Secular variability of the thermal regimes of continental flood basalts in large igneous provinces since the Late Paleozoic: Implications for the supercontinent cycle

The thermal regimes of large igneous provinces (LIPs) are addressed in order to evaluate the principal mechanisms of supercontinent breakup. The primary magma solutions and mantle potential temperatures (TP) determined for flood basalts of LIPs that are associated with Pangea and its breakup are pre...

Full description

Saved in:
Bibliographic Details
Published inEarth-science reviews Vol. 226; p. 103928
Main Authors Manu Prasanth, M.P., Shellnutt, J. Gregory, Lee, Tung-Yi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The thermal regimes of large igneous provinces (LIPs) are addressed in order to evaluate the principal mechanisms of supercontinent breakup. The primary magma solutions and mantle potential temperatures (TP) determined for flood basalts of LIPs that are associated with Pangea and its breakup are presented. The LIPs are divided into Pangean and post-Pangean based on the amalgamation, rifting, and dispersal stages of Pangea. Among the Pangean LIPs the Oslo Rift (TP = 1482–1523 °C), Emeishan LIP (TP = 1415–1524 °C), and Siberian Traps (TP = 1440–1538 °C) are consistent with a mantle plume thermal regime. The early-Permian Himalayan magmatic province exhibits ambient mantle TP (1354–1455 °C) and consistent with melt derivation from a shallow mantle source. The post-Pangean LIPs, however, exhibit complex TP relations, and such complexities in the mantle source can be correlated with the dispersal stages of Pangea. The TP estimates on the Late Triassic-Early Jurassic Central Atlantic Magmatic Province (CAMP) (TP = 1325–1493 °C) and Miocene Columbia River Basalt Group (TP = 1401–1465 °C) are consistent with non-plume sources and the slightly elevated TP relative to the ambient mantle (TP = 1350 ± 50 °C) is attributed to continental insulation and subduction delamination. The Early Jurassic Karoo-Ferrar LIP (TP = 1407–1595 °C), Early Cretaceous Paraná-Etendeka LIP (TP = 1325–1527 °C), and Paleocene North Atlantic LIP (NALIP) (TP = 1352–1563 °C) exhibit both mantle plume and ambient mantle thermal regimes. The TP estimates of Late Cretaceous-Paleocene Deccan Traps (DLIP) (TP = 1487–1578 °C) and Late Cretaceous Madagascar LIP (TP = 1509 °C) are consistent with a mantle plume related origin. The mantle plume-related LIPs and the LIPs that exhibit both lithospheric and sub-lithospheric components point out that they were emplaced into an already thinned lithosphere. Despite their likely mantle plume origin, plume-induced continental rifting is absent in the Pangean LIPs like Siberian Traps and Emieshan. The LIPs, such as Himalayan magmatic province, CAMP, and Columbia River Basalt Group exhibit significant melt generation and continental rifting without mantle plumes and the rifting process were controlled by plate tectonic processes. The Karoo-Ferrar LIP, Paraná-Etendeka LIP, and NALIP show evidence for prior thinned lithosphere and lithosphere-controlled rifting events before the onset of plume magmatism. However, mantle plume events might have accelerated the separation of India and Madagascar but apart from that, there is no other record of plume-induced rifting on both Pangean and post-Pangean LIPs. Rapid dispersal of Pangea and increased rate of subduction along the plate margins are possibly influenced by the thermal energy differences of the plume events at the continental and oceanic LIPs. We posit, based on the thermal state of the LIPs, that mantle plumes act as the source of magma composition and thermal energy rather than the primary driving mechanism of supercontinent rifting, which is controlled by lithospheric processes. [Display omitted] •Mantle plumes do not appear to drive breakup and dispersal of supercontinents•Supercontinent rifting is likely controlled by plate tectonic processes•Significant amount of melting can occur at ambient mantle temperatures•Supercontinent dispersal has a significant influence on the thermal regimes of LIPs
AbstractList The thermal regimes of large igneous provinces (LIPs) are addressed in order to evaluate the principal mechanisms of supercontinent breakup. The primary magma solutions and mantle potential temperatures (TP) determined for flood basalts of LIPs that are associated with Pangea and its breakup are presented. The LIPs are divided into Pangean and post-Pangean based on the amalgamation, rifting, and dispersal stages of Pangea. Among the Pangean LIPs the Oslo Rift (TP = 1482–1523 °C), Emeishan LIP (TP = 1415–1524 °C), and Siberian Traps (TP = 1440–1538 °C) are consistent with a mantle plume thermal regime. The early-Permian Himalayan magmatic province exhibits ambient mantle TP (1354–1455 °C) and consistent with melt derivation from a shallow mantle source. The post-Pangean LIPs, however, exhibit complex TP relations, and such complexities in the mantle source can be correlated with the dispersal stages of Pangea. The TP estimates on the Late Triassic-Early Jurassic Central Atlantic Magmatic Province (CAMP) (TP = 1325–1493 °C) and Miocene Columbia River Basalt Group (TP = 1401–1465 °C) are consistent with non-plume sources and the slightly elevated TP relative to the ambient mantle (TP = 1350 ± 50 °C) is attributed to continental insulation and subduction delamination. The Early Jurassic Karoo-Ferrar LIP (TP = 1407–1595 °C), Early Cretaceous Paraná-Etendeka LIP (TP = 1325–1527 °C), and Paleocene North Atlantic LIP (NALIP) (TP = 1352–1563 °C) exhibit both mantle plume and ambient mantle thermal regimes. The TP estimates of Late Cretaceous-Paleocene Deccan Traps (DLIP) (TP = 1487–1578 °C) and Late Cretaceous Madagascar LIP (TP = 1509 °C) are consistent with a mantle plume related origin. The mantle plume-related LIPs and the LIPs that exhibit both lithospheric and sub-lithospheric components point out that they were emplaced into an already thinned lithosphere. Despite their likely mantle plume origin, plume-induced continental rifting is absent in the Pangean LIPs like Siberian Traps and Emieshan. The LIPs, such as Himalayan magmatic province, CAMP, and Columbia River Basalt Group exhibit significant melt generation and continental rifting without mantle plumes and the rifting process were controlled by plate tectonic processes. The Karoo-Ferrar LIP, Paraná-Etendeka LIP, and NALIP show evidence for prior thinned lithosphere and lithosphere-controlled rifting events before the onset of plume magmatism. However, mantle plume events might have accelerated the separation of India and Madagascar but apart from that, there is no other record of plume-induced rifting on both Pangean and post-Pangean LIPs. Rapid dispersal of Pangea and increased rate of subduction along the plate margins are possibly influenced by the thermal energy differences of the plume events at the continental and oceanic LIPs. We posit, based on the thermal state of the LIPs, that mantle plumes act as the source of magma composition and thermal energy rather than the primary driving mechanism of supercontinent rifting, which is controlled by lithospheric processes.
The thermal regimes of large igneous provinces (LIPs) are addressed in order to evaluate the principal mechanisms of supercontinent breakup. The primary magma solutions and mantle potential temperatures (TP) determined for flood basalts of LIPs that are associated with Pangea and its breakup are presented. The LIPs are divided into Pangean and post-Pangean based on the amalgamation, rifting, and dispersal stages of Pangea. Among the Pangean LIPs the Oslo Rift (TP = 1482–1523 °C), Emeishan LIP (TP = 1415–1524 °C), and Siberian Traps (TP = 1440–1538 °C) are consistent with a mantle plume thermal regime. The early-Permian Himalayan magmatic province exhibits ambient mantle TP (1354–1455 °C) and consistent with melt derivation from a shallow mantle source. The post-Pangean LIPs, however, exhibit complex TP relations, and such complexities in the mantle source can be correlated with the dispersal stages of Pangea. The TP estimates on the Late Triassic-Early Jurassic Central Atlantic Magmatic Province (CAMP) (TP = 1325–1493 °C) and Miocene Columbia River Basalt Group (TP = 1401–1465 °C) are consistent with non-plume sources and the slightly elevated TP relative to the ambient mantle (TP = 1350 ± 50 °C) is attributed to continental insulation and subduction delamination. The Early Jurassic Karoo-Ferrar LIP (TP = 1407–1595 °C), Early Cretaceous Paraná-Etendeka LIP (TP = 1325–1527 °C), and Paleocene North Atlantic LIP (NALIP) (TP = 1352–1563 °C) exhibit both mantle plume and ambient mantle thermal regimes. The TP estimates of Late Cretaceous-Paleocene Deccan Traps (DLIP) (TP = 1487–1578 °C) and Late Cretaceous Madagascar LIP (TP = 1509 °C) are consistent with a mantle plume related origin. The mantle plume-related LIPs and the LIPs that exhibit both lithospheric and sub-lithospheric components point out that they were emplaced into an already thinned lithosphere. Despite their likely mantle plume origin, plume-induced continental rifting is absent in the Pangean LIPs like Siberian Traps and Emieshan. The LIPs, such as Himalayan magmatic province, CAMP, and Columbia River Basalt Group exhibit significant melt generation and continental rifting without mantle plumes and the rifting process were controlled by plate tectonic processes. The Karoo-Ferrar LIP, Paraná-Etendeka LIP, and NALIP show evidence for prior thinned lithosphere and lithosphere-controlled rifting events before the onset of plume magmatism. However, mantle plume events might have accelerated the separation of India and Madagascar but apart from that, there is no other record of plume-induced rifting on both Pangean and post-Pangean LIPs. Rapid dispersal of Pangea and increased rate of subduction along the plate margins are possibly influenced by the thermal energy differences of the plume events at the continental and oceanic LIPs. We posit, based on the thermal state of the LIPs, that mantle plumes act as the source of magma composition and thermal energy rather than the primary driving mechanism of supercontinent rifting, which is controlled by lithospheric processes. [Display omitted] •Mantle plumes do not appear to drive breakup and dispersal of supercontinents•Supercontinent rifting is likely controlled by plate tectonic processes•Significant amount of melting can occur at ambient mantle temperatures•Supercontinent dispersal has a significant influence on the thermal regimes of LIPs
ArticleNumber 103928
Author Lee, Tung-Yi
Shellnutt, J. Gregory
Manu Prasanth, M.P.
Author_xml – sequence: 1
  givenname: M.P.
  surname: Manu Prasanth
  fullname: Manu Prasanth, M.P.
