Insights into RAG Evolution from the Identification of “Missing Link” Family A RAGL Transposons

Abstract A series of “molecular domestication” events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1–RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part be...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology and evolution Vol. 40; no. 11
Main Authors Martin, Eliza C, Le Targa, Lorlane, Tsakou-Ngouafo, Louis, Fan, Tzu-Pei, Lin, Che-Yi, Xiao, Jianxiong, Huang, Ziwen, Yuan, Shaochun, Xu, Anlong, Su, Yi-Hsien, Petrescu, Andrei-Jose, Pontarotti, Pierre, Schatz, David G
Format Journal Article
LanguageEnglish
Published US Oxford University Press 03.11.2023
Oxford University Press (OUP)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract A series of “molecular domestication” events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1–RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.
AbstractList ABSTRACT A series of “molecular domestication” events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events is not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like ( RAG1L ) gene in the genome of the hemichordate Ptychodera flava ( PflRAG1L-A ). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, PflRAG2L-A and echinoderm RAG2L-A contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g., the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.
A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.
Abstract A series of “molecular domestication” events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1–RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.
A series of “molecular domestication” events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1–RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like ( RAG1L ) gene in the genome of the hemichordate Ptychodera flava ( PflRAG1L-A ). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.
Author Schatz, David G
Martin, Eliza C
Le Targa, Lorlane
Lin, Che-Yi
Yuan, Shaochun
Tsakou-Ngouafo, Louis
Pontarotti, Pierre
Petrescu, Andrei-Jose
Huang, Ziwen
Xiao, Jianxiong
Xu, Anlong
Su, Yi-Hsien
Fan, Tzu-Pei
Author_xml – sequence: 1
  givenname: Eliza C
  orcidid: 0000-0002-3691-7537
  surname: Martin
  fullname: Martin, Eliza C
– sequence: 2
  givenname: Lorlane
  surname: Le Targa
  fullname: Le Targa, Lorlane
– sequence: 3
  givenname: Louis
  surname: Tsakou-Ngouafo
  fullname: Tsakou-Ngouafo, Louis
– sequence: 4
  givenname: Tzu-Pei
  surname: Fan
  fullname: Fan, Tzu-Pei
– sequence: 5
  givenname: Che-Yi
  surname: Lin
  fullname: Lin, Che-Yi
– sequence: 6
  givenname: Jianxiong
  surname: Xiao
  fullname: Xiao, Jianxiong
– sequence: 7
  givenname: Ziwen
  surname: Huang
  fullname: Huang, Ziwen
– sequence: 8
  givenname: Shaochun
  surname: Yuan
  fullname: Yuan, Shaochun
– sequence: 9
  givenname: Anlong
  orcidid: 0000-0002-1419-3494
  surname: Xu
  fullname: Xu, Anlong
– sequence: 10
  givenname: Yi-Hsien
  surname: Su
  fullname: Su, Yi-Hsien
– sequence: 11
  givenname: Andrei-Jose
  surname: Petrescu
  fullname: Petrescu, Andrei-Jose
  email: andrei.petrescu@biochim.ro
– sequence: 12
  givenname: Pierre
  surname: Pontarotti
  fullname: Pontarotti, Pierre
  email: pierre.pontarotti@univ-amu.fr
– sequence: 13
  givenname: David G
  surname: Schatz
  fullname: Schatz, David G
  email: david.schatz@yale.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37850912$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04243785$$DView record in HAL
BookMark eNqFkctOGzEUhq2KqoTLtkvkJSwCx54ZX1YoQlwiTVUJ0bXlcezEMGOH8UwkdjxI-3I8SSdNSoFNV7aO__P5P-ffQzshBovQVwKnBGR21sS6squzJukZzegnNCJFxseEE7mDRsCHew6Z2EV7Kd0DkDxn7AvazbgoQBI6QmYakp8vuoR96CK-nVzjy1Ws-87HgF0bG9wtLJ7ObOi880b_qUeHX55_fvMp-TDHpQ8PL8-_8JVufP2EJ2tIie9aHdIyphjSAfrsdJ3s4fbcRz-uLu8ubsbl9-vpxaQcm5zk3VgXhsjKOaaZA2GYmDlWUSuBcO6YACm4YIWlHDTIgomKVJUEI1zFQWgis310vuEu-6qxMzN4bnWtlq1vdPukovbq_UvwCzWPK0WAUSk5HwgnG8LiQ9_NpFTrGuQ0Xy9vRQft8fa3Nj72NnWq8cnYutbBxj4pOtjlQ0aQD9LTjdS0MaXWulc2AbWOUW1iVNsYh4ajt5O8yv_m9s9o7Jf_g_0Givys-g
Cites_doi 10.1111/j.0105-2896.2004.00163.x
10.1038/nature09139
10.1038/s41594-019-0366-z
10.1101/2022.07.21.500999
10.1073/pnas.1304048110
10.1093/nar/gki396
10.1038/s41586-019-1753-7
10.1093/molbev/mst024
10.1093/bioinformatics/bts091
10.1101/gr.849004
10.1093/nar/gkg819
10.3389/fimmu.2021.709165
10.1073/pnas.1615727114
10.1111/ede.12361
10.1016/j.celrep.2014.12.001
10.1016/S0092-8674(00)81344-6
10.1093/nar/gkv332
10.1016/S0092-8674(00)81343-4
10.1016/j.smim.2009.11.004
10.1038/s41577-021-00628-6
10.1093/nar/22.10.1785
10.1093/molbev/msx116
10.1146/annurev.biochem.71.090501.150203
10.1016/j.cell.2016.05.032
10.1093/nar/gkz239
10.1093/nar/gkw306
10.1016/j.cub.2014.09.070
10.1111/febs.13990
10.1016/j.immuni.2007.09.005
10.1093/bioinformatics/btu744
10.1016/j.molcel.2018.03.008
10.1016/j.tig.2022.02.009
10.1002/cpbi.3
10.1038/nchembio.2218
10.1016/S0092-8674(00)81587-1
10.1186/s13062-015-0055-8
10.1093/oxfordjournals.molbev.a025615
10.1016/j.molcel.2009.05.011
10.1073/pnas.0509720103
10.1093/nsr/nwac073
10.1371/journal.pbio.0030181
10.1093/nar/gkn201
10.1016/j.dci.2008.03.012
10.1186/1741-7007-4-41
10.1038/nature14174
10.1038/nsmb.1593
10.1038/s41586-019-1093-7
10.1016/j.sbi.2011.03.004
10.1016/j.cell.2015.10.055
10.1128/JVI.03060-14
10.1074/jbc.M115.641787
10.1186/gb-2006-7-s1-s10
10.1093/sysbio/syr041
10.1126/science.289.5476.77
10.1186/s13100-020-00214-y
10.1021/bi9922493
10.1093/molbev/msaa015
10.1016/j.cub.2015.09.066
10.1007/s00251-017-0979-5
10.1093/bioinformatics/btn013
10.1038/nsmb.2338
10.1093/sysbio/syq010
10.1093/molbev/mss140
10.1074/jbc.M109772200
10.1038/nature06431
10.1146/annurev-genet-110410-132552
10.1093/molbev/msx149
10.1093/nar/gkz297
10.1186/s13059-022-02808-6
10.1126/science.279.5349.384
10.1038/s41586-021-03819-2
10.15252/embj.2020105857
10.1038/s41594-019-0363-2
10.1186/1471-2105-11-431
10.1016/j.celrep.2013.07.041
10.1038/nrg3030
10.1038/29457
10.1128/microbiolspec.MDNA3-0062-2014
10.1002/jez.b.22665
10.1111/j.0105-2896.2004.00159.x
10.1084/jem.20200412
10.1073/pnas.0709170104
10.1093/nar/gkab1005
10.1074/jbc.M112.426148
10.1128/MCB.02487-05
10.1016/j.cell.2015.07.009
10.1093/nar/gkw103
10.3389/fimmu.2022.1066510
10.1371/journal.pone.0010168
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 2023
The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.
Copyright
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 2023
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.
– notice: Copyright
DBID TOX
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
1XC
VOOES
5PM
DOI 10.1093/molbev/msad232
DatabaseName Oxford Open Access Journals
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Open Access Journals
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1537-1719
Editor Malik, Harmit
Editor_xml – sequence: 1
  givenname: Harmit
  surname: Malik
  fullname: Malik, Harmit
ExternalDocumentID oai_HAL_hal_04243785v2
10_1093_molbev_msad232
37850912
10.1093/molbev/msad232
Genre Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI137079
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
GroupedDBID ---
-E4
-~X
.2P
.GJ
.I3
.ZR
0R~
18M
1TH
29M
2WC
4.4
48X
53G
5VS
5WA
70D
AAFWJ
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEUO
ABIXL
ABKDP
ABLJU
ABNKS
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACGFO
ACGFS
ACIPB
ACIWK
ACMRT
ACNCT
ACPRK
ACUFI
ACUTO
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGZP
ADHKW
ADHZD
ADJQC
ADOCK
ADRIX
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFIYH
AFOFC
AFPKN
AFRAH
AFULF
AFXEN
AGINJ
AGKEF
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
ASAOO
ATDFG
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
BTRTY
BVRKM
C1A
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
EMOBN
F5P
F9B
FHSFR
FLIZI
FOTVD
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HH5
HW0
HZ~
IAO
IGS
IOX
J21
KC5
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NGC
NLBLG
NMDNZ
NOYVH
NTWIH
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
O~Y
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
RHF
RNI
ROL
ROX
ROZ
RPM
RUSNO
RW1
RXO
RZO
TEORI
TJP
TJX
TLC
TN5
TOX
TR2
VQA
W8F
WOQ
X7H
XJT
XSW
YAYTL
YHZ
YKOAZ
YXANX
ZCA
ZCG
ZKX
ZXP
ZY4
~02
~91
7X7
8FI
ABEJV
ABUWG
BBNVY
BENPR
BHPHI
CGR
CUY
CVF
DWQXO
ECM
EIF
FYUFA
HCIFZ
M1P
M2O
M7P
NPM
PSQYO
AAYXX
CITATION
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c414t-a5c19bff6a6f08c68df6b2e90177f680987865e270a09568b1bb90c8fb708a193
IEDL.DBID RPM
ISSN 0737-4038
IngestDate Tue Sep 17 21:29:27 EDT 2024
Tue Oct 15 15:30:36 EDT 2024
Fri Oct 25 22:56:01 EDT 2024
Thu Sep 12 18:59:09 EDT 2024
Sat Nov 02 11:56:55 EDT 2024
Wed Aug 28 03:17:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords transposition
evolution
DDE transposase
recombination activating gene (RAG)
V(D)J recombination
transposon molecular domestication
Recombination activating gene (RAG) V(D)J recombination evolution transposition DDE transposase transposon molecular domestication
Recombination activating gene (RAG)
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.
Copyright: http://hal.archives-ouvertes.fr/licences/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-a5c19bff6a6f08c68df6b2e90177f680987865e270a09568b1bb90c8fb708a193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Eliza C Martin, Lorlane Le Targa and Louis Tsakou-Ngouafo contributed equally.
Conflict of interest statement. None declared.
ORCID 0000-0002-3691-7537
0000-0002-1419-3494
0000-0001-7202-3648
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629977/
PMID 37850912
PQID 2878710904
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10629977
hal_primary_oai_HAL_hal_04243785v2
proquest_miscellaneous_2878710904
crossref_primary_10_1093_molbev_msad232
pubmed_primary_37850912
oup_primary_10_1093_molbev_msad232
PublicationCentury 2000
PublicationDate 2023-11-03
PublicationDateYYYYMMDD 2023-11-03
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-03
  day: 03
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
– name: United States
PublicationTitle Molecular biology and evolution
PublicationTitleAlternate Mol Biol Evol
PublicationYear 2023
Publisher Oxford University Press
Oxford University Press (OUP)
Publisher_xml – name: Oxford University Press
– name: Oxford University Press (OUP)
References 37645967 - bioRxiv. 2023 Aug 20
Zhang (2023113023513227200_msad232-B89) 2019; 569
Berardi (2023113023513227200_msad232-B5) 2016; 44
Anisimova (2023113023513227200_msad232-B3) 2011; 60
Drozdetskiy (2023113023513227200_msad232-B20) 2015; 43
Xiong (2023113023513227200_msad232-B83) 2016; 12
Minh (2023113023513227200_msad232-B58) 2013; 30
Ramsden (2023113023513227200_msad232-B65) 1994; 22
Schatz (2023113023513227200_msad232-B68) 2011; 45
Shimazaki (2023113023513227200_msad232-B69) 2009; 34
Liu (2023113023513227200_msad232-B50) 2019; 575
Gellert (2023113023513227200_msad232-B25) 2002; 71
Morales Poole (2023113023513227200_msad232-B61) 2017; 69
Lapkouski (2023113023513227200_msad232-B44) 2015; 290
Fugmann (2023113023513227200_msad232-B23) 2006; 103
Kapitonov (2023113023513227200_msad232-B38) 2015; 10
Tsai (2023113023513227200_msad232-B77) 2003; 31
Maman (2023113023513227200_msad232-B55) 2016; 44
Jones (2023113023513227200_msad232-B35) 2015; 31
Kumar (2023113023513227200_msad232-B43) 2017; 34
Agrawal (2023113023513227200_msad232-B1) 1998; 394
Liu (2023113023513227200_msad232-B51) 2022; 22
Lin (2023113023513227200_msad232-B49) 2021; 23
Chen (2023113023513227200_msad232-B11) 2020; 27
Martin (2023113023513227200_msad232-B56) 2020; 11
De Guzman (2023113023513227200_msad232-B17) 1998; 279
Wu (2023113023513227200_msad232-B82) 2022
Feeney (2023113023513227200_msad232-B21) 2004; 200
Zeng (2023113023513227200_msad232-B88) 2010; 466
Almeida (2023113023513227200_msad232-B2) 2022; 38
Carmona (2023113023513227200_msad232-B9) 2017; 284
Wang (2023113023513227200_msad232-B78) 2016; 44
Hencken (2023113023513227200_msad232-B30) 2012; 19
Yakovenko (2023113023513227200_msad232-B85) 2022; 13
Kim (2023113023513227200_msad232-B40) 2015; 518
Letunic (2023113023513227200_msad232-B46) 2019; 47
Spanopoulou (2023113023513227200_msad232-B72) 1996; 87
Crooks (2023113023513227200_msad232-B15) 2004; 14
Fugmann (2023113023513227200_msad232-B24) 2010; 22
Braso-Vives (2023113023513227200_msad232-B7) 2022; 23
Flajnik (2023113023513227200_msad232-B22) 2014; 24
Coussens (2023113023513227200_msad232-B13) 2013; 4
Difilippantonio (2023113023513227200_msad232-B18) 1996; 87
Gopalakrishnan (2023113023513227200_msad232-B27) 2013; 110
Tao (2023113023513227200_msad232-B75) 2022; 9
Minh (2023113023513227200_msad232-B59) 2020; 37
Stanke (2023113023513227200_msad232-B73) 2008; 24
Wu (2023113023513227200_msad232-B81) 2020; 217
Webb (2023113023513227200_msad232-B79) 2016; 54
Davies (2023113023513227200_msad232-B16) 2000; 289
Kriatchko (2023113023513227200_msad232-B42) 2006; 26
Potter (2023113023513227200_msad232-B63) 2010; 5
Liu (2023113023513227200_msad232-B52) 2007; 27
Guindon (2023113023513227200_msad232-B28) 2010; 59
Chen (2023113023513227200_msad232-B10) 2020; 27
Klein (2023113023513227200_msad232-B41) 2000; 39
Montano (2023113023513227200_msad232-B60) 2011; 21
Gertz (2023113023513227200_msad232-B26) 2006; 4
Craig (2023113023513227200_msad232-B14) 2015
Kapitonov (2023113023513227200_msad232-B37) 2005; 3
Soubrier (2023113023513227200_msad232-B71) 2012; 29
Arshinoff (2023113023513227200_msad232-B4) 2022; 50
Yu (2023113023513227200_msad232-B87) 2002; 277
dos Reis (2023113023513227200_msad232-B19) 2015; 25
Jumper (2023113023513227200_msad232-B36) 2021; 596
Swanson (2023113023513227200_msad232-B74) 2004; 200
Lefort (2023113023513227200_msad232-B45) 2017; 34
Ramon-Maiques (2023113023513227200_msad232-B64) 2007; 104
Johnson (2023113023513227200_msad232-B34) 2008; 36
Matthews (2023113023513227200_msad232-B57) 2007; 450
Kim (2023113023513227200_msad232-B39) 2018; 70
Yakovenko (2023113023513227200_msad232-B84) 2021; 12
Yin (2023113023513227200_msad232-B86) 2009; 16
Zhang (2023113023513227200_msad232-B90) 2020; 39
Lin (2023113023513227200_msad232-B48) 2016; 326
Cheng (2023113023513227200_msad232-B12) 2005; 33
Saha (2023113023513227200_msad232-B67) 2015; 89
He (2023113023513227200_msad232-B29) 2013; 288
Johnson (2023113023513227200_msad232-B33) 2010; 11
Ru (2023113023513227200_msad232-B66) 2015; 163
Solovyev (2023113023513227200_msad232-B70) 2006; 7
Bettridge (2023113023513227200_msad232-B6) 2017; 114
Teng (2023113023513227200_msad232-B76) 2015; 162
Wilson (2023113023513227200_msad232-B80) 2008; 32
Lohe (2023113023513227200_msad232-B53) 1996; 13
Lu (2023113023513227200_msad232-B54) 2015; 10
Buchan (2023113023513227200_msad232-B8) 2019; 47
Levin (2023113023513227200_msad232-B47) 2011; 12
Okonechnikov (2023113023513227200_msad232-B62) 2012; 28
Hiom (2023113023513227200_msad232-B31) 1998; 94
Huang (2023113023513227200_msad232-B32) 2016; 166
References_xml – volume: 200
  start-page: 44
  issue: 1
  year: 2004
  ident: 2023113023513227200_msad232-B21
  article-title: Many levels of control of V gene rearrangement frequency
  publication-title: Immunol Rev
  doi: 10.1111/j.0105-2896.2004.00163.x
  contributor:
    fullname: Feeney
– volume: 466
  start-page: 258
  issue: 7303
  year: 2010
  ident: 2023113023513227200_msad232-B88
  article-title: Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b
  publication-title: Nature
  doi: 10.1038/nature09139
  contributor:
    fullname: Zeng
– volume: 27
  start-page: 127
  issue: 2
  year: 2020
  ident: 2023113023513227200_msad232-B11
  article-title: How mouse RAG recombinase avoids DNA transposition
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/s41594-019-0366-z
  contributor:
    fullname: Chen
– year: 2022
  ident: 2023113023513227200_msad232-B82
  article-title: High-resolution de novo structure prediction from primary sequence
  publication-title: bioRxiv
  doi: 10.1101/2022.07.21.500999
  contributor:
    fullname: Wu
– volume: 110
  start-page: E3206
  issue: 34
  year: 2013
  ident: 2023113023513227200_msad232-B27
  article-title: Unifying model for molecular determinants of the preselection Vbeta repertoire
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1304048110
  contributor:
    fullname: Gopalakrishnan
– volume: 33
  start-page: W72
  issue: Web Server
  year: 2005
  ident: 2023113023513227200_msad232-B12
  article-title: SCRATCH: a protein structure and structural feature prediction server
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gki396
  contributor:
    fullname: Cheng
– volume: 575
  start-page: 540
  issue: 7783
  year: 2019
  ident: 2023113023513227200_msad232-B50
  article-title: Structures of a RAG-like transposase during cut-and-paste transposition
  publication-title: Nature
  doi: 10.1038/s41586-019-1753-7
  contributor:
    fullname: Liu
– volume: 30
  start-page: 1188
  issue: 5
  year: 2013
  ident: 2023113023513227200_msad232-B58
  article-title: Ultrafast approximation for phylogenetic bootstrap
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst024
  contributor:
    fullname: Minh
– volume: 28
  start-page: 1166
  year: 2012
  ident: 2023113023513227200_msad232-B62
  article-title: Unipro UGENE: a unified bioinformatics toolkit
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts091
  contributor:
    fullname: Okonechnikov
– volume: 14
  start-page: 1188
  issue: 6
  year: 2004
  ident: 2023113023513227200_msad232-B15
  article-title: Weblogo: a sequence logo generator
  publication-title: Genome Res
  doi: 10.1101/gr.849004
  contributor:
    fullname: Crooks
– volume: 31
  start-page: 6180
  issue: 21
  year: 2003
  ident: 2023113023513227200_msad232-B77
  article-title: DNA mismatches and GC-rich motifs target transposition by the RAG1/RAG2 transposase
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkg819
  contributor:
    fullname: Tsai
– volume: 12
  start-page: 709165
  year: 2021
  ident: 2023113023513227200_msad232-B84
  article-title: Guardian of the genome: an alternative RAG/Transib co-evolution hypothesis for the origin of V(D)J recombination
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2021.709165
  contributor:
    fullname: Yakovenko
– volume: 114
  start-page: 1904
  issue: 8
  year: 2017
  ident: 2023113023513227200_msad232-B6
  article-title: H3k4me3 induces allosteric conformational changes in the DNA-binding and catalytic regions of the V(D)J recombinase
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1615727114
  contributor:
    fullname: Bettridge
– volume: 23
  start-page: 28
  issue: 1
  year: 2021
  ident: 2023113023513227200_msad232-B49
  article-title: Evidence for BMP-mediated specification of primordial germ cells in an indirect-developing hemichordate
  publication-title: Evol Dev
  doi: 10.1111/ede.12361
  contributor:
    fullname: Lin
– volume: 10
  start-page: 29
  issue: 1
  year: 2015
  ident: 2023113023513227200_msad232-B54
  article-title: An autoregulatory mechanism imposes allosteric control on the V(D)J recombinase by histone H3 methylation
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.12.001
  contributor:
    fullname: Lu
– volume: 87
  start-page: 263
  issue: 2
  year: 1996
  ident: 2023113023513227200_msad232-B72
  article-title: The homeodomain region of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81344-6
  contributor:
    fullname: Spanopoulou
– volume: 43
  start-page: W389
  issue: W1
  year: 2015
  ident: 2023113023513227200_msad232-B20
  article-title: JPred4: a protein secondary structure prediction server
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkv332
  contributor:
    fullname: Drozdetskiy
– volume: 87
  start-page: 253
  issue: 2
  year: 1996
  ident: 2023113023513227200_msad232-B18
  article-title: RAG1 mediates signal sequence recognition and recruitment of RAG2 in V(D)J recombination
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81343-4
  contributor:
    fullname: Difilippantonio
– volume: 22
  start-page: 10
  issue: 1
  year: 2010
  ident: 2023113023513227200_msad232-B24
  article-title: The origins of the Rag genes—from transposition to V(D)J recombination
  publication-title: Semin Immunol
  doi: 10.1016/j.smim.2009.11.004
  contributor:
    fullname: Fugmann
– volume: 22
  start-page: 353
  issue: 6
  year: 2022
  ident: 2023113023513227200_msad232-B51
  article-title: Structural insights into the evolution of the RAG recombinase
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-021-00628-6
  contributor:
    fullname: Liu
– volume: 22
  start-page: 1785
  issue: 10
  year: 1994
  ident: 2023113023513227200_msad232-B65
  article-title: Conservation of sequence in recombination signal sequence spacers
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/22.10.1785
  contributor:
    fullname: Ramsden
– volume: 34
  start-page: 1812
  issue: 7
  year: 2017
  ident: 2023113023513227200_msad232-B43
  article-title: Timetree: a resource for timelines, timetrees, and divergence times
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msx116
  contributor:
    fullname: Kumar
– volume: 71
  start-page: 101
  issue: 1
  year: 2002
  ident: 2023113023513227200_msad232-B25
  article-title: V(D)J recombination: RAG proteins, repair factors, and regulation
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.71.090501.150203
  contributor:
    fullname: Gellert
– volume: 166
  start-page: 102
  issue: 1
  year: 2016
  ident: 2023113023513227200_msad232-B32
  article-title: Discovery of an active RAG transposon illuminates the origins of V(D)J recombination
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.032
  contributor:
    fullname: Huang
– volume: 47
  start-page: W256
  issue: W1
  year: 2019
  ident: 2023113023513227200_msad232-B46
  article-title: Interactive Tree Of Life (iTOL) v4: recent updates and new developments
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkz239
  contributor:
    fullname: Letunic
– volume: 44
  start-page: W430
  issue: W1
  year: 2016
  ident: 2023113023513227200_msad232-B78
  article-title: RaptorX-Property: a web server for protein structure property prediction
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkw306
  contributor:
    fullname: Wang
– volume: 24
  start-page: R1060
  issue: 21
  year: 2014
  ident: 2023113023513227200_msad232-B22
  article-title: Re-evaluation of the immunological Big Bang
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2014.09.070
  contributor:
    fullname: Flajnik
– volume: 284
  start-page: 1590
  issue: 11
  year: 2017
  ident: 2023113023513227200_msad232-B9
  article-title: New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination
  publication-title: FEBS J
  doi: 10.1111/febs.13990
  contributor:
    fullname: Carmona
– volume: 27
  start-page: 561
  issue: 4
  year: 2007
  ident: 2023113023513227200_msad232-B52
  article-title: A plant homeodomain in RAG-2 that binds hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.09.005
  contributor:
    fullname: Liu
– volume: 31
  start-page: 857
  issue: 6
  year: 2015
  ident: 2023113023513227200_msad232-B35
  article-title: DISOPRED3: precise disordered region predictions with annotated protein-binding activity
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu744
  contributor:
    fullname: Jones
– volume: 70
  start-page: 358
  issue: 2
  year: 2018
  ident: 2023113023513227200_msad232-B39
  article-title: Cracking the DNA code for V(D)J recombination
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2018.03.008
  contributor:
    fullname: Kim
– volume: 38
  start-page: 529
  issue: 6
  year: 2022
  ident: 2023113023513227200_msad232-B2
  article-title: Taming transposable elements in vertebrates: from epigenetic silencing to domestication
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2022.02.009
  contributor:
    fullname: Almeida
– volume: 54
  start-page: 5.6.1
  issue: 1
  year: 2016
  ident: 2023113023513227200_msad232-B79
  article-title: Comparative protein structure modeling using MODELLER
  publication-title: Curr Protoc Bioinformatics
  doi: 10.1002/cpbi.3
  contributor:
    fullname: Webb
– volume: 12
  start-page: 1111
  issue: 12
  year: 2016
  ident: 2023113023513227200_msad232-B83
  article-title: Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2218
  contributor:
    fullname: Xiong
– volume: 94
  start-page: 463
  issue: 4
  year: 1998
  ident: 2023113023513227200_msad232-B31
  article-title: DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81587-1
  contributor:
    fullname: Hiom
– volume: 10
  start-page: 20
  issue: 1
  year: 2015
  ident: 2023113023513227200_msad232-B38
  article-title: Evolution of the RAG1–RAG2 locus: both proteins came from the same transposon
  publication-title: Biol Direct
  doi: 10.1186/s13062-015-0055-8
  contributor:
    fullname: Kapitonov
– volume: 13
  start-page: 549
  issue: 4
  year: 1996
  ident: 2023113023513227200_msad232-B53
  article-title: Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a025615
  contributor:
    fullname: Lohe
– volume: 34
  start-page: 535
  issue: 5
  year: 2009
  ident: 2023113023513227200_msad232-B69
  article-title: H3k4me3 stimulates the V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.05.011
  contributor:
    fullname: Shimazaki
– volume: 103
  start-page: 3728
  issue: 10
  year: 2006
  ident: 2023113023513227200_msad232-B23
  article-title: An ancient evolutionary origin of the Rag1/2 gene locus
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0509720103
  contributor:
    fullname: Fugmann
– volume: 9
  start-page: nwac073
  issue: 8
  year: 2022
  ident: 2023113023513227200_msad232-B75
  article-title: The RAG key to vertebrate adaptive immunity descended directly from a bacterial ancestor
  publication-title: Natl Sci Rev
  doi: 10.1093/nsr/nwac073
  contributor:
    fullname: Tao
– volume: 3
  start-page: e181
  issue: 6
  year: 2005
  ident: 2023113023513227200_msad232-B37
  article-title: RAG1 Core and V(D)J recombination signal sequences were derived from Transib transposons
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0030181
  contributor:
    fullname: Kapitonov
– volume: 36
  start-page: W5
  issue: Web Server
  year: 2008
  ident: 2023113023513227200_msad232-B34
  article-title: NCBI BLAST: a better web interface
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkn201
  contributor:
    fullname: Johnson
– volume: 32
  start-page: 1221
  issue: 10
  year: 2008
  ident: 2023113023513227200_msad232-B80
  article-title: The PHD domain of the sea urchin RAG2 homolog, SpRAG2L, recognizes dimethylated lysine 4 in histone H3 tails
  publication-title: Dev Comp Immunol
  doi: 10.1016/j.dci.2008.03.012
  contributor:
    fullname: Wilson
– volume: 4
  start-page: 41
  issue: 1
  year: 2006
  ident: 2023113023513227200_msad232-B26
  article-title: Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST
  publication-title: BMC Biol
  doi: 10.1186/1741-7007-4-41
  contributor:
    fullname: Gertz
– volume: 518
  start-page: 507
  issue: 7540
  year: 2015
  ident: 2023113023513227200_msad232-B40
  article-title: Crystal structure of the V(D)J recombinase RAG1–RAG2
  publication-title: Nature
  doi: 10.1038/nature14174
  contributor:
    fullname: Kim
– volume: 16
  start-page: 499
  issue: 5
  year: 2009
  ident: 2023113023513227200_msad232-B86
  article-title: Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1593
  contributor:
    fullname: Yin
– volume: 569
  start-page: 79
  issue: 7754
  year: 2019
  ident: 2023113023513227200_msad232-B89
  article-title: Transposon molecular domestication and the evolution of the RAG recombinase
  publication-title: Nature
  doi: 10.1038/s41586-019-1093-7
  contributor:
    fullname: Zhang
– volume: 21
  start-page: 370
  issue: 3
  year: 2011
  ident: 2023113023513227200_msad232-B60
  article-title: Moving DNA around: DNA transposition and retroviral integration
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2011.03.004
  contributor:
    fullname: Montano
– volume: 163
  start-page: 1138
  issue: 5
  year: 2015
  ident: 2023113023513227200_msad232-B66
  article-title: Molecular mechanism of V(D)J recombination from synaptic RAG1–RAG2 complex structures
  publication-title: Cell
  doi: 10.1016/j.cell.2015.10.055
  contributor:
    fullname: Ru
– volume: 89
  start-page: 3922
  issue: 7
  year: 2015
  ident: 2023113023513227200_msad232-B67
  article-title: A trans-dominant form of Gag restricts Ty1 retrotransposition and mediates copy number control
  publication-title: J Virol
  doi: 10.1128/JVI.03060-14
  contributor:
    fullname: Saha
– volume: 290
  start-page: 14618
  issue: 23
  year: 2015
  ident: 2023113023513227200_msad232-B44
  article-title: Assembly pathway and characterization of the RAG1/2-DNA paired and signal-end complexes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M115.641787
  contributor:
    fullname: Lapkouski
– volume: 7
  start-page: S10
  issue: Suppl 1
  year: 2006
  ident: 2023113023513227200_msad232-B70
  article-title: Automatic annotation of eukaryotic genes, pseudogenes and promoters
  publication-title: Genome Biol
  doi: 10.1186/gb-2006-7-s1-s10
  contributor:
    fullname: Solovyev
– volume: 60
  start-page: 685
  issue: 5
  year: 2011
  ident: 2023113023513227200_msad232-B3
  article-title: Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syr041
  contributor:
    fullname: Anisimova
– volume: 289
  start-page: 77
  issue: 5476
  year: 2000
  ident: 2023113023513227200_msad232-B16
  article-title: Three-dimensional structure of the Tn5 synaptic complex transposition intermediate
  publication-title: Science
  doi: 10.1126/science.289.5476.77
  contributor:
    fullname: Davies
– volume: 11
  start-page: 17
  issue: 1
  year: 2020
  ident: 2023113023513227200_msad232-B56
  article-title: Identification of RAG-like transposons in protostomes suggests their ancient bilaterian origin
  publication-title: Mob DNA
  doi: 10.1186/s13100-020-00214-y
  contributor:
    fullname: Martin
– volume: 39
  start-page: 1604
  issue: 7
  year: 2000
  ident: 2023113023513227200_msad232-B41
  article-title: The NMR structure of the nucleocapsid protein from the mouse mammary tumor virus reveals unusual folding of the C-terminal zinc knuckle
  publication-title: Biochemistry
  doi: 10.1021/bi9922493
  contributor:
    fullname: Klein
– volume: 37
  start-page: 1530
  issue: 5
  year: 2020
  ident: 2023113023513227200_msad232-B59
  article-title: IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msaa015
  contributor:
    fullname: Minh
– volume: 25
  start-page: 2939
  issue: 22
  year: 2015
  ident: 2023113023513227200_msad232-B19
  article-title: Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2015.09.066
  contributor:
    fullname: dos Reis
– volume: 69
  start-page: 391
  issue: 6
  year: 2017
  ident: 2023113023513227200_msad232-B61
  article-title: The RAG transposon is active through the deuterostome evolution and domesticated in jawed vertebrates
  publication-title: Immunogenetics
  doi: 10.1007/s00251-017-0979-5
  contributor:
    fullname: Morales Poole
– volume: 24
  start-page: 637
  issue: 5
  year: 2008
  ident: 2023113023513227200_msad232-B73
  article-title: Using native and syntenically mapped cDNA alignments to improve de novo gene finding
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn013
  contributor:
    fullname: Stanke
– volume: 19
  start-page: 834
  issue: 8
  year: 2012
  ident: 2023113023513227200_msad232-B30
  article-title: Functional characterization of an active Rag-like transposase
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2338
  contributor:
    fullname: Hencken
– volume: 59
  start-page: 307
  issue: 3
  year: 2010
  ident: 2023113023513227200_msad232-B28
  article-title: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syq010
  contributor:
    fullname: Guindon
– volume: 29
  start-page: 3345
  issue: 11
  year: 2012
  ident: 2023113023513227200_msad232-B71
  article-title: The influence of rate heterogeneity among sites on the time dependence of molecular rates
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mss140
  contributor:
    fullname: Soubrier
– volume: 277
  start-page: 5040
  issue: 7
  year: 2002
  ident: 2023113023513227200_msad232-B87
  article-title: The cleavage efficiency of the human immunoglobulin heavy chain VH elements by the RAG complex: implications for the immune repertoire
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109772200
  contributor:
    fullname: Yu
– volume: 450
  start-page: 1106
  issue: 7172
  year: 2007
  ident: 2023113023513227200_msad232-B57
  article-title: RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination
  publication-title: Nature
  doi: 10.1038/nature06431
  contributor:
    fullname: Matthews
– volume: 45
  start-page: 167
  issue: 1
  year: 2011
  ident: 2023113023513227200_msad232-B68
  article-title: V(D)J recombination: mechanisms of initiation
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-110410-132552
  contributor:
    fullname: Schatz
– volume: 34
  start-page: 2422
  issue: 9
  year: 2017
  ident: 2023113023513227200_msad232-B45
  article-title: SMS: smart model selection in PhyML
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msx149
  contributor:
    fullname: Lefort
– volume: 47
  start-page: W402
  issue: W1
  year: 2019
  ident: 2023113023513227200_msad232-B8
  article-title: The PSIPRED protein analysis workbench: 20 years on
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkz297
  contributor:
    fullname: Buchan
– volume: 23
  start-page: 243
  issue: 1
  year: 2022
  ident: 2023113023513227200_msad232-B7
  article-title: Parallel evolution of amphioxus and vertebrate small-scale gene duplications
  publication-title: Genome Biol
  doi: 10.1186/s13059-022-02808-6
  contributor:
    fullname: Braso-Vives
– volume: 279
  start-page: 384
  issue: 5349
  year: 1998
  ident: 2023113023513227200_msad232-B17
  article-title: Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element
  publication-title: Science
  doi: 10.1126/science.279.5349.384
  contributor:
    fullname: De Guzman
– volume: 596
  start-page: 583
  issue: 7873
  year: 2021
  ident: 2023113023513227200_msad232-B36
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
  contributor:
    fullname: Jumper
– volume: 39
  start-page: e105857
  issue: 21
  year: 2020
  ident: 2023113023513227200_msad232-B90
  article-title: Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase
  publication-title: EMBO J
  doi: 10.15252/embj.2020105857
  contributor:
    fullname: Zhang
– volume: 27
  start-page: 119
  issue: 2
  year: 2020
  ident: 2023113023513227200_msad232-B10
  article-title: Cutting antiparallel DNA strands in a single active site
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/s41594-019-0363-2
  contributor:
    fullname: Chen
– volume: 11
  start-page: 431
  issue: 1
  year: 2010
  ident: 2023113023513227200_msad232-B33
  article-title: Hidden Markov model speed heuristic and iterative HMM search procedure
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-431
  contributor:
    fullname: Johnson
– volume: 4
  start-page: 870
  issue: 5
  year: 2013
  ident: 2023113023513227200_msad232-B13
  article-title: RAG2's acidic hinge restricts repair-pathway choice and promotes genomic stability
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.07.041
  contributor:
    fullname: Coussens
– volume: 12
  start-page: 615
  issue: 9
  year: 2011
  ident: 2023113023513227200_msad232-B47
  article-title: Dynamic interactions between transposable elements and their hosts
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3030
  contributor:
    fullname: Levin
– volume: 394
  start-page: 744
  issue: 6695
  year: 1998
  ident: 2023113023513227200_msad232-B1
  article-title: Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system
  publication-title: Nature
  doi: 10.1038/29457
  contributor:
    fullname: Agrawal
– start-page: 3
  volume-title: Mobile DNA III
  year: 2015
  ident: 2023113023513227200_msad232-B14
  doi: 10.1128/microbiolspec.MDNA3-0062-2014
  contributor:
    fullname: Craig
– volume: 326
  start-page: 47
  issue: 1
  year: 2016
  ident: 2023113023513227200_msad232-B48
  article-title: Reproductive periodicity, spawning induction, and larval metamorphosis of the hemichordate acorn worm Ptychodera flava
  publication-title: J Exp Zool B Mol Dev Evol
  doi: 10.1002/jez.b.22665
  contributor:
    fullname: Lin
– volume: 200
  start-page: 90
  issue: 1
  year: 2004
  ident: 2023113023513227200_msad232-B74
  article-title: The bounty of RAGs: recombination signal complexes and reaction outcomes
  publication-title: Immunol Rev
  doi: 10.1111/j.0105-2896.2004.00159.x
  contributor:
    fullname: Swanson
– volume: 217
  start-page: e20200412
  issue: 9
  year: 2020
  ident: 2023113023513227200_msad232-B81
  article-title: Poor quality Vbeta recombination signal sequences stochastically enforce TCRbeta allelic exclusion
  publication-title: J Exp Med
  doi: 10.1084/jem.20200412
  contributor:
    fullname: Wu
– volume: 104
  start-page: 18993
  issue: 48
  year: 2007
  ident: 2023113023513227200_msad232-B64
  article-title: The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0709170104
  contributor:
    fullname: Ramon-Maiques
– volume: 50
  start-page: D970
  issue: D1
  year: 2022
  ident: 2023113023513227200_msad232-B4
  article-title: Echinobase: leveraging an extant model organism database to build a knowledgebase supporting research on the genomics and biology of echinoderms
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkab1005
  contributor:
    fullname: Arshinoff
– volume: 288
  start-page: 4692
  issue: 7
  year: 2013
  ident: 2023113023513227200_msad232-B29
  article-title: The methyltransferase NSD3 has chromatin-binding motifs, PHD5-C5HCH, that are distinct from other NSD (nuclear receptor SET domain) family members in their histone H3 recognition
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.426148
  contributor:
    fullname: He
– volume: 26
  start-page: 4712
  issue: 12
  year: 2006
  ident: 2023113023513227200_msad232-B42
  article-title: Identification and characterization of a gain-of-function RAG-1 mutant
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.02487-05
  contributor:
    fullname: Kriatchko
– volume: 162
  start-page: 751
  issue: 4
  year: 2015
  ident: 2023113023513227200_msad232-B76
  article-title: RAG represents a widespread threat to the lymphocyte genome
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.009
  contributor:
    fullname: Teng
– volume: 44
  start-page: 3448
  issue: 7
  year: 2016
  ident: 2023113023513227200_msad232-B5
  article-title: Structural basis for PHDVC5HCHNSD1-C2HRNizp1 interaction: implications for Sotos syndrome
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkw103
  contributor:
    fullname: Berardi
– volume: 13
  start-page: 1066510
  year: 2022
  ident: 2023113023513227200_msad232-B85
  article-title: Different sea urchin RAG-like genes were domesticated to carry out different functions
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.1066510
  contributor:
    fullname: Yakovenko
– volume: 5
  start-page: e10168
  issue: 4
  year: 2010
  ident: 2023113023513227200_msad232-B63
  article-title: Splinkerette PCR for mapping transposable elements in Drosophila
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0010168
  contributor:
    fullname: Potter
– volume: 44
  start-page: 9624
  issue: 20
  year: 2016
  ident: 2023113023513227200_msad232-B55
  article-title: RAG1 targeting in the genome is dominated by chromatin interactions mediated by the non-core regions of RAG1 and RAG2
  publication-title: Nucl Acids Res
  contributor:
    fullname: Maman
SSID ssj0014466
Score 2.4768016
Snippet Abstract A series of “molecular domestication” events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1–RAG2 (RAG)...
A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a...
ABSTRACT A series of “molecular domestication” events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG)...
A series of “molecular domestication” events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1–RAG2 (RAG) recombinase, a...
SourceID pubmedcentral
hal
proquest
crossref
pubmed
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Adaptive Immunity - genetics
Animals
Discoveries
DNA Transposable Elements
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Life Sciences
Vertebrates - genetics
Vertebrates - metabolism
Title Insights into RAG Evolution from the Identification of “Missing Link” Family A RAGL Transposons
URI https://www.ncbi.nlm.nih.gov/pubmed/37850912
https://search.proquest.com/docview/2878710904
https://hal.science/hal-04243785
https://pubmed.ncbi.nlm.nih.gov/PMC10629977
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6xSK24VNDn8pJbVeopJBsntnNcIWBbsW1VgbS3yPbGYiU2QWRZiRs_BP4cv4SZPFakFyQuOSSOFXkmnm88M98AfJdcG2It8Yww1dGN9bROpOeixErcDkNXkSSNf4vRefRrEk_WQLS1MFXSvjWzg_xyfpDPLqrcyqu59ds8Mf_v-BDdGNxFpfR70EMNbX30JnbQRigll-gdcbWiauT-vLg02dKfl3qKSGID3nKpyGKGHavUu6CcyE692zPY-X_25DNzdLwJ7xocyYb1927BWpa_hzd1Z8nbD2B_5iW53SWb5YuC_RuesKNlo2WMSkoYAj9WV-m65tiOFY493t2PURRozxh5qY93D6xujcGGNMkpa8jQEaWXH-H8-OjscOQ1_RQ8Gw2ihadjO0iMc0ILFygr1NQJE2aICKR0QgWJkkrEWSgDTfSEygyMSQKrnJGB0oj0PsF6XuTZF2DCGm3Rtk9jwyMx0MScFYskdJZzI8O4Dz_a9UyvatqMtA5387QWQtoIoQ_fcLlXg4jtejQ8TekeRWVJQEsahNJ4caavrbBS_Eco8KHzrLgpU_QKFeWcBlEfPtfCW83VakAfVEesnS_qPkG1rHi4WzXcfv2rO7BB_eur4ka-C-uL65tsD1HOwuxXpwP7lWrj9ezP5AkKFv_W
link.rule.ids 230,315,730,783,787,867,888,1607,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BVVsu9Bu2n25VqadssnFiO8cVgi7tLqoqULlFtjcWq7IJItmV6Ikf0v45fgnjOFkRLlV7jR0r0RvbbzwzzwAfOZXKqpZ4iqn66EZ7UibcM1GiOS6HoalFkiaHbHQcfTmJT9aAtbUwddK-VrN-fjbv57PTOrfyfK79Nk_M_zbZRTcGV1HO_XW4hxM2iFovvYketDFKTjn6R1SsxBqpPy_OVLb056WcIpfYhAeUC7tnhp19af3UZkV2Kt5uEc-7-ZO3NqT9R_Cj_RWXh_Kzv6hUX_-6o_L47__6GLYajkqGrv0JrGX5U7jvbq28fAb6IC-tS1-SWV4V5PvwM9lbNhZMbLkKQVJJXAWwaY4ESWHI9dXvCcKMeyWxHvD11R_irt0gQzvImDRC6-gBlM_heH_vaHfkNXc1eDoaRJUnYz1IlDFMMhMIzcTUMBVmyDY4N0wEieCCxVnIA2mlD4UaKJUEWhjFAyGRRb6AjbzIsx0gTCupkTdMY0UjNpBWlStmSWg0pYqHcQ8-tUil506SI3WhdJo6eNMG3h58QCBXnayS9mg4Tu0zG_G10C9tJ8T5ryO9b80gxflngyoyz4pFmaLHKWw-axD1YNuZxWqs1rZ6IDoG0_mibguaQa3x3cL-8v9ffQcPR0eTcTo-OPz6CjZDZGd1ESV9DRvVxSJ7g2yqUm_rqXMDtmsgBA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFL2sHSt96b637FMbgz05dixbkh9D1yzdklLGCoU9GEmxaFhjh9oJbE_9Iduf6y_ZlWWHui-DvtqysDhX0rm69x4BfOBUKqta4imm6qMb7UmZcM9Eiea4HIamFkmaHrHxSfTlND5tsirLJq0y12rez88X_Xx-VudWLhfab_PE_OPpProxuIpy7i9nxt-CuzhpA9Z66k0EoY1TcsrRR6JiI9hI_UVxrrK1vyjlDPnELuxQLuy-GXb2pq0zmxnZqXq7Rj5v5lBe25RG9-FHOxyXi_Kzv6pUX_--ofR4u_E-gL2Gq5Kha_MQ7mT5I7jnbq_89Rj0YV5a174k87wqyLfhZ3KwbiyZ2LIVguSSuEpg0xwNksKQq8s_U4Qb90xiPeGry7_EXb9BhraTCWkE19ETKJ_Ayejg-_7Ya-5s8HQ0iCpPxnqQKGOYZCYQmomZYSrMkHVwbpgIEsEFi7OQB9JKIAo1UCoJtDCKB0Iim3wK23mRZ8-BMK2kRv4wixWN2EBada6YJaHRlCoexj342KKVLp00R-pC6jR1EKcNxD14j2BuGllF7fFwktpnNvJr4V_bRoj1f3t615pCivPQBldknhWrMkXPU9i81iDqwTNnGpu-WvvqgegYTeePum_QFGqt7xb6F7f_9C3sHH8apZPDo68vYTdEklbXUtJXsF1drLLXSKoq9aaePf8AqR0ihA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+RAG+Evolution+from+the+Identification+of+%22Missing+Link%22+Family+A+RAGL+Transposons&rft.jtitle=Molecular+biology+and+evolution&rft.au=Martin%2C+Eliza+C&rft.au=Le+Targa%2C+Lorlane&rft.au=Tsakou-Ngouafo%2C+Louis&rft.au=Fan%2C+Tzu-Pei&rft.date=2023-11-03&rft.eissn=1537-1719&rft.volume=40&rft.issue=11&rft_id=info:doi/10.1093%2Fmolbev%2Fmsad232&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0737-4038&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0737-4038&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0737-4038&client=summon