Glucagon-Like Peptide 1 and Its Cleavage Products Are Renoprotective in Murine Diabetic Nephropathy
Incretin-based therapies, including glucagon-like peptide 1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors, are potent glucose-lowering drugs. Still, only GLP-1 receptor agonists with close peptide homology to GLP-1 (liraglutide and semaglutide) but neither exenatide-based G...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 67; no. 11; pp. 2410 - 2419 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Diabetes Association
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Incretin-based therapies, including glucagon-like peptide 1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors, are potent glucose-lowering drugs. Still, only GLP-1 receptor agonists with close peptide homology to GLP-1 (liraglutide and semaglutide) but neither exenatide-based GLP-1 receptor agonists nor DPP-4 inhibitors were found to reduce cardiovascular events. This different response might relate to GLP-1 receptor-independent actions of GLP-1 caused by cleavage products only liberated by GLP-1 receptor agonists with close peptide structure to GLP-1. To test this hypothesis, we directly compared metabolic, renal, and cardiac effects of GLP-1 and its cleavage products in diabetic db/db mice. Using an adeno-associated viral vector system, we overexpressed DPP-4-resistant GLP-1 (7-37 Mut8) and the two GLP-1 cleavage products, GLP-1 (9-37) and GLP-1 (28-37), in diabetic db/db mice. Only GLP-1 (7-37 Mut8), but none of the cleavage products, significantly improved glucose metabolism. Still, all GLP-1 constructs significantly reduced tubulointerstitial renal damage, lowered expression of the tubular injury markers, and attenuated renal accumulation of macrophages and T cells. This was associated with a systemic immunomodulatory effect, which was similarly found in an acute renal ischemia/reperfusion injury model. In conclusion, GLP-1 cleavage products proved sufficient to mediate organ-protective effects, which might help to explain differences between GLP-1 receptor agonists. |
---|---|
AbstractList | Incretin-based therapies, including glucagon-like peptide 1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors, are potent glucose-lowering drugs. Still, only GLP-1 receptor agonists with close peptide homology to GLP-1 (liraglutide and semaglutide) but neither exenatide-based GLP-1 receptor agonists nor DPP-4 inhibitors were found to reduce cardiovascular events. This different response might relate to GLP-1 receptor-independent actions of GLP-1 caused by cleavage products only liberated by GLP-1 receptor agonists with close peptide structure to GLP-1. To test this hypothesis, we directly compared metabolic, renal, and cardiac effects of GLP-1 and its cleavage products in diabetic
mice. Using an adeno-associated viral vector system, we overexpressed DPP-4-resistant GLP-1 (7-37 Mut8) and the two GLP-1 cleavage products, GLP-1 (9-37) and GLP-1 (28-37), in diabetic
mice. Only GLP-1 (7-37 Mut8), but none of the cleavage products, significantly improved glucose metabolism. Still, all GLP-1 constructs significantly reduced tubulointerstitial renal damage, lowered expression of the tubular injury markers, and attenuated renal accumulation of macrophages and T cells. This was associated with a systemic immunomodulatory effect, which was similarly found in an acute renal ischemia/reperfusion injury model. In conclusion, GLP-1 cleavage products proved sufficient to mediate organ-protective effects, which might help to explain differences between GLP-1 receptor agonists. Incretin-based therapies, including