  email: manu@earth.sinica.edu.tw
  organization: Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan
– sequence: 2
  givenname: J. Gregory
  surname: Shellnutt
  fullname: Shellnutt, J. Gregory
  organization: National Taiwan Normal University, Department of Earth Sciences, 88 Tingzhou Road Section 4, Taipei 11677, Taiwan
– sequence: 3
  givenname: Tung-Yi
  surname: Lee
  fullname: Lee, Tung-Yi
  organization: National Taiwan Normal University, Department of Earth Sciences, 88 Tingzhou Road Section 4, Taipei 11677, Taiwan
BookMark eNqNUcuOEzEQtNAikV34BnzkMsH2ZB5B4rBa8VgpEkjA2erxtENHHjvYTqTwQXwnnmS1By7LwWq5VFV2V12zKx88MvZaiqUUsn27WyLEZCjicamEUgWt16p_xhay71TV9qq_YgshpKp61agX7DqlnSh3se4W7M83NAcHkR8hEgzkKJ94sDz_xPnECRyPuKUJ0wyb4DN59LnA1oUw8gESuJw4eV5stshp6zEcEt_HcCRvii7N4-y4gYz8KzgMvwOZd_x-2jsykCn4xG2IZ1I67DE-PsTNyTh8yZ5bcAlfPcwb9uPjh-93n6vNl0_3d7ebyqzkKlcgxpLA2lohbD8a22CNFg3aoYGVGmpAGMa6tmpo0UpQomu6tmmGtl-NDUqob9ibi2_5_a8DpqwnSgadg_NSWrV128haKlGo7y9UE0NKEa02lM-r5AjktBR67kfv9GM_eu5HX_op-u4f_T7SBPH0H8rbixJLEkfCqAsJS8ZjoZqsx0BPevwFJou4GA
CitedBy_id crossref_primary_10_1038_s41598_024_58729_w
crossref_primary_10_1016_j_earscirev_2023_104352
crossref_primary_10_1016_j_lithos_2022_106880
crossref_primary_10_1007_s12040_022_01922_0
crossref_primary_10_1016_j_lithos_2022_106967
crossref_primary_10_3389_feart_2022_1092823
crossref_primary_10_1016_j_chemer_2025_126264
crossref_primary_10_1016_j_chemosphere_2022_135340
Cites_doi 10.1038/s41598-017-00248-y
10.1016/j.lithos.2010.04.008
10.1130/G47122.1
10.1016/0012-821X(82)90019-X
10.1016/j.gr.2008.11.004
10.1016/j.pepi.2003.04.002
10.1016/0040-1951(94)90270-4
10.1130/0091-7613(1993)021<0789:OOTCPA>2.3.CO;2
10.1093/petrology/egt063
10.1016/j.epsl.2013.06.023
10.1126/science.1083376
10.1016/S0016-7037(02)00852-9
10.1016/j.jvolgeores.2017.08.009
10.1016/j.epsl.2005.10.003
10.1093/petrology/29.3.625
10.1016/j.lithos.2010.10.008
10.1016/j.chemgeo.2016.10.008
10.1144/SP463.4
10.1126/science.1234204
10.1016/S0012-821X(01)00553-2
10.1029/2009GL037552
10.1016/j.epsl.2017.07.043
10.1016/j.epsl.2008.04.045
10.1016/S0012-821X(98)00282-9
10.1016/j.lithos.2005.12.007
10.1016/j.lithos.2013.10.019
10.1016/j.gr.2008.10.001
10.1016/0040-1951(73)90037-1
10.1016/j.chemgeo.2010.08.004
10.1146/annurev-earth-060115-012211
10.1038/ngeo2954
10.1038/s41598-021-88098-7
10.1002/jgrb.50079
10.1038/nature06214
10.1016/j.lithos.2014.01.008
10.1130/G23240A.1
10.1002/2015JB012762
10.1016/0012-821X(90)90072-6
10.1126/science.1138113
10.1130/G32214.1
10.1144/0016-764902-060
10.1016/j.epsl.2007.12.004
10.1126/science.284.5414.616
10.1002/2015GL066036
10.1093/petrology/32.3.501
10.1038/s41467-020-17193-6
10.1007/s00531-017-1519-0
10.1130/0091-7613(1995)023<0435:MMPOTY>2.3.CO;2
10.1002/2014TC003760
10.1002/gj.3497
10.1038/ngeo1080
10.1093/petrology/egaa016
10.1016/j.chemgeo.2014.01.004
10.1093/petrology/egz021
10.1016/S0264-3707(96)00045-2
10.1038/s41467-017-01940-3
10.1016/B978-0-444-42198-2.50015-8
10.1029/2006GC001390
10.1111/j.1365-3121.2004.00592.x
10.1038/ngeo281
10.1130/0091-7613(1994)022<0039:SOS>2.3.CO;2
10.1016/j.lithos.2019.04.025
10.1016/j.earscirev.2018.10.003
10.1016/j.chemgeo.2019.119287
10.1016/j.gsf.2013.07.003
10.1016/j.gr.2014.02.007
10.1016/j.epsl.2020.116123
10.1130/focus122011.1
10.1130/G36442.1
10.1016/j.tecto.2013.05.032
10.1016/j.tecto.2011.10.004
10.1080/00206814.2014.963170
10.1038/ngeo1758
10.1038/35035058
10.1016/j.earscirev.2019.02.011
10.1130/GES00175.1
10.1016/j.chemgeo.2009.12.013
10.1016/j.gr.2017.04.014
10.1038/nature07857
10.1134/S0869591109030047
10.1038/274047a0
10.1016/j.lithos.2004.09.013
10.1038/ncomms15596
10.1016/j.lithos.2010.12.007
10.1126/science.246.4926.103
10.1029/2005GC000915
10.1016/j.gca.2017.01.054
10.1029/90RG02372
10.2113/gselements.1.5.265
10.1016/j.earscirev.2017.09.014
10.1002/2015GC005885
10.1007/s00410-014-1019-1
10.1029/97JB00972
10.1016/0009-2541(94)00140-4
10.1016/S0016-7037(02)00890-6
10.3389/feart.2018.00067
10.1093/petrology/42.5.963
10.2138/am-2016-5402
10.1093/petrology/egs076
10.1002/2014GC005631
10.1016/j.jseaes.2020.104367
10.1016/S0012-821X(00)00114-X
10.1093/petrology/egw014
10.1029/JZ072i024p06261
10.1029/GL005i006p00419
10.1007/BF02702904
10.1038/srep31442
10.1016/j.epsl.2008.12.020
10.1016/j.chemgeo.2007.01.015
10.1016/j.earscirev.2019.102902
10.1016/S0040-1951(96)00183-7
10.1038/377301a0
10.1038/nature06379
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.earscirev.2022.103928
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-6828
ExternalDocumentID 10_1016_j_earscirev_2022_103928
S0012825222000125
GeographicLocations Columbia River
Madagascar
India
GeographicLocations_xml – name: Columbia River
– name: Madagascar
– name: India
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
186
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9M8
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGNAY
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PZZ
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
TAE
TN5
UQL
VH1
WH7
WUQ
XJT
ZCA
ZKB
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c414t-a0d0229ff00f8dcf5e3efecefb5a42b3aeabd33f2b6ef1a20757655b684d5e1a3
IEDL.DBID .~1
ISSN 0012-8252
IngestDate Fri Jul 11 05:01:00 EDT 2025
Thu Apr 24 23:04:59 EDT 2025
Tue Jul 01 03:11:33 EDT 2025
Fri Feb 23 02:37:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pangea
Continental breakup
Mantle potential temperature
Large igneous provinces
Mantle plumes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-a0d0229ff00f8dcf5e3efecefb5a42b3aeabd33f2b6ef1a20757655b684d5e1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636513120
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636513120
crossref_citationtrail_10_1016_j_earscirev_2022_103928
crossref_primary_10_1016_j_earscirev_2022_103928
elsevier_sciencedirect_doi_10_1016_j_earscirev_2022_103928
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Earth-science reviews
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Merle (bb0405) 2011; 513
Bertrand, Fornari, Marzoli, García-Duarte, Sempere (bb0030) 2014; 188
Cahoon, Streck, Koppers, Miggins (bb0050) 2020; 48
Ivanov, Meffre, Thompson, Corfu, Kamenetsky, Kamenetsky, Demonterova (bb0300) 2017; 455
Natali, Beccaluva, Bianchini, Siena (bb0425) 2017; 526
Shellnutt, Pham (bb0575) 2018; 6
Campbell, Griffiths (bb0075) 1990; 99
Mckenzie, Bickle (bb0390) 1988; 29
Manu Prasanth, Hari, Santosh (bb0360) 2019; 54
Audet, Bürgmann (bb0025) 2011; 4
Ali, Thompson, Zhou, Song (bb0005) 2005; 79
Sen, Chandrasekharam (bb0545) 2011
Foulger (bb0180) 2010
Nielsen, Stephenson, Thomsen (bb0440) 2007; 450
Frizon de Lamotte, Fourdan, Leleu, Leparmentier, de Clarens (bb0190) 2015; 34
Geist, Richards (bb0200) 1993; 21
Collier, Sansom, Ishizuka, Taylor, Minshull, Whitmarsh (bb0085) 2008; 272
Putirka (bb0500) 2016; 101
Hole (bb0265) 2018; 176
Shellnutt, Lee, Chiu, Lee, Wong (bb0585) 2015; 42
Hole, Millett (bb0270) 2016; 57
Neumann (bb0430) 1994; 240
Coogan, Saunders, Wilson (bb0110) 2014; 368
Shellnutt, Dostal, Lee (bb0600) 2021; 11
Whalen, Gazel, Vidito, Puffer, Bizimis, Henika, Caddick (bb0650) 2015; 16
De Min, Callegaro, Marzoli, Nardy, Chiaradia, Marques, Gabbarrini (bb0140) 2018; 355
Sobolev, Hofmann, Kuzmin, Yaxley, Arndt, Chung, Danyushevsky, Elliott, Frey, Garcia (bb0605) 2007; 316
Santosh, Maruyama, Yamamoto (bb0530) 2009; 15
Duncan, Richards (bb0145) 1991; 29
Torsvik, Smethurst, Burke, Steinberger (bb0635) 2008; 267
Sengor (bb0550) 1984; 195
Ichiyama, Ishiwatari, Kimura, Senda, Miyamoto (bb0295) 2014; 168
Peace, Phethean, Franke, Foulger, Schiffer, Welford, McHone, Rocchi, Schnabel, Doré (bb0460) 2020; 206
Camp, Hanan (bb0065) 2008; 4
Müller, Seton, Zahirovic, Williams, Matthews, Wright, Shephard, Maloney, Barnett-Moore, Hosseinpour (bb0420) 2016; 44
Shellnutt, Bhat, Wang, Brookfield, Dostal, Jahn (bb0580) 2014; 204
Brandl, Regelous, Beier, Haase (bb0040) 2013; 6
Duncan, Hooper, Rehacek, Marsh, Duncan (bb0150) 1997; 102
Coltice, Bertrand, Rey, Jourdan, Phillips, Ricard (bb0095) 2009; 15
Heeremans, Larsen, Stel (bb0225) 1996; 266
Pálfy, Kocsis (bb0455) 2014; 505
Marzen, Shillington, Lizarralde, Knapp, Heffner, Davis, Harder (bb0365) 2020; 11
Herzberg, Asimow, Arndt, Niu, Lesher, Fitton, Cheadle, Saunders (bb0255) 2007; 8
Hole (bb0260) 2015; 43
McDonough, Sun (bb0380) 1995; 120
Xu, Liu, Lambart (bb0665) 2020; 103253
Campbell (bb0070) 2005; 1
Şengör, Natal’in (bb0560) 2001; 352
Richards, Duncan, Courtillot (bb0520) 1989; 246
Storey, Vaughan, Riley (bb0620) 2013; 104
Coltice, Phillips, Bertrand, Ricard, Rey (bb0090) 2007; 35
Niu (bb0445) 2020; 194
Herzberg, Asimow (bb0240) 2008
Scotese (bb0535) 2016
Asimow, Hirschmann, Stolper (bb0020) 2001; 42
Merle, Marzoli, Reisberg, Bertrand, Nemchin, Chiaradia, Callegaro, Jourdan, Bellieni, Kontak, Puffer (bb0410) 2014; 55
Marzoli, Renne, Piccirillo, Ernesto, Bellieni, De Min (bb0370) 1999; 284
Morgan (bb0415) 1983
Putirka (bb0495) 2005
Wilson (bb0660) 1973; 19
Falloon, Danyushevsky, Ariskin, Green, Ford (bb0175) 2007; 241
Presnall, Gudfinnsson, Walter (bb0485) 2002; 66
Condie (bb0100) 2004; 146
Peate, Bryan (bb0480) 2008; 1
Melluso, Morra, Brotzu, Franciosi, Lieberknecht, Bennio (bb0395) 2003; 160
Trela, Gazel, Sobolev, Moore, Bizimis, Jicha, Batanova (bb0640) 2017; 10
Zhou, Hoernle, Geldmacher, Hauff, Homrighausen, Garbe-Schönberg, Jung (bb0680) 2020; 535
Pearce (bb0465) 1996; 12
Gibbons, Whittaker, Müller (bb0205) 2013; 118
Ebbing, Afework, Olesen, Nordgulen (bb0160) 2005; 17
Reidel, Camp, Tolan, Martin (bb0510) 2013; 497
Ryabchikov (bb0525) 2003; 11
Jourdan, Marzoli, Bertrand, Cosca, Fontignie (bb0310) 2003; 136
Peate (bb0475) 1997; 100
Hanski, Kamenetsky, Luo, Xu, Kuzmin (bb0215) 2010; 119
Shellnutt, Dostal, Yeh (bb0595) 2018; 107
Shellnutt (bb0565) 2014; 5
Kumar, Yuan, Kumar, Kind, Li, Chadha (bb0325) 2007; 449
Maclennan, McKenzie, Gronvöld (bb0350) 2001; 194
Putirka, Perfit, Ryerson, Jackson (bb0505) 2007; 241
Blackburn, Olsen, Bowring, McLean, Kent, Puffer, McHone, Rasbury, Et-Touhami (bb0035) 2013; 340
Herzberg, Asimow (bb0245) 2015; 16
Davidson, Turner, Plank (bb0130) 2013; 54
Sen (bb0540) 2001; 110
Watson, McKenzie (bb0645) 1991; 32
Will, Frimmel (bb0655) 2018; 53
Foulger, Natland (bb0185) 2003; 300
Callegaro, Marzoli, Bertrand, Chiaradia, Reisberg, Meyzen, Bellieni, Weems, Merle (bb0055) 2013; 376
