Experimental and economic analysis of passive cooling PV module using fins and planar reflector
This study aims to experimentally investigate the passive cooling performance of a concentrated PV module, using two different designs of novel passive fin heat sinks namely, lapping and longitudinal. Design of Experiment (DOE) approach technique was employed to identify the optimum design parameter...
Saved in:
Published in | Case studies in thermal engineering Vol. 23; p. 100801 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2214-157X 2214-157X |
DOI | 10.1016/j.csite.2020.100801 |
Cover
Loading…
Summary: | This study aims to experimentally investigate the passive cooling performance of a concentrated PV module, using two different designs of novel passive fin heat sinks namely, lapping and longitudinal. Design of Experiment (DOE) approach technique was employed to identify the optimum design parameters in terms of fin height, fin pitch, fin thickness, number of fins and tilt angle. The experimental work was carried out under real environmental conditions at optimum design parameters of the passive fin heat sinks. At average solar irradiance of 1000 W/m2 and ambient temperature of 33 °C, results showed that, passive cooling with lapping fins demonstrate the best performance with mean PV module temperature 24.6 °C lower than the reference PV module, and hence, the achieved electrical efficiency and power output are as high as 10.68% and 37.1 W, respectively. Finally, Life Cycle Cost Analysis (LCCA) was conducted. The analysis showed that the payback period for PV module with longitudinal, lapping fins and bare PV module are 4.2, 5 and 8.4 years respectively. Therefore, PV module cooling using passive technique particularly with lapping fins design is concluded as the preferred option. |
---|---|
ISSN: | 2214-157X 2214-157X |
DOI: | 10.1016/j.csite.2020.100801 |