A uniformly convergent numerical scheme for two parameters singularly perturbed parabolic convection–diffusion problems with a large temporal lag

In the present paper, an exponentially fitted numerical scheme is constructed and analyzed for solving singularly perturbed two-parameter parabolic problems with large temporal lag. The problem is discretized by the Crank–Nicolson scheme and the exponentially fitted cubic spline scheme for temporal...

Full description

Saved in:
Bibliographic Details
Published inResults in applied mathematics Vol. 16; p. 100338
Main Author Negero, Naol Tufa
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2590-0374
2590-0374
DOI10.1016/j.rinam.2022.100338

Cover

Abstract In the present paper, an exponentially fitted numerical scheme is constructed and analyzed for solving singularly perturbed two-parameter parabolic problems with large temporal lag. The problem is discretized by the Crank–Nicolson scheme and the exponentially fitted cubic spline scheme for temporal and spatial derivatives respectively. The resulting scheme is shown to be second-order convergent both in the temporal and spatial directions. Two numerical examples are presented to support the theoretical analysis developed in this article. The present numerical results are compared with the results in the literature which confirm the efficiency of the present scheme.
AbstractList In the present paper, an exponentially fitted numerical scheme is constructed and analyzed for solving singularly perturbed two-parameter parabolic problems with large temporal lag. The problem is discretized by the Crank–Nicolson scheme and the exponentially fitted cubic spline scheme for temporal and spatial derivatives respectively. The resulting scheme is shown to be second-order convergent both in the temporal and spatial directions. Two numerical examples are presented to support the theoretical analysis developed in this article. The present numerical results are compared with the results in the literature which confirm the efficiency of the present scheme.
ArticleNumber 100338
Author Negero, Naol Tufa
Author_xml – sequence: 1
  givenname: Naol Tufa
  orcidid: 0000-0003-1593-735X
  surname: Negero
  fullname: Negero, Naol Tufa
  email: natitfa@gmail.com
  organization: Department of Mathematics, Wollega University, Nekemte, Ethiopia
BookMark eNqFkctu1TAQhiNUJErpE7DxC5yD49ycBYuq4lKpUjewtiaTceqjJI7GTqvueIe-IU-CzwlCFQtYeTz291me_212NvuZsux9Lve5zOsPhz27Gaa9kkqljiwK_So7V1Urd7JoyrMX9ZvsMoSDlFLphJbyPHu-EuvsrOdpfBLo5wfigeYo5nUidgijCHhPE4l0RcRHLxZgmCgSBxHcPKwjcCIX4rhyR_3pvPOjw82G0fn554_n3lm7hlSLhX030hTEo4v3AkQSDCQiTYvn9NwIw7vstYUx0OXv9SL7_vnTt-uvu9u7LzfXV7c7LPMy7kBZbRvADtu-r5REqK0qmwLyttRFXcjaYtPVbZe2tqnyHpteat1ho1sJqIuL7Gbz9h4OZmE3AT8ZD86cGp4HAxwdjmRAt7ZsK4Te6pJ0BaCx7qREhTVIrZKr2FzIPgQm-8eXS3OMyRzMKSZzjMlsMSWq_YtCF-E4ssjgxv-wHzeW0ogeHLEJ6GhG6h2nsac_uH_yvwCPU7bl
CitedBy_id crossref_primary_10_3389_fams_2023_1260651
crossref_primary_10_1016_j_rinam_2023_100405
crossref_primary_10_1016_j_padiff_2023_100518
crossref_primary_10_1186_s13104_023_06457_1
crossref_primary_10_1016_j_rinp_2023_106724
crossref_primary_10_11121_ijocta_1414
crossref_primary_10_3389_fams_2023_1255672
crossref_primary_10_1016_j_padiff_2023_100546
crossref_primary_10_1016_j_padiff_2023_100530
crossref_primary_10_1016_j_rinam_2023_100361
Cites_doi 10.1080/00207160.2018.1432856
10.1016/j.apnum.2005.08.002
10.1007/s40819-019-0672-5
10.1016/S0304-0208(08)70556-5
10.1016/j.cam.2015.10.031
10.1007/s40995-021-01258-2
10.1016/S0898-1221(00)00192-9
10.1080/25742558.2020.1829277
10.1080/10236190701817383
10.1080/00207160.2016.1154948
10.1080/00207160.2014.928701
10.1115/1.1568121
10.1016/0022-247X(83)90094-X
10.1016/j.cam.2015.07.011
10.1016/j.rinam.2021.100174
10.1155/2021/6641236
10.1002/num.22544
10.1016/j.cam.2006.05.032
10.1007/s10543-015-0559-8
10.1007/s40314-020-01278-5
10.1016/S0898-1221(97)00279-4
10.1016/j.camwa.2013.06.025
10.1016/S0045-7825(98)00243-6
10.1016/j.aej.2020.03.042
10.1080/01442359209353268
10.1080/15502287.2021.1948148
10.1007/s12190-019-01313-7
10.1016/j.rinam.2022.100324
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinam.2022.100338
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2590-0374
ExternalDocumentID oai_doaj_org_article_a89f495cadf84e85aa8c6b00c2c6a082
10_1016_j_rinam_2022_100338
S2590037422000619
GroupedDBID 0SF
6I.
AAEDW
AAFTH
AALRI
AAXUO
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
FDB
GROUPED_DOAJ
M41
NCXOZ
OK1
ROL
SSZ
0R~
AAYWO
AAYXX
ADVLN
AFJKZ
APXCP
CITATION
ID FETCH-LOGICAL-c414t-a2f8f7acbc9dd520ca6f2473a194836306fc7b69b948f751dc7d088bc7890ac83
IEDL.DBID DOA
ISSN 2590-0374
IngestDate Wed Aug 27 01:18:07 EDT 2025
Tue Jul 01 00:22:47 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Tue Jul 25 20:59:27 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Parabolic convection–diffusion problem
Two small parameters
Exponentially fitted cubic spline method
Time delay
Singular perturbation
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-a2f8f7acbc9dd520ca6f2473a194836306fc7b69b948f751dc7d088bc7890ac83
ORCID 0000-0003-1593-735X
OpenAccessLink https://doaj.org/article/a89f495cadf84e85aa8c6b00c2c6a082
ParticipantIDs doaj_primary_oai_doaj_org_article_a89f495cadf84e85aa8c6b00c2c6a082
crossref_primary_10_1016_j_rinam_2022_100338
crossref_citationtrail_10_1016_j_rinam_2022_100338
elsevier_sciencedirect_doi_10_1016_j_rinam_2022_100338
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Results in applied mathematics
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References DiPrima (b9) 1968
Ansari, Bakr, Shishkin (b18) 2007; 205
Govindarao, Mohapatra, Sahu (b40) 2019; 5
Mbroh, Noutchie, Massoukou (b21) 2020; 59
Kumar, Kanth (b22) 2020; 39
Li, Navon (b16) 1998; 35
Woldaregay, Aniley, Duressa (b27) 2021; 2021
Kumar (b28) 2021; 37
Kumar, Kumar (b41) 2020; 39
Negero, Duressa (b26) 2022; 10
Li, Navon (b15) 1999; 171
Adomian, Rach (b4) 1983; 91
Bullo, Degla, Duressa (b39) 2022; 23
Epstein (b5) 1992; 11
Hale, Lunel (b6) 2013
Clavero, Gracia, Shishkin, Shishkina (b37) 2017; 318
Das, Mehrmann (b36) 2016; 56
Wondimu Gelu, Duressa (b12) 2022; 9
O’Malley RE. Introduction to singular perturbations. Tech. rep., 1974.
Das, Natesan (b19) 2015; 271
Govindarao, Mohapatra, Das (b23) 2020; 63
Gelu, Duressa (b14) 2022; 15
Negero, Duressa (b24) 2022; 46
Brdar, Zarin (b34) 2016; 292
Jha, Kadalbajoo (b35) 2015; 92
GELU, DURESSA (b17) 2022; 40
Wu (b7) 2012
Negero, Duressa (b29) 2021; 11
O’Malley (b30) 1967; 16
Patidar (b32) 2008; 14
Gelu, Duressa (b25) 2021
Asl, Ulsoy (b2) 2003; 125
Li, Chen (b13) 2008; 1
Tikhonov, Samarskii (b1) 2013
Li (b11) 2000; 40
Gupta, Kadalbajoo, Dubey (b10) 2019; 96
Gowrisankar, Natesan (b20) 2017; 94
Mekonnen, Duressa (b38) 2020; 7
Van Harten, Schumacher (b3) 1978
Wu, Zhang, Yuan (b33) 2013; 66
Gracia, O’Riordan, Pickett (b31) 2006; 56
Mbroh (10.1016/j.rinam.2022.100338_b21) 2020; 59
Negero (10.1016/j.rinam.2022.100338_b29) 2021; 11
10.1016/j.rinam.2022.100338_b8
Kumar (10.1016/j.rinam.2022.100338_b28) 2021; 37
Wondimu Gelu (10.1016/j.rinam.2022.100338_b12) 2022; 9
GELU (10.1016/j.rinam.2022.100338_b17) 2022; 40
Govindarao (10.1016/j.rinam.2022.100338_b23) 2020; 63
Hale (10.1016/j.rinam.2022.100338_b6) 2013
Bullo (10.1016/j.rinam.2022.100338_b39) 2022; 23
Gowrisankar (10.1016/j.rinam.2022.100338_b20) 2017; 94
Patidar (10.1016/j.rinam.2022.100338_b32) 2008; 14
Das (10.1016/j.rinam.2022.100338_b36) 2016; 56
Li (10.1016/j.rinam.2022.100338_b13) 2008; 1
Gupta (10.1016/j.rinam.2022.100338_b10) 2019; 96
O’Malley (10.1016/j.rinam.2022.100338_b30) 1967; 16
Das (10.1016/j.rinam.2022.100338_b19) 2015; 271
Woldaregay (10.1016/j.rinam.2022.100338_b27) 2021; 2021
Govindarao (10.1016/j.rinam.2022.100338_b40) 2019; 5
Gelu (10.1016/j.rinam.2022.100338_b14) 2022; 15
Wu (10.1016/j.rinam.2022.100338_b33) 2013; 66
Li (10.1016/j.rinam.2022.100338_b16) 1998; 35
Negero (10.1016/j.rinam.2022.100338_b24) 2022; 46
Clavero (10.1016/j.rinam.2022.100338_b37) 2017; 318
Ansari (10.1016/j.rinam.2022.100338_b18) 2007; 205
Brdar (10.1016/j.rinam.2022.100338_b34) 2016; 292
Tikhonov (10.1016/j.rinam.2022.100338_b1) 2013
Negero (10.1016/j.rinam.2022.100338_b26) 2022; 10
Gracia (10.1016/j.rinam.2022.100338_b31) 2006; 56
Gelu (10.1016/j.rinam.2022.100338_b25) 2021
Wu (10.1016/j.rinam.2022.100338_b7) 2012
Kumar (10.1016/j.rinam.2022.100338_b41) 2020; 39
Epstein (10.1016/j.rinam.2022.100338_b5) 1992; 11
Mekonnen (10.1016/j.rinam.2022.100338_b38) 2020; 7
Li (10.1016/j.rinam.2022.100338_b11) 2000; 40
DiPrima (10.1016/j.rinam.2022.100338_b9) 1968
Asl (10.1016/j.rinam.2022.100338_b2) 2003; 125
Li (10.1016/j.rinam.2022.100338_b15) 1999; 171
Kumar (10.1016/j.rinam.2022.100338_b22) 2020; 39
Adomian (10.1016/j.rinam.2022.100338_b4) 1983; 91
Van Harten (10.1016/j.rinam.2022.100338_b3) 1978
Jha (10.1016/j.rinam.2022.100338_b35) 2015; 92
References_xml – volume: 94
  start-page: 902
  year: 2017
  end-page: 921
  ident: b20
  article-title: -Uniformly convergent numerical scheme for singularly perturbed delay parabolic partial differential equations
  publication-title: Int J Comput Math
– volume: 7
  year: 2020
  ident: b38
  article-title: Computational method for singularly perturbed two-parameter parabolic convection-diffusion problems
  publication-title: Cogent Math Stat
– volume: 59
  start-page: 2543
  year: 2020
  end-page: 2554
  ident: b21
  article-title: A robust method of lines solution for singularly perturbed delay parabolic problem
  publication-title: Alexandria Eng J
– year: 2021
  ident: b25
  article-title: A uniformly convergent collocation method for singularly perturbed delay parabolic reaction-diffusion problem
  publication-title: Abstract and applied analysis, Vol. 2021
– year: 2013
  ident: b1
  article-title: Equations of mathematical physics
– volume: 40
  start-page: 25
  year: 2022
  end-page: 45
  ident: b17
  article-title: Computational method for singularly perturbed parabolic reaction-diffusion equations with Robin boundary conditions
  publication-title: J Appl Math Inf
– volume: 5
  start-page: 1
  year: 2019
  end-page: 9
  ident: b40
  article-title: Uniformly convergent numerical method for singularly perturbed two parameter time delay parabolic problem
  publication-title: Int J Appl Comput Math
– volume: 271
  start-page: 168
  year: 2015
  end-page: 186
  ident: b19
  article-title: Uniformly convergent hybrid numerical scheme for singularly perturbed delay parabolic convection–diffusion problems on Shishkin mesh
  publication-title: Appl Math Comput
– volume: 11
  year: 2021
  ident: b29
  article-title: A method of line with improved accuracy for singularly perturbed parabolic convection–diffusion problems with large temporal lag
  publication-title: Results Appl Math
– year: 2013
  ident: b6
  article-title: Introduction to functional differential equations, Vol. 99
– year: 1968
  ident: b9
  article-title: Asymptotic methods for an infinitely long slider squeeze-film bearing
– volume: 96
  start-page: 474
  year: 2019
  end-page: 499
  ident: b10
  article-title: A parameter-uniform higher order finite difference scheme for singularly perturbed time-dependent parabolic problem with two small parameters
  publication-title: Int J Comput Math
– reference: O’Malley RE. Introduction to singular perturbations. Tech. rep., 1974.
– volume: 37
  start-page: 626
  year: 2021
  end-page: 642
  ident: b28
  article-title: A parameter-uniform scheme for the parabolic singularly perturbed problem with a delay in time
  publication-title: Numer Methods Partial Differential Equations
– volume: 15
  year: 2022
  ident: b14
  article-title: Parameter-uniform numerical scheme for singularly perturbed parabolic convection–diffusion Robin type problems with a boundary turning point
  publication-title: Results Appl Math
– volume: 91
  start-page: 94
  year: 1983
  end-page: 101
  ident: b4
  article-title: Nonlinear stochastic differential delay equations
  publication-title: J Math Anal Appl
– volume: 40
  start-page: 735
  year: 2000
  end-page: 745
  ident: b11
  article-title: Convergence analysis of finite element methods for singularly perturbed problems
  publication-title: Comput Math Appl
– volume: 14
  start-page: 1197
  year: 2008
  end-page: 1214
  ident: b32
  article-title: A robust fitted operator finite difference method for a two-parameter singular perturbation problem1
  publication-title: J Difference Equ Appl
– volume: 10
  start-page: 173
  year: 2022
  end-page: 190
  ident: b26
  article-title: An efficient numerical approach for singularly perturbed parabolic convection-diffusion problems with large time-lag
  publication-title: J Math Model
– volume: 125
  start-page: 215
  year: 2003
  end-page: 223
  ident: b2
  article-title: Analysis of a system of linear delay differential equations
  publication-title: J Dyn Syst Meas Control
– volume: 56
  start-page: 51
  year: 2016
  end-page: 76
  ident: b36
  article-title: Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters
  publication-title: BIT Numer Math
– volume: 23
  start-page: 210
  year: 2022
  end-page: 218
  ident: b39
  article-title: Parameter-uniform finite difference method for singularly perturbed parabolic problem with two small parameters
  publication-title: Int J Comput Methods Eng Sci Mech
– volume: 205
  start-page: 552
  year: 2007
  end-page: 566
  ident: b18
  article-title: A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations
  publication-title: J Comput Appl Math
– volume: 9
  year: 2022
  ident: b12
  article-title: A novel numerical approach for singularly perturbed parabolic convection-diffusion problems on layer-adapted meshes
  publication-title: Res Math
– year: 2012
  ident: b7
  article-title: Theory and applications of partial functional differential equations, Vol. 119
– volume: 2021
  year: 2021
  ident: b27
  article-title: Novel numerical scheme for singularly perturbed time delay convection-diffusion equation
  publication-title: Adv Math Phys
– volume: 35
  start-page: 57
  year: 1998
  end-page: 70
  ident: b16
  article-title: Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems I: reaction-diffusion type
  publication-title: Comput Math Appl
– volume: 63
  start-page: 171
  year: 2020
  end-page: 195
  ident: b23
  article-title: A fourth-order numerical scheme for singularly perturbed delay parabolic problem arising in population dynamics
  publication-title: J Appl Math Comput
– volume: 16
  start-page: 1143
  year: 1967
  end-page: 1164
  ident: b30
  article-title: Two-parameter singular perturbation problems for second-order equations
  publication-title: J Math Mech
– volume: 92
  start-page: 1204
  year: 2015
  end-page: 1221
  ident: b35
  article-title: A robust layer adapted difference method for singularly perturbed two-parameter parabolic problems
  publication-title: Int J Comput Math
– volume: 39
  start-page: 1
  year: 2020
  end-page: 25
  ident: b41
  article-title: A robust numerical method for a two-parameter singularly perturbed time delay parabolic problem
  publication-title: Comput Appl Math
– volume: 39
  start-page: 1
  year: 2020
  end-page: 19
  ident: b22
  article-title: Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline
  publication-title: Comput Appl Math
– volume: 171
  start-page: 1
  year: 1999
  end-page: 23
  ident: b15
  article-title: Global uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems: higher-order elements
  publication-title: Comput Methods Appl Mech Engrg
– volume: 56
  start-page: 962
  year: 2006
  end-page: 980
  ident: b31
  article-title: A parameter robust second order numerical method for a singularly perturbed two-parameter problem
  publication-title: Appl Numer Math
– volume: 292
  start-page: 307
  year: 2016
  end-page: 319
  ident: b34
  article-title: A singularly perturbed problem with two parameters on a Bakhvalov-type mesh
  publication-title: J Comput Appl Math
– volume: 11
  start-page: 135
  year: 1992
  end-page: 160
  ident: b5
  article-title: Delay effects and differential delay equations in chemical kinetics
  publication-title: Int Rev Phys Chem
– volume: 318
  start-page: 634
  year: 2017
  end-page: 645
  ident: b37
  article-title: An efficient numerical scheme for 1D parabolic singularly perturbed problems with an interior and boundary layers
  publication-title: J Comput Appl Math
– volume: 66
  start-page: 996
  year: 2013
  end-page: 1009
  ident: b33
  article-title: A robust adaptive method for singularly perturbed convection–diffusion problem with two small parameters
  publication-title: Comput Math Appl
– start-page: 161
  year: 1978
  end-page: 179
  ident: b3
  article-title: On a class of partial functional differential equations arising in feed-back control theory
  publication-title: North-Holland mathematics studies, Vol. 31
– volume: 1
  start-page: 138
  year: 2008
  end-page: 149
  ident: b13
  article-title: Uniform convergence analysis for singularly perturbed elliptic problems with parabolic layers
  publication-title: Numer Math Theory Methods Appl
– volume: 46
  start-page: 507
  year: 2022
  end-page: 524
  ident: b24
  article-title: Uniform convergent solution of singularly perturbed parabolic differential equations with general temporal-lag
  publication-title: Iran J Sci Technol Trans A Sci
– volume: 96
  start-page: 474
  issue: 3
  year: 2019
  ident: 10.1016/j.rinam.2022.100338_b10
  article-title: A parameter-uniform higher order finite difference scheme for singularly perturbed time-dependent parabolic problem with two small parameters
  publication-title: Int J Comput Math
  doi: 10.1080/00207160.2018.1432856
– volume: 56
  start-page: 962
  issue: 7
  year: 2006
  ident: 10.1016/j.rinam.2022.100338_b31
  article-title: A parameter robust second order numerical method for a singularly perturbed two-parameter problem
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2005.08.002
– volume: 10
  start-page: 173
  issue: 2
  year: 2022
  ident: 10.1016/j.rinam.2022.100338_b26
  article-title: An efficient numerical approach for singularly perturbed parabolic convection-diffusion problems with large time-lag
  publication-title: J Math Model
– volume: 5
  start-page: 1
  issue: 3
  year: 2019
  ident: 10.1016/j.rinam.2022.100338_b40
  article-title: Uniformly convergent numerical method for singularly perturbed two parameter time delay parabolic problem
  publication-title: Int J Appl Comput Math
  doi: 10.1007/s40819-019-0672-5
– year: 2013
  ident: 10.1016/j.rinam.2022.100338_b1
– start-page: 161
  year: 1978
  ident: 10.1016/j.rinam.2022.100338_b3
  article-title: On a class of partial functional differential equations arising in feed-back control theory
  doi: 10.1016/S0304-0208(08)70556-5
– volume: 318
  start-page: 634
  year: 2017
  ident: 10.1016/j.rinam.2022.100338_b37
  article-title: An efficient numerical scheme for 1D parabolic singularly perturbed problems with an interior and boundary layers
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2015.10.031
– ident: 10.1016/j.rinam.2022.100338_b8
– volume: 46
  start-page: 507
  issue: 2
  year: 2022
  ident: 10.1016/j.rinam.2022.100338_b24
  article-title: Uniform convergent solution of singularly perturbed parabolic differential equations with general temporal-lag
  publication-title: Iran J Sci Technol Trans A Sci
  doi: 10.1007/s40995-021-01258-2
– volume: 40
  start-page: 735
  issue: 6–7
  year: 2000
  ident: 10.1016/j.rinam.2022.100338_b11
  article-title: Convergence analysis of finite element methods for singularly perturbed problems
  publication-title: Comput Math Appl
  doi: 10.1016/S0898-1221(00)00192-9
– volume: 7
  issue: 1
  year: 2020
  ident: 10.1016/j.rinam.2022.100338_b38
  article-title: Computational method for singularly perturbed two-parameter parabolic convection-diffusion problems
  publication-title: Cogent Math Stat
  doi: 10.1080/25742558.2020.1829277
– volume: 14
  start-page: 1197
  issue: 12
  year: 2008
  ident: 10.1016/j.rinam.2022.100338_b32
  article-title: A robust fitted operator finite difference method for a two-parameter singular perturbation problem1
  publication-title: J Difference Equ Appl
  doi: 10.1080/10236190701817383
– year: 2013
  ident: 10.1016/j.rinam.2022.100338_b6
– volume: 94
  start-page: 902
  issue: 5
  year: 2017
  ident: 10.1016/j.rinam.2022.100338_b20
  article-title: ɛ-Uniformly convergent numerical scheme for singularly perturbed delay parabolic partial differential equations
  publication-title: Int J Comput Math
  doi: 10.1080/00207160.2016.1154948
– volume: 92
  start-page: 1204
  issue: 6
  year: 2015
  ident: 10.1016/j.rinam.2022.100338_b35
  article-title: A robust layer adapted difference method for singularly perturbed two-parameter parabolic problems
  publication-title: Int J Comput Math
  doi: 10.1080/00207160.2014.928701
– volume: 125
  start-page: 215
  issue: 2
  year: 2003
  ident: 10.1016/j.rinam.2022.100338_b2
  article-title: Analysis of a system of linear delay differential equations
  publication-title: J Dyn Syst Meas Control
  doi: 10.1115/1.1568121
– volume: 91
  start-page: 94
  issue: 1
  year: 1983
  ident: 10.1016/j.rinam.2022.100338_b4
  article-title: Nonlinear stochastic differential delay equations
  publication-title: J Math Anal Appl
  doi: 10.1016/0022-247X(83)90094-X
– year: 1968
  ident: 10.1016/j.rinam.2022.100338_b9
– volume: 16
  start-page: 1143
  issue: 10
  year: 1967
  ident: 10.1016/j.rinam.2022.100338_b30
  article-title: Two-parameter singular perturbation problems for second-order equations
  publication-title: J Math Mech
– volume: 271
  start-page: 168
  year: 2015
  ident: 10.1016/j.rinam.2022.100338_b19
  article-title: Uniformly convergent hybrid numerical scheme for singularly perturbed delay parabolic convection–diffusion problems on Shishkin mesh
  publication-title: Appl Math Comput
– volume: 40
  start-page: 25
  issue: 1_2
  year: 2022
  ident: 10.1016/j.rinam.2022.100338_b17
  article-title: Computational method for singularly perturbed parabolic reaction-diffusion equations with Robin boundary conditions
  publication-title: J Appl Math Inf
– volume: 292
  start-page: 307
  year: 2016
  ident: 10.1016/j.rinam.2022.100338_b34
  article-title: A singularly perturbed problem with two parameters on a Bakhvalov-type mesh
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2015.07.011
– volume: 11
  year: 2021
  ident: 10.1016/j.rinam.2022.100338_b29
  article-title: A method of line with improved accuracy for singularly perturbed parabolic convection–diffusion problems with large temporal lag
  publication-title: Results Appl Math
  doi: 10.1016/j.rinam.2021.100174
– volume: 1
  start-page: 138
  year: 2008
  ident: 10.1016/j.rinam.2022.100338_b13
  article-title: Uniform convergence analysis for singularly perturbed elliptic problems with parabolic layers
  publication-title: Numer Math Theory Methods Appl
– volume: 2021
  year: 2021
  ident: 10.1016/j.rinam.2022.100338_b27
  article-title: Novel numerical scheme for singularly perturbed time delay convection-diffusion equation
  publication-title: Adv Math Phys
  doi: 10.1155/2021/6641236
– volume: 37
  start-page: 626
  issue: 1
  year: 2021
  ident: 10.1016/j.rinam.2022.100338_b28
  article-title: A parameter-uniform scheme for the parabolic singularly perturbed problem with a delay in time
  publication-title: Numer Methods Partial Differential Equations
  doi: 10.1002/num.22544
– volume: 205
  start-page: 552
  issue: 1
  year: 2007
  ident: 10.1016/j.rinam.2022.100338_b18
  article-title: A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2006.05.032
– volume: 56
  start-page: 51
  issue: 1
  year: 2016
  ident: 10.1016/j.rinam.2022.100338_b36
  article-title: Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters
  publication-title: BIT Numer Math
  doi: 10.1007/s10543-015-0559-8
– volume: 39
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.rinam.2022.100338_b22
  article-title: Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline
  publication-title: Comput Appl Math
  doi: 10.1007/s40314-020-01278-5
– volume: 39
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.rinam.2022.100338_b41
  article-title: A robust numerical method for a two-parameter singularly perturbed time delay parabolic problem
  publication-title: Comput Appl Math
– volume: 35
  start-page: 57
  issue: 3
  year: 1998
  ident: 10.1016/j.rinam.2022.100338_b16
  article-title: Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems I: reaction-diffusion type
  publication-title: Comput Math Appl
  doi: 10.1016/S0898-1221(97)00279-4
– volume: 66
  start-page: 996
  issue: 6
  year: 2013
  ident: 10.1016/j.rinam.2022.100338_b33
  article-title: A robust adaptive method for singularly perturbed convection–diffusion problem with two small parameters
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2013.06.025
– volume: 171
  start-page: 1
  issue: 1–2
  year: 1999
  ident: 10.1016/j.rinam.2022.100338_b15
  article-title: Global uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems: higher-order elements
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/S0045-7825(98)00243-6
– volume: 59
  start-page: 2543
  issue: 4
  year: 2020
  ident: 10.1016/j.rinam.2022.100338_b21
  article-title: A robust method of lines solution for singularly perturbed delay parabolic problem
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2020.03.042
– volume: 11
  start-page: 135
  issue: 1
  year: 1992
  ident: 10.1016/j.rinam.2022.100338_b5
  article-title: Delay effects and differential delay equations in chemical kinetics
  publication-title: Int Rev Phys Chem
  doi: 10.1080/01442359209353268
– volume: 23
  start-page: 210
  issue: 3
  year: 2022
  ident: 10.1016/j.rinam.2022.100338_b39
  article-title: Parameter-uniform finite difference method for singularly perturbed parabolic problem with two small parameters
  publication-title: Int J Comput Methods Eng Sci Mech
  doi: 10.1080/15502287.2021.1948148
– year: 2012
  ident: 10.1016/j.rinam.2022.100338_b7
– volume: 63
  start-page: 171
  issue: 1
  year: 2020
  ident: 10.1016/j.rinam.2022.100338_b23
  article-title: A fourth-order numerical scheme for singularly perturbed delay parabolic problem arising in population dynamics
  publication-title: J Appl Math Comput
  doi: 10.1007/s12190-019-01313-7
– volume: 9
  issue: 1
  year: 2022
  ident: 10.1016/j.rinam.2022.100338_b12
  article-title: A novel numerical approach for singularly perturbed parabolic convection-diffusion problems on layer-adapted meshes
  publication-title: Res Math
– year: 2021
  ident: 10.1016/j.rinam.2022.100338_b25
  article-title: A uniformly convergent collocation method for singularly perturbed delay parabolic reaction-diffusion problem
– volume: 15
  year: 2022
  ident: 10.1016/j.rinam.2022.100338_b14
  article-title: Parameter-uniform numerical scheme for singularly perturbed parabolic convection–diffusion Robin type problems with a boundary turning point
  publication-title: Results Appl Math
  doi: 10.1016/j.rinam.2022.100324
SSID ssj0002810140
Score 2.2772133
Snippet In the present paper, an exponentially fitted numerical scheme is constructed and analyzed for solving singularly perturbed two-parameter parabolic problems...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100338
SubjectTerms Exponentially fitted cubic spline method
Parabolic convection–diffusion problem
Singular perturbation
Time delay
Two small parameters
Title A uniformly convergent numerical scheme for two parameters singularly perturbed parabolic convection–diffusion problems with a large temporal lag
URI https://dx.doi.org/10.1016/j.rinam.2022.100338
https://doaj.org/article/a89f495cadf84e85aa8c6b00c2c6a082
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTvRQUVrUpYB86JGoeTiOfaQIhCrRE0jcovELgbIB7WaFeut_4B_2lzBjZ1c5wYWjEz8iz8gz48z3DWM_HFQ1BAxLlPd5JqzXmXLKZEUI0gUMikysRXD5R15ci9839c2k1BflhCV64LRxP0HpgE68BReU8KoGUFairtjSSkD7RadvrvNJMHUfr4yKEQ2J7n2eEcnKmnIoJnct7nogHHpZUppAReiUiVmK7P0T6zSxOOc77NPoKvKT9Imf2Qff77KPlxue1eUX9nzCVz1hq-bdXx4TyAlLOfB-lX7EdByDVz_3HLvw4emBE9P3nDJglpwuCSgHFUc--gVaHuNdfG-IKjjNFkEP__89UxmVFd2r8bEAzZLTBS4H3lEmOR8Jrjps3n5l1-dnV6cX2VhmIbOiEEMGZVChAWusdq4ucwsylKKpoNBCVRJjimAbI7XBZmjqwtnG4dlkLGFowapqj231D73_xrhw2lun67wKlWgaMMFUoEuAIJu8cDBj5XqXWztykFMpjK5dJ5vdt1E0LYmmTaKZsePNoMdEwfF6918kvk1X4s-OD1Cr2lGr2re0asbkWvjt6IokFwOnuntt9f33WP0726YpE-TxgG0Ni5U_RN9nMEdRzV8AiNcHGg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+uniformly+convergent+numerical+scheme+for+two+parameters+singularly+perturbed+parabolic+convection%E2%80%93diffusion+problems+with+a+large+temporal+lag&rft.jtitle=Results+in+applied+mathematics&rft.au=Naol+Tufa+Negero&rft.date=2022-11-01&rft.pub=Elsevier&rft.issn=2590-0374&rft.eissn=2590-0374&rft.volume=16&rft.spage=100338&rft_id=info:doi/10.1016%2Fj.rinam.2022.100338&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a89f495cadf84e85aa8c6b00c2c6a082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0374&client=summon