glucagon-like peptide 1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors, are potent glucose-lowering drugs. Still, only GLP-1 receptor agonists with close peptide homology to GLP-1 (liraglutide and semaglutide) but neither exenatide-based GLP-1 receptor agonists nor DPP-4 inhibitors were found to reduce cardiovascular events. This different response might relate to GLP-1 receptor-independent actions of GLP-1 caused by cleavage products only liberated by GLP-1 receptor agonists with close peptide structure to GLP-1. To test this hypothesis, we directly compared metabolic, renal, and cardiac effects of GLP-1 and its cleavage products in diabetic db/db mice. Using an adeno-associated viral vector system, we overexpressed DPP-4-resistant GLP-1 (7-37 Mut8) and the two GLP-1 cleavage products, GLP-1 (9-37) and GLP-1 (28-37), in diabetic db/db mice. Only GLP-1 (7-37 Mut8), but none of the cleavage products, significantly improved glucose metabolism. Still, all GLP-1 constructs significantly reduced tubulointerstitial renal damage, lowered expression of the tubular injury markers, and attenuated renal accumulation of macrophages and T cells. This was associated with a systemic immunomodulatory effect, which was similarly found in an acute renal ischemia/reperfusion injury model. In conclusion, GLP-1 cleavage products proved sufficient to mediate organ-protective effects, which might help to explain differences between GLP-1 receptor agonists. Incretin-based therapies, including glucagon-like peptide 1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors, are potent glucose-lowering drugs. Still, only GLP-1 receptor agonists with close peptide homology to GLP-1 (liraglutide and semaglutide) but neither exenatide-based GLP-1 receptor agonists nor DPP-4 inhibitors were found to reduce cardiovascular events. This different response might relate to GLP-1 receptor-independent actions of GLP-1 caused by cleavage products only liberated by GLP-1 receptor agonists with close peptide structure to GLP-1. To test this hypothesis, we directly compared metabolic, renal, and cardiac effects of GLP-1 and its cleavage products in diabetic db/db mice. Using an adeno-associated viral vector system, we overexpressed DPP-4-resistant GLP-1 (7-37 Mut8) and the two GLP-1 cleavage products, GLP-1 (9-37) and GLP-1 (28-37), in diabetic db/db mice. Only GLP-1 (7-37 Mut8), but none of the cleavage products, significantly improved glucose metabolism. Still, all GLP-1 constructs significantly reduced tubulointerstitial renal damage, lowered expression of the tubular injury markers, and attenuated renal accumulation of macrophages and T cells. This was associated with a systemic immunomodulatory effect, which was similarly found in an acute renal ischemia/reperfusion injury model. In conclusion, GLP-1 cleavage products proved sufficient to mediate organ-protective effects, which might help to explain differences between GLP-1 receptor agonists.Incretin-based therapies, including glucagon-like peptide 1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors, are potent glucose-lowering drugs. Still, only GLP-1 receptor agonists with close peptide homology to GLP-1 (liraglutide and semaglutide) but neither exenatide-based GLP-1 receptor agonists nor DPP-4 inhibitors were found to reduce cardiovascular events. This different response might relate to GLP-1 receptor-independent actions of GLP-1 caused by cleavage products only liberated by GLP-1 receptor agonists with close peptide structure to GLP-1. To test this hypothesis, we directly compared metabolic, renal, and cardiac effects of GLP-1 and its cleavage products in diabetic db/db mice. Using an adeno-associated viral vector system, we overexpressed DPP-4-resistant GLP-1 (7-37 Mut8) and the two GLP-1 cleavage products, GLP-1 (9-37) and GLP-1 (28-37), in diabetic db/db mice. Only GLP-1 (7-37 Mut8), but none of the cleavage products, significantly improved glucose metabolism. Still, all GLP-1 constructs significantly reduced tubulointerstitial renal damage, lowered expression of the tubular injury markers, and attenuated renal accumulation of macrophages and T cells. This was associated with a systemic immunomodulatory effect, which was similarly found in an acute renal ischemia/reperfusion injury model. In conclusion, GLP-1 cleavage products proved sufficient to mediate organ-protective effects, which might help to explain differences between GLP-1 receptor agonists. |
Author | Moellmann, Julia Onstein, Julia Lehrke, Michael Lebherz, Corinna Marx, Nikolaus Tacke, Frank Stöhr, Robert Jankowski, Joachim Boor, Peter Klinkhammer, Barbara Mara Jankowski, Vera |
Author_xml | – sequence: 1 givenname: Julia surname: Moellmann fullname: Moellmann, Julia organization: Department of Internal Medicine I, University Hospital RWTH Aachen, Aachen, Germany – sequence: 2 givenname: Barbara Mara surname: Klinkhammer fullname: Klinkhammer, Barbara Mara organization: Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany – sequence: 3 givenname: Julia surname: Onstein fullname: Onstein, Julia organization: Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany – sequence: 4 givenname: Robert surname: Stöhr fullname: Stöhr, Robert organization: Department of Internal Medicine I, University Hospital RWTH Aachen, Aachen, Germany – sequence: 5 givenname: Vera surname: Jankowski fullname: Jankowski, Vera organization: Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Germany – sequence: 6 givenname: Joachim surname: Jankowski fullname: Jankowski, Joachim organization: Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Germany – sequence: 7 givenname: Corinna surname: Lebherz fullname: Lebherz, Corinna organization: Department of Internal Medicine I, University Hospital RWTH Aachen, Aachen, Germany – sequence: 8 givenname: Frank surname: Tacke fullname: Tacke, Frank organization: Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany – sequence: 9 givenname: Nikolaus surname: Marx fullname: Marx, Nikolaus organization: Department of Internal Medicine I, University Hospital RWTH Aachen, Aachen, Germany – sequence: 10 givenname: Peter surname: Boor fullname: Boor, Peter organization: Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany, Department of Internal Medicine II, Nephrology and Immunology, University Hospital RWTH Aachen, Aachen, Germany, Electron Microscopy Facility, RWTH Aachen University, Aachen, Germany – sequence: 11 givenname: Michael orcidid: 0000-0003-2484-8068 surname: Lehrke fullname: Lehrke, Michael organization: Department of Internal Medicine I, University Hospital RWTH Aachen, Aachen, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30104246$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0c9vFCEUB3Biauy2evAfMCRe7GEsD9hhODar1ibrjxhNvE2AedNSZ2EKTJP-92XT6qExHCC8Dy8vfI_IQYgBCXkN7D0XQp0OFlQDHPgzsgItdCO4-n1AVowBb0BpdUiOcr5mjLV1vSCHggGTXLYr4s6nxZnLGJqt_4P0O87FD0iBmjDQi5LpZkJzay5rKcVhcfXmLCH9gSHOKRZ0xd8i9YF-WZIPSD94Y7F4R7_ifJXibMrV3UvyfDRTxleP-zH59enjz83nZvvt_GJztm2cBFka0xmwayGcHgEsH4XhptVDPQslpFVcMylrgbFhPXZWayVsJ1GMxkoAZ8UxeffQt052s2Au_c5nh9NkAsYl95x1Hddr2apK3z6h13FJoU7XcxC81ZJzWdWbR7XYHQ79nPzOpLv-7_dVcPIAXIo5Jxz_EWD9Ppp-H02_j6ba0yfW-WKKj6Ek46f_vLgH72WOCQ |
CitedBy_id | crossref_primary_10_1016_j_kint_2022_10_030 crossref_primary_10_1080_14740338_2020_1772230 crossref_primary_10_3390_ijms221910822 crossref_primary_10_23876_j_krcp_21_285 crossref_primary_10_1016_j_intimp_2024_113258 crossref_primary_10_3389_fendo_2018_00584 crossref_primary_10_25122_jml_2022_0291 crossref_primary_10_1111_nep_14336 crossref_primary_10_1111_dom_13969 crossref_primary_10_3390_ijms25073969 crossref_primary_10_1161_CIRCULATIONAHA_121_055459 crossref_primary_10_1016_j_addr_2021_114045 crossref_primary_10_1161_ATVBAHA_119_313645 crossref_primary_10_1016_j_phrs_2021_105867 crossref_primary_10_3389_fimmu_2023_1163288 crossref_primary_10_3390_ijms222212312 crossref_primary_10_1016_j_snb_2021_130914 crossref_primary_10_1007_s13300_020_00798_x crossref_primary_10_1038_s41581_018_0056_9 crossref_primary_10_1093_jleuko_qiae035 crossref_primary_10_1007_s00210_023_02575_6 crossref_primary_10_1016_j_diabet_2025_101641 crossref_primary_10_3389_fphar_2022_966645 crossref_primary_10_3389_fphar_2019_00476 crossref_primary_10_1038_s41581_020_00367_2 crossref_primary_10_1155_2020_1234059 crossref_primary_10_3389_fendo_2021_622737 crossref_primary_10_1016_j_phrs_2023_106680 crossref_primary_10_3390_ijms21010190 crossref_primary_10_1159_000509418 crossref_primary_10_1210_clinem_dgae119 crossref_primary_10_18632_aging_102643 crossref_primary_10_1111_jdi_12956 crossref_primary_10_1016_j_cmet_2023_01_004 crossref_primary_10_3390_biomedicines12030657 crossref_primary_10_1016_j_coph_2020_08_018 crossref_primary_10_3389_fphar_2020_00967 crossref_primary_10_3390_ijms21113798 crossref_primary_10_1111_jdi_13552 crossref_primary_10_3390_jcm13247732 crossref_primary_10_1016_j_toxrep_2025_101895 crossref_primary_10_1016_j_bbadis_2020_165807 crossref_primary_10_1210_endrev_bnz010 crossref_primary_10_1016_j_cmet_2024_05_001 crossref_primary_10_1016_j_diabet_2022_101366 crossref_primary_10_3390_cells13010065 crossref_primary_10_1681_ASN_2020050597 |
Cites_doi | 10.2337/diab.35.2.198 10.1007/s00018-010-0396-5 10.1056/NEJMoa1603827 10.1038/nrneph.2017.140 10.1016/j.regpep.2011.01.003 10.1111/j.1463-1326.2010.01316.x 10.1161/CIRCULATIONAHA.107.739938 10.1016/j.cmet.2016.06.009 10.1021/jm030630m 10.2337/db15-0084 10.1016/j.atherosclerosis.2013.08.033 10.1124/dmd.110.034066 10.1056/NEJMoa1612917 10.1111/dom.12839 10.1681/ASN.2015020149 10.1016/j.kint.2015.12.037 10.1038/nrneph.2013.272 10.1002/jgm.554 10.1002/hep.24764 10.1016/j.jchf.2016.01.008 10.1161/CIRCULATIONAHA.117.028136 10.1056/NEJMoa1607141 10.2337/diacare.25.8.1398 10.1038/sj.bjp.0703829 10.1001/jama.2016.10260 |
ContentType | Journal Article |
Copyright | 2018 by the American Diabetes Association. Copyright American Diabetes Association Nov 1, 2018 |
Copyright_xml | – notice: 2018 by the American Diabetes Association. – notice: Copyright American Diabetes Association Nov 1, 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 |
DOI | 10.2337/db17-1212 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1939-327X |
EndPage | 2419 |
ExternalDocumentID | 30104246 10_2337_db17_1212 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .55 .XZ 08P 0R~ 18M 29F 2WC 354 4.4 53G 5GY 5RE 5RS 5VS 6PF 8R4 8R5 AAFWJ AAQQT AAWTL AAYEP AAYOK AAYXX ABOCM ACGFO ACGOD ACPRK ADBBV AEGXH AENEX AERZD AHMBA AIAGR AIZAD ALIPV ALMA_UNASSIGNED_HOLDINGS BAWUL BES BTFSW CITATION CS3 DIK DU5 E3Z EBS EDB EJD EMOBN EX3 F5P FRP GX1 H13 HZ~ IAO IEA IHR INH INR IOF IPO K2M KQ8 L7B M5~ O5R O5S O9- OHH OK1 OVD P2P PCD Q2X RHI RPM SJN SV3 TDI TEORI TR2 VVN W8F WH7 WOQ WOW X7M YFH YHG YOC ZY1 ~KM .GJ 1CY 7RV 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 8GL AAKAS AAYJJ ABUWG ADZCM AFFNX AFKRA AI. AZQEC BBNVY BCR BCU BEC BENPR BHPHI BKEYQ BKNYI BLC BPHCQ BVXVI C1A CCPQU CGR CUY CVF DWQXO ECM EIF FYUFA GICCO GNUQQ GUQSH HCIFZ HMCUK H~9 IAG ITC J5H K-O K9- LK8 M0R M1P M2O M2P M2Q M7P MVM N4W NAPCQ NPM OB3 PEA PHGZT PQQKQ PROAC PSQYO S0X SJFOW UKHRP VH1 XOL YQJ ZGI ZXP K9. 7X8 |
ID | FETCH-LOGICAL-c414t-a8a1b533c9f11b2f3a2a69d11b3734b7290441b200d5f8b9973b84e3fab411cb3 |
ISSN | 0012-1797 1939-327X |
IngestDate | Fri Jul 11 11:49:58 EDT 2025 Fri Jul 25 19:32:42 EDT 2025 Thu Apr 03 06:58:00 EDT 2025 Tue Jul 01 03:11:15 EDT 2025 Thu Apr 24 22:59:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | 2018 by the American Diabetes Association. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c414t-a8a1b533c9f11b2f3a2a69d11b3734b7290441b200d5f8b9973b84e3fab411cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2484-8068 |
OpenAccessLink | https://diabetes.diabetesjournals.org/content/diabetes/67/11/2410.full.pdf |
PMID | 30104246 |
PQID | 2132694224 |
PQPubID | 34443 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2088295467 proquest_journals_2132694224 pubmed_primary_30104246 crossref_primary_10_2337_db17_1212 crossref_citationtrail_10_2337_db17_1212 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Diabetes (New York, N.Y.) |
PublicationTitleAlternate | Diabetes |
PublicationYear | 2018 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | Möllmann (2022031303580189600_B12) 2017; 19 Marso (2022031303580189600_B2) 2016; 375 Giacco (2022031303580189600_B15) 2015; 64 Nauck (2022031303580189600_B5) 2017; 136 Holman (2022031303580189600_B4) 2017; 377 Ban (2022031303580189600_B23) 2008; 117 Knudsen (2022031303580189600_B20) 2004; 47 Boillot (2022031303580189600_B13) 1986; 35 Tomas (2022031303580189600_B17) 2011; 13 Marso (2022031303580189600_B3) 2016; 375 Marx (2022031303580189600_B7) 2010; 67 Lepore (2022031303580189600_B24) 2016; 4 Heymann (2022031303580189600_B11) 2012; 55 Drucker (2022031303580189600_B1) 2016; 24 Arakawa (2022031303580189600_B14) 2001; 132 Buhl (2022031303580189600_B9) 2016; 89 Djudjaj (2022031303580189600_B10) 2016; 27 Hocher (2022031303580189600_B22) 2017; 13 Lebherz (2022031303580189600_B6) 2004; 6 Tomas (2022031303580189600_B16) 2011; 167 Muskiet (2022031303580189600_B21) 2014; 10 Elbrønd (2022031303580189600_B19) 2002; 25 Margulies (2022031303580189600_B25) 2016; 316 Burgmaier (2022031303580189600_B8) 2013; 231 Malm-Erjefält (2022031303580189600_B18) 2010; 38 30166605 - Nat Rev Nephrol. 2018 Oct;14(10):599 |
References_xml | – volume: 35 start-page: 198 year: 1986 ident: 2022031303580189600_B13 article-title: T-lymphopenia and T-cell imbalance in diabetic db/db mice publication-title: Diabetes doi: 10.2337/diab.35.2.198 – volume: 67 start-page: 3549 year: 2010 ident: 2022031303580189600_B7 article-title: Glucagon-like peptide-1(1-37) inhibits chemokine-induced migration of human CD4-positive lymphocytes publication-title: Cell Mol Life Sci doi: 10.1007/s00018-010-0396-5 – volume: 375 start-page: 311 year: 2016 ident: 2022031303580189600_B2 article-title: Liraglutide and cardiovascular outcomes in type 2 diabetes publication-title: N Engl J Med doi: 10.1056/NEJMoa1603827 – volume: 13 start-page: 728 year: 2017 ident: 2022031303580189600_B22 article-title: Diabetic nephropathy: renoprotective effects of GLP1R agonists and SGLT2 inhibitors publication-title: Nat Rev Nephrol doi: 10.1038/nrneph.2017.140 – volume: 167 start-page: 177 year: 2011 ident: 2022031303580189600_B16 article-title: GLP-1-derived nonapeptide GLP-1(28-36)amide targets to mitochondria and suppresses glucose production and oxidative stress in isolated mouse hepatocytes publication-title: Regul Pept doi: 10.1016/j.regpep.2011.01.003 – volume: 13 start-page: 