Experimental and economic analysis of passive cooling PV module using fins and planar reflector
This study aims to experimentally investigate the passive cooling performance of a concentrated PV module, using two different designs of novel passive fin heat sinks namely, lapping and longitudinal. Design of Experiment (DOE) approach technique was employed to identify the optimum design parameter...
Saved in:
Published in | Case studies in thermal engineering Vol. 23; p. 100801 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2214-157X 2214-157X |
DOI | 10.1016/j.csite.2020.100801 |
Cover
Loading…
Abstract | This study aims to experimentally investigate the passive cooling performance of a concentrated PV module, using two different designs of novel passive fin heat sinks namely, lapping and longitudinal. Design of Experiment (DOE) approach technique was employed to identify the optimum design parameters in terms of fin height, fin pitch, fin thickness, number of fins and tilt angle. The experimental work was carried out under real environmental conditions at optimum design parameters of the passive fin heat sinks. At average solar irradiance of 1000 W/m2 and ambient temperature of 33 °C, results showed that, passive cooling with lapping fins demonstrate the best performance with mean PV module temperature 24.6 °C lower than the reference PV module, and hence, the achieved electrical efficiency and power output are as high as 10.68% and 37.1 W, respectively. Finally, Life Cycle Cost Analysis (LCCA) was conducted. The analysis showed that the payback period for PV module with longitudinal, lapping fins and bare PV module are 4.2, 5 and 8.4 years respectively. Therefore, PV module cooling using passive technique particularly with lapping fins design is concluded as the preferred option. |
---|---|
AbstractList | This study aims to experimentally investigate the passive cooling performance of a concentrated PV module, using two different designs of novel passive fin heat sinks namely, lapping and longitudinal. Design of Experiment (DOE) approach technique was employed to identify the optimum design parameters in terms of fin height, fin pitch, fin thickness, number of fins and tilt angle. The experimental work was carried out under real environmental conditions at optimum design parameters of the passive fin heat sinks. At average solar irradiance of 1000 W/m2 and ambient temperature of 33 °C, results showed that, passive cooling with lapping fins demonstrate the best performance with mean PV module temperature 24.6 °C lower than the reference PV module, and hence, the achieved electrical efficiency and power output are as high as 10.68% and 37.1 W, respectively. Finally, Life Cycle Cost Analysis (LCCA) was conducted. The analysis showed that the payback period for PV module with longitudinal, lapping fins and bare PV module are 4.2, 5 and 8.4 years respectively. Therefore, PV module cooling using passive technique particularly with lapping fins design is concluded as the preferred option. |
ArticleNumber | 100801 |
Author | Fazlizan, A. Elbreki, A.M. Muftah, A.F. Ibrahim, A. Jarimi, H. Sopian, K. |
Author_xml | – sequence: 1 givenname: A.M. orcidid: 0000-0002-6129-2946 surname: Elbreki fullname: Elbreki, A.M. organization: Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia – sequence: 2 givenname: A.F. surname: Muftah fullname: Muftah, A.F. organization: College of Mechanical Engineering Technology, Benghazi, Libya – sequence: 3 givenname: K. surname: Sopian fullname: Sopian, K. organization: Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia – sequence: 4 givenname: H. surname: Jarimi fullname: Jarimi, H. organization: Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia – sequence: 5 givenname: A. orcidid: 0000-0002-1614-3327 surname: Fazlizan fullname: Fazlizan, A. organization: Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia – sequence: 6 givenname: A. surname: Ibrahim fullname: Ibrahim, A. email: iadnan@ukm.edu.my, nasirburki@siswa.ukm.edu.my organization: Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia |
BookMark | eNp9kE1rGzEQhkVJoWmaX9CL_oBdjbSSdw89lJAPQyA5tKU3MasdBRlZMtImJP8-st1A6SGn0Qw8L3qfz-wk5USMfQWxBAHm22bpaphpKYXcX0Qv4AM7lRK6BejVn5N_3p_Yea0bIQSsVA9dd8rs5fOOSthSmjFyTBMnl1PeBtcWjC81VJ4932Gt4Ym4yzmG9MDvf_Ntnh4j8ce6331I9UDvYsMKL-QjuTmXL-yjx1jp_O88Y7-uLn9e3Cxu767XFz9uF66Dbl6g1tILhXpUAxgpjXBAiNINThHA6KXRoxYg1UTGtNlLZ3oxedN5P06DOmPrY-6UcWN3rRGWF5sx2MMhlweLZQ4ukvWkUfle65URnRokrsAoo2AcRj90PbWs4ZjlSq61VbEuzDiHnOaCIVoQdi_ebuxBvN2Lt0fxjVX_sW9_eZ_6fqSoKXoKVGx1gZKjKZSmsXUI7_Kv22ifqw |
CitedBy_id | crossref_primary_10_1016_j_csite_2025_105763 crossref_primary_10_1007_s10765_024_03409_0 crossref_primary_10_1016_j_energy_2023_129860 crossref_primary_10_1016_j_rineng_2024_102225 crossref_primary_10_1021_acs_energyfuels_3c03627 crossref_primary_10_1016_j_renene_2024_121851 crossref_primary_10_1038_s41598_024_54031_x crossref_primary_10_1016_j_egyr_2024_07_038 crossref_primary_10_3390_technologies12090171 crossref_primary_10_1016_j_egyr_2022_11_177 crossref_primary_10_1016_j_csite_2023_103626 crossref_primary_10_1016_j_applthermaleng_2024_123180 crossref_primary_10_1016_j_solener_2023_111829 crossref_primary_10_3390_su151512028 crossref_primary_10_1016_j_egyr_2022_11_053 crossref_primary_10_1016_j_asej_2023_102330 crossref_primary_10_1088_1742_6596_2655_1_012016 crossref_primary_10_1016_j_apenergy_2022_119810 crossref_primary_10_1016_j_psep_2024_06_105 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125554 crossref_primary_10_1016_j_enconman_2022_116046 crossref_primary_10_1016_j_solener_2024_112345 crossref_primary_10_1016_j_renene_2022_07_133 crossref_primary_10_1051_e3sconf_202132300001 crossref_primary_10_3390_app13031949 crossref_primary_10_1016_j_solener_2024_112946 crossref_primary_10_3390_sym16040412 crossref_primary_10_1016_j_heliyon_2023_e21294 crossref_primary_10_1016_j_solener_2023_03_004 crossref_primary_10_1016_j_enbuild_2022_112274 crossref_primary_10_1016_j_energy_2022_125669 crossref_primary_10_3390_pr12050988 crossref_primary_10_1016_j_csite_2022_102007 crossref_primary_10_2339_politeknik_747243 crossref_primary_10_1016_j_csite_2021_101578 crossref_primary_10_1016_j_applthermaleng_2022_119469 crossref_primary_10_1093_ijlct_ctad126 crossref_primary_10_1016_j_uncres_2024_100121 crossref_primary_10_3389_fenrg_2022_937155 crossref_primary_10_1007_s41742_022_00431_8 crossref_primary_10_1016_j_egyr_2024_03_007 crossref_primary_10_1051_e3sconf_202447700088 crossref_primary_10_1016_j_renene_2022_03_156 crossref_primary_10_1016_j_seta_2021_101726 crossref_primary_10_1016_j_solener_2024_112932 crossref_primary_10_1007_s42108_025_00346_y crossref_primary_10_1016_j_csite_2024_104139 crossref_primary_10_1016_j_solener_2022_12_014 crossref_primary_10_1016_j_seta_2022_102095 crossref_primary_10_3390_horticulturae10101055 crossref_primary_10_1080_15567036_2023_2256687 crossref_primary_10_1002_ese3_1043 crossref_primary_10_1016_j_cherd_2024_09_011 crossref_primary_10_1016_j_adapen_2023_100159 crossref_primary_10_1016_j_rser_2023_113901 crossref_primary_10_1016_j_csite_2022_101811 crossref_primary_10_1016_j_clet_2022_100579 crossref_primary_10_1615_HeatTransRes_2023051462 crossref_primary_10_1016_j_ecmx_2023_100408 crossref_primary_10_3390_en17163949 crossref_primary_10_1061_JLEED9_EYENG_4572 crossref_primary_10_1016_j_csite_2023_102800 crossref_primary_10_1016_j_nexus_2022_100161 |
Cites_doi | 10.1016/j.solmat.2006.10.012 10.1093/ijlct/ctr018 10.1016/j.asej.2013.03.005 10.1016/j.enbuild.2013.12.052 10.1016/j.enconman.2013.03.012 10.1093/ijlct/ctu013 10.1016/j.solmat.2004.01.011 10.1109/TEC.2011.2112363 10.1016/j.solener.2010.06.010 10.1016/j.ijthermalsci.2011.06.014 10.1016/j.enconman.2014.10.039 10.1016/j.renene.2008.03.024 10.1016/j.rser.2018.12.051 10.1016/j.enconman.2013.10.019 10.1063/1.4885178 10.1016/j.solener.2005.10.006 10.1016/j.apenergy.2011.05.037 10.1016/0038-092X(87)90006-5 10.1016/1359-4311(95)00012-3 10.1016/j.solener.2014.11.001 10.1016/j.enconman.2012.05.026 10.1016/j.solener.2015.01.037 10.1016/j.solener.2011.04.021 10.1016/j.enconman.2015.06.067 10.1016/j.solener.2009.01.015 10.1080/01457630802529214 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) |
Copyright_xml | – notice: 2020 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2020.100801 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_fe5a3f8557604392a7163631b9bf948e 10_1016_j_csite_2020_100801 S2214157X20305438 |
GroupedDBID | 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c414t-a552f03a5b39162260c1eaa2c9c3e11bf265b50123de6601282c680df64ffbd93 |
IEDL.DBID | IXB |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:23:56 EDT 2025 Tue Jul 01 02:28:26 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 Tue Jul 25 21:03:43 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Passive cooling Electrical efficiency Experimental design LCC Novel fins heat sink |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-a552f03a5b39162260c1eaa2c9c3e11bf265b50123de6601282c680df64ffbd93 |
ORCID | 0000-0002-1614-3327 0000-0002-6129-2946 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2214157X20305438 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fe5a3f8557604392a7163631b9bf948e crossref_citationtrail_10_1016_j_csite_2020_100801 crossref_primary_10_1016_j_csite_2020_100801 elsevier_sciencedirect_doi_10_1016_j_csite_2020_100801 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Sangani, Solanki (bib7) 2007; 91 Han, Wang, Zhu (bib30) 2011; 88 Mittelman, Alshare, Davidson (bib8) 2009; 83 Atkin, Farid (bib23) 2015; 114 Abdolzadeh, Ameri (bib27) 2009; 34 Ho, Chou, Lai (bib25) 2015; 89 Phayom (bib34) 2014 Hasan (bib9) 2010; 84 Cuce, Bali, Sekucoglu (bib11) 2011; 6 Croitoru, Badea (bib15) 2013 Valeh-e-Sheyda (bib20) 2014; 73 Wu, Xiong (bib17) 2014; 9 Rahman, Hasanuzzaman, Rahim (bib36) 2015; 103 Akbarzadeh, Wadowski (bib3) 1996; 16 Chandrasekar, Suresh, Senthilkumar (bib14) 2013; 71 Raval, Maiti, Mittal (bib35) 2014; 6 Indartono, Suwono, Pratama (bib18) 2014 Maturi (bib22) 2015; 111 Krauter (bib26) 2004; 82 Duffie, Beckman (bib6) 2013 Natarajan (bib12) 2011; 50 Maiti (bib10) 2011; 85 Yang, Yin (bib29) 2011; 26 Huang, Eames, Norton (bib5) 2006; 80 Al Tarabsheh (bib33) 2013; 35 Groumpos, Papageorgiou (bib37) 1987; 38 Moharram (bib32) 2013; 4 Meyer, Busiso (bib13) 2012 Araki, Uozumi, Yamaguchi (bib4) 2002 Xiang (bib31) 2012; 64 Mehrotra (bib19) 2014; 3 Chandrasekar, Senthilkumar (bib24) 2015 Mahamudul (bib21) 2014; 8 Sato, Yamada (bib2) 2019; 104 Alami (bib16) 2014; 77 Odeh, Behnia (bib28) 2009; 30 Jäger-Waldau (bib1) 2019 Odeh (10.1016/j.csite.2020.100801_bib28) 2009; 30 Han (10.1016/j.csite.2020.100801_bib30) 2011; 88 Rahman (10.1016/j.csite.2020.100801_bib36) 2015; 103 Duffie (10.1016/j.csite.2020.100801_bib6) 2013 Chandrasekar (10.1016/j.csite.2020.100801_bib14) 2013; 71 Maturi (10.1016/j.csite.2020.100801_bib22) 2015; 111 Croitoru (10.1016/j.csite.2020.100801_bib15) 2013 Jäger-Waldau (10.1016/j.csite.2020.100801_bib1) 2019 Alami (10.1016/j.csite.2020.100801_bib16) 2014; 77 Atkin (10.1016/j.csite.2020.100801_bib23) 2015; 114 Raval (10.1016/j.csite.2020.100801_bib35) 2014; 6 Hasan (10.1016/j.csite.2020.100801_bib9) 2010; 84 Moharram (10.1016/j.csite.2020.100801_bib32) 2013; 4 Sato (10.1016/j.csite.2020.100801_bib2) 2019; 104 Mahamudul (10.1016/j.csite.2020.100801_bib21) 2014; 8 Mittelman (10.1016/j.csite.2020.100801_bib8) 2009; 83 Araki (10.1016/j.csite.2020.100801_bib4) 2002 Maiti (10.1016/j.csite.2020.100801_bib10) 2011; 85 Ho (10.1016/j.csite.2020.100801_bib25) 2015; 89 Al Tarabsheh (10.1016/j.csite.2020.100801_bib33) 2013; 35 Akbarzadeh (10.1016/j.csite.2020.100801_bib3) 1996; 16 Wu (10.1016/j.csite.2020.100801_bib17) 2014; 9 Phayom (10.1016/j.csite.2020.100801_bib34) 2014 Cuce (10.1016/j.csite.2020.100801_bib11) 2011; 6 Xiang (10.1016/j.csite.2020.100801_bib31) 2012; 64 Huang (10.1016/j.csite.2020.100801_bib5) 2006; 80 Meyer (10.1016/j.csite.2020.100801_bib13) 2012 Abdolzadeh (10.1016/j.csite.2020.100801_bib27) 2009; 34 Indartono (10.1016/j.csite.2020.100801_bib18) 2014 Sangani (10.1016/j.csite.2020.100801_bib7) 2007; 91 Valeh-e-Sheyda (10.1016/j.csite.2020.100801_bib20) 2014; 73 Yang (10.1016/j.csite.2020.100801_bib29) 2011; 26 Groumpos (10.1016/j.csite.2020.100801_bib37) 1987; 38 Chandrasekar (10.1016/j.csite.2020.100801_bib24) 2015 Krauter (10.1016/j.csite.2020.100801_bib26) 2004; 82 Mehrotra (10.1016/j.csite.2020.100801_bib19) 2014; 3 Natarajan (10.1016/j.csite.2020.100801_bib12) 2011; 50 |
References_xml | – volume: 50 start-page: 2514 year: 2011 end-page: 2521 ident: bib12 article-title: Numerical investigations of solar cell temperature for photovoltaic concentrator system with and without passive cooling arrangements publication-title: Int. J. Therm. Sci. – volume: 64 start-page: 97 year: 2012 end-page: 105 ident: bib31 article-title: 3D numerical simulation on heat transfer performance of a cylindrical liquid immersion solar receiver publication-title: Energy Convers. Manag. – volume: 34 start-page: 91 year: 2009 end-page: 96 ident: bib27 article-title: Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells publication-title: Renew. Energy – year: 2014 ident: bib18 article-title: Improving photovoltaics performance by using yellow petroleum jelly as phase change material publication-title: Int. J. Low Carbon Technol. – volume: 9 start-page: 118 year: 2014 end-page: 126 ident: bib17 article-title: Passive cooling technology for photovoltaic panels for domestic houses publication-title: Int. J. Low Carbon Technol. – year: 2002 ident: bib4 article-title: A simple passive cooling structure and its heat analysis for 500 X concentrator PV module publication-title: Conference Record IEEE Photovoltaic Specialists Conference – start-page: 1 year: 2015 end-page: 11 ident: bib24 article-title: Passive thermal regulation of flat PV modules by coupling the mechanisms of evaporative and fin cooling publication-title: Heat Mass Tran. – volume: 16 start-page: 81 year: 1996 end-page: 87 ident: bib3 article-title: Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation publication-title: Appl. Therm. Eng. – volume: 82 start-page: 131 year: 2004 end-page: 137 ident: bib26 article-title: Increased electrical yield via water flow over the front of photovoltaic panels publication-title: Sol. Energy Mater. Sol. Cell. – year: 2019 ident: bib1 article-title: PV Status Report 2019 – volume: 85 start-page: 1805 year: 2011 end-page: 1816 ident: bib10 article-title: Self regulation of photovoltaic module temperature in V-trough using a metal–wax composite phase change matrix publication-title: Sol. Energy – volume: 111 start-page: 288 year: 2015 end-page: 296 ident: bib22 article-title: Experimental investigation of a low cost passive strategy to improve the performance of Building Integrated Photovoltaic systems publication-title: Sol. Energy – volume: 38 start-page: 341 year: 1987 end-page: 351 ident: bib37 article-title: An optimal sizing method for stand-alone photovoltaic power systems publication-title: Sol. Energy – volume: 6 year: 2014 ident: bib35 article-title: Computational fluid dynamics analysis and experimental validation of improvement in overall energy efficiency of a solar photovoltaic panel by thermal energy recovery publication-title: J. Renew. Sustain. Energy – year: 2014 ident: bib34 article-title: Improvement of photovoltaic module for increasing energy conversion efficiency publication-title: Applied Mechanics and Materials – volume: 80 start-page: 1121 year: 2006 end-page: 1130 ident: bib5 article-title: Phase change materials for limiting temperature rise in building integrated photovoltaics publication-title: Sol. Energy – volume: 83 start-page: 1150 year: 2009 end-page: 1160 ident: bib8 article-title: A model and heat transfer correlation for rooftop integrated photovoltaics with a passive air cooling channel publication-title: Sol. Energy – volume: 104 start-page: 151 year: 2019 end-page: 166 ident: bib2 article-title: Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method publication-title: Renew. Sustain. Energy Rev. – volume: 91 start-page: 453 year: 2007 end-page: 459 ident: bib7 article-title: Experimental evaluation of V-trough (2 suns) PV concentrator system using commercial PV modules publication-title: Sol. Energy Mater. Sol. Cell. – volume: 88 start-page: 4481 year: 2011 end-page: 4489 ident: bib30 article-title: Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids publication-title: Appl. Energy – volume: 30 start-page: 499 year: 2009 end-page: 505 ident: bib28 article-title: Improving photovoltaic module efficiency using water cooling publication-title: Heat Tran. Eng. – volume: 6 start-page: 299 year: 2011 end-page: 308 ident: bib11 article-title: Effects of passive cooling on performance of silicon photovoltaic cells publication-title: Int. J. Low Carbon Technol. – volume: 35 year: 2013 ident: bib33 article-title: Investigation of temperature effects in efficiency improvement of non-uniformly cooled photovoltaic cells publication-title: Chem. Eng. – volume: 114 start-page: 217 year: 2015 end-page: 228 ident: bib23 article-title: Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins publication-title: Sol. Energy – volume: 3 start-page: 1161 year: 2014 end-page: 1172 ident: bib19 article-title: Performance of A Solar panel with water immersion cooling technique publication-title: Int. J. Sci. Environ. Technol. – volume: 4 start-page: 869 year: 2013 end-page: 877 ident: bib32 article-title: Enhancing the performance of photovoltaic panels by water cooling publication-title: Ain Shams Engineering Journal – volume: 8 start-page: 1243 year: 2014 end-page: 1245 ident: bib21 article-title: Development of a temperature regulated photovoltaic module using phase change material for Malaysian weather condition publication-title: Optoelectronics and Advanced Materials-Rapid Communications – year: 2013 ident: bib6 article-title: Solar Engineering of Thermal Processes – volume: 89 start-page: 862 year: 2015 end-page: 872 ident: bib25 article-title: Thermal and electrical performance of a water-surface floating PV integrated with a water-saturated MEPCM layer publication-title: Energy Convers. Manag. – volume: 103 start-page: 348 year: 2015 end-page: 358 ident: bib36 article-title: Effects of various parameters on PV-module power and efficiency publication-title: Energy Convers. Manag. – year: 2013 ident: bib15 article-title: WATER COOLING OF PHOTOVOLTAIC PANELS FROM PASSIVE HOUSE LOCATED INSIDE – volume: 73 start-page: 115 year: 2014 end-page: 119 ident: bib20 article-title: Using a wind-driven ventilator to enhance a photovoltaic cell power generation publication-title: Energy Build. – volume: 26 start-page: 662 year: 2011 end-page: 670 ident: bib29 article-title: Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization publication-title: IEEE Trans. Energy Convers. – volume: 84 start-page: 1601 year: 2010 end-page: 1612 ident: bib9 article-title: Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics publication-title: Sol. Energy – year: 2012 ident: bib13 article-title: Comparative study of a directly cooled PV water heating system to a naturally cooled module in South Africa publication-title: Photovoltaic Specialists Conference (PVSC) – volume: 71 start-page: 43 year: 2013 end-page: 50 ident: bib14 article-title: Passive cooling of standalone flat PV module with cotton wick structures publication-title: Energy Convers. Manag. – volume: 77 start-page: 668 year: 2014 end-page: 679 ident: bib16 article-title: Effects of evaporative cooling on efficiency of photovoltaic modules publication-title: Energy Convers. Manag. – volume: 3 start-page: 1161 year: 2014 ident: 10.1016/j.csite.2020.100801_bib19 article-title: Performance of A Solar panel with water immersion cooling technique publication-title: Int. J. Sci. Environ. Technol. – volume: 35 year: 2013 ident: 10.1016/j.csite.2020.100801_bib33 article-title: Investigation of temperature effects in efficiency improvement of non-uniformly cooled photovoltaic cells publication-title: Chem. Eng. – year: 2013 ident: 10.1016/j.csite.2020.100801_bib15 – volume: 91 start-page: 453 issue: 6 year: 2007 ident: 10.1016/j.csite.2020.100801_bib7 article-title: Experimental evaluation of V-trough (2 suns) PV concentrator system using commercial PV modules publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2006.10.012 – volume: 6 start-page: 299 issue: 4 year: 2011 ident: 10.1016/j.csite.2020.100801_bib11 article-title: Effects of passive cooling on performance of silicon photovoltaic cells publication-title: Int. J. Low Carbon Technol. doi: 10.1093/ijlct/ctr018 – volume: 4 start-page: 869 issue: 4 year: 2013 ident: 10.1016/j.csite.2020.100801_bib32 article-title: Enhancing the performance of photovoltaic panels by water cooling publication-title: Ain Shams Engineering Journal doi: 10.1016/j.asej.2013.03.005 – start-page: 1 year: 2015 ident: 10.1016/j.csite.2020.100801_bib24 article-title: Passive thermal regulation of flat PV modules by coupling the mechanisms of evaporative and fin cooling publication-title: Heat Mass Tran. – volume: 73 start-page: 115 year: 2014 ident: 10.1016/j.csite.2020.100801_bib20 article-title: Using a wind-driven ventilator to enhance a photovoltaic cell power generation publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.12.052 – volume: 71 start-page: 43 year: 2013 ident: 10.1016/j.csite.2020.100801_bib14 article-title: Passive cooling of standalone flat PV module with cotton wick structures publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.03.012 – volume: 9 start-page: 118 issue: 2 year: 2014 ident: 10.1016/j.csite.2020.100801_bib17 article-title: Passive cooling technology for photovoltaic panels for domestic houses publication-title: Int. J. Low Carbon Technol. doi: 10.1093/ijlct/ctu013 – volume: 82 start-page: 131 issue: 1 year: 2004 ident: 10.1016/j.csite.2020.100801_bib26 article-title: Increased electrical yield via water flow over the front of photovoltaic panels publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2004.01.011 – volume: 26 start-page: 662 issue: 2 year: 2011 ident: 10.1016/j.csite.2020.100801_bib29 article-title: Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2011.2112363 – year: 2019 ident: 10.1016/j.csite.2020.100801_bib1 – volume: 84 start-page: 1601 issue: 9 year: 2010 ident: 10.1016/j.csite.2020.100801_bib9 article-title: Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics publication-title: Sol. Energy doi: 10.1016/j.solener.2010.06.010 – volume: 50 start-page: 2514 issue: 12 year: 2011 ident: 10.1016/j.csite.2020.100801_bib12 article-title: Numerical investigations of solar cell temperature for photovoltaic concentrator system with and without passive cooling arrangements publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.06.014 – volume: 89 start-page: 862 year: 2015 ident: 10.1016/j.csite.2020.100801_bib25 article-title: Thermal and electrical performance of a water-surface floating PV integrated with a water-saturated MEPCM layer publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.10.039 – year: 2012 ident: 10.1016/j.csite.2020.100801_bib13 article-title: Comparative study of a directly cooled PV water heating system to a naturally cooled module in South Africa – volume: 34 start-page: 91 issue: 1 year: 2009 ident: 10.1016/j.csite.2020.100801_bib27 article-title: Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells publication-title: Renew. Energy doi: 10.1016/j.renene.2008.03.024 – year: 2014 ident: 10.1016/j.csite.2020.100801_bib18 article-title: Improving photovoltaics performance by using yellow petroleum jelly as phase change material publication-title: Int. J. Low Carbon Technol. – volume: 104 start-page: 151 issue: January year: 2019 ident: 10.1016/j.csite.2020.100801_bib2 article-title: Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.12.051 – volume: 8 start-page: 1243 issue: 11–12 year: 2014 ident: 10.1016/j.csite.2020.100801_bib21 article-title: Development of a temperature regulated photovoltaic module using phase change material for Malaysian weather condition publication-title: Optoelectronics and Advanced Materials-Rapid Communications – volume: 77 start-page: 668 year: 2014 ident: 10.1016/j.csite.2020.100801_bib16 article-title: Effects of evaporative cooling on efficiency of photovoltaic modules publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.10.019 – volume: 6 issue: 3 year: 2014 ident: 10.1016/j.csite.2020.100801_bib35 article-title: Computational fluid dynamics analysis and experimental validation of improvement in overall energy efficiency of a solar photovoltaic panel by thermal energy recovery publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.4885178 – volume: 80 start-page: 1121 issue: 9 year: 2006 ident: 10.1016/j.csite.2020.100801_bib5 article-title: Phase change materials for limiting temperature rise in building integrated photovoltaics publication-title: Sol. Energy doi: 10.1016/j.solener.2005.10.006 – volume: 88 start-page: 4481 issue: 12 year: 2011 ident: 10.1016/j.csite.2020.100801_bib30 article-title: Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.05.037 – volume: 38 start-page: 341 issue: 5 year: 1987 ident: 10.1016/j.csite.2020.100801_bib37 article-title: An optimal sizing method for stand-alone photovoltaic power systems publication-title: Sol. Energy doi: 10.1016/0038-092X(87)90006-5 – volume: 16 start-page: 81 issue: 1 year: 1996 ident: 10.1016/j.csite.2020.100801_bib3 article-title: Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation publication-title: Appl. Therm. Eng. doi: 10.1016/1359-4311(95)00012-3 – year: 2002 ident: 10.1016/j.csite.2020.100801_bib4 article-title: A simple passive cooling structure and its heat analysis for 500 X concentrator PV module – year: 2013 ident: 10.1016/j.csite.2020.100801_bib6 – volume: 111 start-page: 288 year: 2015 ident: 10.1016/j.csite.2020.100801_bib22 article-title: Experimental investigation of a low cost passive strategy to improve the performance of Building Integrated Photovoltaic systems publication-title: Sol. Energy doi: 10.1016/j.solener.2014.11.001 – volume: 64 start-page: 97 year: 2012 ident: 10.1016/j.csite.2020.100801_bib31 article-title: 3D numerical simulation on heat transfer performance of a cylindrical liquid immersion solar receiver publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2012.05.026 – volume: 114 start-page: 217 year: 2015 ident: 10.1016/j.csite.2020.100801_bib23 article-title: Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins publication-title: Sol. Energy doi: 10.1016/j.solener.2015.01.037 – volume: 85 start-page: 1805 issue: 9 year: 2011 ident: 10.1016/j.csite.2020.100801_bib10 article-title: Self regulation of photovoltaic module temperature in V-trough using a metal–wax composite phase change matrix publication-title: Sol. Energy doi: 10.1016/j.solener.2011.04.021 – year: 2014 ident: 10.1016/j.csite.2020.100801_bib34 article-title: Improvement of photovoltaic module for increasing energy conversion efficiency – volume: 103 start-page: 348 year: 2015 ident: 10.1016/j.csite.2020.100801_bib36 article-title: Effects of various parameters on PV-module power and efficiency publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.06.067 – volume: 83 start-page: 1150 issue: 8 year: 2009 ident: 10.1016/j.csite.2020.100801_bib8 article-title: A model and heat transfer correlation for rooftop integrated photovoltaics with a passive air cooling channel publication-title: Sol. Energy doi: 10.1016/j.solener.2009.01.015 – volume: 30 start-page: 499 issue: 6 year: 2009 ident: 10.1016/j.csite.2020.100801_bib28 article-title: Improving photovoltaic module efficiency using water cooling publication-title: Heat Tran. Eng. doi: 10.1080/01457630802529214 |
SSID | ssj0001738144 |
Score | 2.457753 |
Snippet | This study aims to experimentally investigate the passive cooling performance of a concentrated PV module, using two different designs of novel passive fin... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100801 |
SubjectTerms | Electrical efficiency Experimental design LCC Novel fins heat sink Passive cooling |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBIROJXkhFQqwoJxEBRN8vPqqikVWn_P2cnqTKVhTFRHFvnk-87-_N3CN3pwrPUU59o7SkkKJok2qgyKTiz1rPSORM29F_fxGjMXiZ80in1FThhtTxwbbgH77iivuCAi8MtTqIA4FNBM11qX7LChdUXYl4nmYq7KzlEoljJlZCMJRnPJ63kUCR3mXg0C4l_pAkUTUmYNixF9f5OdOpEnOEROmygIn6sh3iM9lx1gg46AoKnSA46Av1YVRa75qIxPNRqI3jh8RIQMqxq2CxCiZ4pfv_E3wu7mTscaO9T7GfVT2y9nEOzFYbh1bv5Z2g8HHw8j5KmZEJiWMbWieKc-JQqrsOFWoBWqcmcUsSUhros054IrnnAUdYJEYITMaJIrRfMe21Leo561aJyF4HzROIRjbOOMpFazXJHNORXDCCEynUfkdZi0jR64qGsxVy2xLEvGc0sg5llbeY-ut82WtZyGrs_fwpTsf00aGHHF-AhsvEQ-ZeH9JFoJ1I2sKKGC_Cr2a7eL_-j9yu0TwINJhK9r1Fvvdq4G8Axa30bXfYXpUbtNA priority: 102 providerName: Directory of Open Access Journals |
Title | Experimental and economic analysis of passive cooling PV module using fins and planar reflector |
URI | https://dx.doi.org/10.1016/j.csite.2020.100801 https://doaj.org/article/fe5a3f8557604392a7163631b9bf948e |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQEwyIpyiPygMjURO_moyAihASCImHull-VkUlqUr7__E5DpSFgTGWL4nOJ9-d_d13CF3o0rPcU59p7WlIUDTJtFFVVnJmrWeVcwYO9B8exd0rux_z8Qa66WphAFaZ9v52T4-7dRoZJG0O5tPp4JmQInif4ZiAzTIKBb-UlbGIb3z9c84yDD4p9nSF-RkIdORDEeZl4iUtCVETAAbK1Bymc1CRx3_NT635nttdtJOCRnzV_tce2nD1PtpeoxI8QHK0RtWPVW2xSyXH4aHlHcGNx_MQK4f9DZsGmvVM8NMb_mjsauYwAOAn2E_rzyg9nwWxBQ6_157rH6LX29HLzV2WmidkhhVsmSnOic-p4hpKa0OQlZvCKUVMZagrCu2J4JpDRGWdEOCmiBFlbr1g3mtb0SO0WTe1Owb0E4mXNc46ykRuNRs6okOmxUIwoYa6h0inMWkSszg0uJjJDkL2LqOaJahZtmruoctvoXlLrPH39GtYiu-pwIodB5rFRCazkN5xRX3JQw4FFb9EhWSQClroSvuKla6HRLeQ8peRhVdN__r6yX8FT9EWARBMhHmfoc3lYuXOQxSz1P2Y_fejsX4B1xrvyg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa67rDtMOzRotmrOuxYI7ZesY9r0SJdHxiwtshN0DNIkdlBlv7_kbLcZZcedrQg2gZFkJ-kjyQhX20dRRl5LKyNHDYolhXWmaaopfA-iiYEhwf6V9dqeiu-z-Rsh5wMuTBIq8y-v_fpyVvnkXHW5ni1WIx_MlZB9JnMGNqs4PUz8hzQgELTPp8d_z1omUBQSk1dUaBAiaH6UOJ5uXRLywA2IWOgzt1hhgiVCvlvBaqt4HP2hrzOqJF-63_sLdkJ7TvyaquW4HuiT7dq9VPTehpyzjE89IVHaBfpCsAyODjqOuzWM6c_7uivzj8sA0UG_JzGRfs7Sa-WILam8Hv9wf4euT07vTmZFrl7QuFEJTaFkZLFkhtpMbcWUFbpqmAMc43joapsZEpaiZDKB6UwTjGn6tJHJWK0vuH7ZLft2nCA9CeWbmuCD1yo0lsxCczCVksAmjATOyJs0Jh2ubQ4drhY6oFDdq-TmjWqWfdqHpGjR6FVX1nj6enHuBSPU7Esdhro1nOd7ULHIA2PtYRNFKb8MgO7Qa54ZRsbG1GHEVHDQup_rAxetXjq6x_-V_CQvJjeXF3qy_Pri4_kJUNGTOJ8fyK7m_VD-AyQZmO_JJP9A1q28fw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+economic+analysis+of+passive+cooling+PV+module+using+fins+and+planar+reflector&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Elbreki%2C+A.M.&rft.au=Muftah%2C+A.F.&rft.au=Sopian%2C+K.&rft.au=Jarimi%2C+H.&rft.date=2021-02-01&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=23&rft.spage=100801&rft_id=info:doi/10.1016%2Fj.csite.2020.100801&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csite_2020_100801 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |