Insights into RAG Evolution from the Identification of “Missing Link” Family A RAGL Transposons
Abstract A series of “molecular domestication” events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1–RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part be...
Saved in:
Published in | Molecular biology and evolution Vol. 40; no. 11 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
US
Oxford University Press
03.11.2023
Oxford University Press (OUP) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
A series of “molecular domestication” events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1–RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates. |
---|---|
AbstractList | ABSTRACT A series of “molecular domestication” events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events is not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like ( RAG1L ) gene in the genome of the hemichordate Ptychodera flava ( PflRAG1L-A ). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, PflRAG2L-A and echinoderm RAG2L-A contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g., the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates. A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates. Abstract A series of “molecular domestication” events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1–RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates. A series of “molecular domestication” events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1–RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like ( RAG1L ) gene in the genome of the hemichordate Ptychodera flava ( PflRAG1L-A ). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates. |
Author | Schatz, David G Martin, Eliza C Le Targa, Lorlane Lin, Che-Yi Yuan, Shaochun Tsakou-Ngouafo, Louis Pontarotti, Pierre Petrescu, Andrei-Jose Huang, Ziwen Xiao, Jianxiong Xu, Anlong Su, Yi-Hsien Fan, Tzu-Pei |
Author_xml | – sequence: 1 givenname: Eliza C orcidid: 0000-0002-3691-7537 surname: Martin fullname: Martin, Eliza C – sequence: 2 givenname: Lorlane surname: Le Targa fullname: Le Targa, Lorlane – sequence: 3 givenname: Louis surname: Tsakou-Ngouafo fullname: Tsakou-Ngouafo, Louis – sequence: 4 givenname: Tzu-Pei surname: Fan fullname: Fan, Tzu-Pei – sequence: 5 givenname: Che-Yi surname: Lin fullname: Lin, Che-Yi – sequence: 6 givenname: Jianxiong surname: Xiao fullname: Xiao, Jianxiong – sequence: 7 givenname: Ziwen surname: Huang fullname: Huang, Ziwen – sequence: 8 givenname: Shaochun surname: Yuan fullname: Yuan, Shaochun – sequence: 9 givenname: Anlong orcidid: 0000-0002-1419-3494 surname: Xu fullname: Xu, Anlong – sequence: 10 givenname: Yi-Hsien surname: Su fullname: Su, Yi-Hsien – sequence: 11 givenname: Andrei-Jose surname: Petrescu fullname: Petrescu, Andrei-Jose email: andrei.petrescu@biochim.ro – sequence: 12 givenname: Pierre surname: Pontarotti fullname: Pontarotti, Pierre email: pierre.pontarotti@univ-amu.fr – sequence: 13 givenname: David G surname: Schatz fullname: Schatz, David G email: david.schatz@yale.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37850912$$D View this record in MEDLINE/PubMed https://hal.science/hal-04243785$$DView record in HAL |
BookMark | eNqFkctOGzEUhq2KqoTLtkvkJSwCx54ZX1YoQlwiTVUJ0bXlcezEMGOH8UwkdjxI-3I8SSdNSoFNV7aO__P5P-ffQzshBovQVwKnBGR21sS6squzJukZzegnNCJFxseEE7mDRsCHew6Z2EV7Kd0DkDxn7AvazbgoQBI6QmYakp8vuoR96CK-nVzjy1Ws-87HgF0bG9wtLJ7ObOi880b_qUeHX55_fvMp-TDHpQ8PL8-_8JVufP2EJ2tIie9aHdIyphjSAfrsdJ3s4fbcRz-uLu8ubsbl9-vpxaQcm5zk3VgXhsjKOaaZA2GYmDlWUSuBcO6YACm4YIWlHDTIgomKVJUEI1zFQWgis310vuEu-6qxMzN4bnWtlq1vdPukovbq_UvwCzWPK0WAUSk5HwgnG8LiQ9_NpFTrGuQ0Xy9vRQft8fa3Nj72NnWq8cnYutbBxj4pOtjlQ0aQD9LTjdS0MaXWulc2AbWOUW1iVNsYh4ajt5O8yv_m9s9o7Jf_g_0Givys-g |
Cites_doi | 10.1111/j.0105-2896.2004.00163.x 10.1038/nature09139 10.1038/s41594-019-0366-z 10.1101/2022.07.21.500999 10.1073/pnas.1304048110 10.1093/nar/gki396 10.1038/s41586-019-1753-7 10.1093/molbev/mst024 10.1093/bioinformatics/bts091 10.1101/gr.849004 10.1093/nar/gkg819 10.3389/fimmu.2021.709165 10.1073/pnas.1615727114 10.1111/ede.12361 10.1016/j.celrep.2014.12.001 10.1016/S0092-8674(00)81344-6 10.1093/nar/gkv332 10.1016/S0092-8674(00)81343-4 10.1016/j.smim.2009.11.004 10.1038/s41577-021-00628-6 10.1093/nar/22.10.1785 10.1093/molbev/msx116 10.1146/annurev.biochem.71.090501.150203 10.1016/j.cell.2016.05.032 10.1093/nar/gkz239 10.1093/nar/gkw306 10.1016/j.cub.2014.09.070 10.1111/febs.13990 10.1016/j.immuni.2007.09.005 10.1093/bioinformatics/btu744 10.1016/j.molcel.2018.03.008 10.1016/j.tig.2022.02.009 10.1002/cpbi.3 10.1038/nchembio.2218 10.1016/S0092-8674(00)81587-1 10.1186/s13062-015-0055-8 10.1093/oxfordjournals.molbev.a025615 10.1016/j.molcel.2009.05.011 10.1073/pnas.0509720103 10.1093/nsr/nwac073 10.1371/journal.pbio.0030181 10.1093/nar/gkn201 10.1016/j.dci.2008.03.012 10.1186/1741-7007-4-41 10.1038/nature14174 10.1038/nsmb.1593 10.1038/s41586-019-1093-7 10.1016/j.sbi.2011.03.004 10.1016/j.cell.2015.10.055 10.1128/JVI.03060-14 10.1074/jbc.M115.641787 10.1186/gb-2006-7-s1-s10 10.1093/sysbio/syr041 10.1126/science.289.5476.77 10.1186/s13100-020-00214-y 10.1021/bi9922493 10.1093/molbev/msaa015 10.1016/j.cub.2015.09.066 10.1007/s00251-017-0979-5 10.1093/bioinformatics/btn013 10.1038/nsmb.2338 10.1093/sysbio/syq010 10.1093/molbev/mss140 10.1074/jbc.M109772200 10.1038/nature06431 10.1146/annurev-genet-110410-132552 10.1093/molbev/msx149 10.1093/nar/gkz297 10.1186/s13059-022-02808-6 10.1126/science.279.5349.384 10.1038/s41586-021-03819-2 10.15252/embj.2020105857 10.1038/s41594-019-0363-2 10.1186/1471-2105-11-431 10.1016/j.celrep.2013.07.041 10.1038/nrg3030 10.1038/29457 10.1128/microbiolspec.MDNA3-0062-2014 10.1002/jez.b.22665 10.1111/j.0105-2896.2004.00159.x 10.1084/jem.20200412 10.1073/pnas.0709170104 10.1093/nar/gkab1005 10.1074/jbc.M112.426148 10.1128/MCB.02487-05 10.1016/j.cell.2015.07.009 10.1093/nar/gkw103 10.3389/fimmu.2022.1066510 10.1371/journal.pone.0010168 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 2023 The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. Copyright |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 2023 – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. – notice: Copyright |
DBID | TOX CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 1XC VOOES 5PM |
DOI | 10.1093/molbev/msad232 |
DatabaseName | Oxford Open Access Journals Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Open Access Journals url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1537-1719 |
Editor | Malik, Harmit |
Editor_xml | – sequence: 1 givenname: Harmit surname: Malik fullname: Malik, Harmit |
ExternalDocumentID | oai_HAL_hal_04243785v2 10_1093_molbev_msad232 37850912 10.1093/molbev/msad232 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI137079 – fundername: NCATS NIH HHS grantid: UL1 TR001863 |
GroupedDBID | --- -E4 -~X .2P .GJ .I3 .ZR 0R~ 18M 1TH 29M 2WC 4.4 48X 53G 5VS 5WA 70D AAFWJ AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AAUQX AAVAP AAVLN ABEUO ABIXL ABKDP ABLJU ABNKS ABPTD ABQLI ABQTQ ABSAR ABSMQ ABTAH ABXVV ABZBJ ACGFO ACGFS ACIPB ACIWK ACMRT ACNCT ACPRK ACUFI ACUTO ACYTK ADBBV ADEYI ADEZT ADFTL ADGZP ADHKW ADHZD ADJQC ADOCK ADRIX ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFIYH AFOFC AFPKN AFRAH AFULF AFXEN AGINJ AGKEF AGSYK AHMBA AHXPO AIAGR AIJHB AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL ASAOO ATDFG AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN BTRTY BVRKM C1A CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN F5P F9B FHSFR FLIZI FOTVD GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HH5 HW0 HZ~ IAO IGS IOX J21 KC5 KOP KQ8 KSI KSN M-Z M49 MBTAY ML0 MVM N9A NGC NLBLG NMDNZ NOYVH NTWIH NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD O~Y P2P PAFKI PEELM PQQKQ Q1. Q5Y RD5 RHF RNI ROL ROX ROZ RPM RUSNO RW1 RXO RZO TEORI TJP TJX TLC TN5 TOX TR2 VQA W8F WOQ X7H XJT XSW YAYTL YHZ YKOAZ YXANX ZCA ZCG ZKX ZXP ZY4 ~02 ~91 7X7 8FI ABEJV ABUWG BBNVY BENPR BHPHI CGR CUY CVF DWQXO ECM EIF FYUFA HCIFZ M1P M2O M7P NPM PSQYO AAYXX CITATION 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c414t-a5c19bff6a6f08c68df6b2e90177f680987865e270a09568b1bb90c8fb708a193 |
IEDL.DBID | RPM |
ISSN | 0737-4038 |
IngestDate | Tue Sep 17 21:29:27 EDT 2024 Tue Oct 15 15:30:36 EDT 2024 Fri Oct 25 22:56:01 EDT 2024 Thu Sep 12 18:59:09 EDT 2024 Sat Nov 02 11:56:55 EDT 2024 Wed Aug 28 03:17:31 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | transposition evolution DDE transposase recombination activating gene (RAG) V(D)J recombination transposon molecular domestication Recombination activating gene (RAG) V(D)J recombination evolution transposition DDE transposase transposon molecular domestication Recombination activating gene (RAG) |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. Copyright: http://hal.archives-ouvertes.fr/licences/copyright |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-a5c19bff6a6f08c68df6b2e90177f680987865e270a09568b1bb90c8fb708a193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Eliza C Martin, Lorlane Le Targa and Louis Tsakou-Ngouafo contributed equally. Conflict of interest statement. None declared. |
ORCID | 0000-0002-3691-7537 0000-0002-1419-3494 0000-0001-7202-3648 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629977/ |
PMID | 37850912 |
PQID | 2878710904 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10629977 hal_primary_oai_HAL_hal_04243785v2 proquest_miscellaneous_2878710904 crossref_primary_10_1093_molbev_msad232 pubmed_primary_37850912 oup_primary_10_1093_molbev_msad232 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-03 |
PublicationDateYYYYMMDD | 2023-11-03 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | US |
PublicationPlace_xml | – name: US – name: United States |
PublicationTitle | Molecular biology and evolution |
PublicationTitleAlternate | Mol Biol Evol |
PublicationYear | 2023 |
Publisher | Oxford University Press Oxford University Press (OUP) |
Publisher_xml | – name: Oxford University Press – name: Oxford University Press (OUP) |
References | 37645967 - bioRxiv. 2023 Aug 20 Zhang (2023113023513227200_msad232-B89) 2019; 569 Berardi (2023113023513227200_msad232-B5) 2016; 44 Anisimova (2023113023513227200_msad232-B3) 2011; 60 Drozdetskiy (2023113023513227200_msad232-B20) 2015; 43 Xiong (2023113023513227200_msad232-B83) 2016; 12 Minh (2023113023513227200_msad232-B58) 2013; 30 Ramsden (2023113023513227200_msad232-B65) 1994; 22 Schatz (2023113023513227200_msad232-B68) 2011; 45 Shimazaki (2023113023513227200_msad232-B69) 2009; 34 Liu (2023113023513227200_msad232-B50) 2019; 575 Gellert (2023113023513227200_msad232-B25) 2002; 71 Morales Poole (2023113023513227200_msad232-B61) 2017; 69 Lapkouski (2023113023513227200_msad232-B44) 2015; 290 Fugmann (2023113023513227200_msad232-B23) 2006; 103 Kapitonov (2023113023513227200_msad232-B38) 2015; 10 Tsai (2023113023513227200_msad232-B77) 2003; 31 Maman (2023113023513227200_msad232-B55) 2016; 44 Jones (2023113023513227200_msad232-B35) 2015; 31 Kumar (2023113023513227200_msad232-B43) 2017; 34 Agrawal (2023113023513227200_msad232-B1) 1998; 394 Liu (2023113023513227200_msad232-B51) 2022; 22 Lin (2023113023513227200_msad232-B49) 2021; 23 Chen (2023113023513227200_msad232-B11) 2020; 27 Martin (2023113023513227200_msad232-B56) 2020; 11 De Guzman (2023113023513227200_msad232-B17) 1998; 279 Wu (2023113023513227200_msad232-B82) 2022 Feeney (2023113023513227200_msad232-B21) 2004; 200 Zeng (2023113023513227200_msad232-B88) 2010; 466 Almeida (2023113023513227200_msad232-B2) 2022; 38 Carmona (2023113023513227200_msad232-B9) 2017; 284 Wang (2023113023513227200_msad232-B78) 2016; 44 Hencken (2023113023513227200_msad232-B30) 2012; 19 Yakovenko (2023113023513227200_msad232-B85) 2022; 13 Kim (2023113023513227200_msad232-B40) 2015; 518 Letunic (2023113023513227200_msad232-B46) 2019; 47 Spanopoulou (2023113023513227200_msad232-B72) 1996; 87 Crooks (2023113023513227200_msad232-B15) 2004; 14 Fugmann (2023113023513227200_msad232-B24) 2010; 22 Braso-Vives (2023113023513227200_msad232-B7) 2022; 23 Flajnik (2023113023513227200_msad232-B22) 2014; 24 Coussens (2023113023513227200_msad232-B13) 2013; 4 Difilippantonio (2023113023513227200_msad232-B18) 1996; 87 Gopalakrishnan (2023113023513227200_msad232-B27) 2013; 110 Tao (2023113023513227200_msad232-B75) 2022; 9 Minh (2023113023513227200_msad232-B59) 2020; 37 Stanke (2023113023513227200_msad232-B73) 2008; 24 Wu (2023113023513227200_msad232-B81) 2020; 217 Webb (2023113023513227200_msad232-B79) 2016; 54 Davies (2023113023513227200_msad232-B16) 2000; 289 Kriatchko (2023113023513227200_msad232-B42) 2006; 26 Potter (2023113023513227200_msad232-B63) 2010; 5 Liu (2023113023513227200_msad232-B52) 2007; 27 Guindon (2023113023513227200_msad232-B28) 2010; 59 Chen (2023113023513227200_msad232-B10) 2020; 27 Klein (2023113023513227200_msad232-B41) 2000; 39 Montano (2023113023513227200_msad232-B60) 2011; 21 Gertz (2023113023513227200_msad232-B26) 2006; 4 Craig (2023113023513227200_msad232-B14) 2015 Kapitonov (2023113023513227200_msad232-B37) 2005; 3 Soubrier (2023113023513227200_msad232-B71) 2012; 29 Arshinoff (2023113023513227200_msad232-B4) 2022; 50 Yu (2023113023513227200_msad232-B87) 2002; 277 dos Reis (2023113023513227200_msad232-B19) 2015; 25 Jumper (2023113023513227200_msad232-B36) 2021; 596 Swanson (2023113023513227200_msad232-B74) 2004; 200 Lefort (2023113023513227200_msad232-B45) 2017; 34 Ramon-Maiques (2023113023513227200_msad232-B64) 2007; 104 Johnson (2023113023513227200_msad232-B34) 2008; 36 Matthews (2023113023513227200_msad232-B57) 2007; 450 Kim (2023113023513227200_msad232-B39) 2018; 70 Yakovenko (2023113023513227200_msad232-B84) 2021; 12 Yin (2023113023513227200_msad232-B86) 2009; 16 Zhang (2023113023513227200_msad232-B90) 2020; 39 Lin (2023113023513227200_msad232-B48) 2016; 326 Cheng (2023113023513227200_msad232-B12) 2005; 33 Saha (2023113023513227200_msad232-B67) 2015; 89 He (2023113023513227200_msad232-B29) 2013; 288 Johnson (2023113023513227200_msad232-B33) 2010; 11 Ru (2023113023513227200_msad232-B66) 2015; 163 Solovyev (2023113023513227200_msad232-B70) 2006; 7 Bettridge (2023113023513227200_msad232-B6) 2017; 114 Teng (2023113023513227200_msad232-B76) 2015; 162 Wilson (2023113023513227200_msad232-B80) 2008; 32 Lohe (2023113023513227200_msad232-B53) 1996; 13 Lu (2023113023513227200_msad232-B54) 2015; 10 Buchan (2023113023513227200_msad232-B8) 2019; 47 Levin (2023113023513227200_msad232-B47) 2011; 12 Okonechnikov (2023113023513227200_msad232-B62) 2012; 28 Hiom (2023113023513227200_msad232-B31) 1998; 94 Huang (2023113023513227200_msad232-B32) 2016; 166 |
References_xml | – volume: 200 start-page: 44 issue: 1 year: 2004 ident: 2023113023513227200_msad232-B21 article-title: Many levels of control of V gene rearrangement frequency publication-title: Immunol Rev doi: 10.1111/j.0105-2896.2004.00163.x contributor: fullname: Feeney – volume: 466 start-page: 258 issue: 7303 year: 2010 ident: 2023113023513227200_msad232-B88 article-title: Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b publication-title: Nature doi: 10.1038/nature09139 contributor: fullname: Zeng – volume: 27 start-page: 127 issue: 2 year: 2020 ident: 2023113023513227200_msad232-B11 article-title: How mouse RAG recombinase avoids DNA transposition publication-title: Nat Struct Mol Biol doi: 10.1038/s41594-019-0366-z contributor: fullname: Chen – year: 2022 ident: 2023113023513227200_msad232-B82 article-title: High-resolution de novo structure prediction from primary sequence publication-title: bioRxiv doi: 10.1101/2022.07.21.500999 contributor: fullname: Wu – volume: 110 start-page: E3206 issue: 34 year: 2013 ident: 2023113023513227200_msad232-B27 article-title: Unifying model for molecular determinants of the preselection Vbeta repertoire publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1304048110 contributor: fullname: Gopalakrishnan – volume: 33 start-page: W72 issue: Web Server year: 2005 ident: 2023113023513227200_msad232-B12 article-title: SCRATCH: a protein structure and structural feature prediction server publication-title: Nucl Acids Res doi: 10.1093/nar/gki396 contributor: fullname: Cheng – volume: 575 start-page: 540 issue: 7783 year: 2019 ident: 2023113023513227200_msad232-B50 article-title: Structures of a RAG-like transposase during cut-and-paste transposition publication-title: Nature doi: 10.1038/s41586-019-1753-7 contributor: fullname: Liu – volume: 30 start-page: 1188 issue: 5 year: 2013 ident: 2023113023513227200_msad232-B58 article-title: Ultrafast approximation for phylogenetic bootstrap publication-title: Mol Biol Evol doi: 10.1093/molbev/mst024 contributor: fullname: Minh – volume: 28 start-page: 1166 year: 2012 ident: 2023113023513227200_msad232-B62 article-title: Unipro UGENE: a unified bioinformatics toolkit publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts091 contributor: fullname: Okonechnikov – volume: 14 start-page: 1188 issue: 6 year: 2004 ident: 2023113023513227200_msad232-B15 article-title: Weblogo: a sequence logo generator publication-title: Genome Res doi: 10.1101/gr.849004 contributor: fullname: Crooks – volume: 31 start-page: 6180 issue: 21 year: 2003 ident: 2023113023513227200_msad232-B77 article-title: DNA mismatches and GC-rich motifs target transposition by the RAG1/RAG2 transposase publication-title: Nucl Acids Res doi: 10.1093/nar/gkg819 contributor: fullname: Tsai – volume: 12 start-page: 709165 year: 2021 ident: 2023113023513227200_msad232-B84 article-title: Guardian of the genome: an alternative RAG/Transib co-evolution hypothesis for the origin of V(D)J recombination publication-title: Front Immunol doi: 10.3389/fimmu.2021.709165 contributor: fullname: Yakovenko – volume: 114 start-page: 1904 issue: 8 year: 2017 ident: 2023113023513227200_msad232-B6 article-title: H3k4me3 induces allosteric conformational changes in the DNA-binding and catalytic regions of the V(D)J recombinase publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1615727114 contributor: fullname: Bettridge – volume: 23 start-page: 28 issue: 1 year: 2021 ident: 2023113023513227200_msad232-B49 article-title: Evidence for BMP-mediated specification of primordial germ cells in an indirect-developing hemichordate publication-title: Evol Dev doi: 10.1111/ede.12361 contributor: fullname: Lin – volume: 10 start-page: 29 issue: 1 year: 2015 ident: 2023113023513227200_msad232-B54 article-title: An autoregulatory mechanism imposes allosteric control on the V(D)J recombinase by histone H3 methylation publication-title: Cell Rep doi: 10.1016/j.celrep.2014.12.001 contributor: fullname: Lu – volume: 87 start-page: 263 issue: 2 year: 1996 ident: 2023113023513227200_msad232-B72 article-title: The homeodomain region of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination publication-title: Cell doi: 10.1016/S0092-8674(00)81344-6 contributor: fullname: Spanopoulou – volume: 43 start-page: W389 issue: W1 year: 2015 ident: 2023113023513227200_msad232-B20 article-title: JPred4: a protein secondary structure prediction server publication-title: Nucl Acids Res doi: 10.1093/nar/gkv332 contributor: fullname: Drozdetskiy – volume: 87 start-page: 253 issue: 2 year: 1996 ident: 2023113023513227200_msad232-B18 article-title: RAG1 mediates signal sequence recognition and recruitment of RAG2 in V(D)J recombination publication-title: Cell doi: 10.1016/S0092-8674(00)81343-4 contributor: fullname: Difilippantonio – volume: 22 start-page: 10 issue: 1 year: 2010 ident: 2023113023513227200_msad232-B24 article-title: The origins of the Rag genes—from transposition to V(D)J recombination publication-title: Semin Immunol doi: 10.1016/j.smim.2009.11.004 contributor: fullname: Fugmann – volume: 22 start-page: 353 issue: 6 year: 2022 ident: 2023113023513227200_msad232-B51 article-title: Structural insights into the evolution of the RAG recombinase publication-title: Nat Rev Immunol doi: 10.1038/s41577-021-00628-6 contributor: fullname: Liu – volume: 22 start-page: 1785 issue: 10 year: 1994 ident: 2023113023513227200_msad232-B65 article-title: Conservation of sequence in recombination signal sequence spacers publication-title: Nucl Acids Res doi: 10.1093/nar/22.10.1785 contributor: fullname: Ramsden – volume: 34 start-page: 1812 issue: 7 year: 2017 ident: 2023113023513227200_msad232-B43 article-title: Timetree: a resource for timelines, timetrees, and divergence times publication-title: Mol Biol Evol doi: 10.1093/molbev/msx116 contributor: fullname: Kumar – volume: 71 start-page: 101 issue: 1 year: 2002 ident: 2023113023513227200_msad232-B25 article-title: V(D)J recombination: RAG proteins, repair factors, and regulation publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.71.090501.150203 contributor: fullname: Gellert – volume: 166 start-page: 102 issue: 1 year: 2016 ident: 2023113023513227200_msad232-B32 article-title: Discovery of an active RAG transposon illuminates the origins of V(D)J recombination publication-title: Cell doi: 10.1016/j.cell.2016.05.032 contributor: fullname: Huang – volume: 47 start-page: W256 issue: W1 year: 2019 ident: 2023113023513227200_msad232-B46 article-title: Interactive Tree Of Life (iTOL) v4: recent updates and new developments publication-title: Nucl Acids Res doi: 10.1093/nar/gkz239 contributor: fullname: Letunic – volume: 44 start-page: W430 issue: W1 year: 2016 ident: 2023113023513227200_msad232-B78 article-title: RaptorX-Property: a web server for protein structure property prediction publication-title: Nucl Acids Res doi: 10.1093/nar/gkw306 contributor: fullname: Wang – volume: 24 start-page: R1060 issue: 21 year: 2014 ident: 2023113023513227200_msad232-B22 article-title: Re-evaluation of the immunological Big Bang publication-title: Curr Biol doi: 10.1016/j.cub.2014.09.070 contributor: fullname: Flajnik – volume: 284 start-page: 1590 issue: 11 year: 2017 ident: 2023113023513227200_msad232-B9 article-title: New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination publication-title: FEBS J doi: 10.1111/febs.13990 contributor: fullname: Carmona – volume: 27 start-page: 561 issue: 4 year: 2007 ident: 2023113023513227200_msad232-B52 article-title: A plant homeodomain in RAG-2 that binds hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement publication-title: Immunity doi: 10.1016/j.immuni.2007.09.005 contributor: fullname: Liu – volume: 31 start-page: 857 issue: 6 year: 2015 ident: 2023113023513227200_msad232-B35 article-title: DISOPRED3: precise disordered region predictions with annotated protein-binding activity publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu744 contributor: fullname: Jones – volume: 70 start-page: 358 issue: 2 year: 2018 ident: 2023113023513227200_msad232-B39 article-title: Cracking the DNA code for V(D)J recombination publication-title: Mol Cell doi: 10.1016/j.molcel.2018.03.008 contributor: fullname: Kim – volume: 38 start-page: 529 issue: 6 year: 2022 ident: 2023113023513227200_msad232-B2 article-title: Taming transposable elements in vertebrates: from epigenetic silencing to domestication publication-title: Trends Genet doi: 10.1016/j.tig.2022.02.009 contributor: fullname: Almeida – volume: 54 start-page: 5.6.1 issue: 1 year: 2016 ident: 2023113023513227200_msad232-B79 article-title: Comparative protein structure modeling using MODELLER publication-title: Curr Protoc Bioinformatics doi: 10.1002/cpbi.3 contributor: fullname: Webb – volume: 12 start-page: 1111 issue: 12 year: 2016 ident: 2023113023513227200_msad232-B83 article-title: Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2 publication-title: Nat Chem Biol doi: 10.1038/nchembio.2218 contributor: fullname: Xiong – volume: 94 start-page: 463 issue: 4 year: 1998 ident: 2023113023513227200_msad232-B31 article-title: DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations publication-title: Cell doi: 10.1016/S0092-8674(00)81587-1 contributor: fullname: Hiom – volume: 10 start-page: 20 issue: 1 year: 2015 ident: 2023113023513227200_msad232-B38 article-title: Evolution of the RAG1–RAG2 locus: both proteins came from the same transposon publication-title: Biol Direct doi: 10.1186/s13062-015-0055-8 contributor: fullname: Kapitonov – volume: 13 start-page: 549 issue: 4 year: 1996 ident: 2023113023513227200_msad232-B53 article-title: Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a025615 contributor: fullname: Lohe – volume: 34 start-page: 535 issue: 5 year: 2009 ident: 2023113023513227200_msad232-B69 article-title: H3k4me3 stimulates the V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations publication-title: Mol Cell doi: 10.1016/j.molcel.2009.05.011 contributor: fullname: Shimazaki – volume: 103 start-page: 3728 issue: 10 year: 2006 ident: 2023113023513227200_msad232-B23 article-title: An ancient evolutionary origin of the Rag1/2 gene locus publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0509720103 contributor: fullname: Fugmann – volume: 9 start-page: nwac073 issue: 8 year: 2022 ident: 2023113023513227200_msad232-B75 article-title: The RAG key to vertebrate adaptive immunity descended directly from a bacterial ancestor publication-title: Natl Sci Rev doi: 10.1093/nsr/nwac073 contributor: fullname: Tao – volume: 3 start-page: e181 issue: 6 year: 2005 ident: 2023113023513227200_msad232-B37 article-title: RAG1 Core and V(D)J recombination signal sequences were derived from Transib transposons publication-title: PLoS Biol doi: 10.1371/journal.pbio.0030181 contributor: fullname: Kapitonov – volume: 36 start-page: W5 issue: Web Server year: 2008 ident: 2023113023513227200_msad232-B34 article-title: NCBI BLAST: a better web interface publication-title: Nucl Acids Res doi: 10.1093/nar/gkn201 contributor: fullname: Johnson – volume: 32 start-page: 1221 issue: 10 year: 2008 ident: 2023113023513227200_msad232-B80 article-title: The PHD domain of the sea urchin RAG2 homolog, SpRAG2L, recognizes dimethylated lysine 4 in histone H3 tails publication-title: Dev Comp Immunol doi: 10.1016/j.dci.2008.03.012 contributor: fullname: Wilson – volume: 4 start-page: 41 issue: 1 year: 2006 ident: 2023113023513227200_msad232-B26 article-title: Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST publication-title: BMC Biol doi: 10.1186/1741-7007-4-41 contributor: fullname: Gertz – volume: 518 start-page: 507 issue: 7540 year: 2015 ident: 2023113023513227200_msad232-B40 article-title: Crystal structure of the V(D)J recombinase RAG1–RAG2 publication-title: Nature doi: 10.1038/nature14174 contributor: fullname: Kim – volume: 16 start-page: 499 issue: 5 year: 2009 ident: 2023113023513227200_msad232-B86 article-title: Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1593 contributor: fullname: Yin – volume: 569 start-page: 79 issue: 7754 year: 2019 ident: 2023113023513227200_msad232-B89 article-title: Transposon molecular domestication and the evolution of the RAG recombinase publication-title: Nature doi: 10.1038/s41586-019-1093-7 contributor: fullname: Zhang – volume: 21 start-page: 370 issue: 3 year: 2011 ident: 2023113023513227200_msad232-B60 article-title: Moving DNA around: DNA transposition and retroviral integration publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2011.03.004 contributor: fullname: Montano – volume: 163 start-page: 1138 issue: 5 year: 2015 ident: 2023113023513227200_msad232-B66 article-title: Molecular mechanism of V(D)J recombination from synaptic RAG1–RAG2 complex structures publication-title: Cell doi: 10.1016/j.cell.2015.10.055 contributor: fullname: Ru – volume: 89 start-page: 3922 issue: 7 year: 2015 ident: 2023113023513227200_msad232-B67 article-title: A trans-dominant form of Gag restricts Ty1 retrotransposition and mediates copy number control publication-title: J Virol doi: 10.1128/JVI.03060-14 contributor: fullname: Saha – volume: 290 start-page: 14618 issue: 23 year: 2015 ident: 2023113023513227200_msad232-B44 article-title: Assembly pathway and characterization of the RAG1/2-DNA paired and signal-end complexes publication-title: J Biol Chem doi: 10.1074/jbc.M115.641787 contributor: fullname: Lapkouski – volume: 7 start-page: S10 issue: Suppl 1 year: 2006 ident: 2023113023513227200_msad232-B70 article-title: Automatic annotation of eukaryotic genes, pseudogenes and promoters publication-title: Genome Biol doi: 10.1186/gb-2006-7-s1-s10 contributor: fullname: Solovyev – volume: 60 start-page: 685 issue: 5 year: 2011 ident: 2023113023513227200_msad232-B3 article-title: Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes publication-title: Syst Biol doi: 10.1093/sysbio/syr041 contributor: fullname: Anisimova – volume: 289 start-page: 77 issue: 5476 year: 2000 ident: 2023113023513227200_msad232-B16 article-title: Three-dimensional structure of the Tn5 synaptic complex transposition intermediate publication-title: Science doi: 10.1126/science.289.5476.77 contributor: fullname: Davies – volume: 11 start-page: 17 issue: 1 year: 2020 ident: 2023113023513227200_msad232-B56 article-title: Identification of RAG-like transposons in protostomes suggests their ancient bilaterian origin publication-title: Mob DNA doi: 10.1186/s13100-020-00214-y contributor: fullname: Martin – volume: 39 start-page: 1604 issue: 7 year: 2000 ident: 2023113023513227200_msad232-B41 article-title: The NMR structure of the nucleocapsid protein from the mouse mammary tumor virus reveals unusual folding of the C-terminal zinc knuckle publication-title: Biochemistry doi: 10.1021/bi9922493 contributor: fullname: Klein – volume: 37 start-page: 1530 issue: 5 year: 2020 ident: 2023113023513227200_msad232-B59 article-title: IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era publication-title: Mol Biol Evol doi: 10.1093/molbev/msaa015 contributor: fullname: Minh – volume: 25 start-page: 2939 issue: 22 year: 2015 ident: 2023113023513227200_msad232-B19 article-title: Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales publication-title: Curr Biol doi: 10.1016/j.cub.2015.09.066 contributor: fullname: dos Reis – volume: 69 start-page: 391 issue: 6 year: 2017 ident: 2023113023513227200_msad232-B61 article-title: The RAG transposon is active through the deuterostome evolution and domesticated in jawed vertebrates publication-title: Immunogenetics doi: 10.1007/s00251-017-0979-5 contributor: fullname: Morales Poole – volume: 24 start-page: 637 issue: 5 year: 2008 ident: 2023113023513227200_msad232-B73 article-title: Using native and syntenically mapped cDNA alignments to improve de novo gene finding publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn013 contributor: fullname: Stanke – volume: 19 start-page: 834 issue: 8 year: 2012 ident: 2023113023513227200_msad232-B30 article-title: Functional characterization of an active Rag-like transposase publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2338 contributor: fullname: Hencken – volume: 59 start-page: 307 issue: 3 year: 2010 ident: 2023113023513227200_msad232-B28 article-title: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 publication-title: Syst Biol doi: 10.1093/sysbio/syq010 contributor: fullname: Guindon – volume: 29 start-page: 3345 issue: 11 year: 2012 ident: 2023113023513227200_msad232-B71 article-title: The influence of rate heterogeneity among sites on the time dependence of molecular rates publication-title: Mol Biol Evol doi: 10.1093/molbev/mss140 contributor: fullname: Soubrier – volume: 277 start-page: 5040 issue: 7 year: 2002 ident: 2023113023513227200_msad232-B87 article-title: The cleavage efficiency of the human immunoglobulin heavy chain VH elements by the RAG complex: implications for the immune repertoire publication-title: J Biol Chem doi: 10.1074/jbc.M109772200 contributor: fullname: Yu – volume: 450 start-page: 1106 issue: 7172 year: 2007 ident: 2023113023513227200_msad232-B57 article-title: RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination publication-title: Nature doi: 10.1038/nature06431 contributor: fullname: Matthews – volume: 45 start-page: 167 issue: 1 year: 2011 ident: 2023113023513227200_msad232-B68 article-title: V(D)J recombination: mechanisms of initiation publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-110410-132552 contributor: fullname: Schatz – volume: 34 start-page: 2422 issue: 9 year: 2017 ident: 2023113023513227200_msad232-B45 article-title: SMS: smart model selection in PhyML publication-title: Mol Biol Evol doi: 10.1093/molbev/msx149 contributor: fullname: Lefort – volume: 47 start-page: W402 issue: W1 year: 2019 ident: 2023113023513227200_msad232-B8 article-title: The PSIPRED protein analysis workbench: 20 years on publication-title: Nucl Acids Res doi: 10.1093/nar/gkz297 contributor: fullname: Buchan – volume: 23 start-page: 243 issue: 1 year: 2022 ident: 2023113023513227200_msad232-B7 article-title: Parallel evolution of amphioxus and vertebrate small-scale gene duplications publication-title: Genome Biol doi: 10.1186/s13059-022-02808-6 contributor: fullname: Braso-Vives – volume: 279 start-page: 384 issue: 5349 year: 1998 ident: 2023113023513227200_msad232-B17 article-title: Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element publication-title: Science doi: 10.1126/science.279.5349.384 contributor: fullname: De Guzman – volume: 596 start-page: 583 issue: 7873 year: 2021 ident: 2023113023513227200_msad232-B36 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 contributor: fullname: Jumper – volume: 39 start-page: e105857 issue: 21 year: 2020 ident: 2023113023513227200_msad232-B90 article-title: Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase publication-title: EMBO J doi: 10.15252/embj.2020105857 contributor: fullname: Zhang – volume: 27 start-page: 119 issue: 2 year: 2020 ident: 2023113023513227200_msad232-B10 article-title: Cutting antiparallel DNA strands in a single active site publication-title: Nat Struct Mol Biol doi: 10.1038/s41594-019-0363-2 contributor: fullname: Chen – volume: 11 start-page: 431 issue: 1 year: 2010 ident: 2023113023513227200_msad232-B33 article-title: Hidden Markov model speed heuristic and iterative HMM search procedure publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-431 contributor: fullname: Johnson – volume: 4 start-page: 870 issue: 5 year: 2013 ident: 2023113023513227200_msad232-B13 article-title: RAG2's acidic hinge restricts repair-pathway choice and promotes genomic stability publication-title: Cell Rep doi: 10.1016/j.celrep.2013.07.041 contributor: fullname: Coussens – volume: 12 start-page: 615 issue: 9 year: 2011 ident: 2023113023513227200_msad232-B47 article-title: Dynamic interactions between transposable elements and their hosts publication-title: Nat Rev Genet doi: 10.1038/nrg3030 contributor: fullname: Levin – volume: 394 start-page: 744 issue: 6695 year: 1998 ident: 2023113023513227200_msad232-B1 article-title: Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system publication-title: Nature doi: 10.1038/29457 contributor: fullname: Agrawal – start-page: 3 volume-title: Mobile DNA III year: 2015 ident: 2023113023513227200_msad232-B14 doi: 10.1128/microbiolspec.MDNA3-0062-2014 contributor: fullname: Craig – volume: 326 start-page: 47 issue: 1 year: 2016 ident: 2023113023513227200_msad232-B48 article-title: Reproductive periodicity, spawning induction, and larval metamorphosis of the hemichordate acorn worm Ptychodera flava publication-title: J Exp Zool B Mol Dev Evol doi: 10.1002/jez.b.22665 contributor: fullname: Lin – volume: 200 start-page: 90 issue: 1 year: 2004 ident: 2023113023513227200_msad232-B74 article-title: The bounty of RAGs: recombination signal complexes and reaction outcomes publication-title: Immunol Rev doi: 10.1111/j.0105-2896.2004.00159.x contributor: fullname: Swanson – volume: 217 start-page: e20200412 issue: 9 year: 2020 ident: 2023113023513227200_msad232-B81 article-title: Poor quality Vbeta recombination signal sequences stochastically enforce TCRbeta allelic exclusion publication-title: J Exp Med doi: 10.1084/jem.20200412 contributor: fullname: Wu – volume: 104 start-page: 18993 issue: 48 year: 2007 ident: 2023113023513227200_msad232-B64 article-title: The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0709170104 contributor: fullname: Ramon-Maiques – volume: 50 start-page: D970 issue: D1 year: 2022 ident: 2023113023513227200_msad232-B4 article-title: Echinobase: leveraging an extant model organism database to build a knowledgebase supporting research on the genomics and biology of echinoderms publication-title: Nucl Acids Res doi: 10.1093/nar/gkab1005 contributor: fullname: Arshinoff – volume: 288 start-page: 4692 issue: 7 year: 2013 ident: 2023113023513227200_msad232-B29 article-title: The methyltransferase NSD3 has chromatin-binding motifs, PHD5-C5HCH, that are distinct from other NSD (nuclear receptor SET domain) family members in their histone H3 recognition publication-title: J Biol Chem doi: 10.1074/jbc.M112.426148 contributor: fullname: He – volume: 26 start-page: 4712 issue: 12 year: 2006 ident: 2023113023513227200_msad232-B42 article-title: Identification and characterization of a gain-of-function RAG-1 mutant publication-title: Mol Cell Biol doi: 10.1128/MCB.02487-05 contributor: fullname: Kriatchko – volume: 162 start-page: 751 issue: 4 year: 2015 ident: 2023113023513227200_msad232-B76 article-title: RAG represents a widespread threat to the lymphocyte genome publication-title: Cell doi: 10.1016/j.cell.2015.07.009 contributor: fullname: Teng – volume: 44 start-page: 3448 issue: 7 year: 2016 ident: 2023113023513227200_msad232-B5 article-title: Structural basis for PHDVC5HCHNSD1-C2HRNizp1 interaction: implications for Sotos syndrome publication-title: Nucl Acids Res doi: 10.1093/nar/gkw103 contributor: fullname: Berardi – volume: 13 start-page: 1066510 year: 2022 ident: 2023113023513227200_msad232-B85 article-title: Different sea urchin RAG-like genes were domesticated to carry out different functions publication-title: Front Immunol doi: 10.3389/fimmu.2022.1066510 contributor: fullname: Yakovenko – volume: 5 start-page: e10168 issue: 4 year: 2010 ident: 2023113023513227200_msad232-B63 article-title: Splinkerette PCR for mapping transposable elements in Drosophila publication-title: PLoS ONE doi: 10.1371/journal.pone.0010168 contributor: fullname: Potter – volume: 44 start-page: 9624 issue: 20 year: 2016 ident: 2023113023513227200_msad232-B55 article-title: RAG1 targeting in the genome is dominated by chromatin interactions mediated by the non-core regions of RAG1 and RAG2 publication-title: Nucl Acids Res contributor: fullname: Maman |
SSID | ssj0014466 |
Score | 2.4768016 |
Snippet | Abstract
A series of “molecular domestication” events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1–RAG2 (RAG)... A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a... ABSTRACT A series of “molecular domestication” events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG)... A series of “molecular domestication” events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1–RAG2 (RAG) recombinase, a... |
SourceID | pubmedcentral hal proquest crossref pubmed oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
SubjectTerms | Adaptive Immunity - genetics Animals Discoveries DNA Transposable Elements Homeodomain Proteins - genetics Homeodomain Proteins - metabolism Life Sciences Vertebrates - genetics Vertebrates - metabolism |
Title | Insights into RAG Evolution from the Identification of “Missing Link” Family A RAGL Transposons |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37850912 https://search.proquest.com/docview/2878710904 https://hal.science/hal-04243785 https://pubmed.ncbi.nlm.nih.gov/PMC10629977 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6xSK24VNDn8pJbVeopJBsntnNcIWBbsW1VgbS3yPbGYiU2QWRZiRs_BP4cv4SZPFakFyQuOSSOFXkmnm88M98AfJdcG2It8Yww1dGN9bROpOeixErcDkNXkSSNf4vRefRrEk_WQLS1MFXSvjWzg_xyfpDPLqrcyqu59ds8Mf_v-BDdGNxFpfR70EMNbX30JnbQRigll-gdcbWiauT-vLg02dKfl3qKSGID3nKpyGKGHavUu6CcyE692zPY-X_25DNzdLwJ7xocyYb1927BWpa_hzd1Z8nbD2B_5iW53SWb5YuC_RuesKNlo2WMSkoYAj9WV-m65tiOFY493t2PURRozxh5qY93D6xujcGGNMkpa8jQEaWXH-H8-OjscOQ1_RQ8Gw2ihadjO0iMc0ILFygr1NQJE2aICKR0QgWJkkrEWSgDTfSEygyMSQKrnJGB0oj0PsF6XuTZF2DCGm3Rtk9jwyMx0MScFYskdJZzI8O4Dz_a9UyvatqMtA5387QWQtoIoQ_fcLlXg4jtejQ8TekeRWVJQEsahNJ4caavrbBS_Eco8KHzrLgpU_QKFeWcBlEfPtfCW83VakAfVEesnS_qPkG1rHi4WzXcfv2rO7BB_eur4ka-C-uL65tsD1HOwuxXpwP7lWrj9ezP5AkKFv_W |
link.rule.ids | 230,315,730,783,787,867,888,1607,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BVVsu9Bu2n25VqadssnFiO8cVgi7tLqoqULlFtjcWq7IJItmV6Ikf0v45fgnjOFkRLlV7jR0r0RvbbzwzzwAfOZXKqpZ4iqn66EZ7UibcM1GiOS6HoalFkiaHbHQcfTmJT9aAtbUwddK-VrN-fjbv57PTOrfyfK79Nk_M_zbZRTcGV1HO_XW4hxM2iFovvYketDFKTjn6R1SsxBqpPy_OVLb056WcIpfYhAeUC7tnhp19af3UZkV2Kt5uEc-7-ZO3NqT9R_Cj_RWXh_Kzv6hUX_-6o_L47__6GLYajkqGrv0JrGX5U7jvbq28fAb6IC-tS1-SWV4V5PvwM9lbNhZMbLkKQVJJXAWwaY4ESWHI9dXvCcKMeyWxHvD11R_irt0gQzvImDRC6-gBlM_heH_vaHfkNXc1eDoaRJUnYz1IlDFMMhMIzcTUMBVmyDY4N0wEieCCxVnIA2mlD4UaKJUEWhjFAyGRRb6AjbzIsx0gTCupkTdMY0UjNpBWlStmSWg0pYqHcQ8-tUil506SI3WhdJo6eNMG3h58QCBXnayS9mg4Tu0zG_G10C9tJ8T5ryO9b80gxflngyoyz4pFmaLHKWw-axD1YNuZxWqs1rZ6IDoG0_mibguaQa3x3cL-8v9ffQcPR0eTcTo-OPz6CjZDZGd1ESV9DRvVxSJ7g2yqUm_rqXMDtmsgBA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFL2sHSt96b637FMbgz05dixbkh9D1yzdklLGCoU9GEmxaFhjh9oJbE_9Iduf6y_ZlWWHui-DvtqysDhX0rm69x4BfOBUKqta4imm6qMb7UmZcM9Eiea4HIamFkmaHrHxSfTlND5tsirLJq0y12rez88X_Xx-VudWLhfab_PE_OPpProxuIpy7i9nxt-CuzhpA9Z66k0EoY1TcsrRR6JiI9hI_UVxrrK1vyjlDPnELuxQLuy-GXb2pq0zmxnZqXq7Rj5v5lBe25RG9-FHOxyXi_Kzv6pUX_--ofR4u_E-gL2Gq5Kha_MQ7mT5I7jnbq_89Rj0YV5a174k87wqyLfhZ3KwbiyZ2LIVguSSuEpg0xwNksKQq8s_U4Qb90xiPeGry7_EXb9BhraTCWkE19ETKJ_Ayejg-_7Ya-5s8HQ0iCpPxnqQKGOYZCYQmomZYSrMkHVwbpgIEsEFi7OQB9JKIAo1UCoJtDCKB0Iim3wK23mRZ8-BMK2kRv4wixWN2EBada6YJaHRlCoexj342KKVLp00R-pC6jR1EKcNxD14j2BuGllF7fFwktpnNvJr4V_bRoj1f3t615pCivPQBldknhWrMkXPU9i81iDqwTNnGpu-WvvqgegYTeePum_QFGqt7xb6F7f_9C3sHH8apZPDo68vYTdEklbXUtJXsF1drLLXSKoq9aaePf8AqR0ihA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+RAG+Evolution+from+the+Identification+of+%22Missing+Link%22+Family+A+RAGL+Transposons&rft.jtitle=Molecular+biology+and+evolution&rft.au=Martin%2C+Eliza+C&rft.au=Le+Targa%2C+Lorlane&rft.au=Tsakou-Ngouafo%2C+Louis&rft.au=Fan%2C+Tzu-Pei&rft.date=2023-11-03&rft.eissn=1537-1719&rft.volume=40&rft.issue=11&rft_id=info:doi/10.1093%2Fmolbev%2Fmsad232&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0737-4038&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0737-4038&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0737-4038&client=summon |