst – volume: 13 year: 2022 ident: 10.1016/j.mtadv.2023.100406_bib6 publication-title: Results in Engineering doi: 10.1016/j.rineng.2022.100349 contributor: fullname: Tan – volume: 20 start-page: 8467 issue: 39 year: 2010 ident: 10.1016/j.mtadv.2023.100406_bib21 publication-title: J. Mater. Chem. doi: 10.1039/c0jm01876g contributor: fullname: Kaniyoor – volume: 34 issue: 35 year: 2022 ident: 10.1016/j.mtadv.2023.100406_bib3 publication-title: Adv. Mater. doi: 10.1002/adma.202202164 contributor: fullname: Kaur – volume: 42 start-page: 242 issue: 5 year: 2019 ident: 10.1016/j.mtadv.2023.100406_bib22 publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-019-1931-0 contributor: fullname: Weng-Lip – volume: 118 start-page: 6066 year: 2013 ident: 10.1016/j.mtadv.2023.100406_bib20 publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2013JB010550 contributor: fullname: Sakuma – volume: 21 issue: 23 year: 2019 ident: 10.1016/j.mtadv.2023.100406_bib29 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP01052A contributor: fullname: Qi – volume: 5 issue: 65 year: 2015 ident: 10.1016/j.mtadv.2023.100406_bib12 publication-title: RSC Adv. doi: 10.1039/C5RA07749D contributor: fullname: Jia – volume: 54 issue: 16 year: 1996 ident: 10.1016/j.mtadv.2023.100406_bib13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 contributor: fullname: Kresse – volume: 9 start-page: 2974 issue: 1 year: 2018 ident: 10.1016/j.mtadv.2023.100406_bib33 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05355-6 contributor: fullname: Pan – volume: 28 start-page: 8079 issue: 37 year: 2016 ident: 10.1016/j.mtadv.2023.100406_bib30 publication-title: Adv. Mater. doi: 10.1002/adma.201601363 contributor: fullname: Huang – volume: 306 start-page: 666 issue: 5696 year: 2004 ident: 10.1016/j.mtadv.2023.100406_bib1 publication-title: Science doi: 10.1126/science.1102896 contributor: fullname: Novoselov – volume: 21 issue: 2 year: 2014 ident: 10.1016/j.mtadv.2023.100406_bib34 publication-title: Surf. Rev. Lett. doi: 10.1142/S0218625X14300019 contributor: fullname: Jia – volume: 27 start-page: 4222 issue: 12 year: 2015 ident: 10.1016/j.mtadv.2023.100406_bib25 publication-title: Chem. Mater. doi: 10.1021/cm504802j contributor: fullname: Kim |
SSID | ssj0002810134 |
Score | 2.3259091 |
Snippet | This study introduces a novel method for mica exfoliation using biaxial straining principles through H2 and N2 intercalation. Our two-stage approach combines... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 100406 |
SubjectTerms | 2D material Biaxial straining Exfoliation Gas intercalation Mica |
Title | Breaking new ground in mica exfoliation: Harnessing biaxial straining principles through H2 and N2 intercalation for enhanced layer separation |
URI | https://dx.doi.org/10.1016/j.mtadv.2023.100406 https://doaj.org/article/00a8139a75df4c999a73f05894176b3f |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T-QwELUQ1VEgOEAsH6cpKAk4WeM4dHACrZDYipXoIjsZi0WQRbsL2oqfwG--GTtBqe6aa1JE0TjyjD3P9vMbIU48Fkah4WWql4kyPqMhpYskVQ59anSN4bjgfqxHE3X3ePHYK_XFnLAoDxw77lxKawil2Pyi9qoiOGPzoedaeCrNtRv6MPvKoreYeg5bRhRq4UiZ4D3zFwvTSQ4Fctfr0tYfZ1w6nGkCiusd9dJSUO_vZadexrndEpstVISr-IvbYg2bn2KjJyC4I76uCfPxZjcQOga-odHUMG2ANQAAV372Env-EkZ2zpMaf-qmdkVRB4uuPAS8dTvuC2jr9sAoA0u2xhmwoMScPBkMAWFcwOYp8AbgxRJghwVG_fBZsysmtzcPv0dJW2EhqVSqloktnKdx5_gCLwGbbIiprq3KpKNVjq6dRlVlylTWOS9NJYd55SnlIcpcW6TJYk-sN7MG95kiVRUSrQ8JT2doaB1oC691gegrnQ_EadfB5VsU0ig7htlzGfxRsj_K6I-BuGYnfH_KKtjhBcVG2cZG-a_YGAjdubBsAUUECmRq-rfWD_5H64fiB5uMbMEjsb6cv-MxIZil-xWClZ73nzd_AHf97gY |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breaking+new+ground+in+mica+exfoliation%3A+Harnessing+biaxial+straining+principles+through+H2+and+N2+intercalation+for+enhanced+layer+separation&rft.jtitle=Materials+today+advances&rft.au=Lee%2C+W.P.+Cathie&rft.au=Wu%2C+Shunnian&rft.au=Anariba%2C+Franklin&rft.au=Wu%2C+Ping&rft.date=2023-08-01&rft.issn=2590-0498&rft.eissn=2590-0498&rft.volume=19&rft.spage=100406&rft_id=info:doi/10.1016%2Fj.mtadv.2023.100406&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtadv_2023_100406 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0498&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0498&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0498&client=summon |