Thybo, Artemieva (bb0630) 2013; 609
Jennings, Gibson, Maclennan (bb0305) 2019; 529
Liu, Xia, Kuritani, Hanski, Yu (bb0345) 2017; 8
Arevalo, McDonough (bb0015) 2010; 271
Herzberg, Gazel (bb0250) 2009; 458
Thompson, Gibson (bb0625) 2000; 407
Cheng, Hou, Keiding, Veksler, Kamenetsky, Hornschu, Trumbull (bb0080) 2019; 60
Cox (bb0125) 1978; 274
Shellnutt (bb0570) 2018; 463
Condie, Davaille, Aster, Arndt (bb0105) 2015; 57
Courtillot, Jaupart, Manighetti, Tapponnier, Besse (bb0120) 1999; 166
Ettensohn (bb0170) 1997; 23
Jourdan, Féraud, Bertrand, Watkeys, Kampunzu, Le Gall (bb0315) 2006; 241
Marzoli, Bertrand, Youbi, Callegaro, Merle, Reisberg, Chiaradia, Brownlee, Jourdan, Zanetti, Davies (bb0375) 2019; 60
Neumann (bb0435) 2019; 340
O’Hara, Herzberg (bb0450) 2002; 66
Herzberg (bb0235) 2011; 39
Mahoney, Macdougall, Lugmair, Murali, Das, Gopalan (bb0355) 1982; 60
Puffer (bb0490) 2003; 136
Yeh, Shellnutt (bb0670) 2016; 6
Eagles, Vaughan (bb0155) 2009; 36
Hawkesworth, Gallagher, Kirstein, Mantovani, Peate, Turner (bb0220) 2000; 179
Ren, Wu, Zhang, Nichols, Hong, Zhang, Zhang, Liu, Xu (bb0515) 2017; 208
Gazel, Hoernle, Carr, Herzberg, Saginor, Van den Bogaard, Hauff, Feigenson, Swisher (bb0195) 2011; 121
Hooper, Camp, Reidel, Ross (bb0285) 2007; 430
Sobolev, Krivolutskaya, Kuzmin (bb0610) 2009; 17
Zhao, Wang, Huang, Dong, Li, Zhang, Yu (bb0675) 2018; 186
Lewandowski (bb0340) 2003; 46
Melluso, Mahoney, Dallai (bb0400) 2006; 89
Heinonen, Carlson, Luttinen (bb0230) 2010; 277
Pearce, Ernst, Peate, Rogers (bb0470) 2021; 106068
Anderson (bb0010) 1994; 22
Corfu, Larsen (bb0115) 2020; 376
Storey (bb0615) 1995; 377
Davies, Marzoli, Bertrand, Youbi, Ernesto, Schaltegger (bb0135) 2017; 8
Eldholm, Coffin (bb0165) 2000; 121
Shellnutt, Yeh, Suga, Lee, Yang, Lin (bb0590) 2017; 7
Lee, Luffi, Plank, Dalton, Leeman (bb0335) 2009; 279
Hamilton (bb0210) 2011; 123
Howarth, Harris (bb0290) 2017; 475
Lambart, Baker, Stolper (bb0330) 2016; 121
Buiter, Torsvik (bb0045) 2014; 26
Sengör, Burke (bb0555) 1978; 5
Camp (bb0060) 1995; 23
Hole, Natland (bb0275) 2020; 206
Hooper, Subbarao (bb0280) 1999; 43
McKenzie (bb0385) 1967; 72
Keiding, Trumbull, Veksler, Jerram (bb0320) 2011; 39
Howarth (10.1016/j.earscirev.2022.103928_bb0290) 2017; 475
Yeh (10.1016/j.earscirev.2022.103928_bb0670) 2016; 6
Geist (10.1016/j.earscirev.2022.103928_bb0200) 1993; 21
Ebbing (10.1016/j.earscirev.2022.103928_bb0160) 2005; 17
Melluso (10.1016/j.earscirev.2022.103928_bb0400) 2006; 89
Ettensohn (10.1016/j.earscirev.2022.103928_bb0170) 1997; 23
Foulger (10.1016/j.earscirev.2022.103928_bb0180) 2010
Shellnutt (10.1016/j.earscirev.2022.103928_bb0585) 2015; 42
Hole (10.1016/j.earscirev.2022.103928_bb0260) 2015; 43
Sobolev (10.1016/j.earscirev.2022.103928_bb0605) 2007; 316
Condie (10.1016/j.earscirev.2022.103928_bb0105) 2015; 57
Eldholm (10.1016/j.earscirev.2022.103928_bb0165) 2000; 121
Shellnutt (10.1016/j.earscirev.2022.103928_bb0600) 2021; 11
Foulger (10.1016/j.earscirev.2022.103928_bb0185) 2003; 300
Cox (10.1016/j.earscirev.2022.103928_bb0125) 1978; 274
Neumann (10.1016/j.earscirev.2022.103928_bb0435) 2019; 340
Liu (10.1016/j.earscirev.2022.103928_bb0345) 2017; 8
Brandl (10.1016/j.earscirev.2022.103928_bb0040) 2013; 6
Frizon de Lamotte (10.1016/j.earscirev.2022.103928_bb0190) 2015; 34
Keiding (10.1016/j.earscirev.2022.103928_bb0320) 2011; 39
Hole (10.1016/j.earscirev.2022.103928_bb0275) 2020; 206
Putirka (10.1016/j.earscirev.2022.103928_bb0505) 2007; 241
Pearce (10.1016/j.earscirev.2022.103928_bb0465) 1996; 12
Ryabchikov (10.1016/j.earscirev.2022.103928_bb0525) 2003; 11
Lambart (10.1016/j.earscirev.2022.103928_bb0330) 2016; 121
Ali (10.1016/j.earscirev.2022.103928_bb0005) 2005; 79
Hooper (10.1016/j.earscirev.2022.103928_bb0280) 1999; 43
Hole (10.1016/j.earscirev.2022.103928_bb0265) 2018; 176
De Min (10.1016/j.earscirev.2022.103928_bb0140) 2018; 355
Shellnutt (10.1016/j.earscirev.2022.103928_bb0565) 2014; 5
Mahoney (10.1016/j.earscirev.2022.103928_bb0355) 1982; 60
Eagles (10.1016/j.earscirev.2022.103928_bb0155) 2009; 36
McDonough (10.1016/j.earscirev.2022.103928_bb0380) 1995; 120
Presnall (10.1016/j.earscirev.2022.103928_bb0485) 2002; 66
Hole (10.1016/j.earscirev.2022.103928_bb0270) 2016; 57
Audet (10.1016/j.earscirev.2022.103928_bb0025) 2011; 4
Trela (10.1016/j.earscirev.2022.103928_bb0640) 2017; 10
Davies (10.1016/j.earscirev.2022.103928_bb0135) 2017; 8
Bertrand (10.1016/j.earscirev.2022.103928_bb0030) 2014; 188
Corfu (10.1016/j.earscirev.2022.103928_bb0115) 2020; 376
Falloon (10.1016/j.earscirev.2022.103928_bb0175) 2007; 241
Sobolev (10.1016/j.earscirev.2022.103928_bb0610) 2009; 17
Mckenzie (10.1016/j.earscirev.2022.103928_bb0390) 1988; 29
Storey (10.1016/j.earscirev.2022.103928_bb0615) 1995; 377
Duncan (10.1016/j.earscirev.2022.103928_bb0150) 1997; 102
Condie (10.1016/j.earscirev.2022.103928_bb0100) 2004; 146
Jennings (10.1016/j.earscirev.2022.103928_bb0305) 2019; 529
Shellnutt (10.1016/j.earscirev.2022.103928_bb0580) 2014; 204
Lewandowski (10.1016/j.earscirev.2022.103928_bb0340) 2003; 46
Pearce (10.1016/j.earscirev.2022.103928_bb0470) 2021; 106068
Puffer (10.1016/j.earscirev.2022.103928_bb0490) 2003; 136
Campbell (10.1016/j.earscirev.2022.103928_bb0070) 2005; 1
Santosh (10.1016/j.earscirev.2022.103928_bb0530) 2009; 15
Putirka (10.1016/j.earscirev.2022.103928_bb0495) 2005
Xu (10.1016/j.earscirev.2022.103928_bb0665) 2020; 103253
Storey (10.1016/j.earscirev.2022.103928_bb0620) 2013; 104
Coogan (10.1016/j.earscirev.2022.103928_bb0110) 2014; 368
Hawkesworth (10.1016/j.earscirev.2022.103928_bb0220) 2000; 179
Herzberg (10.1016/j.earscirev.2022.103928_bb0255) 2007; 8
Merle (10.1016/j.earscirev.2022.103928_bb0410) 2014; 55
Will (10.1016/j.earscirev.2022.103928_bb0655) 2018; 53
Sen (10.1016/j.earscirev.2022.103928_bb0540) 2001; 110
Camp (10.1016/j.earscirev.2022.103928_bb0060) 1995; 23
Shellnutt (10.1016/j.earscirev.2022.103928_bb0595) 2018; 107
Herzberg (10.1016/j.earscirev.2022.103928_bb0250) 2009; 458
Davidson (10.1016/j.earscirev.2022.103928_bb0130) 2013; 54
Camp (10.1016/j.earscirev.2022.103928_bb0065) 2008; 4
Cheng (10.1016/j.earscirev.2022.103928_bb0080) 2019; 60
Heeremans (10.1016/j.earscirev.2022.103928_bb0225) 1996; 266
Jourdan (10.1016/j.earscirev.2022.103928_bb0315) 2006; 241
McKenzie (10.1016/j.earscirev.2022.103928_bb0385) 1967; 72
Scotese (10.1016/j.earscirev.2022.103928_bb0535) 2016
Merle (10.1016/j.earscirev.2022.103928_bb0405) 2011; 513
Peate (10.1016/j.earscirev.2022.103928_bb0480) 2008; 1
Ren (10.1016/j.earscirev.2022.103928_bb0515) 2017; 208
Neumann (10.1016/j.earscirev.2022.103928_bb0430) 1994; 240
Asimow (10.1016/j.earscirev.2022.103928_bb0020) 2001; 42
Courtillot (10.1016/j.earscirev.2022.103928_bb0120) 1999; 166
Thybo (10.1016/j.earscirev.2022.103928_bb0630) 2013; 609
Coltice (10.1016/j.earscirev.2022.103928_bb0090) 2007; 35
Whalen (10.1016/j.earscirev.2022.103928_bb0650) 2015; 16
Heinonen (10.1016/j.earscirev.2022.103928_bb0230) 2010; 277
Maclennan (10.1016/j.earscirev.2022.103928_bb0350) 2001; 194
Sengör (10.1016/j.earscirev.2022.103928_bb0555) 1978; 5
Nielsen (10.1016/j.earscirev.2022.103928_bb0440) 2007; 450
Şengör (10.1016/j.earscirev.2022.103928_bb0560) 2001; 352
Coltice (10.1016/j.earscirev.2022.103928_bb0095) 2009; 15
Richards (10.1016/j.earscirev.2022.103928_bb0520) 1989; 246
Zhao (10.1016/j.earscirev.2022.103928_bb0675) 2018; 186
Manu Prasanth (10.1016/j.earscirev.2022.103928_bb0360) 2019; 54
Gazel (10.1016/j.earscirev.2022.103928_bb0195) 2011; 121
Pálfy (10.1016/j.earscirev.2022.103928_bb0455) 2014; 505
Callegaro (10.1016/j.earscirev.2022.103928_bb0055) 2013; 376
Shellnutt (10.1016/j.earscirev.2022.103928_bb0590) 2017; 7
Marzoli (10.1016/j.earscirev.2022.103928_bb0375) 2019; 60
Anderson (10.1016/j.earscirev.2022.103928_bb0010) 1994; 22
Blackburn (10.1016/j.earscirev.2022.103928_bb0035) 2013; 340
Thompson (10.1016/j.earscirev.2022.103928_bb0625) 2000; 407
Jourdan (10.1016/j.earscirev.2022.103928_bb0310) 2003; 136
O’Hara (10.1016/j.earscirev.2022.103928_bb0450) 2002; 66
Duncan (10.1016/j.earscirev.2022.103928_bb0145) 1991; 29
Gibbons (10.1016/j.earscirev.2022.103928_bb0205) 2013; 118
Sen (10.1016/j.earscirev.2022.103928_bb0545) 2011
Arevalo (10.1016/j.earscirev.2022.103928_bb0015) 2010; 271
Peate (10.1016/j.earscirev.2022.103928_bb0475) 1997; 100
Cahoon (10.1016/j.earscirev.2022.103928_bb0050) 2020; 48
Melluso (10.1016/j.earscirev.2022.103928_bb0395) 2003; 160
Herzberg (10.1016/j.earscirev.2022.103928_bb0240) 2008
Hooper (10.1016/j.earscirev.2022.103928_bb0285) 2007; 430
Shellnutt (10.1016/j.earscirev.2022.103928_bb0570) 2018; 463
Marzen (10.1016/j.earscirev.2022.103928_bb0365) 2020; 11
Niu (10.1016/j.earscirev.2022.103928_bb0445) 2020; 194
Kumar (10.1016/j.earscirev.2022.103928_bb0325) 2007; 449
Putirka (10.1016/j.earscirev.2022.103928_bb0500) 2016; 101
Watson (10.1016/j.earscirev.2022.103928_bb0645) 1991; 32
Peace (10.1016/j.earscirev.2022.103928_bb0460) 2020; 206
Sengor (10.1016/j.earscirev.2022.103928_bb0550) 1984; 195
Ichiyama (10.1016/j.earscirev.2022.103928_bb0295) 2014; 168
Ivanov (10.1016/j.earscirev.2022.103928_bb0300) 2017; 455
Collier (10.1016/j.earscirev.2022.103928_bb0085) 2008; 272
Hamilton (10.1016/j.earscirev.2022.103928_bb0210) 2011; 123
Shellnutt (10.1016/j.earscirev.2022.103928_bb0575) 2018; 6
Müller (10.1016/j.earscirev.2022.103928_bb0420) 2016; 44
Reidel (10.1016/j.earscirev.2022.103928_bb0510) 2013; 497
Wilson (10.1016/j.earscirev.2022.103928_bb0660) 1973; 19
Morgan (10.1016/j.earscirev.2022.103928_bb0415) 1983
Lee (10.1016/j.earscirev.2022.103928_bb0335) 2009; 279
Marzoli (10.1016/j.earscirev.2022.103928_bb0370) 1999; 284
Herzberg (10.1016/j.earscirev.2022.103928_bb0245) 2015; 16
Natali (10.1016/j.earscirev.2022.103928_bb0425) 2017; 526
Torsvik (10.1016/j.earscirev.2022.103928_bb0635) 2008; 267
Herzberg (10.1016/j.earscirev.2022.103928_bb0235) 2011; 39
Hanski (10.1016/j.earscirev.2022.103928_bb0215) 2010; 119
Campbell (10.1016/j.earscirev.2022.103928_bb0075) 1990; 99
Buiter (10.1016/j.earscirev.2022.103928_bb0045) 2014; 26
Zhou (10.1016/j.earscirev.2022.103928_bb0680) 2020; 535
References_xml – volume: 16
  start-page: 563
  year: 2015
  end-page: 578
  ident: bb0245
  article-title: PRIMELT 3 MEGA. XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus
  publication-title: Geochem. Geophys. Geosyst.
– volume: 430
  start-page: 635
  year: 2007
  end-page: 668
  ident: bb0285
  article-title: The origin of the Columbia River flood basalt province: plume versus nonplume models
  publication-title: Geol. Soc. Am. Spec. Pap.
– volume: 39
  start-page: 1095
  year: 2011
  end-page: 1098
  ident: bb0320
  article-title: On the significance of ultra-magnesian olivines in basaltic rocks
  publication-title: Geology
– volume: 463
  start-page: 59
  year: 2018
  end-page: 86
  ident: bb0570
  article-title: The Panjal Traps
  publication-title: Geol. Soc. Lond., Spec. Publ.
– start-page: 123
  year: 1983
  end-page: 139
  ident: bb0415
  article-title: Hotspot tracks and the early rifting of the Atlantic
  publication-title: Developments in Geotectonics
– volume: 246
  start-page: 103
  year: 1989
  end-page: 107
  ident: bb0520
  article-title: Flood basalts and hot-spot tracks: plume heads and tails
  publication-title: Science
– volume: 123
  start-page: 1
  year: 2011
  end-page: 20
  ident: bb0210
  article-title: Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated
  publication-title: Lithos
– volume: 277
  start-page: 227
  year: 2010
  end-page: 244
  ident: bb0230
  article-title: Isotopic (Sr, Nd, Pb, and Os) composition of highly magnesian dikes of Vestfjella, western Dronning Maud Land, Antarctica: a key to the origins of the Jurassic Karoo large igneous province?
  publication-title: Chem. Geol.
– volume: 449
  start-page: 894
  year: 2007
  end-page: 897
  ident: bb0325
  article-title: The rapid drift of the Indian tectonic plate
  publication-title: Nature
– volume: 60
  start-page: 945
  year: 2019
  end-page: 996
  ident: bb0375
  article-title: The Central Atlantic Magmatic Province (CAMP) in Morocco
  publication-title: J. Petrol.
– volume: 241
  start-page: 207
  year: 2007
  end-page: 233
  ident: bb0175
  article-title: The application of olivine geothermometry to infer crystallization temperatures of parental liquids: Implications for the temperature of MORB magmas
  publication-title: Chem. Geol.
– volume: 241
  start-page: 177
  year: 2007
  end-page: 206
  ident: bb0505
  article-title: Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling
  publication-title: Chem. Geol. The Great Plume Debate: Testing the Plume Theory
– volume: 99
  start-page: 79
  year: 1990
  end-page: 93
  ident: bb0075
  article-title: Implications of mantle plume structure for the evolution of flood basalts
  publication-title: Earth Planet. Sci. Lett.
– volume: 29
  start-page: 31
  year: 1991
  end-page: 50
  ident: bb0145
  article-title: Hotspots, mantle plumes, flood basalts, and true polar wander
  publication-title: Rev. Geophys.
– volume: 121
  start-page: 309
  year: 2000
  end-page: 326
  ident: bb0165
  article-title: Large igneous provinces and plate tectonics
  publication-title: Geophysical Monograph-American Geophysical Union
– volume: 43
  start-page: 311
  year: 2015
  end-page: 314
  ident: bb0260
  article-title: The generation of continental flood basalts by decompression melting of internally heated mantle
  publication-title: Geology
– volume: 136
  start-page: 151
  year: 2003
  end-page: 162
  ident: bb0490
  article-title: A reactivated back-arc source for CAMP magma
  publication-title: American Geophysical Union Geophysical Monograph Series
– volume: 26
  start-page: 627
  year: 2014
  end-page: 653
  ident: bb0045
  article-title: A review of Wilson Cycle plate margins: a role for mantle plumes in continental break-up along sutures?
  publication-title: Gondwana Res.
– volume: 279
  start-page: 20
  year: 2009
  end-page: 33
  ident: bb0335
  article-title: Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas
  publication-title: Earth Planet. Sci. Lett.
– volume: 54
  start-page: 2980
  year: 2019
  end-page: 2993
  ident: bb0360
  article-title: Tholeiitic basalts of Deccan large igneous province, India: an overview
  publication-title: Geol. J.
– volume: 284
  start-page: 616
  year: 1999
  end-page: 618
  ident: bb0370
  article-title: Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province
  publication-title: Science
– volume: 66
  start-page: 2167
  year: 2002
  end-page: 2191
  ident: bb0450
  article-title: Interpretation of trace element and isotope features of basalts: Relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis
  publication-title: Geochim. Cosmochim. Acta
– volume: 300
  start-page: 921
  year: 2003
  end-page: 922
  ident: bb0185
  article-title: Is" hotspot" volcanism a consequence of plate tectonics?
  publication-title: Science
– volume: 34
  start-page: 1009
  year: 2015
  end-page: 1029
  ident: bb0190
  article-title: Style of rifting and the stages of Pangea breakup
  publication-title: Tectonics
– volume: 168
  start-page: 1019
  year: 2014
  ident: bb0295
  article-title: Jurassic plume-origin ophiolites in Japan: accreted fragments of oceanic plateaus
  publication-title: Contrib. Mineral. Petrol.
– volume: 160
  start-page: 477
  year: 2003
  end-page: 488
  ident: bb0395
  article-title: Geochemical provinciality in the cretaceous basaltic magmatism of Northern Madagascar: mantle source implications
  publication-title: J. Geol. Soc.
– volume: 42
  start-page: 10207
  year: 2015
  end-page: 10215
  ident: bb0585
  article-title: Evidence of Middle Jurassic magmatism within the Seychelles microcontinent: implications for the break-up of Gondwana
  publication-title: Geophys. Res. Lett.
– year: 2005
  ident: bb0495
  article-title: Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally driven mantle plumes
  publication-title: Geochem. Geophys. Geosyst.
– volume: 21
  start-page: 789
  year: 1993
  end-page: 792
  ident: bb0200
  article-title: Origin of the Columbia Plateau and Snake River plain: deflection of the Yellowstone plume
  publication-title: Geology
– volume: 176
  start-page: 51
  year: 2018
  end-page: 67
  ident: bb0265
  article-title: Mineralogical and geochemical evidence for polybaric fractional crystallization of continental flood basalts and implications for identification of peridotite and pyroxenite source lithologies
  publication-title: Earth Sci. Rev.
– volume: 22
  start-page: 39
  year: 1994
  end-page: 42
  ident: bb0010
  article-title: Superplumes or supercontinents?
  publication-title: Geology
– volume: 241
  start-page: 307
  year: 2006
  end-page: 322
  ident: bb0315
  article-title: Basement control on dyke distribution in large Igneous Provinces: case study of the Karoo triple junction
  publication-title: Earth Planet. Sci. Lett.
– volume: 55
  start-page: 133
  year: 2014
  end-page: 180
  ident: bb0410
  article-title: Sr, Nd, Pb and Os isotope systematics of CAMP tholeiites from Eastern North America (ENA): evidence of a subduction-enriched mantle source
  publication-title: J. Petrol.
– volume: 352
  start-page: 389
  year: 2001
  end-page: 482
  ident: bb0560
  article-title: Rifts of the world
  publication-title: Geol. Soc. Am. Spec. Pap.
– volume: 23
  start-page: 435
  year: 1995
  end-page: 438
  ident: bb0060
  article-title: Mid-Miocene propagation of the Yellowstone mantle plume head beneath the Columbia River basalt source region
  publication-title: Geology
– volume: 46
  start-page: 200
  year: 2003
  end-page: 237
  ident: bb0340
  article-title: Assembly of Pangea: combined paleomagnetic and paleoclimatic approach
  publication-title: Adv. Geophys.
– volume: 4
  start-page: 480
  year: 2008
  end-page: 495
  ident: bb0065
  article-title: A plume-triggered delamination origin for the Columbia River Basalt Group
  publication-title: Geosphere
– volume: 101
  start-page: 819
  year: 2016
  end-page: 840
  ident: bb0500
  article-title: Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe-Mg exchange, and mantle potential temperature
  publication-title: Am. Mineral.
– volume: 450
  start-page: 1071
  year: 2007
  end-page: 1074
  ident: bb0440
  article-title: Dynamics of Mid-Palaeocene North Atlantic rifting linked with European intra-plate deformations
  publication-title: Nature
– volume: 32
  start-page: 501
  year: 1991
  end-page: 537
  ident: bb0645
  article-title: Melt generation by plumes: a study of Hawaiian volcanism
  publication-title: J. Petrol.
– volume: 57
  start-page: 1341
  year: 2015
  end-page: 1348
  ident: bb0105
  article-title: Upstairs-downstairs: supercontinents and large igneous provinces, are they related?
  publication-title: Int. Geol. Rev.
– volume: 11
  start-page: 496
  year: 2003
  end-page: 503
  ident: bb0525
  article-title: Mechanisms and conditions of magma formation in mantle plumes
  publication-title: Petrology
– volume: 23
  start-page: 287
  year: 1997
  end-page: 309
  ident: bb0170
  article-title: Assembly and dispersal of Pangea: Large-scale tectonic effects on coeval deposition of North American, marine, epicontinental, black shales
  publication-title: J. Geodyn.
– volume: 535
  year: 2020
  ident: bb0680
  article-title: Geochemistry of Etendeka magmatism: Spatial heterogeneity in the Tristan-Gough plume head
  publication-title: Earth Planet. Sci. Lett.
– volume: 106068
  year: 2021
  ident: bb0470
  article-title: LIP printing: use of immobile element proxies to characterize large Igneous Provinces in the geologic record
  publication-title: Lithos
– volume: 240
  start-page: 159
  year: 1994
  end-page: 172
  ident: bb0430
  article-title: The Oslo Rift: PT relations and lithospheric structure
  publication-title: Tectonophysics
– volume: 195
  start-page: 82
  year: 1984
  ident: bb0550
  article-title: The Cimmeride orogenic system and the tectonics of Eurasia
  publication-title: Geol. Soc. Am. Spec. Pap.
– volume: 118
  start-page: 808
  year: 2013
  end-page: 822
  ident: bb0205
  article-title: The breakup of East Gondwana: Assimilating constraints from cretaceous ocean basins around India into a best-fit tectonic model
  publication-title: J. Geophys. Res. Solid Earth
– start-page: 29
  year: 2011
  end-page: 53
  ident: bb0545
  article-title: Deccan Traps Flood Basalt Province: an evaluation of the thermochemical plume model
  publication-title: Topics in Igneous Petrology
– volume: 6
  start-page: 67
  year: 2018
  ident: bb0575
  article-title: Mantle potential temperature estimates and primary melt compositions of the Low-Ti Emeishan flood basalt
  publication-title: Front. Earth Sci.
– volume: 119
  start-page: 75
  year: 2010
  end-page: 90
  ident: bb0215
  article-title: Primitive magmas in the Emeishan large igneous province, southwestern China and northern Vietnam
  publication-title: Lithos
– volume: 609
  start-page: 605
  year: 2013
  end-page: 619
  ident: bb0630
  article-title: Moho and magmatic underplating in continental lithosphere
  publication-title: Tectonophysics
– volume: 1
  start-page: 625
  year: 2008
  end-page: 629
  ident: bb0480
  article-title: Re-evaluating plume-induced uplift in the Emeishan large igneous province
  publication-title: Nat. Geosci.
– volume: 43
  start-page: 153
  year: 1999
  end-page: 165
  ident: bb0280
  article-title: The Deccan Traps. Deccan Volcanic Province: Geological Society of India Memoir
– volume: 206
  year: 2020
  ident: bb0460
  article-title: A review of Pangaea dispersal and large Igneous Provinces–in search of a causative mechanism
  publication-title: Earth Sci. Rev.
– volume: 57
  start-page: 417
  year: 2016
  end-page: 436
  ident: bb0270
  article-title: Controls of mantle potential temperature and lithospheric thickness on magmatism in the North Atlantic Igneous Province
  publication-title: J. Petrol.
– volume: 194
  year: 2020
  ident: bb0445
  article-title: On the cause of continental breakup: a simple analysis in terms of driving mechanisms of plate tectonics and mantle plumes
  publication-title: J. Asian Earth Sci.
– volume: 15
  start-page: 254
  year: 2009
  end-page: 266
  ident: bb0095
  article-title: Global warming of the mantle beneath continents back to the Archaean
  publication-title: Gondwana Res.
– volume: 340
  start-page: 139
  year: 2019
  end-page: 151
  ident: bb0435
  article-title: Origin and evolution of the early magmatism in the Oslo Rift (Southeast Norway): evidence from multiple generations of clinopyroxene
  publication-title: Lithos
– volume: 66
  start-page: 2073
  year: 2002
  end-page: 2090
  ident: bb0485
  article-title: Generation of mid-ocean ridge basalts at pressures from 1 to 7 GPa
  publication-title: Geochim. Cosmochim. Acta
– volume: 204
  start-page: 159
  year: 2014
  end-page: 171
  ident: bb0580
  article-title: Petrogenesis of the flood basalts from the Early Permian Panjal Traps, Kashmir, India: geochemical evidence for shallow melting of the mantle
  publication-title: Lithos
– volume: 274
  start-page: 47
  year: 1978
  end-page: 49
  ident: bb0125
  article-title: Flood basalts, subduction and the break-up of Gondwanaland
  publication-title: Nature
– volume: 526
  start-page: 191
  year: 2017
  end-page: 215
  ident: bb0425
  article-title: Comparison among Ethiopia-Yemen, Deccan, and Karoo continental flood basalts of central Gondwana: Insights on lithosphere versus asthenosphere contributions in compositionally zoned magmatic provinces
  publication-title: The Crust-Mantle and lithosphere-asthenosphere boundaries: insights from xenoliths, orogenic deep sections, and geophysical studies
– volume: 407
  start-page: 502
  year: 2000
  end-page: 506
  ident: bb0625
  article-title: Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites
  publication-title: Nature
– volume: 10
  start-page: 451
  year: 2017
  end-page: 456
  ident: bb0640
  article-title: The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs
  publication-title: Nat. Geosci.
– volume: 104
  start-page: 17
  year: 2013
  end-page: 30
  ident: bb0620
  article-title: The links between large igneous provinces, continental break-up and environmental change: evidence reviewed from Antarctica
  publication-title: Earth Environ. Sci. Trans Roy Soc Edinb
– volume: 54
  start-page: 525
  year: 2013
  end-page: 537
  ident: bb0130
  article-title: Dy/Dy*: variations arising from mantle sources and petrogenetic processes
  publication-title: J. Petrol.
– volume: 44
  start-page: 107
  year: 2016
  end-page: 138
  ident: bb0420
  article-title: Ocean basin evolution and global-scale plate reorganization events since Pangea breakup
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 7
  start-page: 41598
  year: 2017
  ident: bb0590
  article-title: Temporal and structural evolution of the Early Palæogene rocks of the of the Seychelles microcontinent
  publication-title: Sci. Rep.
– volume: 19
  start-page: 149
  year: 1973
  end-page: 164
  ident: bb0660
  article-title: Mantle plumes and plate motions
  publication-title: Tectonophysics
– volume: 340
  start-page: 941
  year: 2013
  end-page: 945
  ident: bb0035
  article-title: Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province
  publication-title: Science
– volume: 475
  start-page: 143
  year: 2017
  end-page: 151
  ident: bb0290
  article-title: Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry
  publication-title: Earth Planet. Sci. Lett.
– volume: 15
  start-page: 324
  year: 2009
  end-page: 341
  ident: bb0530
  article-title: The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere
  publication-title: Gondwana Res.
– volume: 16
  start-page: 3532
  year: 2015
  end-page: 3554
  ident: bb0650
  article-title: Supercontinental inheritance and its influence on supercontinental breakup: the C entral a tlantic M agmatic P rovince and the breakup of P angea
  publication-title: Geochem. Geophys. Geosyst.
– volume: 188
  start-page: 33
  year: 2014
  end-page: 43
  ident: bb0030
  article-title: The Central Atlantic magmatic province extends into Bolivia
  publication-title: Lithos
– volume: 4
  start-page: 184
  year: 2011
  end-page: 187
  ident: bb0025
  article-title: Dominant role of tectonic inheritance in supercontinent cycles
  publication-title: Nat. Geosci.
– volume: 376
  start-page: 186
  year: 2013
  end-page: 199
  ident: bb0055
  article-title: Upper and lower crust recycling in the source of CAMP basaltic dykes from southeastern North America
  publication-title: Earth Planet. Sci. Lett.
– volume: 272
  start-page: 264
  year: 2008
  end-page: 277
  ident: bb0085
  article-title: Age of Seychelles–India break-up
  publication-title: Earth Planet. Sci. Lett.
– volume: 376
  year: 2020
  ident: bb0115
  article-title: U-Pb systematics in volcanic and plutonic rocks of the Krokskogen area: Resolving a 40 million years long evolution in the Oslo Rift
  publication-title: Lithos
– volume: 103253
  year: 2020
  ident: bb0665
  article-title: Melting of a hydrous peridotite mantle source under the Emeishan large igneous province
  publication-title: Earth Sci. Rev.
– volume: 39
  start-page: 1179
  year: 2011
  end-page: 1180
  ident: bb0235
  article-title: Basalts as temperature probes of Earth’s mantle
  publication-title: Geology
– start-page: 9
  year: 2008
  ident: bb0240
  article-title: Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation
  publication-title: Geochem. Geophys. Geosyst.
– volume: 529
  year: 2019
  ident: bb0305
  article-title: Hot primary melts and mantle source for the Paraná-Etendeka flood basalt province: new constraints from Al-in-olivine thermometry
  publication-title: Chem. Geol.
– volume: 12
  start-page: 113
  year: 1996
  ident: bb0465
  article-title: A user’s guide to basalt discrimination diagrams. Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course
  publication-title: Notes
– volume: 179
  start-page: 335
  year: 2000
  end-page: 349
  ident: bb0220
  article-title: Tectonic controls on magmatism associated with continental break-up: an example from the Paraná–Etendeka Province
  publication-title: Earth Planet. Sci. Lett.
– volume: 194
  start-page: 67
  year: 2001
  end-page: 82
  ident: bb0350
  article-title: Plume-driven upwelling under central Iceland
  publication-title: Earth Planet. Sci. Lett.
– volume: 5
  start-page: 369
  year: 2014
  end-page: 394
  ident: bb0565
  article-title: The Emeishan large igneous province: a synthesis
  publication-title: Geosci. Front.
– volume: 102
  start-page: 18127
  year: 1997
  end-page: 18138
  ident: bb0150
  article-title: The timing and duration of the Karoo igneous event, southern Gondwana
  publication-title: J. Geophys. Res. Solid Earth
– volume: 121
  start-page: 117
  year: 2011
  end-page: 134
  ident: bb0195
  article-title: Plume–subduction interaction in southern Central America: Mantle upwelling and slab melting
  publication-title: Lithos
– volume: 455
  start-page: 32
  year: 2017
  end-page: 43
  ident: bb0300
  article-title: Timing and genesis of the Karoo-Ferrar large igneous province: New high precision U-Pb data for Tasmania confirm short duration of the major magmatic pulse
  publication-title: Chem. Geol.
– volume: 60
  start-page: 2509
  year: 2019
  end-page: 2528
  ident: bb0080
  article-title: Comparative geothermometry in high-Mg magmas from the Etendeka Province and constraints on their mantle source
  publication-title: J. Petrol.
– volume: 120
  start-page: 223
  year: 1995
  end-page: 253
  ident: bb0380
  article-title: The composition of the Earth
  publication-title: Chem. Geol.
– volume: 266
  start-page: 55
  year: 1996
  end-page: 79
  ident: bb0225
  article-title: Paleostress reconstruction from kinematic indicators in the Oslo Graben, southern Norway: new constraints on the mode of rifting
  publication-title: Tectonophysics
– volume: 110
  start-page: 409
  year: 2001
  end-page: 431
  ident: bb0540
  article-title: Generation of Deccan trap magmas
  publication-title: J. Earth Syst. Sci.
– volume: 271
  start-page: 70
  year: 2010
  end-page: 85
  ident: bb0015
  article-title: Chemical variations and regional diversity observed in MORB
  publication-title: Chem. Geol.
– volume: 121
  start-page: 5708
  year: 2016
  end-page: 5735
  ident: bb0330
  article-title: The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa
  publication-title: J. Geophys. Res. Solid Earth
– volume: 100
  start-page: 217
  year: 1997
  end-page: 246
  ident: bb0475
  article-title: The parana-etendeka province
  publication-title: Geophysical Monograph-American Geophysical Union
– volume: 11
  year: 2021
  ident: bb0600
  article-title: Linking the Wrangellia flood basalts to the Galápagos hotspot
  publication-title: Sci. Rep.
– volume: 17
  start-page: 253
  year: 2009
  ident: bb0610
  article-title: Petrology of the parental melts and mantle sources of Siberian trap magmatism
  publication-title: Petrology
– year: 2016
  ident: bb0535
  article-title: Tutorial: PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program
– volume: 267
  start-page: 444
  year: 2008
  end-page: 452
  ident: bb0635
  article-title: Long term stability in deep mantle structure: evidence from the∼ 300 Ma Skagerrak-Centered large Igneous Province (the SCLIP)
  publication-title: Earth Planet. Sci. Lett.
– volume: 316
  start-page: 412
  year: 2007
  end-page: 417
  ident: bb0605
  article-title: The amount of recycled crust in sources of mantle-derived melts
  publication-title: Science
– volume: 8
  year: 2007
  ident: bb0255
  article-title: Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites
  publication-title: Geochem. Geophys. Geosyst.
– volume: 1
  start-page: 265
  year: 2005
  end-page: 269
  ident: bb0070
  article-title: Large igneous provinces and the mantle plume hypothesis
  publication-title: Elements
– volume: 48
  start-page: 348
  year: 2020
  end-page: 352
  ident: bb0050
  article-title: Reshuffling the Columbia River Basalt chronology—Picture Gorge Basalt, the earliest-and longest-erupting formation
  publication-title: Geology
– volume: 505
  start-page: 245
  year: 2014
  end-page: 261
  ident: bb0455
  publication-title: Volcanism of the Central Atlantic magmatic province as the trigger of environmental and biotic changes around the Triassic–Jurassic boundary. Volcanism, impacts, and mass extinctions: Causes and effects
– volume: 8
  start-page: 1
  year: 2017
  end-page: 8
  ident: bb0135
  article-title: End-Triassic mass extinction started by intrusive CAMP activity
  publication-title: Nat. Commun.
– volume: 377
  start-page: 301
  year: 1995
  end-page: 308
  ident: bb0615
  article-title: The role of mantle plumes in continental breakup: case histories from Gondwanaland
  publication-title: Nature
– volume: 72
  start-page: 6261
  year: 1967
  end-page: 6273
  ident: bb0385
  article-title: Some remarks on heat flow and gravity anomalies
  publication-title: J. Geophys. Res.
– year: 2010
  ident: bb0180
  article-title: Plates vs Plumes: A Geological Controversy
– volume: 146
  start-page: 319
  year: 2004
  end-page: 332
  ident: bb0100
  article-title: Supercontinents and superplume events: distinguishing signals in the geologic record
  publication-title: Phys. Earth Planet. Inter.
– volume: 53
  start-page: 9
  year: 2018
  end-page: 19
  ident: bb0655
  article-title: Where does a continent prefer to break up? Some lessons from the South Atlantic margins
  publication-title: Gondwana Res.
– volume: 458
  start-page: 619
  year: 2009
  end-page: 622
  ident: bb0250
  article-title: Petrological evidence for secular cooling in mantle plumes
  publication-title: Nature
– volume: 42
  start-page: 963
  year: 2001
  end-page: 998
  ident: bb0020
  article-title: Calculation of peridotite partial melting from thermodynamic models of minerals and melts, IV. Adiabatic decompression and the composition and mean properties of mid-ocean ridge basalts
  publication-title: J. Petrol.
– volume: 60
  start-page: 47
  year: 1982
  end-page: 60
  ident: bb0355
  article-title: Origin of the Deccan Trap flows at Mahabaleshwar inferred from Nd and Sr isotopic and chemical evidence
  publication-title: Earth Planet. Sci. Lett.
– volume: 513
  start-page: 88
  year: 2011
  end-page: 95
  ident: bb0405
  article-title: A simple continental rift classification
  publication-title: Tectonophysics
– volume: 8
  start-page: 1
  year: 2017
  end-page: 8
  ident: bb0345
  article-title: Mantle hydration and the role of water in the generation of large igneous provinces
  publication-title: Nat. Commun.
– volume: 79
  start-page: 475
  year: 2005
  end-page: 489
  ident: bb0005
  article-title: Emeishan large igneous province, SW China
  publication-title: Lithos
– volume: 35
  start-page: 391
  year: 2007
  end-page: 394
  ident: bb0090
  article-title: Global warming of the mantle at the origin of flood basalts over supercontinents
  publication-title: Geology
– volume: 355
  start-page: 232
  year: 2018
  end-page: 252
  ident: bb0140
  article-title: Insights into the petrogenesis of low-and high-Ti basalts: Stratigraphy and geochemistry of four lava sequences from the Central Paraná basin
  publication-title: J. Volcanol. Geotherm. Res.
– volume: 6
  start-page: 31442
  year: 2016
  ident: bb0670
  article-title: The initial break-up of Pangæa elicited by Late Palæozoic deglaciation
  publication-title: Sci. Rep.
– volume: 5
  start-page: 419
  year: 1978
  end-page: 421
  ident: bb0555
  article-title: Relative timing of rifting and volcanism on Earth and its tectonic implications
  publication-title: Geophys. Res. Lett.
– volume: 206
  start-page: 102794
  year: 2020
  ident: bb0275
  article-title: Magmatism in the North Atlantic Igneous Province; mantle temperatures, rifting and geodynamics
  publication-title: Earth Sci. Rev.
– volume: 497
  start-page: 1
  year: 2013
  end-page: 43
  ident: bb0510
  article-title: The Columbia River flood basalt province: Stratigraphy, areal extent, volume, and physical volcanology
  publication-title: The Columbia River flood basalt province: geological society of America special paper
– volume: 11
  start-page: 1
  year: 2020
  end-page: 8
  ident: bb0365
  article-title: Limited and localized magmatism in the Central Atlantic Magmatic Province
  publication-title: Nat. Commun.
– volume: 107
  start-page: 1033
  year: 2018
  end-page: 1058
  ident: bb0595
  article-title: Mantle source heterogeneity of the Early Jurassic basalt of eastern North America
  publication-title: Int. J. Earth Sci.
– volume: 208
  start-page: 63
  year: 2017
  end-page: 85
  ident: bb0515
  article-title: Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions
  publication-title: Geochim. Cosmochim. Acta
– volume: 186
  start-page: 262
  year: 2018
  end-page: 286
  ident: bb0675
  article-title: Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea
  publication-title: Earth Sci. Rev.
– volume: 6
  start-page: 391
  year: 2013
  end-page: 394
  ident: bb0040
  article-title: High mantle temperatures following rifting caused by continental insulation
  publication-title: Nat. Geosci.
– volume: 17
  start-page: 129
  year: 2005
  end-page: 134
  ident: bb0160
  article-title: Is there evidence for magmatic underplating beneath the Oslo Rift?
  publication-title: Terra Nova
– volume: 166
  start-page: 177
  year: 1999
  end-page: 195
  ident: bb0120
  article-title: On causal links between flood basalts and continental breakup
  publication-title: Earth Planet. Sci. Lett.
– volume: 136
  start-page: 209
  year: 2003
  end-page: 226
  ident: bb0310
  article-title: The Northernmost CAMP: 40Ar/39Ar age, petrology and Sr-Nd-Pb Isotope Geochemistry of the Kerforne Dyke, Brittany, France
  publication-title: The Central Atlantic Magmatic Province: Insights from Fragments of Pangea. American Geophysical Union. Geophysical Monograph
– volume: 36
  year: 2009
  ident: bb0155
  article-title: Gondwana breakup and plate kinematics: business as usual
  publication-title: Geophys. Res. Lett.
– volume: 29
  year: 1988
  ident: bb0390
  article-title: The volume and composition of melt generated by extension of the lithosphere
  publication-title: J. Petrol.
– volume: 368
  start-page: 1
  year: 2014
  end-page: 10
  ident: bb0110
  article-title: Aluminum-in-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces
  publication-title: Chem. Geol.
– volume: 89
  start-page: 259
  year: 2006
  end-page: 274
  ident: bb0400
  article-title: Mantle sources and crustal input as recorded in high-Mg Deccan Traps basalts of Gujarat (India)
  publication-title: Lithos
– volume: 526
  start-page: 191
  year: 2017
  ident: 10.1016/j.earscirev.2022.103928_bb0425
  article-title: Comparison among Ethiopia-Yemen, Deccan, and Karoo continental flood basalts of central Gondwana: Insights on lithosphere versus asthenosphere contributions in compositionally zoned magmatic provinces
  publication-title: The Crust-Mantle and lithosphere-asthenosphere boundaries: insights from xenoliths, orogenic deep sections, and geophysical studies
– volume: 7
  start-page: 41598
  year: 2017
  ident: 10.1016/j.earscirev.2022.103928_bb0590
  article-title: Temporal and structural evolution of the Early Palæogene rocks of the of the Seychelles microcontinent
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00248-y
– volume: 119
  start-page: 75
  year: 2010
  ident: 10.1016/j.earscirev.2022.103928_bb0215
  article-title: Primitive magmas in the Emeishan large igneous province, southwestern China and northern Vietnam
  publication-title: Lithos
  doi: 10.1016/j.lithos.2010.04.008
– volume: 104
  start-page: 17
  year: 2013
  ident: 10.1016/j.earscirev.2022.103928_bb0620
  article-title: The links between large igneous provinces, continental break-up and environmental change: evidence reviewed from Antarctica
  publication-title: Earth Environ. Sci. Trans Roy Soc Edinb
– volume: 48
  start-page: 348
  year: 2020
  ident: 10.1016/j.earscirev.2022.103928_bb0050
  article-title: Reshuffling the Columbia River Basalt chronology—Picture Gorge Basalt, the earliest-and longest-erupting formation
  publication-title: Geology
  doi: 10.1130/G47122.1
– volume: 121
  start-page: 309
  year: 2000
  ident: 10.1016/j.earscirev.2022.103928_bb0165
  article-title: Large igneous provinces and plate tectonics
  publication-title: Geophysical Monograph-American Geophysical Union
– volume: 60
  start-page: 47
  issue: 1
  year: 1982
  ident: 10.1016/j.earscirev.2022.103928_bb0355
  article-title: Origin of the Deccan Trap flows at Mahabaleshwar inferred from Nd and Sr isotopic and chemical evidence
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/0012-821X(82)90019-X
– volume: 15
  start-page: 324
  year: 2009
  ident: 10.1016/j.earscirev.2022.103928_bb0530
  article-title: The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2008.11.004
– volume: 146
  start-page: 319
  year: 2004
  ident: 10.1016/j.earscirev.2022.103928_bb0100
  article-title: Supercontinents and superplume events: distinguishing signals in the geologic record
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2003.04.002
– volume: 240
  start-page: 159
  year: 1994
  ident: 10.1016/j.earscirev.2022.103928_bb0430
  article-title: The Oslo Rift: PT relations and lithospheric structure
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(94)90270-4
– year: 2016
  ident: 10.1016/j.earscirev.2022.103928_bb0535
– start-page: 29
  year: 2011
  ident: 10.1016/j.earscirev.2022.103928_bb0545
  article-title: Deccan Traps Flood Basalt Province: an evaluation of the thermochemical plume model
– volume: 21
  start-page: 789
  year: 1993
  ident: 10.1016/j.earscirev.2022.103928_bb0200
  article-title: Origin of the Columbia Plateau and Snake River plain: deflection of the Yellowstone plume
  publication-title: Geology
  doi: 10.1130/0091-7613(1993)021<0789:OOTCPA>2.3.CO;2
– volume: 376
  year: 2020
  ident: 10.1016/j.earscirev.2022.103928_bb0115
  article-title: U-Pb systematics in volcanic and plutonic rocks of the Krokskogen area: Resolving a 40 million years long evolution in the Oslo Rift
  publication-title: Lithos
– volume: 55
  start-page: 133
  issue: 1
  year: 2014
  ident: 10.1016/j.earscirev.2022.103928_bb0410
  article-title: Sr, Nd, Pb and Os isotope systematics of CAMP tholeiites from Eastern North America (ENA): evidence of a subduction-enriched mantle source
  publication-title: J. Petrol.
  doi: 10.1093/petrology/egt063
– start-page: 9
  year: 2008
  ident: 10.1016/j.earscirev.2022.103928_bb0240
  article-title: Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation
  publication-title: Geochem. Geophys. Geosyst.
– volume: 376
  start-page: 186
  year: 2013
  ident: 10.1016/j.earscirev.2022.103928_bb0055
  article-title: Upper and lower crust recycling in the source of CAMP basaltic dykes from southeastern North America
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2013.06.023
– volume: 300
  start-page: 921
  year: 2003
  ident: 10.1016/j.earscirev.2022.103928_bb0185
  article-title: Is" hotspot" volcanism a consequence of plate tectonics?
  publication-title: Science
  doi: 10.1126/science.1083376
– volume: 66
  start-page: 2167
  year: 2002
  ident: 10.1016/j.earscirev.2022.103928_bb0450
  article-title: Interpretation of trace element and isotope features of basalts: Relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(02)00852-9
– volume: 106068
  year: 2021
  ident: 10.1016/j.earscirev.2022.103928_bb0470
  article-title: LIP printing: use of immobile element proxies to characterize large Igneous Provinces in the geologic record
  publication-title: Lithos
– volume: 355
  start-page: 232
  year: 2018
  ident: 10.1016/j.earscirev.2022.103928_bb0140
  article-title: Insights into the petrogenesis of low-and high-Ti basalts: Stratigraphy and geochemistry of four lava sequences from the Central Paraná basin
  publication-title: J. Volcanol. Geotherm. Res.
  doi: 10.1016/j.jvolgeores.2017.08.009
– volume: 241
  start-page: 307
  issue: 1–2
  year: 2006
  ident: 10.1016/j.earscirev.2022.103928_bb0315
  article-title: Basement control on dyke distribution in large Igneous Provinces: case study of the Karoo triple junction
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2005.10.003
– volume: 29
  year: 1988
  ident: 10.1016/j.earscirev.2022.103928_bb0390
  article-title: The volume and composition of melt generated by extension of the lithosphere
  publication-title: J. Petrol.
  doi: 10.1093/petrology/29.3.625
– volume: 121
  start-page: 117
  year: 2011
  ident: 10.1016/j.earscirev.2022.103928_bb0195
  article-title: Plume–subduction interaction in southern Central America: Mantle upwelling and slab melting
  publication-title: Lithos
  doi: 10.1016/j.lithos.2010.10.008
– volume: 455
  start-page: 32
  year: 2017
  ident: 10.1016/j.earscirev.2022.103928_bb0300
  article-title: Timing and genesis of the Karoo-Ferrar large igneous province: New high precision U-Pb data for Tasmania confirm short duration of the major magmatic pulse
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2016.10.008
– volume: 463
  start-page: 59
  year: 2018
  ident: 10.1016/j.earscirev.2022.103928_bb0570
  article-title: The Panjal Traps
  publication-title: Geol. Soc. Lond., Spec. Publ.
  doi: 10.1144/SP463.4
– volume: 340
  start-page: 941
  year: 2013
  ident: 10.1016/j.earscirev.2022.103928_bb0035
  article-title: Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province
  publication-title: Science
  doi: 10.1126/science.1234204
– volume: 194
  start-page: 67
  year: 2001
  ident: 10.1016/j.earscirev.2022.103928_bb0350
  article-title: Plume-driven upwelling under central Iceland
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/S0012-821X(01)00553-2
– volume: 36
  year: 2009
  ident: 10.1016/j.earscirev.2022.103928_bb0155
  article-title: Gondwana breakup and plate kinematics: business as usual
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL037552
– volume: 475
  start-page: 143
  year: 2017
  ident: 10.1016/j.earscirev.2022.103928_bb0290
  article-title: Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2017.07.043
– volume: 272
  start-page: 264
  issue: 1-2
  year: 2008
  ident: 10.1016/j.earscirev.2022.103928_bb0085
  article-title: Age of Seychelles–India break-up
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2008.04.045
– volume: 166
  start-page: 177
  year: 1999
  ident: 10.1016/j.earscirev.2022.103928_bb0120
  article-title: On causal links between flood basalts and continental breakup
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/S0012-821X(98)00282-9
– volume: 89
  start-page: 259
  issue: 3–4
  year: 2006
  ident: 10.1016/j.earscirev.2022.103928_bb0400
  article-title: Mantle sources and crustal input as recorded in high-Mg Deccan Traps basalts of Gujarat (India)
  publication-title: Lithos
  doi: 10.1016/j.lithos.2005.12.007
– volume: 188
  start-page: 33
  year: 2014
  ident: 10.1016/j.earscirev.2022.103928_bb0030
  article-title: The Central Atlantic magmatic province extends into Bolivia
  publication-title: Lithos
  doi: 10.1016/j.lithos.2013.10.019
– volume: 15
  start-page: 254
  year: 2009
  ident: 10.1016/j.earscirev.2022.103928_bb0095
  article-title: Global warming of the mantle beneath continents back to the Archaean
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2008.10.001
– volume: 19
  start-page: 149
  year: 1973
  ident: 10.1016/j.earscirev.2022.103928_bb0660
  article-title: Mantle plumes and plate motions
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(73)90037-1
– volume: 277
  start-page: 227
  year: 2010
  ident: 10.1016/j.earscirev.2022.103928_bb0230
  article-title: Isotopic (Sr, Nd, Pb, and Os) composition of highly magnesian dikes of Vestfjella, western Dronning Maud Land, Antarctica: a key to the origins of the Jurassic Karoo large igneous province?
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2010.08.004
– volume: 44
  start-page: 107
  year: 2016
  ident: 10.1016/j.earscirev.2022.103928_bb0420
  article-title: Ocean basin evolution and global-scale plate reorganization events since Pangea breakup
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev-earth-060115-012211
– volume: 497
  start-page: 1
  year: 2013
  ident: 10.1016/j.earscirev.2022.103928_bb0510
  article-title: The Columbia River flood basalt province: Stratigraphy, areal extent, volume, and physical volcanology
  publication-title: The Columbia River flood basalt province: geological society of America special paper
– volume: 10
  start-page: 451
  year: 2017
  ident: 10.1016/j.earscirev.2022.103928_bb0640
  article-title: The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2954
– volume: 46
  start-page: 200
  year: 2003
  ident: 10.1016/j.earscirev.2022.103928_bb0340
  article-title: Assembly of Pangea: combined paleomagnetic and paleoclimatic approach
  publication-title: Adv. Geophys.
– volume: 11
  year: 2021
  ident: 10.1016/j.earscirev.2022.103928_bb0600
  article-title: Linking the Wrangellia flood basalts to the Galápagos hotspot
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-88098-7
– volume: 118
  start-page: 808
  year: 2013
  ident: 10.1016/j.earscirev.2022.103928_bb0205
  article-title: The breakup of East Gondwana: Assimilating constraints from cretaceous ocean basins around India into a best-fit tectonic model
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/jgrb.50079
– volume: 449
  start-page: 894
  year: 2007
  ident: 10.1016/j.earscirev.2022.103928_bb0325
  article-title: The rapid drift of the Indian tectonic plate
  publication-title: Nature
  doi: 10.1038/nature06214
– volume: 204
  start-page: 159
  year: 2014
  ident: 10.1016/j.earscirev.2022.103928_bb0580
  article-title: Petrogenesis of the flood basalts from the Early Permian Panjal Traps, Kashmir, India: geochemical evidence for shallow melting of the mantle
  publication-title: Lithos
  doi: 10.1016/j.lithos.2014.01.008
– volume: 35
  start-page: 391
  year: 2007
  ident: 10.1016/j.earscirev.2022.103928_bb0090
  article-title: Global warming of the mantle at the origin of flood basalts over supercontinents
  publication-title: Geology
  doi: 10.1130/G23240A.1
– volume: 136
  start-page: 151
  year: 2003
  ident: 10.1016/j.earscirev.2022.103928_bb0490
  article-title: A reactivated back-arc source for CAMP magma
  publication-title: American Geophysical Union Geophysical Monograph Series
– volume: 121
  start-page: 5708
  year: 2016
  ident: 10.1016/j.earscirev.2022.103928_bb0330
  article-title: The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/2015JB012762
– volume: 99
  start-page: 79
  year: 1990
  ident: 10.1016/j.earscirev.2022.103928_bb0075
  article-title: Implications of mantle plume structure for the evolution of flood basalts
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/0012-821X(90)90072-6
– volume: 316
  start-page: 412
  year: 2007
  ident: 10.1016/j.earscirev.2022.103928_bb0605
  article-title: The amount of recycled crust in sources of mantle-derived melts
  publication-title: Science
  doi: 10.1126/science.1138113
– volume: 39
  start-page: 1095
  year: 2011
  ident: 10.1016/j.earscirev.2022.103928_bb0320
  article-title: On the significance of ultra-magnesian olivines in basaltic rocks
  publication-title: Geology
  doi: 10.1130/G32214.1
– volume: 160
  start-page: 477
  issue: 3
  year: 2003
  ident: 10.1016/j.earscirev.2022.103928_bb0395
  article-title: Geochemical provinciality in the cretaceous basaltic magmatism of Northern Madagascar: mantle source implications
  publication-title: J. Geol. Soc.
  doi: 10.1144/0016-764902-060
– volume: 100
  start-page: 217
  year: 1997
  ident: 10.1016/j.earscirev.2022.103928_bb0475
  article-title: The parana-etendeka province
  publication-title: Geophysical Monograph-American Geophysical Union
– volume: 267
  start-page: 444
  year: 2008
  ident: 10.1016/j.earscirev.2022.103928_bb0635
  article-title: Long term stability in deep mantle structure: evidence from the∼ 300 Ma Skagerrak-Centered large Igneous Province (the SCLIP)
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2007.12.004
– volume: 284
  start-page: 616
  year: 1999
  ident: 10.1016/j.earscirev.2022.103928_bb0370
  article-title: Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province
  publication-title: Science
  doi: 10.1126/science.284.5414.616
– volume: 42
  start-page: 10207
  year: 2015
  ident: 10.1016/j.earscirev.2022.103928_bb0585
  article-title: Evidence of Middle Jurassic magmatism within the Seychelles microcontinent: implications for the break-up of Gondwana
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL066036
– volume: 32
  start-page: 501
  year: 1991
  ident: 10.1016/j.earscirev.2022.103928_bb0645
  article-title: Melt generation by plumes: a study of Hawaiian volcanism
  publication-title: J. Petrol.
  doi: 10.1093/petrology/32.3.501
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.earscirev.2022.103928_bb0365
  article-title: Limited and localized magmatism in the Central Atlantic Magmatic Province
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17193-6
– volume: 107
  start-page: 1033
  year: 2018
  ident: 10.1016/j.earscirev.2022.103928_bb0595
  article-title: Mantle source heterogeneity of the Early Jurassic basalt of eastern North America
  publication-title: Int. J. Earth Sci.
  doi: 10.1007/s00531-017-1519-0
– volume: 23
  start-page: 435
  year: 1995
  ident: 10.1016/j.earscirev.2022.103928_bb0060
  article-title: Mid-Miocene propagation of the Yellowstone mantle plume head beneath the Columbia River basalt source region
  publication-title: Geology
  doi: 10.1130/0091-7613(1995)023<0435:MMPOTY>2.3.CO;2
– volume: 34
  start-page: 1009
  year: 2015
  ident: 10.1016/j.earscirev.2022.103928_bb0190
  article-title: Style of rifting and the stages of Pangea breakup
  publication-title: Tectonics
  doi: 10.1002/2014TC003760
– volume: 54
  start-page: 2980
  year: 2019
  ident: 10.1016/j.earscirev.2022.103928_bb0360
  article-title: Tholeiitic basalts of Deccan large igneous province, India: an overview
  publication-title: Geol. J.
  doi: 10.1002/gj.3497
– volume: 4
  start-page: 184
  year: 2011
  ident: 10.1016/j.earscirev.2022.103928_bb0025
  article-title: Dominant role of tectonic inheritance in supercontinent cycles
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1080
– volume: 60
  start-page: 2509
  issue: 12
  year: 2019
  ident: 10.1016/j.earscirev.2022.103928_bb0080
  article-title: Comparative geothermometry in high-Mg magmas from the Etendeka Province and constraints on their mantle source
  publication-title: J. Petrol.
  doi: 10.1093/petrology/egaa016
– volume: 368
  start-page: 1
  year: 2014
  ident: 10.1016/j.earscirev.2022.103928_bb0110
  article-title: Aluminum-in-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2014.01.004
– volume: 60
  start-page: 945
  issue: 5
  year: 2019
  ident: 10.1016/j.earscirev.2022.103928_bb0375
  article-title: The Central Atlantic Magmatic Province (CAMP) in Morocco
  publication-title: J. Petrol.
  doi: 10.1093/petrology/egz021
– volume: 23
  start-page: 287
  year: 1997
  ident: 10.1016/j.earscirev.2022.103928_bb0170
  article-title: Assembly and dispersal of Pangea: Large-scale tectonic effects on coeval deposition of North American, marine, epicontinental, black shales
  publication-title: J. Geodyn.
  doi: 10.1016/S0264-3707(96)00045-2
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.earscirev.2022.103928_bb0345
  article-title: Mantle hydration and the role of water in the generation of large igneous provinces
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01940-3
– volume: 12
  start-page: 113
  year: 1996
  ident: 10.1016/j.earscirev.2022.103928_bb0465
  article-title: A user’s guide to basalt discrimination diagrams. Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course
  publication-title: Notes
– start-page: 123
  year: 1983
  ident: 10.1016/j.earscirev.2022.103928_bb0415
  article-title: Hotspot tracks and the early rifting of the Atlantic
  doi: 10.1016/B978-0-444-42198-2.50015-8
– volume: 8
  year: 2007
  ident: 10.1016/j.earscirev.2022.103928_bb0255
  article-title: Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2006GC001390
– volume: 17
  start-page: 129
  year: 2005
  ident: 10.1016/j.earscirev.2022.103928_bb0160
  article-title: Is there evidence for magmatic underplating beneath the Oslo Rift?
  publication-title: Terra Nova
  doi: 10.1111/j.1365-3121.2004.00592.x
– volume: 1
  start-page: 625
  year: 2008
  ident: 10.1016/j.earscirev.2022.103928_bb0480
  article-title: Re-evaluating plume-induced uplift in the Emeishan large igneous province
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo281
– volume: 22
  start-page: 39
  year: 1994
  ident: 10.1016/j.earscirev.2022.103928_bb0010
  article-title: Superplumes or supercontinents?
  publication-title: Geology
  doi: 10.1130/0091-7613(1994)022<0039:SOS>2.3.CO;2
– volume: 340
  start-page: 139
  year: 2019
  ident: 10.1016/j.earscirev.2022.103928_bb0435
  article-title: Origin and evolution of the early magmatism in the Oslo Rift (Southeast Norway): evidence from multiple generations of clinopyroxene
  publication-title: Lithos
  doi: 10.1016/j.lithos.2019.04.025
– volume: 352
  start-page: 389
  year: 2001
  ident: 10.1016/j.earscirev.2022.103928_bb0560
  article-title: Rifts of the world
  publication-title: Geol. Soc. Am. Spec. Pap.
– volume: 186
  start-page: 262
  year: 2018
  ident: 10.1016/j.earscirev.2022.103928_bb0675
  article-title: Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2018.10.003
– volume: 103253
  year: 2020
  ident: 10.1016/j.earscirev.2022.103928_bb0665
  article-title: Melting of a hydrous peridotite mantle source under the Emeishan large igneous province
  publication-title: Earth Sci. Rev.
– volume: 529
  year: 2019
  ident: 10.1016/j.earscirev.2022.103928_bb0305
  article-title: Hot primary melts and mantle source for the Paraná-Etendeka flood basalt province: new constraints from Al-in-olivine thermometry
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2019.119287
– volume: 195
  start-page: 82
  year: 1984
  ident: 10.1016/j.earscirev.2022.103928_bb0550
  article-title: The Cimmeride orogenic system and the tectonics of Eurasia
  publication-title: Geol. Soc. Am. Spec. Pap.
– volume: 5
  start-page: 369
  year: 2014
  ident: 10.1016/j.earscirev.2022.103928_bb0565
  article-title: The Emeishan large igneous province: a synthesis
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2013.07.003
– volume: 26
  start-page: 627
  year: 2014
  ident: 10.1016/j.earscirev.2022.103928_bb0045
  article-title: A review of Wilson Cycle plate margins: a role for mantle plumes in continental break-up along sutures?
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2014.02.007
– volume: 535
  year: 2020
  ident: 10.1016/j.earscirev.2022.103928_bb0680
  article-title: Geochemistry of Etendeka magmatism: Spatial heterogeneity in the Tristan-Gough plume head
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2020.116123
– volume: 39
  start-page: 1179
  year: 2011
  ident: 10.1016/j.earscirev.2022.103928_bb0235
  article-title: Basalts as temperature probes of Earth’s mantle
  publication-title: Geology
  doi: 10.1130/focus122011.1
– volume: 43
  start-page: 311
  year: 2015
  ident: 10.1016/j.earscirev.2022.103928_bb0260
  article-title: The generation of continental flood basalts by decompression melting of internally heated mantle
  publication-title: Geology
  doi: 10.1130/G36442.1
– volume: 609
  start-page: 605
  year: 2013
  ident: 10.1016/j.earscirev.2022.103928_bb0630
  article-title: Moho and magmatic underplating in continental lithosphere
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2013.05.032
– volume: 513
  start-page: 88
  year: 2011
  ident: 10.1016/j.earscirev.2022.103928_bb0405
  article-title: A simple continental rift classification
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2011.10.004
– volume: 57
  start-page: 1341
  year: 2015
  ident: 10.1016/j.earscirev.2022.103928_bb0105
  article-title: Upstairs-downstairs: supercontinents and large igneous provinces, are they related?
  publication-title: Int. Geol. Rev.
  doi: 10.1080/00206814.2014.963170
– volume: 6
  start-page: 391
  year: 2013
  ident: 10.1016/j.earscirev.2022.103928_bb0040
  article-title: High mantle temperatures following rifting caused by continental insulation
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1758
– volume: 407
  start-page: 502
  year: 2000
  ident: 10.1016/j.earscirev.2022.103928_bb0625
  article-title: Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites
  publication-title: Nature
  doi: 10.1038/35035058
– volume: 206
  start-page: 102794
  year: 2020
  ident: 10.1016/j.earscirev.2022.103928_bb0275
  article-title: Magmatism in the North Atlantic Igneous Province; mantle temperatures, rifting and geodynamics
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2019.02.011
– volume: 4
  start-page: 480
  year: 2008
  ident: 10.1016/j.earscirev.2022.103928_bb0065
  article-title: A plume-triggered delamination origin for the Columbia River Basalt Group
  publication-title: Geosphere
  doi: 10.1130/GES00175.1
– volume: 271
  start-page: 70
  year: 2010
  ident: 10.1016/j.earscirev.2022.103928_bb0015
  article-title: Chemical variations and regional diversity observed in MORB
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2009.12.013
– volume: 53
  start-page: 9
  year: 2018
  ident: 10.1016/j.earscirev.2022.103928_bb0655
  article-title: Where does a continent prefer to break up? Some lessons from the South Atlantic margins
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2017.04.014
– volume: 458
  start-page: 619
  year: 2009
  ident: 10.1016/j.earscirev.2022.103928_bb0250
  article-title: Petrological evidence for secular cooling in mantle plumes
  publication-title: Nature
  doi: 10.1038/nature07857
– volume: 17
  start-page: 253
  year: 2009
  ident: 10.1016/j.earscirev.2022.103928_bb0610
  article-title: Petrology of the parental melts and mantle sources of Siberian trap magmatism
  publication-title: Petrology
  doi: 10.1134/S0869591109030047
– year: 2010
  ident: 10.1016/j.earscirev.2022.103928_bb0180
– volume: 274
  start-page: 47
  year: 1978
  ident: 10.1016/j.earscirev.2022.103928_bb0125
  article-title: Flood basalts, subduction and the break-up of Gondwanaland
  publication-title: Nature
  doi: 10.1038/274047a0
– volume: 79
  start-page: 475
  year: 2005
  ident: 10.1016/j.earscirev.2022.103928_bb0005
  article-title: Emeishan large igneous province, SW China
  publication-title: Lithos
  doi: 10.1016/j.lithos.2004.09.013
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.earscirev.2022.103928_bb0135
  article-title: End-Triassic mass extinction started by intrusive CAMP activity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15596
– volume: 123
  start-page: 1
  year: 2011
  ident: 10.1016/j.earscirev.2022.103928_bb0210
  article-title: Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated
  publication-title: Lithos
  doi: 10.1016/j.lithos.2010.12.007
– volume: 246
  start-page: 103
  year: 1989
  ident: 10.1016/j.earscirev.2022.103928_bb0520
  article-title: Flood basalts and hot-spot tracks: plume heads and tails
  publication-title: Science
  doi: 10.1126/science.246.4926.103
– volume: 136
  start-page: 209
  year: 2003
  ident: 10.1016/j.earscirev.2022.103928_bb0310
  article-title: The Northernmost CAMP: 40Ar/39Ar age, petrology and Sr-Nd-Pb Isotope Geochemistry of the Kerforne Dyke, Brittany, France
– year: 2005
  ident: 10.1016/j.earscirev.2022.103928_bb0495
  article-title: Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally driven mantle plumes
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2005GC000915
– volume: 208
  start-page: 63
  year: 2017
  ident: 10.1016/j.earscirev.2022.103928_bb0515
  article-title: Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2017.01.054
– volume: 29
  start-page: 31
  year: 1991
  ident: 10.1016/j.earscirev.2022.103928_bb0145
  article-title: Hotspots, mantle plumes, flood basalts, and true polar wander
  publication-title: Rev. Geophys.
  doi: 10.1029/90RG02372
– volume: 1
  start-page: 265
  year: 2005
  ident: 10.1016/j.earscirev.2022.103928_bb0070
  article-title: Large igneous provinces and the mantle plume hypothesis
  publication-title: Elements
  doi: 10.2113/gselements.1.5.265
– volume: 176
  start-page: 51
  year: 2018
  ident: 10.1016/j.earscirev.2022.103928_bb0265
  article-title: Mineralogical and geochemical evidence for polybaric fractional crystallization of continental flood basalts and implications for identification of peridotite and pyroxenite source lithologies
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2017.09.014
– volume: 16
  start-page: 3532
  year: 2015
  ident: 10.1016/j.earscirev.2022.103928_bb0650
  article-title: Supercontinental inheritance and its influence on supercontinental breakup: the C entral a tlantic M agmatic P rovince and the breakup of P angea
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1002/2015GC005885
– volume: 168
  start-page: 1019
  year: 2014
  ident: 10.1016/j.earscirev.2022.103928_bb0295
  article-title: Jurassic plume-origin ophiolites in Japan: accreted fragments of oceanic plateaus
  publication-title: Contrib. Mineral. Petrol.
  doi: 10.1007/s00410-014-1019-1
– volume: 102
  start-page: 18127
  year: 1997
  ident: 10.1016/j.earscirev.2022.103928_bb0150
  article-title: The timing and duration of the Karoo igneous event, southern Gondwana
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/97JB00972
– volume: 120
  start-page: 223
  year: 1995
  ident: 10.1016/j.earscirev.2022.103928_bb0380
  article-title: The composition of the Earth
  publication-title: Chem. Geol.
  doi: 10.1016/0009-2541(94)00140-4
– volume: 66
  start-page: 2073
  year: 2002
  ident: 10.1016/j.earscirev.2022.103928_bb0485
  article-title: Generation of mid-ocean ridge basalts at pressures from 1 to 7 GPa
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(02)00890-6
– volume: 6
  start-page: 67
  year: 2018
  ident: 10.1016/j.earscirev.2022.103928_bb0575
  article-title: Mantle potential temperature estimates and primary melt compositions of the Low-Ti Emeishan flood basalt
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2018.00067
– volume: 42
  start-page: 963
  year: 2001
  ident: 10.1016/j.earscirev.2022.103928_bb0020
  article-title: Calculation of peridotite partial melting from thermodynamic models of minerals and melts, IV. Adiabatic decompression and the composition and mean properties of mid-ocean ridge basalts
  publication-title: J. Petrol.
  doi: 10.1093/petrology/42.5.963
– volume: 101
  start-page: 819
  year: 2016
  ident: 10.1016/j.earscirev.2022.103928_bb0500
  article-title: Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe-Mg exchange, and mantle potential temperature
  publication-title: Am. Mineral.
  doi: 10.2138/am-2016-5402
– volume: 54
  start-page: 525
  year: 2013
  ident: 10.1016/j.earscirev.2022.103928_bb0130
  article-title: Dy/Dy*: variations arising from mantle sources and petrogenetic processes
  publication-title: J. Petrol.
  doi: 10.1093/petrology/egs076
– volume: 505
  start-page: 245
  year: 2014
  ident: 10.1016/j.earscirev.2022.103928_bb0455
– volume: 241
  start-page: 177
  year: 2007
  ident: 10.1016/j.earscirev.2022.103928_bb0505
  article-title: Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling
  publication-title: Chem. Geol. The Great Plume Debate: Testing the Plume Theory
– volume: 16
  start-page: 563
  year: 2015
  ident: 10.1016/j.earscirev.2022.103928_bb0245
  article-title: PRIMELT 3 MEGA. XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1002/2014GC005631
– volume: 194
  year: 2020
  ident: 10.1016/j.earscirev.2022.103928_bb0445
  article-title: On the cause of continental breakup: a simple analysis in terms of driving mechanisms of plate tectonics and mantle plumes
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2020.104367
– volume: 43
  start-page: 153
  year: 1999
  ident: 10.1016/j.earscirev.2022.103928_bb0280
– volume: 179
  start-page: 335
  year: 2000
  ident: 10.1016/j.earscirev.2022.103928_bb0220
  article-title: Tectonic controls on magmatism associated with continental break-up: an example from the Paraná–Etendeka Province
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/S0012-821X(00)00114-X
– volume: 57
  start-page: 417
  year: 2016
  ident: 10.1016/j.earscirev.2022.103928_bb0270
  article-title: Controls of mantle potential temperature and lithospheric thickness on magmatism in the North Atlantic Igneous Province
  publication-title: J. Petrol.
  doi: 10.1093/petrology/egw014
– volume: 11
  start-page: 496
  year: 2003
  ident: 10.1016/j.earscirev.2022.103928_bb0525
  article-title: Mechanisms and conditions of magma formation in mantle plumes
  publication-title: Petrology
– volume: 72
  start-page: 6261
  year: 1967
  ident: 10.1016/j.earscirev.2022.103928_bb0385
  article-title: Some remarks on heat flow and gravity anomalies
  publication-title: J. Geophys. Res.
  doi: 10.1029/JZ072i024p06261
– volume: 5
  start-page: 419
  year: 1978
  ident: 10.1016/j.earscirev.2022.103928_bb0555
  article-title: Relative timing of rifting and volcanism on Earth and its tectonic implications
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/GL005i006p00419
– volume: 110
  start-page: 409
  year: 2001
  ident: 10.1016/j.earscirev.2022.103928_bb0540
  article-title: Generation of Deccan trap magmas
  publication-title: J. Earth Syst. Sci.
  doi: 10.1007/BF02702904
– volume: 6
  start-page: 31442
  year: 2016
  ident: 10.1016/j.earscirev.2022.103928_bb0670
  article-title: The initial break-up of Pangæa elicited by Late Palæozoic deglaciation
  publication-title: Sci. Rep.
  doi: 10.1038/srep31442
– volume: 279
  start-page: 20
  year: 2009
  ident: 10.1016/j.earscirev.2022.103928_bb0335
  article-title: Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2008.12.020
– volume: 241
  start-page: 207
  year: 2007
  ident: 10.1016/j.earscirev.2022.103928_bb0175
  article-title: The application of olivine geothermometry to infer crystallization temperatures of parental liquids: Implications for the temperature of MORB magmas
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2007.01.015
– volume: 206
  year: 2020
  ident: 10.1016/j.earscirev.2022.103928_bb0460
  article-title: A review of Pangaea dispersal and large Igneous Provinces–in search of a causative mechanism
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2019.102902
– volume: 266
  start-page: 55
  year: 1996
  ident: 10.1016/j.earscirev.2022.103928_bb0225
  article-title: Paleostress reconstruction from kinematic indicators in the Oslo Graben, southern Norway: new constraints on the mode of rifting
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(96)00183-7
– volume: 430
  start-page: 635
  year: 2007
  ident: 10.1016/j.earscirev.2022.103928_bb0285
  article-title: The origin of the Columbia River flood basalt province: plume versus nonplume models
  publication-title: Geol. Soc. Am. Spec. Pap.
– volume: 377
  start-page: 301
  year: 1995
  ident: 10.1016/j.earscirev.2022.103928_bb0615
  article-title: The role of mantle plumes in continental breakup: case histories from Gondwanaland
  publication-title: Nature
  doi: 10.1038/377301a0
– volume: 450
  start-page: 1071
  year: 2007
  ident: 10.1016/j.earscirev.2022.103928_bb0440
  article-title: Dynamics of Mid-Palaeocene North Atlantic rifting linked with European intra-plate deformations
  publication-title: Nature
  doi: 10.1038/nature06379
SSID ssj0001097
Score 2.4301503
SecondaryResourceType review_article
Snippet The thermal regimes of large igneous provinces (LIPs) are addressed in order to evaluate the principal mechanisms of supercontinent breakup. The primary magma...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103928
SubjectTerms basalt
Columbia River
Continental breakup
delamination
Early Cretaceous epoch
Early Jurassic epoch
India
insulating materials
Large igneous provinces
Late Cretaceous epoch
Madagascar
Mantle plumes
Mantle potential temperature
Miocene epoch
Paleocene epoch
Paleozoic era
Pangea
subduction
tectonics
thermal energy
Title Secular variability of the thermal regimes of continental flood basalts in large igneous provinces since the Late Paleozoic: Implications for the supercontinent cycle
URI https://dx.doi.org/10.1016/j.earscirev.2022.103928
https://www.proquest.com/docview/2636513120
Volume 226
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQFVIvFS2tSqHIlbimxJ-b5YZW0IVShNoicbPsxK6CtsmK7CItB35OfyczcbKFqhIHDpEVy44jz_jNJH7jIWSXD3OwpBlLuOZ5IpXQiVOFSqxTXg1AobMCd3S_nenxhTy5VJcrZNTHwiCtssP-iOktWnc1e91s7k3LEmN8GQZegoFrf6dgoLmUA9Tyz3d_aR64wxrRGFY-tH7E8QJlgkdjshcOtgwD0IeYlv3_FuofrG4N0NE6edV5jvQgvtxrsuKrN2TtS5uZd7FB_vyIaW7pDXz9xsO3F7QOFBw8vAB_JxSzMPz2DVYjRR0cTIyFpAHJ6xTsmZ3MGlpWdIL0cFr-qnw9b2j86wB4Qhss2ieegotKz8G41Ld1me_T4wfEdAp-cNuomU_99XIgmi_gvd-Si6PDn6Nx0iVhSHLJ5CyxaQFTMwwhTUNW5EF54YPPfXDKSu6E9dYVQgTutA_McnBBBloppzNZKM-seEdWq7ry7wmF1c4dZ9JlSsssZMOMSe8AX53wcmDTTaL7iTd5d0I5JsqYmJ6KdmWWEjMoMRMltknSZcdpPKTj6S77vWTNI30zYEqe7vyp1wUDqxG3WGwrEcO10IoJxtMPzxlgi7zEu8h12yars-u5_wjOz8zttNq9Q14cjL6fnmN5_HV8dg-TWAsZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBddythexj5Z167TYK-m1mecvpXSNlnTMFgLfROSLQ2PzA51Msj-oP6du7PssI5CH_pgDLZPErrT787SfRDyhY9y0KQZS7jmeSKV0IlThUqsU14NQaCzAk90L2Z6fCW_XqvrLXLcx8KgW2WH_RHTW7Tunhx0s3mwKEuM8WUYeAkKrt1OUU_INmanUgOyfTQ5H882gIyHrBGQYfEDwR03L5AnaB3rvXBQZxiDPsLK7Pcrqf_gutVBpy_Ji854pEdxfK_Ilq9ek6dnbXHe9Rty-z1WuqW_4Qc45t9e0zpQsPHwAgieUyzE8Ms3-Bi91MHGxHBIGtB_nYJKs_NlQ8uKztFDnJY_Kl-vGho3HgBSaIO3tsUpWKn0G-iX-k9d5od08o9vOgVTuP2oWS38zaYjmq9h3G_J1enJ5fE46eowJLlkcpnYtICpGYWQpiEr8qC88MHnPjhlJXfCeusKIQJ32gdmOVghQ62U05kslGdWvCODqq78e0JhwXPHmXSZ0jIL2Shj0juAWCe8HNp0h-h-4k3eJSnHWhlz03uj_TQbjhnkmIkc2yHphnAR83Q8THLYc9bcETkD2uRh4s-9LBhYkHjKYluOGK6FVkwwnn54TAefyLPx5cXUTCez813yHN9E17c9MljerPxHsIWWbr-T9b9Btww1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secular+variability+of+the+thermal+regimes+of+continental+flood+basalts+in+large+igneous+provinces+since+the+Late+Paleozoic%3A+Implications+for+the+supercontinent+cycle&rft.jtitle=Earth-science+reviews&rft.au=Manu+Prasanth%2C+M.P.&rft.au=Shellnutt%2C+J.+Gregory&rft.au=Lee%2C+Tung-Yi&rft.date=2022-03-01&rft.issn=0012-8252&rft.volume=226&rft.spage=103928&rft_id=info:doi/10.1016%2Fj.earscirev.2022.103928&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_earscirev_2022_103928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-8252&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-8252&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-8252&client=summon