26 year: 2011 ident: 2022031303580189600_B17 article-title: Glucagon-like peptide-1(9-36)amide metabolite inhibits weight gain and attenuates diabetes and hepatic steatosis in diet-induced obese mice publication-title: Diabetes Obes Metab doi: 10.1111/j.1463-1326.2010.01316.x – volume: 117 start-page: 2340 year: 2008 ident: 2022031303580189600_B23 article-title: Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.739938 – volume: 24 start-page: 15 year: 2016 ident: 2022031303580189600_B1 article-title: The cardiovascular biology of glucagon-like peptide-1 publication-title: Cell Metab doi: 10.1016/j.cmet.2016.06.009 – volume: 47 start-page: 4128 year: 2004 ident: 2022031303580189600_B20 article-title: Glucagon-like peptide-1: the basis of a new class of treatment for type 2 diabetes publication-title: J Med Chem doi: 10.1021/jm030630m – volume: 64 start-page: 3273 year: 2015 ident: 2022031303580189600_B15 article-title: GLP-1 cleavage product reverses persistent ROS generation after transient hyperglycemia by disrupting an ROS-generating feedback loop publication-title: Diabetes doi: 10.2337/db15-0084 – volume: 231 start-page: 427 year: 2013 ident: 2022031303580189600_B8 article-title: Glucagon-like peptide-1 (GLP-1) and its split products GLP-1(9-37) and GLP-1(28-37) stabilize atherosclerotic lesions in apoe−/− mice publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2013.08.033 – volume: 38 start-page: 1944 year: 2010 ident: 2022031303580189600_B18 article-title: Metabolism and excretion of the once-daily human glucagon-like peptide-1 analog liraglutide in healthy male subjects and its in vitro degradation by dipeptidyl peptidase IV and neutral endopeptidase publication-title: Drug Metab Dispos doi: 10.1124/dmd.110.034066 – volume: 377 start-page: 1228 year: 2017 ident: 2022031303580189600_B4 article-title: Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes publication-title: N Engl J Med doi: 10.1056/NEJMoa1612917 – volume: 19 start-page: 496 year: 2017 ident: 2022031303580189600_B12 article-title: The PDE4 inhibitor roflumilast reduces weight gain by increasing energy expenditure and leads to improved glucose metabolism publication-title: Diabetes Obes Metab doi: 10.1111/dom.12839 – volume: 27 start-page: 1650 year: 2016 ident: 2022031303580189600_B10 article-title: Macrophage migration inhibitory factor mediates proliferative GN via CD74 publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2015020149 – volume: 89 start-page: 848 year: 2016 ident: 2022031303580189600_B9 article-title: The role of PDGF-D in healthy and fibrotic kidneys publication-title: Kidney Int doi: 10.1016/j.kint.2015.12.037 – volume: 10 start-page: 88 year: 2014 ident: 2022031303580189600_B21 article-title: The gut-renal axis: do incretin-based agents confer renoprotection in diabetes publication-title: Nat Rev Nephrol doi: 10.1038/nrneph.2013.272 – volume: 6 start-page: 663 year: 2004 ident: 2022031303580189600_B6 article-title: Gene therapy with novel adeno-associated virus vectors substantially diminishes atherosclerosis in a murine model of familial hypercholesterolemia publication-title: J Gene Med doi: 10.1002/jgm.554 – volume: 55 start-page: 898 year: 2012 ident: 2022031303580189600_B11 article-title: Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor C-C motif chemokine receptor 8 in mice publication-title: Hepatology doi: 10.1002/hep.24764 – volume: 4 start-page: 559 year: 2016 ident: 2022031303580189600_B24 article-title: Effects of the novel long-acting GLP-1 agonist, albiglutide, on cardiac function, cardiac metabolism, and exercise capacity in patients with chronic heart failure and reduced ejection fraction publication-title: JACC Heart Fail doi: 10.1016/j.jchf.2016.01.008 – volume: 136 start-page: 849 year: 2017 ident: 2022031303580189600_B5 article-title: Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.028136 – volume: 375 start-page: 1834 year: 2016 ident: 2022031303580189600_B3 article-title: Semaglutide and cardiovascular outcomes in patients with type 2 diabetes publication-title: N Engl J Med doi: 10.1056/NEJMoa1607141 – volume: 25 start-page: 1398 year: 2002 ident: 2022031303580189600_B19 article-title: Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects publication-title: Diabetes Care doi: 10.2337/diacare.25.8.1398 – volume: 132 start-page: 578 year: 2001 ident: 2022031303580189600_B14 article-title: Improved diabetic syndrome in C57BL/KsJ-db/db mice by oral administration of the Na(+)-glucose cotransporter inhibitor T-1095 publication-title: Br J Pharmacol doi: 10.1038/sj.bjp.0703829 – volume: 316 start-page: 500 year: 2016 ident: 2022031303580189600_B25 article-title: Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2016.10260 – reference: 30166605 - Nat Rev Nephrol. 2018 Oct;14(10):599 |
SSID | ssj0006060 |
Score | 2.488373 |
Snippet | Incretin-based therapies, including glucagon-like peptide 1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors, are potent... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 2410 |
SubjectTerms | Animals Blood Glucose - metabolism Cell Movement - physiology Diabetes Diabetes mellitus Diabetes Mellitus - metabolism Diabetes Mellitus - pathology Diabetic Nephropathies - metabolism Diabetic Nephropathies - pathology Diabetic nephropathy Dipeptidyl-peptidase IV GLP-1 receptor agonists Glucagon Glucagon-like peptide 1 Glucagon-Like Peptide 1 - metabolism Glucose Glucose metabolism Homology Immunomodulation Insulin resistance Ischemia Kidney - metabolism Kidney - pathology Kidney diseases Kidneys Lymphocytes T Macrophages Mice Nephropathy Peptidase Peptides Reperfusion |
Title | Glucagon-Like Peptide 1 and Its Cleavage Products Are Renoprotective in Murine Diabetic Nephropathy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30104246 https://www.proquest.com/docview/2132694224 https://www.proquest.com/docview/2088295467 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkKa9oPG5soEM4gEpCtR22saPYwMGo4DEJvUtsh2HVWRJtaY88NdzFzshqTYJeImi2I4l38_nu_N9EPJCwqEq01SFzHIZRtqIMDaxCtOUp9HITpitw8Vmnycn59HH-Xg-GHS9ltaVfmV-XRtX8j9UhW9AV4yS_QfKtj-FD_AO9IUnUBief0Xj91iy7HtZhJ8WP2zwFR1UUhsw5-NbrYKj3KqftVOOy-u6Cg6vsE5DUfr0DOg2tCiCGZrcbeC8YxYGON8SqyeAcNi79D3u2Gk3K_h0LAqz0ub5ZVN8eZ0vWs5_itfFF7WtvHPXgfFCbZcvIK76-pu9od8qvNJ_M7no-IN3LRYs9qF79YHjuKwUMhR8Ou-yYVeVo4Eb6zLVyHm-bnJ7Lup8AamGg5Zx543dofrysia7QI2TRxv5tt0J7ptukdsctAwsgHH84bQ9yEG3G7lkVDjT63aeHbLdjOxLMzeoKLWocrZL7ngdgx46wNwlA1vcI9sz70Vxn5gebqjHDWUUcEMBN7TBDW1wA_-ytI8buiioww1tcEM7uHlAzt-9PTs6CX2xjdBELKpCFSumQfY3MmNM80wormAXw7uYikiDDjYCyVnD9kvHWaylnAodR1ZkSkeMGS0ekq2iLOweoXYsplnKJ6mVMQwxCmRSECOtyWSGgdJD8rJZtMT4TPRYECVPQCPFpU5wqRNc6iF53nZduvQr13U6aFY-8btzlXAmMEgbJNQhedY2A-_ECzFV2HINfVC_lGOQFYbkkaNYO0tD4cc3tuyTnT_oPiBb1dXaPgEJtdJPaxz9Bgmljl0 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glucagon-Like+Peptide+1+and+Its+Cleavage+Products+Are+Renoprotective+in+Murine+Diabetic+Nephropathy&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Moellmann%2C+Julia&rft.au=Klinkhammer%2C+Barbara+Mara&rft.au=Onstein%2C+Julia&rft.au=St%C3%B6hr%2C+Robert&rft.date=2018-11-01&rft.eissn=1939-327X&rft.volume=67&rft.issue=11&rft.spage=2410&rft_id=info:doi/10.2337%2Fdb17-1212&rft_id=info%3Apmid%2F30104246&rft.externalDocID=30104246 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |