Object detection in optical remote sensing images: A survey and a new benchmark
Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of th...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 159; pp. 296 - 307 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0924-2716 1872-8235 |
DOI | 10.1016/j.isprsjprs.2019.11.023 |
Cover
Loading…
Abstract | Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23,463 images and 192,472 instances, covering 20 object classes. The proposed DIOR dataset (1) is large-scale on the object categories, on the object instance number, and on the total image number; (2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; (3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and (4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research. |
---|---|
AbstractList | Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23,463 images and 192,472 instances, covering 20 object classes. The proposed DIOR dataset (1) is large-scale on the object categories, on the object instance number, and on the total image number; (2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; (3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and (4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research. |
Author | Wan, Gang Meng, Liqiu Cheng, Gong Han, Junwei Li, Ke |
Author_xml | – sequence: 1 givenname: Ke orcidid: 0000-0002-7873-1554 surname: Li fullname: Li, Ke organization: Zhengzhou Institute of Surveying and Mapping, Zhengzhou 450052, China – sequence: 2 givenname: Gang surname: Wan fullname: Wan, Gang organization: Zhengzhou Institute of Surveying and Mapping, Zhengzhou 450052, China – sequence: 3 givenname: Gong orcidid: 0000-0001-5030-0683 surname: Cheng fullname: Cheng, Gong email: gcheng@nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 4 givenname: Liqiu surname: Meng fullname: Meng, Liqiu organization: Department of Cartography, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany – sequence: 5 givenname: Junwei orcidid: 0000-0001-5545-7217 surname: Han fullname: Han, Junwei email: junweihan2010@gmail.com organization: School of Automation, Northwestern Polytechnical University, Xi’an 710072, China |
BookMark | eNqNkDtPwzAUhS0EEuXxG_DIkuBrO4mDxFAhXlKlLjBbrnNTHFKn2Cmo_x5XRQwsMFyd5XxHut8JOfSDR0IugOXAoLzqchfXIXbpcs6gzgFyxsUBmYCqeKa4KA7JhNVcZryC8picxNgxxqAo1YTM54sO7UgbHFO4wVPn6bAenTU9DbgaRqQRfXR-Sd3KLDFe0ymNm_CBW2p8Qw31-EkX6O3ryoS3M3LUmj7i-Xeekpf7u-fbx2w2f3i6nc4yK0GOWd3WTCjVGl6WtlESDIOFFBZFWxkpC2EbCwKbcmGVkK1lpWK1qYXhta1YVYhTcrnfXYfhfYNx1CsXLfa98ThsouaSsQIUyDpVb_ZVG4YYA7bautHsfh2Dcb0Gpncidad_ROqdSA2gk8jEV7_4dUgqwvYf5HRPYjLx4TDoaF0yhY0LybZuBvfnxhfDEJXK |
CitedBy_id | crossref_primary_10_1109_TGRS_2024_3369178 crossref_primary_10_1109_TGRS_2022_3192013 crossref_primary_10_1117_1_JRS_16_026517 crossref_primary_10_1016_j_jag_2021_102548 crossref_primary_10_32604_cmes_2023_044863 crossref_primary_10_3390_rs15133265 crossref_primary_10_2478_jsiot_2022_0005 crossref_primary_10_1109_TGRS_2021_3110894 crossref_primary_10_3390_rs15081964 crossref_primary_10_2478_jsiot_2022_0007 crossref_primary_10_1109_TNNLS_2024_3367331 crossref_primary_10_1109_TGRS_2024_3364713 crossref_primary_10_3390_rs12213547 crossref_primary_10_3390_rs15020327 crossref_primary_10_34133_2021_9805389 crossref_primary_10_3390_rs15020325 crossref_primary_10_1109_JSTARS_2022_3199249 crossref_primary_10_1177_00368504241280765 crossref_primary_10_3390_drones9010029 crossref_primary_10_1109_JSTARS_2022_3206085 crossref_primary_10_1109_TGRS_2022_3215472 crossref_primary_10_1016_j_compeleceng_2025_110065 crossref_primary_10_3390_info15010063 crossref_primary_10_3390_rs15215200 crossref_primary_10_1080_01431161_2021_1892858 crossref_primary_10_1007_s00521_022_07664_w crossref_primary_10_3390_rs15081971 crossref_primary_10_1109_TGRS_2021_3095186 crossref_primary_10_1109_TGRS_2022_3147224 crossref_primary_10_1109_TGRS_2022_3204345 crossref_primary_10_1109_TCYB_2022_3163152 crossref_primary_10_1134_S106273912404015X crossref_primary_10_1007_s11042_023_16973_8 crossref_primary_10_1109_JSTARS_2022_3158905 crossref_primary_10_1109_TIP_2021_3058590 crossref_primary_10_1109_JSTARS_2023_3284309 crossref_primary_10_1109_TGRS_2021_3051383 crossref_primary_10_3390_electronics12244902 crossref_primary_10_1109_TGRS_2025_3534288 crossref_primary_10_1109_TGRS_2023_3336524 crossref_primary_10_1016_j_engappai_2023_107313 crossref_primary_10_1049_ipr2_13040 crossref_primary_10_1117_1_JRS_18_044519 crossref_primary_10_1109_JSTARS_2020_3034609 crossref_primary_10_1109_TGRS_2024_3471082 crossref_primary_10_1109_TIM_2023_3315392 crossref_primary_10_1007_s10462_024_10803_5 crossref_primary_10_1109_JSTARS_2021_3128994 crossref_primary_10_3390_app14125342 crossref_primary_10_1016_j_jag_2022_102804 crossref_primary_10_1109_ACCESS_2024_3466013 crossref_primary_10_1109_TCSVT_2023_3323879 crossref_primary_10_1109_LGRS_2023_3345946 crossref_primary_10_3390_s23156811 crossref_primary_10_1117_1_JEI_31_5_053017 crossref_primary_10_1109_JSTARS_2022_3179612 crossref_primary_10_1016_j_neucom_2024_129251 crossref_primary_10_1109_TPAMI_2024_3508072 crossref_primary_10_3390_app131810111 crossref_primary_10_1109_LGRS_2024_3382871 crossref_primary_10_1080_01431161_2020_1811918 crossref_primary_10_1109_JSTARS_2024_3357540 crossref_primary_10_1109_TGRS_2024_3373442 crossref_primary_10_3390_rs15194680 crossref_primary_10_1016_j_isprsjprs_2023_02_006 crossref_primary_10_3390_rs16040624 crossref_primary_10_1109_LGRS_2020_3046739 crossref_primary_10_1109_MGRS_2023_3293459 crossref_primary_10_1109_TGRS_2021_3123984 crossref_primary_10_1109_JMASS_2020_3040976 crossref_primary_10_1109_TGRS_2023_3325884 crossref_primary_10_1007_s11554_024_01601_x crossref_primary_10_1016_j_imavis_2023_104697 crossref_primary_10_1109_JSTARS_2024_3492164 crossref_primary_10_3390_s22103891 crossref_primary_10_1007_s11432_022_3718_5 crossref_primary_10_1109_TGRS_2024_3426094 crossref_primary_10_1109_LGRS_2024_3361508 crossref_primary_10_3390_rs16081341 crossref_primary_10_1109_ACCESS_2023_3247967 crossref_primary_10_3390_sym14051020 crossref_primary_10_3390_app12104997 crossref_primary_10_3390_rs15020370 crossref_primary_10_3390_rs15020371 crossref_primary_10_1109_TGRS_2024_3442575 crossref_primary_10_3390_s20226485 crossref_primary_10_1109_JSTARS_2022_3190699 crossref_primary_10_1049_sil2_12194 crossref_primary_10_1007_s11042_023_17237_1 crossref_primary_10_1109_JSTARS_2022_3191544 crossref_primary_10_1109_LGRS_2022_3211325 crossref_primary_10_1007_s00500_021_06126_0 crossref_primary_10_1117_1_JRS_16_036509 crossref_primary_10_1109_TGRS_2023_3326992 crossref_primary_10_1109_TGRS_2025_3536015 crossref_primary_10_11834_jig_221085 crossref_primary_10_1016_j_jag_2023_103397 crossref_primary_10_3390_rs13244962 crossref_primary_10_3390_rs14061445 crossref_primary_10_1109_TGRS_2024_3356074 crossref_primary_10_3390_rs15030594 crossref_primary_10_3390_rs15153907 crossref_primary_10_1007_s11227_024_06237_z crossref_primary_10_1109_TGRS_2024_3386934 crossref_primary_10_3390_rs14246329 crossref_primary_10_12677_SEA_2023_122031 crossref_primary_10_1007_s12524_023_01709_w crossref_primary_10_1109_ACCESS_2025_3538575 crossref_primary_10_3390_rs13244999 crossref_primary_10_3390_land10111266 crossref_primary_10_1016_j_patcog_2024_111243 crossref_primary_10_1109_TGRS_2024_3475482 crossref_primary_10_3390_electronics9121993 crossref_primary_10_1109_JSTARS_2024_3483253 crossref_primary_10_3390_rs16050857 crossref_primary_10_1109_ACCESS_2024_3393835 crossref_primary_10_1109_JSTARS_2024_3525177 crossref_primary_10_1109_JSTARS_2022_3223845 crossref_primary_10_1016_j_neucom_2021_04_011 crossref_primary_10_3934_geosci_2022036 crossref_primary_10_1007_s10462_025_11150_9 crossref_primary_10_1109_ACCESS_2024_3368877 crossref_primary_10_1109_JSTARS_2022_3176141 crossref_primary_10_1016_j_eswa_2024_125176 crossref_primary_10_1109_LGRS_2022_3178479 crossref_primary_10_1109_MGRS_2023_3316438 crossref_primary_10_1109_TGRS_2023_3266781 crossref_primary_10_3390_rs14174380 crossref_primary_10_3390_jmse12081422 crossref_primary_10_3390_rs14040984 crossref_primary_10_1109_TGRS_2023_3296157 crossref_primary_10_3390_rs15102584 crossref_primary_10_1117_1_JEI_33_1_013006 crossref_primary_10_3390_app13106124 crossref_primary_10_1109_TGRS_2021_3133109 crossref_primary_10_1109_TGRS_2022_3222818 crossref_primary_10_1109_TITS_2025_3530678 crossref_primary_10_1016_j_dsp_2024_104938 crossref_primary_10_3390_rs15204974 crossref_primary_10_3390_rs14164107 crossref_primary_10_1016_j_neucom_2024_129067 crossref_primary_10_1109_TGRS_2024_3363614 crossref_primary_10_1109_JSTARS_2023_3327331 crossref_primary_10_1109_TGRS_2023_3289878 crossref_primary_10_1109_TGRS_2025_3546062 crossref_primary_10_3390_fi14100275 crossref_primary_10_1109_JSTARS_2023_3276781 crossref_primary_10_3390_rs15143462 crossref_primary_10_1109_TGRS_2022_3212592 crossref_primary_10_1109_TGRS_2023_3278933 crossref_primary_10_1109_TGRS_2023_3252544 crossref_primary_10_3390_rs17071155 crossref_primary_10_3788_LOP221744 crossref_primary_10_1016_j_isprsjprs_2021_01_008 crossref_primary_10_1109_TPAMI_2024_3378777 crossref_primary_10_3390_rs14225675 crossref_primary_10_1016_j_engappai_2025_110466 crossref_primary_10_3390_s23052424 crossref_primary_10_1109_TGRS_2021_3069056 crossref_primary_10_3390_rs14030579 crossref_primary_10_3390_rs14143255 crossref_primary_10_1109_JSTARS_2024_3504865 crossref_primary_10_1109_TGRS_2024_3407122 crossref_primary_10_1016_j_optlaseng_2024_108052 crossref_primary_10_1080_17538947_2024_2390443 crossref_primary_10_1109_TGRS_2024_3514741 crossref_primary_10_3390_rs16132405 crossref_primary_10_1109_LGRS_2020_3004061 crossref_primary_10_1109_JSTARS_2020_3015049 crossref_primary_10_1117_1_JEI_33_3_033018 crossref_primary_10_1080_10095020_2022_2162980 crossref_primary_10_1109_TGRS_2025_3525720 crossref_primary_10_3390_rs14194824 crossref_primary_10_3233_IDA_230929 crossref_primary_10_3390_rs12101544 crossref_primary_10_1109_JSTARS_2023_3304411 crossref_primary_10_1109_TGRS_2022_3180894 crossref_primary_10_3390_app13137501 crossref_primary_10_1080_20964471_2021_1964879 crossref_primary_10_1109_ACCESS_2024_3414620 crossref_primary_10_1038_s41597_025_04567_y crossref_primary_10_1109_TCYB_2024_3392474 crossref_primary_10_1109_TGRS_2024_3450303 crossref_primary_10_1109_MGRS_2022_3145854 crossref_primary_10_1109_TGRS_2024_3407598 crossref_primary_10_1016_j_ins_2022_05_033 crossref_primary_10_1016_j_isprsjprs_2023_04_003 crossref_primary_10_1109_TCDS_2020_3035572 crossref_primary_10_1109_TGRS_2025_3530085 crossref_primary_10_3390_rs13132482 crossref_primary_10_3390_rs14236103 crossref_primary_10_1109_TGRS_2024_3424295 crossref_primary_10_3390_s24237711 crossref_primary_10_1109_TGRS_2023_3277626 crossref_primary_10_1088_1402_4896_ad92b0 crossref_primary_10_1016_j_apor_2023_103702 crossref_primary_10_1007_s13735_024_00342_8 crossref_primary_10_3390_ijgi10120813 crossref_primary_10_1016_j_engappai_2025_110488 crossref_primary_10_1109_TGRS_2021_3133956 crossref_primary_10_3390_rs16111988 crossref_primary_10_1109_LGRS_2024_3397717 crossref_primary_10_1109_JSTARS_2024_3408154 crossref_primary_10_1109_ACCESS_2025_3526180 crossref_primary_10_1109_JSTARS_2023_3274592 crossref_primary_10_1109_JSTARS_2021_3052869 crossref_primary_10_1109_TGRS_2023_3244953 crossref_primary_10_1109_TGRS_2024_3512586 crossref_primary_10_3390_rs14215398 crossref_primary_10_1007_s13369_021_06288_x crossref_primary_10_1109_TGRS_2021_3064840 crossref_primary_10_1109_TGRS_2023_3343453 crossref_primary_10_1109_LGRS_2022_3144284 crossref_primary_10_1109_LGRS_2021_3116858 crossref_primary_10_3390_app13158647 crossref_primary_10_1109_TGRS_2021_3110601 crossref_primary_10_3390_rs13193890 crossref_primary_10_1109_TGRS_2020_3038803 crossref_primary_10_1109_JSTARS_2022_3150843 crossref_primary_10_1109_JSTARS_2022_3207302 crossref_primary_10_1109_TPAMI_2021_3117983 crossref_primary_10_1109_TGRS_2024_3476992 crossref_primary_10_1109_TGRS_2024_3442732 crossref_primary_10_1109_TNNLS_2023_3242323 crossref_primary_10_3390_land12091813 crossref_primary_10_3390_rs16071145 crossref_primary_10_1109_LGRS_2024_3374418 crossref_primary_10_1109_ACCESS_2021_3076596 crossref_primary_10_1109_TGRS_2024_3520161 crossref_primary_10_1109_JSTARS_2022_3230797 crossref_primary_10_3390_land12081602 crossref_primary_10_1109_TGRS_2024_3408895 crossref_primary_10_1109_TCSVT_2024_3367168 crossref_primary_10_1109_ACCESS_2020_3021508 crossref_primary_10_1109_ACCESS_2024_3480351 crossref_primary_10_1109_TGRS_2021_3059450 crossref_primary_10_1080_01431161_2024_2343137 crossref_primary_10_1109_JSTARS_2023_3266794 crossref_primary_10_1109_TGRS_2024_3392778 crossref_primary_10_1109_LGRS_2023_3305617 crossref_primary_10_1109_TGRS_2023_3241436 crossref_primary_10_3390_rs17040685 crossref_primary_10_1109_JSTARS_2024_3349541 crossref_primary_10_3390_rs14051246 crossref_primary_10_1016_j_measurement_2025_116704 crossref_primary_10_1080_01431161_2022_2131480 crossref_primary_10_1109_TGRS_2024_3432711 crossref_primary_10_1109_JSTARS_2025_3527213 crossref_primary_10_1016_j_jag_2021_102576 crossref_primary_10_3390_s23198213 crossref_primary_10_1016_j_image_2021_116458 crossref_primary_10_1109_JSTARS_2022_3146362 crossref_primary_10_1109_LGRS_2022_3222836 crossref_primary_10_1109_TGRS_2023_3323409 crossref_primary_10_1016_j_cja_2023_02_003 crossref_primary_10_1109_TBME_2024_3439820 crossref_primary_10_3390_rs14215362 crossref_primary_10_1109_TGRS_2023_3287863 crossref_primary_10_3390_s20061686 crossref_primary_10_3390_rs13112207 crossref_primary_10_1109_LGRS_2021_3089604 crossref_primary_10_1109_LGRS_2024_3357098 crossref_primary_10_1109_JSTARS_2022_3220503 crossref_primary_10_3390_s21165460 crossref_primary_10_1080_17538947_2024_2390427 crossref_primary_10_1109_ACCESS_2023_3292302 crossref_primary_10_3390_rs14133230 crossref_primary_10_1109_JSTARS_2023_3347561 crossref_primary_10_1080_01431161_2024_2359734 crossref_primary_10_1109_TGRS_2025_3546222 crossref_primary_10_1109_TGRS_2024_3379355 crossref_primary_10_1109_LGRS_2020_3040308 crossref_primary_10_3390_rs15133213 crossref_primary_10_1007_s11042_024_19768_7 crossref_primary_10_1109_JSTARS_2020_2981686 crossref_primary_10_1007_s00500_022_07106_8 crossref_primary_10_1109_TGRS_2025_3538848 crossref_primary_10_1109_JSTARS_2022_3196640 crossref_primary_10_1109_TGRS_2020_3020555 crossref_primary_10_1109_TGRS_2021_3128989 crossref_primary_10_1109_LGRS_2024_3431223 crossref_primary_10_1016_j_eswa_2024_124827 crossref_primary_10_1109_TGRS_2023_3270496 crossref_primary_10_3390_rs13193816 crossref_primary_10_3788_IRLA20220876 crossref_primary_10_1109_JSTARS_2023_3289585 crossref_primary_10_1002_widm_1371 crossref_primary_10_1109_TGRS_2023_3285747 crossref_primary_10_1109_LGRS_2022_3228591 crossref_primary_10_1109_JSTARS_2024_3349596 crossref_primary_10_3390_rs14215460 crossref_primary_10_1109_ACCESS_2024_3461337 crossref_primary_10_1109_TGRS_2023_3293147 crossref_primary_10_1109_TGRS_2023_3349373 crossref_primary_10_3390_rs13071298 crossref_primary_10_1109_TGRS_2023_3327123 crossref_primary_10_3390_rs13224537 crossref_primary_10_3788_IRLA20240253 crossref_primary_10_1109_LSP_2024_3472490 crossref_primary_10_1007_s11042_024_18872_y crossref_primary_10_1007_s11042_024_19257_x crossref_primary_10_3390_s20030871 crossref_primary_10_1016_j_engappai_2022_105549 crossref_primary_10_1088_1742_6596_1642_1_012003 crossref_primary_10_3390_app13042073 crossref_primary_10_1080_01431161_2023_2232543 crossref_primary_10_1117_1_JRS_16_044512 crossref_primary_10_3390_s25030657 crossref_primary_10_1016_j_imavis_2024_105381 crossref_primary_10_1016_j_neunet_2023_01_041 crossref_primary_10_3390_rs16020420 crossref_primary_10_1109_TGRS_2023_3248106 crossref_primary_10_1016_j_isprsjprs_2022_05_004 crossref_primary_10_3390_rs15174224 crossref_primary_10_1080_10095020_2023_2288179 crossref_primary_10_2139_ssrn_4137384 crossref_primary_10_1109_JSTARS_2021_3090418 crossref_primary_10_3390_rs13163192 crossref_primary_10_1109_TGRS_2023_3341437 crossref_primary_10_12677_CSA_2021_1110257 crossref_primary_10_1109_ACCESS_2024_3355154 crossref_primary_10_3390_su151411463 crossref_primary_10_5194_esurf_13_167_2025 crossref_primary_10_1016_j_isprsjprs_2020_09_022 crossref_primary_10_1109_LGRS_2021_3110584 crossref_primary_10_1109_LGRS_2024_3386311 crossref_primary_10_1109_JSTARS_2023_3277588 crossref_primary_10_3390_electronics13122358 crossref_primary_10_3390_rs14163969 crossref_primary_10_11834_jig_240009 crossref_primary_10_1109_TGRS_2025_3547903 crossref_primary_10_3390_rs16132398 crossref_primary_10_3390_rs14081850 crossref_primary_10_1109_TGRS_2024_3354031 crossref_primary_10_1109_ACCESS_2021_3128140 crossref_primary_10_1109_TGRS_2021_3091003 crossref_primary_10_1109_TGRS_2021_3089170 crossref_primary_10_3390_rs17060972 crossref_primary_10_1007_s10489_021_03147_y crossref_primary_10_26833_ijeg_1587264 crossref_primary_10_1109_JSTARS_2025_3526982 crossref_primary_10_1007_s13369_024_08892_z crossref_primary_10_3390_rs15174281 crossref_primary_10_1109_TIM_2024_3451572 crossref_primary_10_1080_2150704X_2020_1770364 crossref_primary_10_1109_TGRS_2023_3300071 crossref_primary_10_1016_j_inffus_2022_06_003 crossref_primary_10_1088_1402_4896_ad4f6a crossref_primary_10_1109_TGRS_2024_3390764 crossref_primary_10_1109_TGRS_2025_3543583 crossref_primary_10_3390_s21134350 crossref_primary_10_1109_TGRS_2021_3076050 crossref_primary_10_1016_j_earscirev_2022_104110 crossref_primary_10_1038_s41598_024_67451_6 crossref_primary_10_3390_rs17060985 crossref_primary_10_3390_rs17010061 crossref_primary_10_3390_rs16234374 crossref_primary_10_1007_s11082_024_06322_w crossref_primary_10_3390_rs17040719 crossref_primary_10_1109_JSTARS_2020_3046482 crossref_primary_10_1108_IJICC_08_2024_0383 crossref_primary_10_3390_electronics11172657 crossref_primary_10_1109_TGRS_2023_3281331 crossref_primary_10_1109_TGRS_2023_3316277 crossref_primary_10_1109_ACCESS_2021_3063681 crossref_primary_10_1515_geo_2022_0645 crossref_primary_10_3390_electronics13112140 crossref_primary_10_1016_j_knosys_2024_112534 crossref_primary_10_1109_LGRS_2024_3408875 crossref_primary_10_1007_s11042_023_15981_y crossref_primary_10_1109_TGRS_2025_3541390 crossref_primary_10_1109_TGRS_2024_3375398 crossref_primary_10_1109_TGRS_2025_3533553 crossref_primary_10_3389_feart_2024_1381192 crossref_primary_10_15407_fmmit2020_30_019 crossref_primary_10_1080_2150704X_2023_2215896 crossref_primary_10_3390_jimaging8080215 crossref_primary_10_1007_s10489_021_02335_0 crossref_primary_10_1109_TGRS_2022_3175213 crossref_primary_10_1016_j_dsp_2024_104390 crossref_primary_10_1016_j_neucom_2024_127552 crossref_primary_10_1109_ACCESS_2020_3033469 crossref_primary_10_3390_rs12193115 crossref_primary_10_1109_TGRS_2022_3203983 crossref_primary_10_1109_TGRS_2024_3379744 crossref_primary_10_1109_TIM_2023_3246536 crossref_primary_10_1109_TGRS_2024_3369720 crossref_primary_10_1109_TGRS_2020_2999082 crossref_primary_10_1109_LGRS_2021_3101851 crossref_primary_10_1109_TGRS_2021_3127232 crossref_primary_10_3390_rs17050733 crossref_primary_10_1016_j_isprsjprs_2022_06_002 crossref_primary_10_1109_TGRS_2024_3391621 crossref_primary_10_1016_j_fuel_2024_130985 crossref_primary_10_1109_TGRS_2023_3305729 crossref_primary_10_1109_TGRS_2025_3540085 crossref_primary_10_14801_JAITC_2020_10_2_61 crossref_primary_10_1109_TGRS_2024_3417610 crossref_primary_10_3390_rs14102385 crossref_primary_10_3390_rs14153731 crossref_primary_10_3390_rs14102389 crossref_primary_10_1109_ACCESS_2024_3444606 crossref_primary_10_1109_LGRS_2022_3223069 crossref_primary_10_3390_rs14153735 crossref_primary_10_1109_LGRS_2020_3023124 crossref_primary_10_1109_LGRS_2022_3187566 crossref_primary_10_1109_TCSVT_2024_3415657 crossref_primary_10_1016_j_asoc_2024_112061 crossref_primary_10_1109_LGRS_2024_3404481 crossref_primary_10_1109_TGRS_2024_3410308 crossref_primary_10_3390_s20216070 crossref_primary_10_1016_j_neunet_2023_02_002 crossref_primary_10_1016_j_measurement_2023_113936 crossref_primary_10_1109_TIP_2022_3148874 crossref_primary_10_32604_cmc_2024_050879 crossref_primary_10_3390_rs17020242 crossref_primary_10_3390_rs15163997 crossref_primary_10_1016_j_isprsjprs_2023_01_001 crossref_primary_10_3390_electronics13244975 crossref_primary_10_1109_LGRS_2021_3130379 crossref_primary_10_3390_rs14010040 crossref_primary_10_1017_eds_2024_53 crossref_primary_10_1109_LGRS_2024_3356507 crossref_primary_10_1109_TGRS_2024_3457868 crossref_primary_10_1109_TGRS_2023_3243042 crossref_primary_10_1016_j_asr_2025_03_044 crossref_primary_10_3390_ijgi11110565 crossref_primary_10_1109_TGRS_2024_3458951 crossref_primary_10_1007_s11760_024_03639_7 crossref_primary_10_1038_s41598_024_84626_3 crossref_primary_10_3390_rs17020249 crossref_primary_10_1080_2150704X_2024_2388853 crossref_primary_10_1109_TCSVT_2024_3444795 crossref_primary_10_3390_rs16162885 crossref_primary_10_3390_rs16162884 crossref_primary_10_1109_TGRS_2024_3382099 crossref_primary_10_1002_cpe_6767 crossref_primary_10_7717_peerj_cs_2199 crossref_primary_10_3390_electronics12040946 crossref_primary_10_3390_rs15092343 crossref_primary_10_1016_j_isprsjprs_2022_07_019 crossref_primary_10_1109_TGRS_2025_3539698 crossref_primary_10_1109_LGRS_2023_3283403 crossref_primary_10_1109_JSEN_2023_3348097 crossref_primary_10_1109_TGRS_2023_3348479 crossref_primary_10_3390_rs14040950 crossref_primary_10_1016_j_isprsjprs_2021_12_004 crossref_primary_10_1109_TPAMI_2023_3275142 crossref_primary_10_3390_app13148161 crossref_primary_10_3390_rs15163975 crossref_primary_10_1109_TGRS_2023_3256373 crossref_primary_10_1016_j_isprsjprs_2020_06_016 crossref_primary_10_3390_rs15040914 crossref_primary_10_1109_LGRS_2024_3378531 crossref_primary_10_3390_rs15071878 crossref_primary_10_1109_TGRS_2023_3346041 crossref_primary_10_1109_ACCESS_2022_3190415 crossref_primary_10_1109_TPAMI_2024_3393024 crossref_primary_10_1007_s11042_023_15608_2 crossref_primary_10_3390_rs16234556 crossref_primary_10_1002_cpe_6785 crossref_primary_10_1088_1361_6501_ad82ff crossref_primary_10_1109_TGRS_2024_3387572 crossref_primary_10_1109_TGRS_2022_3205052 crossref_primary_10_3390_rs12091432 crossref_primary_10_1109_TGRS_2024_3465496 crossref_primary_10_1007_s10489_024_05818_y crossref_primary_10_1109_JSTARS_2024_3449335 crossref_primary_10_1016_j_compag_2020_105742 crossref_primary_10_1109_TGRS_2021_3123231 crossref_primary_10_1109_TGRS_2022_3183022 crossref_primary_10_1109_TGRS_2024_3411671 crossref_primary_10_21595_jme_2023_23510 crossref_primary_10_3390_rs16234522 crossref_primary_10_1109_TGRS_2024_3520715 crossref_primary_10_3390_rs13132620 crossref_primary_10_1007_s10044_022_01072_5 crossref_primary_10_1109_TGCN_2022_3158004 crossref_primary_10_1016_j_dt_2023_09_010 crossref_primary_10_5194_gi_11_195_2022 crossref_primary_10_1109_TGRS_2022_3229039 crossref_primary_10_1016_j_displa_2023_102618 crossref_primary_10_3390_rs13010039 crossref_primary_10_1109_LGRS_2022_3163161 crossref_primary_10_1109_TGRS_2020_3042554 crossref_primary_10_1109_MGRS_2022_3171836 crossref_primary_10_1109_TGRS_2024_3415809 crossref_primary_10_1109_JSTARS_2021_3104230 crossref_primary_10_1109_TGRS_2022_3231340 crossref_primary_10_3390_rs12152416 crossref_primary_10_3390_rs14225805 crossref_primary_10_3390_rs15071860 crossref_primary_10_3390_rs14184435 crossref_primary_10_3390_rs16173321 crossref_primary_10_1109_TGRS_2024_3458986 crossref_primary_10_1155_2022_5880959 crossref_primary_10_1109_TGRS_2023_3269642 crossref_primary_10_1016_j_dsp_2024_104789 crossref_primary_10_1109_TGRS_2025_3539499 crossref_primary_10_3389_fnbot_2022_1074862 crossref_primary_10_3390_electronics13234753 crossref_primary_10_1109_LGRS_2020_3009243 crossref_primary_10_1109_ACCESS_2021_3057172 crossref_primary_10_3390_rs13010054 crossref_primary_10_3390_rs12152449 crossref_primary_10_53941_ijndi_2024_100025 crossref_primary_10_1109_ACCESS_2024_3379362 crossref_primary_10_3390_rs16050906 crossref_primary_10_1088_1742_6596_2917_1_012030 crossref_primary_10_3390_rs13224517 crossref_primary_10_3390_rs16234510 crossref_primary_10_1109_TGRS_2024_3400595 crossref_primary_10_1109_JSTARS_2022_3224555 crossref_primary_10_1109_JSTARS_2023_3286912 crossref_primary_10_1109_TCDS_2020_3031604 crossref_primary_10_3390_s22020474 crossref_primary_10_1002_rse2_352 crossref_primary_10_3390_app142210331 crossref_primary_10_1109_JSTARS_2022_3224558 crossref_primary_10_1109_TGRS_2022_3229041 crossref_primary_10_1016_j_isprsjprs_2023_01_011 crossref_primary_10_1109_TGRS_2023_3307508 crossref_primary_10_3390_rs13010047 crossref_primary_10_1016_j_knosys_2024_112353 crossref_primary_10_1109_TGRS_2023_3343806 crossref_primary_10_3390_jimaging6080078 crossref_primary_10_1007_s00371_024_03434_y crossref_primary_10_1109_ACCESS_2022_3162693 crossref_primary_10_1109_TGRS_2024_3374880 crossref_primary_10_3390_ijgi9040189 crossref_primary_10_1016_j_knosys_2021_107083 crossref_primary_10_3390_rs14092091 crossref_primary_10_1109_LGRS_2021_3104112 crossref_primary_10_1007_s11227_025_06987_4 crossref_primary_10_1007_s11554_024_01490_0 crossref_primary_10_1109_TPAMI_2023_3290594 crossref_primary_10_3390_s24123882 crossref_primary_10_1109_TIM_2022_3221101 crossref_primary_10_1016_j_eswa_2023_119997 crossref_primary_10_1109_MGRS_2020_3041450 crossref_primary_10_1016_j_isprsjprs_2024_05_023 crossref_primary_10_3390_rs17061078 crossref_primary_10_3390_drones8050189 crossref_primary_10_1109_LGRS_2022_3223470 crossref_primary_10_3390_rs14092088 crossref_primary_10_1109_LGRS_2023_3294395 crossref_primary_10_3390_app14114558 crossref_primary_10_3390_s25061738 crossref_primary_10_1016_j_jag_2022_102966 crossref_primary_10_1109_JSTARS_2023_3293395 crossref_primary_10_3390_rs16040729 crossref_primary_10_3390_rs16071203 crossref_primary_10_1109_JSTARS_2025_3530141 crossref_primary_10_1109_TGRS_2025_3545034 crossref_primary_10_1109_TGRS_2022_3181466 crossref_primary_10_1007_s00170_023_11098_6 crossref_primary_10_1109_TGRS_2021_3108476 crossref_primary_10_1088_1742_6596_1894_1_012104 crossref_primary_10_1007_s10489_023_05227_7 crossref_primary_10_1109_TGRS_2020_2985989 crossref_primary_10_1117_1_JEI_31_4_043049 crossref_primary_10_1364_OE_444501 crossref_primary_10_1109_TGRS_2025_3541937 crossref_primary_10_1016_j_isprsjprs_2024_12_001 crossref_primary_10_1109_TITS_2024_3404973 crossref_primary_10_1088_1361_6501_ad90ff crossref_primary_10_1016_j_jag_2021_102409 crossref_primary_10_34133_remotesensing_0219 crossref_primary_10_1109_JIOT_2023_3287973 crossref_primary_10_1080_01431161_2024_2354132 crossref_primary_10_1109_TGRS_2024_3512865 crossref_primary_10_1016_j_compeleceng_2022_108041 crossref_primary_10_1109_TGRS_2023_3241342 crossref_primary_10_1007_s10489_023_05216_w crossref_primary_10_1109_TGRS_2021_3124959 crossref_primary_10_3390_s23010062 crossref_primary_10_1016_j_inffus_2021_10_010 crossref_primary_10_1109_LGRS_2020_2993652 crossref_primary_10_1109_JSTARS_2023_3241969 crossref_primary_10_32604_cmc_2024_049710 crossref_primary_10_1109_TGRS_2023_3310026 crossref_primary_10_1109_JSTARS_2025_3528057 crossref_primary_10_1109_JSTARS_2023_3339235 crossref_primary_10_1016_j_eswa_2023_119980 crossref_primary_10_1016_j_datak_2022_102123 crossref_primary_10_1109_TGRS_2025_3526799 crossref_primary_10_1109_TGRS_2024_3407858 crossref_primary_10_1007_s41064_024_00311_0 crossref_primary_10_1109_LGRS_2022_3178787 crossref_primary_10_1109_TGRS_2022_3149780 crossref_primary_10_1016_j_patrec_2023_10_028 crossref_primary_10_1016_j_rser_2023_113276 crossref_primary_10_1109_LGRS_2020_3044422 crossref_primary_10_3390_rs14071595 crossref_primary_10_1109_LGRS_2021_3093577 crossref_primary_10_1017_eds_2023_42 crossref_primary_10_1109_TGRS_2022_3215146 crossref_primary_10_1186_s40537_023_00851_z crossref_primary_10_3390_rs16244734 crossref_primary_10_1109_ACCESS_2024_3487492 crossref_primary_10_1109_TGRS_2024_3421512 crossref_primary_10_1109_TGRS_2022_3173811 crossref_primary_10_3390_jmse12111916 crossref_primary_10_2478_ijanmc_2022_0031 crossref_primary_10_1007_s12145_024_01447_8 crossref_primary_10_1038_s41598_025_89124_8 crossref_primary_10_1016_j_jksuci_2023_101863 crossref_primary_10_1109_TITS_2024_3506748 crossref_primary_10_1155_2021_8956396 crossref_primary_10_1109_TGRS_2023_3347798 crossref_primary_10_1109_JSTARS_2022_3188493 crossref_primary_10_3390_s22228694 crossref_primary_10_1007_s11042_022_13153_y crossref_primary_10_1109_JSTARS_2021_3115796 crossref_primary_10_1109_TGRS_2023_3336665 crossref_primary_10_1016_j_jag_2022_102912 crossref_primary_10_1109_JSTARS_2020_3044733 crossref_primary_10_1109_TGRS_2020_3048384 crossref_primary_10_1007_s10707_022_00476_z crossref_primary_10_1109_TGRS_2024_3360447 crossref_primary_10_1109_JSTARS_2025_3545828 crossref_primary_10_3390_app14198633 crossref_primary_10_1109_JSTARS_2021_3070368 crossref_primary_10_1109_LGRS_2020_3042465 crossref_primary_10_1109_TIM_2022_3200861 crossref_primary_10_3390_rs15123157 crossref_primary_10_1109_TGRS_2022_3194732 crossref_primary_10_1007_s00371_024_03687_7 crossref_primary_10_1016_j_aei_2020_101169 crossref_primary_10_1109_TGRS_2023_3339956 crossref_primary_10_1016_j_knosys_2022_108230 crossref_primary_10_1109_LGRS_2024_3372500 crossref_primary_10_1016_j_eswa_2023_120519 crossref_primary_10_1109_JSTARS_2023_3265700 crossref_primary_10_3390_rs15051187 crossref_primary_10_1109_JSTARS_2024_3520831 crossref_primary_10_1117_1_JRS_17_046505 crossref_primary_10_1080_2150704X_2024_2334194 crossref_primary_10_1109_TGRS_2024_3360456 crossref_primary_10_23919_cje_2022_00_044 crossref_primary_10_1016_j_jag_2024_104208 crossref_primary_10_1109_JSTARS_2021_3126427 crossref_primary_10_1109_TGRS_2021_3123666 crossref_primary_10_1109_TGRS_2022_3159544 crossref_primary_10_1007_s10115_025_02375_9 crossref_primary_10_56294_sctconf2023390 crossref_primary_10_1016_j_cja_2020_09_022 crossref_primary_10_3390_s24237472 crossref_primary_10_1109_TGRS_2023_3347329 crossref_primary_10_1109_TGRS_2024_3385985 crossref_primary_10_1109_ACCESS_2024_3470815 crossref_primary_10_3390_app13042578 crossref_primary_10_3390_rs14122861 crossref_primary_10_3390_rs17061066 crossref_primary_10_3390_rs12213476 crossref_primary_10_1109_JSTARS_2024_3518753 crossref_primary_10_1016_j_isprsjprs_2025_01_012 crossref_primary_10_1109_LGRS_2024_3510093 crossref_primary_10_1007_s11760_024_03337_4 crossref_primary_10_12677_airr_2025_141023 crossref_primary_10_1109_TGRS_2023_3311966 crossref_primary_10_1080_22797254_2021_1880975 crossref_primary_10_1109_ACCESS_2024_3495523 crossref_primary_10_1109_JSTARS_2024_3374820 crossref_primary_10_1109_JSTARS_2023_3303692 crossref_primary_10_1109_TIP_2023_3349004 crossref_primary_10_1109_LSP_2022_3229638 crossref_primary_10_1007_s11356_024_32404_z crossref_primary_10_1109_JSTARS_2024_3443268 crossref_primary_10_1109_TGRS_2023_3330479 crossref_primary_10_3390_s23020724 crossref_primary_10_1016_j_isprsjprs_2025_01_020 crossref_primary_10_1109_TGRS_2023_3332652 crossref_primary_10_1038_s41598_024_80035_8 crossref_primary_10_3390_rs15112827 crossref_primary_10_1109_ACCESS_2023_3277227 crossref_primary_10_1109_ACCESS_2024_3409393 crossref_primary_10_1016_j_patrec_2023_05_031 crossref_primary_10_1109_JSTARS_2023_3335294 crossref_primary_10_1109_MGRS_2024_3404506 crossref_primary_10_3390_rs14194951 crossref_primary_10_1016_j_knosys_2025_113003 crossref_primary_10_1080_01431161_2021_2012294 crossref_primary_10_1109_TGRS_2023_3266838 crossref_primary_10_1109_LGRS_2022_3184836 crossref_primary_10_1109_TGRS_2020_3045474 crossref_primary_10_3390_math12091343 crossref_primary_10_3390_rs14030688 crossref_primary_10_1080_15481603_2022_2163063 crossref_primary_10_3390_rs14051166 crossref_primary_10_3390_rs12101667 crossref_primary_10_1016_j_patcog_2025_111404 crossref_primary_10_1109_JSTARS_2023_3316302 crossref_primary_10_1109_TGRS_2021_3085870 crossref_primary_10_1109_JSTARS_2021_3139926 crossref_primary_10_3390_rs16132317 crossref_primary_10_1049_cvi2_12317 crossref_primary_10_1080_01431161_2021_1954261 crossref_primary_10_1109_TGRS_2024_3367294 crossref_primary_10_3390_rs15215131 crossref_primary_10_1109_ACCESS_2022_3149052 crossref_primary_10_1109_ACCESS_2023_3267435 crossref_primary_10_1016_j_isprsjprs_2022_11_008 crossref_primary_10_1080_22797254_2023_2289616 crossref_primary_10_1007_s00521_024_09422_6 crossref_primary_10_1007_s11182_023_02990_5 crossref_primary_10_1109_JSTARS_2022_3206143 crossref_primary_10_1117_1_JRS_18_028503 crossref_primary_10_3390_s20164450 crossref_primary_10_3390_rs15082096 crossref_primary_10_1109_TGRS_2024_3492046 crossref_primary_10_3390_rs16214034 crossref_primary_10_1109_ACCESS_2020_3035839 crossref_primary_10_1109_LGRS_2024_3423796 crossref_primary_10_3390_rs13122318 crossref_primary_10_1109_JSTARS_2024_3394887 crossref_primary_10_1109_TIP_2021_3077144 crossref_primary_10_3390_s23135849 crossref_primary_10_1016_j_jag_2024_104019 crossref_primary_10_1142_S0218001423510175 crossref_primary_10_1109_TGRS_2023_3250448 crossref_primary_10_1109_ACCESS_2022_3161568 crossref_primary_10_1109_TGRS_2022_3215543 crossref_primary_10_3390_rs15030614 crossref_primary_10_1177_1094342020945026 crossref_primary_10_1109_TIP_2024_3424335 crossref_primary_10_1016_j_isprsjprs_2020_09_008 crossref_primary_10_1109_TGRS_2024_3381774 crossref_primary_10_1080_10106049_2024_2322061 crossref_primary_10_1109_TGRS_2024_3485590 crossref_primary_10_1109_TGRS_2023_3325927 crossref_primary_10_1109_TGRS_2024_3415002 crossref_primary_10_1109_MGRS_2021_3115137 crossref_primary_10_3788_LOP231615 crossref_primary_10_3390_s21051743 crossref_primary_10_1080_01431161_2022_2061316 crossref_primary_10_3390_rs15051307 crossref_primary_10_20965_jrm_2021_p1135 crossref_primary_10_3390_app12157622 crossref_primary_10_3390_drones6080188 crossref_primary_10_1016_j_sigpro_2023_109001 crossref_primary_10_1155_2022_8077563 crossref_primary_10_1108_IJICC_01_2024_0020 crossref_primary_10_7717_peerj_cs_1583 crossref_primary_10_1109_JSTARS_2024_3424954 crossref_primary_10_3390_rs14164049 crossref_primary_10_1016_j_engappai_2025_110315 crossref_primary_10_1109_TGRS_2022_3228612 crossref_primary_10_1109_TPAMI_2022_3166956 crossref_primary_10_1016_j_optlastec_2024_110727 crossref_primary_10_32604_cmc_2023_033038 crossref_primary_10_1016_j_neucom_2022_05_052 crossref_primary_10_3390_rs16224265 crossref_primary_10_3390_rs14215488 crossref_primary_10_1109_TGRS_2023_3294241 crossref_primary_10_1080_01431161_2024_2416592 crossref_primary_10_3788_AOS240606 crossref_primary_10_1109_JSTARS_2024_3454333 crossref_primary_10_1109_LGRS_2023_3291505 crossref_primary_10_3390_rs16071288 crossref_primary_10_1109_TGRS_2024_3369666 crossref_primary_10_1109_TGRS_2020_3035469 crossref_primary_10_1109_TGRS_2022_3202499 crossref_primary_10_1080_02726351_2023_2268567 crossref_primary_10_3390_rs13214386 crossref_primary_10_1007_s13042_024_02357_3 crossref_primary_10_3390_rs15225372 crossref_primary_10_1109_ACCESS_2023_3290480 crossref_primary_10_1016_j_jag_2024_104044 crossref_primary_10_1109_TGRS_2023_3298852 crossref_primary_10_1049_itr2_12421 crossref_primary_10_1109_TGRS_2021_3119344 crossref_primary_10_1109_TGRS_2023_3250471 crossref_primary_10_1016_j_isprsjprs_2022_10_003 crossref_primary_10_3390_jmse12020352 crossref_primary_10_1080_10095020_2024_2378920 crossref_primary_10_3390_ijgi11030158 crossref_primary_10_3390_rs16030516 crossref_primary_10_3390_rs14215471 crossref_primary_10_3390_rs17030502 crossref_primary_10_1109_TGRS_2023_3283137 crossref_primary_10_1016_j_jag_2023_103522 crossref_primary_10_1109_TGRS_2020_2991407 crossref_primary_10_1109_LGRS_2024_3462089 crossref_primary_10_3390_electronics9091356 crossref_primary_10_3390_rs14184519 crossref_primary_10_1016_j_isprsjprs_2024_01_015 crossref_primary_10_1109_TGRS_2024_3474925 crossref_primary_10_1016_j_neunet_2024_106416 crossref_primary_10_1109_JSTARS_2023_3269852 crossref_primary_10_3390_rs12152501 crossref_primary_10_3390_rs13040683 crossref_primary_10_1016_j_jksuci_2024_102113 crossref_primary_10_1109_TGRS_2024_3380645 crossref_primary_10_1109_TGRS_2021_3093556 crossref_primary_10_1080_01431161_2022_2128924 crossref_primary_10_1109_LGRS_2021_3125502 crossref_primary_10_1109_TGRS_2024_3480122 crossref_primary_10_3390_rs16224251 crossref_primary_10_3390_s23146423 crossref_primary_10_1080_10095020_2023_2244005 crossref_primary_10_1109_JSEN_2024_3444920 crossref_primary_10_1109_LGRS_2023_3292890 crossref_primary_10_1016_j_isprsjprs_2024_01_005 crossref_primary_10_1088_1402_4896_ad6e3b crossref_primary_10_1109_LGRS_2020_2975541 crossref_primary_10_1109_JSTARS_2020_3005403 crossref_primary_10_3390_rs16193637 crossref_primary_10_1142_S1793962321500318 crossref_primary_10_1080_01431161_2022_2066487 crossref_primary_10_3390_rs15245788 crossref_primary_10_1016_j_jag_2023_103301 crossref_primary_10_1080_09720529_2022_2068602 crossref_primary_10_3390_rs16193630 crossref_primary_10_1109_TGRS_2024_3514376 crossref_primary_10_1016_j_neucom_2023_03_046 crossref_primary_10_1109_TGRS_2024_3379436 crossref_primary_10_3390_rs15205050 crossref_primary_10_3390_rs15153883 crossref_primary_10_1080_19361610_2022_2111184 crossref_primary_10_1109_TMM_2022_3210389 crossref_primary_10_3390_rs14020382 crossref_primary_10_1109_LGRS_2021_3052017 crossref_primary_10_1016_j_jag_2025_104394 crossref_primary_10_1080_07038992_2021_1898937 crossref_primary_10_1080_01431161_2021_1931537 crossref_primary_10_1109_TGRS_2024_3450732 crossref_primary_10_3390_app14177665 crossref_primary_10_1109_LGRS_2023_3325410 crossref_primary_10_3390_rs15205062 crossref_primary_10_1080_01431161_2021_1949069 crossref_primary_10_1016_j_sigpro_2024_109449 crossref_primary_10_1007_s42979_023_02434_4 crossref_primary_10_1109_JSEN_2024_3362982 crossref_primary_10_3390_rs12010143 crossref_primary_10_3390_electronics12143201 crossref_primary_10_3390_rs15061574 crossref_primary_10_3390_rs17010162 crossref_primary_10_1109_TNNLS_2023_3336563 crossref_primary_10_1515_comp_2023_0105 crossref_primary_10_5194_essd_13_5389_2021 crossref_primary_10_1109_TCYB_2021_3069920 crossref_primary_10_1109_LGRS_2023_3303896 crossref_primary_10_3390_rs17050818 crossref_primary_10_3389_fmars_2024_1480796 crossref_primary_10_26833_ijeg_1107890 crossref_primary_10_1016_j_ufug_2023_127943 crossref_primary_10_3390_app14188535 crossref_primary_10_3390_rs15205031 crossref_primary_10_1109_JSTARS_2024_3461165 crossref_primary_10_3390_rs17050893 crossref_primary_10_3390_rs16234485 crossref_primary_10_1016_j_patcog_2024_110976 crossref_primary_10_1080_01431161_2025_2479886 crossref_primary_10_1109_TGRS_2022_3173373 crossref_primary_10_1109_TGRS_2021_3067470 crossref_primary_10_1117_1_JRS_18_016514 crossref_primary_10_1016_j_mejo_2021_105319 crossref_primary_10_1109_ACCESS_2024_3382245 crossref_primary_10_1109_MGRS_2024_3383473 crossref_primary_10_1016_j_ophoto_2024_100069 crossref_primary_10_1109_ACCESS_2020_3002829 crossref_primary_10_1109_LGRS_2024_3406345 crossref_primary_10_1016_j_jclepro_2022_133026 crossref_primary_10_23919_JSEE_2023_000035 crossref_primary_10_1016_j_patcog_2024_110983 crossref_primary_10_3390_rs13193908 crossref_primary_10_1142_S0218001422540209 crossref_primary_10_7780_kjrs_2024_40_6_1_6 crossref_primary_10_1109_JSTARS_2022_3227322 crossref_primary_10_1007_s40747_024_01652_4 crossref_primary_10_1016_j_compeleceng_2024_110042 crossref_primary_10_1016_j_eswa_2024_125826 crossref_primary_10_3934_mbe_2023282 crossref_primary_10_3390_rs13245132 crossref_primary_10_1007_s40747_024_01676_w crossref_primary_10_1007_s12145_025_01751_x crossref_primary_10_1016_j_eswa_2022_116793 crossref_primary_10_1080_2150704X_2024_2439076 crossref_primary_10_1109_JSTARS_2023_3335891 crossref_primary_10_1109_MGRS_2024_3450681 crossref_primary_10_1109_TGRS_2024_3402825 crossref_primary_10_1016_j_ophoto_2024_100071 crossref_primary_10_1007_s11760_024_03288_w crossref_primary_10_1117_1_JRS_18_016507 crossref_primary_10_14801_jkiit_2024_22_10_35 crossref_primary_10_1109_TGRS_2023_3316153 crossref_primary_10_1109_LGRS_2024_3385399 crossref_primary_10_1109_LGRS_2023_3314517 crossref_primary_10_3390_electronics12132758 crossref_primary_10_1109_LGRS_2022_3230973 crossref_primary_10_1109_TGRS_2023_3247578 crossref_primary_10_3390_rs16020327 crossref_primary_10_1109_JSTARS_2022_3203126 crossref_primary_10_3390_app13158694 crossref_primary_10_3390_rs15082200 crossref_primary_10_1016_j_ecoinf_2024_102952 crossref_primary_10_1016_j_isprsjprs_2022_12_004 crossref_primary_10_3390_rs15174142 crossref_primary_10_14358_PERS_24_00036R1 crossref_primary_10_1007_s13735_020_00200_3 crossref_primary_10_1109_TGRS_2021_3105575 crossref_primary_10_1016_j_neucom_2024_128527 crossref_primary_10_1109_TGRS_2024_3370826 crossref_primary_10_3390_rs17050868 crossref_primary_10_1016_j_cag_2024_104014 crossref_primary_10_1109_LGRS_2025_3538868 crossref_primary_10_1109_TAI_2021_3081057 crossref_primary_10_1109_TGRS_2021_3088398 crossref_primary_10_1109_TGRS_2025_3536931 crossref_primary_10_3390_rs14091970 crossref_primary_10_1109_LGRS_2021_3067313 crossref_primary_10_1007_s10115_023_01916_4 crossref_primary_10_1109_LGRS_2020_3046137 crossref_primary_10_14358_PERS_23_00004R3 crossref_primary_10_3390_rs15174130 crossref_primary_10_1109_TGRS_2023_3278075 crossref_primary_10_1016_j_rsase_2024_101447 crossref_primary_10_3390_photonics8090394 crossref_primary_10_1007_s12145_024_01265_y crossref_primary_10_1109_JSTARS_2021_3101934 crossref_primary_10_1109_TGRS_2025_3532349 crossref_primary_10_1109_ACCESS_2021_3053546 crossref_primary_10_1117_1_JEI_33_5_053061 crossref_primary_10_1109_JSTARS_2020_3026724 crossref_primary_10_1016_j_jag_2024_103648 crossref_primary_10_1016_j_jclepro_2023_136060 crossref_primary_10_1109_JIOT_2023_3334742 crossref_primary_10_1109_JSTARS_2024_3355992 crossref_primary_10_1016_j_asoc_2024_112181 crossref_primary_10_1109_LGRS_2024_3368619 crossref_primary_10_3390_rs16234443 crossref_primary_10_1109_TGRS_2021_3103964 crossref_primary_10_1007_s11760_024_03560_z crossref_primary_10_1109_TGRS_2024_3354999 crossref_primary_10_3390_rs16162992 crossref_primary_10_1109_TGRS_2022_3176603 crossref_primary_10_3390_rs14061507 crossref_primary_10_3390_ijgi13120433 crossref_primary_10_1109_JSTARS_2023_3295732 crossref_primary_10_1016_j_inffus_2024_102508 crossref_primary_10_1016_j_dsp_2024_104674 crossref_primary_10_1111_phor_12446 crossref_primary_10_3390_rs15092460 crossref_primary_10_3390_rs13071327 crossref_primary_10_1016_j_eswa_2024_123233 crossref_primary_10_3390_rs13050862 crossref_primary_10_1109_TGRS_2023_3268232 crossref_primary_10_1109_TGRS_2020_3042607 crossref_primary_10_1109_TNNLS_2023_3309889 crossref_primary_10_3390_rs15245709 crossref_primary_10_1016_j_isprsjprs_2021_05_005 crossref_primary_10_2478_amns_2024_3090 crossref_primary_10_1016_j_neucom_2020_06_011 crossref_primary_10_1080_19475683_2023_2165544 crossref_primary_10_1109_TGRS_2025_3550372 crossref_primary_10_1109_JSTARS_2023_3294624 crossref_primary_10_1016_j_isprsjprs_2021_08_023 crossref_primary_10_1109_TGRS_2024_3402216 crossref_primary_10_1109_JSTARS_2021_3056661 crossref_primary_10_1080_01431161_2022_2089539 crossref_primary_10_1145_3664598 crossref_primary_10_1109_JSTARS_2021_3139017 crossref_primary_10_3390_rs15245710 crossref_primary_10_3390_s23031261 crossref_primary_10_1109_ACCESS_2024_3381539 crossref_primary_10_1109_JSTARS_2022_3198577 crossref_primary_10_1109_LGRS_2022_3226201 crossref_primary_10_1021_acsami_1c15942 crossref_primary_10_1109_LGRS_2023_3337807 crossref_primary_10_1109_TGRS_2022_3200957 crossref_primary_10_3390_rs12223750 crossref_primary_10_1109_TGRS_2024_3354783 crossref_primary_10_1109_TGRS_2024_3519891 crossref_primary_10_1109_TGRS_2024_3499363 crossref_primary_10_1016_j_jag_2024_103675 crossref_primary_10_3390_drones6100292 crossref_primary_10_1080_17538947_2024_2432532 crossref_primary_10_1109_TGRS_2024_3510833 crossref_primary_10_32604_csse_2022_024265 crossref_primary_10_1007_s11042_023_15564_x crossref_primary_10_1038_s41598_024_75807_1 crossref_primary_10_1109_ACCESS_2025_3538548 crossref_primary_10_1155_2022_3001939 crossref_primary_10_3390_rs14071536 crossref_primary_10_7717_peerj_cs_2053 crossref_primary_10_3390_rs14071534 crossref_primary_10_3390_rs16213989 crossref_primary_10_1007_s11042_024_18866_w crossref_primary_10_1080_01431161_2021_1976873 crossref_primary_10_1080_10106049_2023_2280549 crossref_primary_10_3390_rs15092429 crossref_primary_10_1109_TIP_2020_2987161 crossref_primary_10_3390_rs16203904 crossref_primary_10_1109_TGRS_2023_3294943 crossref_primary_10_3390_electronics12234886 crossref_primary_10_1109_TGRS_2021_3064599 crossref_primary_10_1109_ACCESS_2021_3119562 crossref_primary_10_1109_TGRS_2022_3140856 crossref_primary_10_1016_j_isprsjprs_2020_12_015 crossref_primary_10_3390_rs16244697 crossref_primary_10_1038_s41597_024_03776_1 crossref_primary_10_3390_rs16244699 crossref_primary_10_1016_j_livsci_2021_104700 crossref_primary_10_3390_rs16244693 crossref_primary_10_1016_j_iswa_2025_200484 crossref_primary_10_1080_17538947_2023_2173318 crossref_primary_10_3390_ijgi11070385 crossref_primary_10_1109_TGRS_2024_3493886 crossref_primary_10_3390_rs14071743 crossref_primary_10_3390_app11093974 crossref_primary_10_3389_fpls_2022_1041514 crossref_primary_10_1016_j_isprsjprs_2024_02_003 crossref_primary_10_1080_07038992_2021_1894915 crossref_primary_10_1016_j_eswa_2023_119960 crossref_primary_10_1109_JSTARS_2023_3247455 crossref_primary_10_1109_TGRS_2021_3101359 crossref_primary_10_1109_TGRS_2022_3233637 crossref_primary_10_14358_PERS_23_00024R2 crossref_primary_10_1109_TGRS_2024_3481415 crossref_primary_10_3390_rs14235969 crossref_primary_10_1109_TGRS_2022_3233881 crossref_primary_10_1109_TGRS_2024_3423305 crossref_primary_10_1109_TGRS_2021_3078507 crossref_primary_10_1016_j_neucom_2024_128119 crossref_primary_10_1109_ACCESS_2025_3527881 crossref_primary_10_1007_s10489_022_03622_0 crossref_primary_10_1016_j_ejrs_2023_11_006 crossref_primary_10_1109_JSTARS_2023_3268176 crossref_primary_10_1109_TIM_2024_3387499 crossref_primary_10_32604_cmc_2022_022989 crossref_primary_10_1109_LGRS_2022_3222061 crossref_primary_10_1016_j_jag_2023_103345 crossref_primary_10_1007_s12145_022_00900_w crossref_primary_10_3390_rs17010134 crossref_primary_10_1007_s11265_022_01799_8 crossref_primary_10_1109_TGRS_2024_3401573 crossref_primary_10_1109_ACCESS_2022_3199368 crossref_primary_10_3390_rs14184581 crossref_primary_10_1007_s11554_024_01617_3 crossref_primary_10_1016_j_rse_2023_113840 crossref_primary_10_1109_TGRS_2025_3541220 crossref_primary_10_1016_j_compag_2023_108106 crossref_primary_10_1109_JSTARS_2021_3128566 crossref_primary_10_1016_j_optlaseng_2021_106707 crossref_primary_10_1109_TGRS_2025_3541441 crossref_primary_10_3390_rs16091532 crossref_primary_10_1016_j_neunet_2024_106844 crossref_primary_10_1016_j_imavis_2022_104471 crossref_primary_10_1016_j_jes_2024_04_037 crossref_primary_10_3390_ani13142365 crossref_primary_10_1109_TGRS_2023_3238801 crossref_primary_10_1142_S0218001423540241 crossref_primary_10_1109_JSTARS_2023_3234161 crossref_primary_10_3390_rs14153616 crossref_primary_10_1007_s11042_023_15584_7 crossref_primary_10_26634_jip_9_2_18916 crossref_primary_10_1109_MGRS_2023_3312347 |
Cites_doi | 10.1109/TGRS.2013.2296782 10.1109/TGRS.2016.2601622 10.1007/s11263-007-0090-8 10.1109/TIP.2018.2835143 10.1109/TPAMI.2015.2389824 10.1109/LGRS.2015.2432135 10.1145/2647868.2654889 10.1109/TPAMI.2012.231 10.1109/TGRS.2017.2783902 10.1007/s11045-015-0370-3 10.1117/1.JRS.11.042611 10.3390/s17122720 10.1016/j.isprsjprs.2014.10.002 10.1109/LGRS.2016.2565705 10.1080/01431161.2012.705443 10.1127/1432-8364/2010/0041 10.1109/LGRS.2018.2813094 10.1080/01431161.2014.999881 10.3390/rs9111170 10.3390/s17020336 10.1007/s11263-013-0620-5 10.1109/TPAMI.2011.94 10.3390/rs9060618 10.1109/TPAMI.2009.167 10.1016/j.isprsjprs.2018.02.014 10.3390/rs10010131 10.1109/LGRS.2016.2542358 10.1109/TGRS.2014.2299540 10.1109/LGRS.2015.2439517 10.1007/s11263-014-0733-5 10.1109/TGRS.2016.2572736 10.1109/TIP.2018.2867198 10.1016/j.isprsjprs.2016.03.014 10.1109/JSTARS.2015.2467377 10.1109/TGRS.2016.2645610 10.1109/LGRS.2017.2708722 10.3390/rs9070666 10.1109/TPAMI.2017.2699184 10.1109/TGRS.2011.2136381 10.1080/2150704X.2017.1415474 10.1109/MSP.2017.2749125 10.1007/978-3-030-01252-6_24 10.1109/JSTARS.2015.2404578 10.1109/TGRS.2017.2778300 10.1007/s11263-019-01247-4 10.1109/TPAMI.2016.2587642 10.1109/TGRS.2014.2374218 10.1109/LGRS.2017.2727515 10.3390/rs9121312 10.1109/JSTARS.2017.2694890 10.1016/j.jvcir.2015.11.002 10.1016/j.isprsjprs.2013.08.001 10.1109/MGRS.2017.2762307 10.3390/rs10050783 10.1109/TPAMI.2016.2577031 10.1007/s11263-009-0275-4 10.1109/TGRS.2016.2569141 10.1016/j.isprsjprs.2013.12.011 10.1109/MSP.2012.2205597 |
ContentType | Journal Article |
Copyright | 2019 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2019 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2019.11.023 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 307 |
ExternalDocumentID | 10_1016_j_isprsjprs_2019_11_023 S0924271619302825 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c414t-9f90388fa266cd841a01b43ce3f7a4453cdc13ed6bc834fc06809a93a29c70753 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Fri Jul 11 16:18:45 EDT 2025 Tue Jul 01 03:46:42 EDT 2025 Thu Apr 24 23:13:14 EDT 2025 Fri Feb 23 02:49:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Benchmark dataset Optical remote sensing images Object detection Convolutional Neural Network (CNN) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-9f90388fa266cd841a01b43ce3f7a4453cdc13ed6bc834fc06809a93a29c70753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5030-0683 0000-0001-5545-7217 0000-0002-7873-1554 |
PQID | 2400518149 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2400518149 crossref_citationtrail_10_1016_j_isprsjprs_2019_11_023 crossref_primary_10_1016_j_isprsjprs_2019_11_023 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2019_11_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ding, Li, Xia, Wei, Zhang, Zhang (b0125) 2017; 9 Girshick (b0160) 2015 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b0460) 2015 Mordan, Thome, Henaff, Cord (b0355) 2018 Salberg (b0410) 2015 Dai, Li, He, Sun (b0100) 2016; Syst Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (b0245) 2014 Tian, Chen, Shah (b0485) 2017 Krizhevsky, Sutskever, Hinton (b0255) 2012 Zhong, Han, Zhang (b0570) 2018; 138 Tang, Zhou, Deng, Zou, Lei (b0475) 2017; 17 Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (b0005) 2016 Han, Zhou, Zhang, Cheng, Guo, Liu, Bu, Wu (b0185) 2014; 89 Lin, Dollár, Girshick, He, Hariharan, Belongie (b0280) 2017 Liu, Qi, Qin, Shi, Jia (b0315) 2018 Hou, Chen, Shah (b0225) 2017 Xiao, Liu, Tang, Zhai (b0510) 2015; 36 Lin, Goyal, Girshick, He, Dollar (b0290) 2017 Luan, Chen, Zhang, Han, Liu (b0345) 2018; 27 Heitz, Koller (b0215) 2008; Vis Li, Cheng, Bu, You (b0265) 2018; 56 Chen, Papandreou, Kokkinos, Murphy, Yuille (b0040) 2018; 40 Cheng, Han, Zhou, Guo (b0060) 2014; 98 Girshick, Donahue, Darrell, Malik (b0165) 2014 He, Zhang, Ren, Sun (b0205) 2014; 37 Mikolov, Deoras, Povey, Burget, Cernocky (b0350) 2012 Xu, Xu, Wang, Yang, Pu (b0515) 2017; 9 Cramer (b0095) 2010; 2010 He, Gkioxari, Dollar, Girshick (b0200) 2017 Yang, X., Fu, K., Sun, H., Yang, J., Guo, Z., Yan, M., Zhan, T., Xian, S., 2018b. R2CNN++: Multi-Dimensional Attention Based Rotation Invariant Detector with Robust Anchor Strategy. arXiv preprint arXiv:1811.07126. Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (b0130) 2015; 111 Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (b0320) 2016 Cheng, Han, Guo, Qian, Zhou, Yao, Hu (b0055) 2013; 85 Han, Zhang, Cheng, Guo, Ren (b0175) 2015; 53 Han, Zhong, Feng, Zhang (b0190) 2017 Felzenszwalb, Girshick, Mcallester, Ramanan (b0145) 2010; 32 Cheng, L., Liu, X., Li, L., Jiao, L., Tang, X., 2018b. Deep Adaptive Proposal Network for Object Detection in Optical Remote Sensing Images. arXiv preprint arXiv:1807.07327. Xia, Bai, Ding, Zhu, Belongie, Luo, Datcu, Pelillo, Zhang (b0505) 2018 Bai, Zhang, Zhou (b0020) 2014; 52 Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, Lerer (b0375) 2017 Zeiler, Fergus (b0550) 2014; Vis Tompson, Jain, LeCun, Bregler (b0490) 2014 Simonyan, Zisserman (b0435) 2015 Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (b0465) 2016 Cheng, Zhou, Han (b0080) 2016 Singh, Davis (b0440) 2018 Razakarivony, Jurie (b0380) 2015; 34 Shrivastava, Gupta, Girshick (b0430) 2016 Sermanet, Eigen, Zhang, Mathieu, Fergus, Lecun (b0415) 2014 Liu, Wang, Weng, Yang (b0330) 2016; 13 Ševo, Avramović (b0420) 2017; 13 Yu, Guan, Ji (b0545) 2015; 12 Liu, Mattyus (b0295) 2015; 12 Tang, Zhou, Deng, Lei, Zou (b0470) 2017; 9 Wei, Zhang, Zhang, Tian, Zhang (b0500) 2018; 10 Zhang, Shi, Wu (b0560) 2017; 8 Cheng, Han (b0050) 2016; 117 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b0285) 2014 Zhou, Cheng, Liu, Bu, Hu (b0575) 2016; 27 Zitnick, Dollár (b0595) 2014 Liu, Ma, Chen (b0325) 2018; 15 Yang, Zhuang, Bi, Shi, Xie (b0530) 2017; 14 Clément, Camille, Laurent, Yann (b0090) 2013; 35 Redmon, Divvala, Girshick, Farhadi (b0385) 2016 Bell, Lawrence Zitnick, Bala, Girshick (b0025) 2016 Gidaris, Komodakis (b0155) 2015 Yokoya, Iwasaki (b0540) 2015; 8 Newell, Yang, Deng (b0365) 2016; Vis Ioffe, Szegedy (b0240) 2015 Fu, C.-Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C., 2017. DSSD: Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659. Shrivastava, Gupta (b0425) 2016 Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M., 2018a. Deep learning for generic object detection: A survey. arXiv preprint arXiv:1809.02165. Agarwal, S., Terrail, J.O.D., Jurie, F., 2018. Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks. arXiv preprint arXiv:1809.03193. Zou, Shi (b0600) 2016; 54 Singh, Li, Sharma, Davis (b0445) 2018 Aksoy (b0015) 2014; 52 Cai, Fan, Feris, Vasconcelos (b0035) 2016 Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J., 2017. Light-head r-cnn: In defense of two-stage object detector. arXiv preprint arXiv:1711.07264. Cheng, Guo, Zhao, Han, Li, Fang (b0045) 2013; 34 Liu, L., Pan, Z., Lei, B., 2017a. Learning a Rotation Invariant Detector with Rotatable Bounding Box. arXiv preprint arXiv:1711.09405. Redmon, Farhadi (b0390) 2017 Han, Zhong, Zhang (b0195) 2017; 9 Cheng, Han, Zhou, Xu (b0065) 2019; 28 Long, Shelhamer, Darrell (b0335) 2015 Kong, Yao, Chen, Sun (b0250) 2016 Redmon, J., Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767. Hu, Shen, Sun (b0230) 2018 Lin, Shi, Zou (b0275) 2017; 14 Szegedy, Ioffe, Vanhoucke, Alemi (b0455) 2017 Yang, Zhu, Jiang, Gao, Xiao, Zheng (b0520) 2018; 9 Liu, S., Huang, D., Wang, Y., 2017b. Receptive Field Block Net for Accurate and Fast Object Detection. arXiv preprint arXiv:1711.07767. Das, Mirnalinee, Varghese (b0110) 2011; 49 Han, Zhang, Cheng, Liu, Xu (b0180) 2018; 35 Cheng, Zhou, Han (b0075) 2016; 54 Everingham, Van Gool, Williams, Winn, Zisserman (b0135) 2010; 88 Ren, He, Girshick, Sun (b0400) 2017; 39 Ouyang, Zeng, Wang, Yan, Loy, Tang, Wang, Qiu, Luo, Tian (b0370) 2017; 39 Yao, Jiang, Zhang, Zhao, Cai (b0535) 2017; 11 Guo, Yang, Zhang, Hua (b0170) 2018; 10 Deng, Sun, Zhou, Zhao, Zou (b0120) 2017; 10 Zhu, Chen, Dai, Fu, Ye, Jiao (b0580) 2015 He, Zhang, Ren, Sun (b0210) 2016 Farooq, Hu, Jia (b0140) 2017 Uijlings, Van De Sande, Gevers, Smeulders (b0495) 2013; 104 Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath (b0220) 2012; 29 Zhong, Lei, Yao (b0565) 2017; 17 Benedek, Descombes, Zerubia (b0030) 2011; 34 Zhang, Du, Zhang, Xu (b0555) 2016; 54 Russell, Torralba, Murphy, Freeman (b0405) 2008; 77 Tanner, Colder, Pullen, Heagy, Eppolito, Carlan, Oertel, Sallee (b0480) 2009 Law, Deng (b0260) 2018 Huang, Liu, Laurens, Weinberger (b0235) 2017 Cheng, Yang, Yao, Guo, Han (b0070) 2018; 56 Dai, Qi, Xiong, Li, Zhang, Hu, Wei (b0105) 2017; Vision Mundhenk, Konjevod, Sakla, Boakye (b0360) 2016; Vis Singh, Najibi, Davis (b0450) 2018 Zhu, Urtasun, Salakhutdinov, Fidler (b0590) 2015 Long, Gong, Xiao, Liu (b0340) 2017; 55 Deng, Dong, Socher, Li, Li, Fei-Fei (b0115) 2009 Zhu, Tuia, Mou, Xia, Zhang, Xu, Fraundorfer (b0585) 2017; 5 Xiao (10.1016/j.isprsjprs.2019.11.023_b0510) 2015; 36 Hou (10.1016/j.isprsjprs.2019.11.023_b0225) 2017 Girshick (10.1016/j.isprsjprs.2019.11.023_b0160) 2015 Redmon (10.1016/j.isprsjprs.2019.11.023_b0390) 2017 Dai (10.1016/j.isprsjprs.2019.11.023_b0100) 2016; Syst He (10.1016/j.isprsjprs.2019.11.023_b0205) 2014; 37 Heitz (10.1016/j.isprsjprs.2019.11.023_b0215) 2008; Vis Ding (10.1016/j.isprsjprs.2019.11.023_b0125) 2017; 9 Paszke (10.1016/j.isprsjprs.2019.11.023_b0375) 2017 Bell (10.1016/j.isprsjprs.2019.11.023_b0025) 2016 Luan (10.1016/j.isprsjprs.2019.11.023_b0345) 2018; 27 Wei (10.1016/j.isprsjprs.2019.11.023_b0500) 2018; 10 Zhang (10.1016/j.isprsjprs.2019.11.023_b0560) 2017; 8 Ševo (10.1016/j.isprsjprs.2019.11.023_b0420) 2017; 13 Benedek (10.1016/j.isprsjprs.2019.11.023_b0030) 2011; 34 Felzenszwalb (10.1016/j.isprsjprs.2019.11.023_b0145) 2010; 32 Bai (10.1016/j.isprsjprs.2019.11.023_b0020) 2014; 52 Liu (10.1016/j.isprsjprs.2019.11.023_b0325) 2018; 15 Mundhenk (10.1016/j.isprsjprs.2019.11.023_b0360) 2016; Vis Zhong (10.1016/j.isprsjprs.2019.11.023_b0570) 2018; 138 Zhang (10.1016/j.isprsjprs.2019.11.023_b0555) 2016; 54 Clément (10.1016/j.isprsjprs.2019.11.023_b0090) 2013; 35 Ouyang (10.1016/j.isprsjprs.2019.11.023_b0370) 2017; 39 Deng (10.1016/j.isprsjprs.2019.11.023_b0120) 2017; 10 Tang (10.1016/j.isprsjprs.2019.11.023_b0475) 2017; 17 Zeiler (10.1016/j.isprsjprs.2019.11.023_b0550) 2014; Vis Cheng (10.1016/j.isprsjprs.2019.11.023_b0065) 2019; 28 Cramer (10.1016/j.isprsjprs.2019.11.023_b0095) 2010; 2010 Tanner (10.1016/j.isprsjprs.2019.11.023_b0480) 2009 Lin (10.1016/j.isprsjprs.2019.11.023_b0280) 2017 Singh (10.1016/j.isprsjprs.2019.11.023_b0445) 2018 Cheng (10.1016/j.isprsjprs.2019.11.023_b0080) 2016 Lin (10.1016/j.isprsjprs.2019.11.023_b0290) 2017 Redmon (10.1016/j.isprsjprs.2019.11.023_b0385) 2016 Yao (10.1016/j.isprsjprs.2019.11.023_b0535) 2017; 11 He (10.1016/j.isprsjprs.2019.11.023_b0200) 2017 Shrivastava (10.1016/j.isprsjprs.2019.11.023_b0425) 2016 Han (10.1016/j.isprsjprs.2019.11.023_b0185) 2014; 89 Han (10.1016/j.isprsjprs.2019.11.023_b0175) 2015; 53 Girshick (10.1016/j.isprsjprs.2019.11.023_b0165) 2014 Tang (10.1016/j.isprsjprs.2019.11.023_b0470) 2017; 9 Krizhevsky (10.1016/j.isprsjprs.2019.11.023_b0255) 2012 Lin (10.1016/j.isprsjprs.2019.11.023_b0275) 2017; 14 Szegedy (10.1016/j.isprsjprs.2019.11.023_b0465) 2016 Tompson (10.1016/j.isprsjprs.2019.11.023_b0490) 2014 Uijlings (10.1016/j.isprsjprs.2019.11.023_b0495) 2013; 104 Zhu (10.1016/j.isprsjprs.2019.11.023_b0580) 2015 Zhou (10.1016/j.isprsjprs.2019.11.023_b0575) 2016; 27 Li (10.1016/j.isprsjprs.2019.11.023_b0265) 2018; 56 Yu (10.1016/j.isprsjprs.2019.11.023_b0545) 2015; 12 Cheng (10.1016/j.isprsjprs.2019.11.023_b0055) 2013; 85 Lin (10.1016/j.isprsjprs.2019.11.023_b0285) 2014 10.1016/j.isprsjprs.2019.11.023_b0395 Singh (10.1016/j.isprsjprs.2019.11.023_b0440) 2018 Singh (10.1016/j.isprsjprs.2019.11.023_b0450) 2018 Cheng (10.1016/j.isprsjprs.2019.11.023_b0060) 2014; 98 10.1016/j.isprsjprs.2019.11.023_b0270 10.1016/j.isprsjprs.2019.11.023_b0150 Han (10.1016/j.isprsjprs.2019.11.023_b0190) 2017 Liu (10.1016/j.isprsjprs.2019.11.023_b0295) 2015; 12 Dai (10.1016/j.isprsjprs.2019.11.023_b0105) 2017; Vision Sermanet (10.1016/j.isprsjprs.2019.11.023_b0415) 2014 Xu (10.1016/j.isprsjprs.2019.11.023_b0515) 2017; 9 Cheng (10.1016/j.isprsjprs.2019.11.023_b0070) 2018; 56 10.1016/j.isprsjprs.2019.11.023_b0310 Aksoy (10.1016/j.isprsjprs.2019.11.023_b0015) 2014; 52 Ren (10.1016/j.isprsjprs.2019.11.023_b0400) 2017; 39 Abadi (10.1016/j.isprsjprs.2019.11.023_b0005) 2016 Huang (10.1016/j.isprsjprs.2019.11.023_b0235) 2017 Zhu (10.1016/j.isprsjprs.2019.11.023_b0590) 2015 Zou (10.1016/j.isprsjprs.2019.11.023_b0600) 2016; 54 Kong (10.1016/j.isprsjprs.2019.11.023_b0250) 2016 Shrivastava (10.1016/j.isprsjprs.2019.11.023_b0430) 2016 Cai (10.1016/j.isprsjprs.2019.11.023_b0035) 2016 Han (10.1016/j.isprsjprs.2019.11.023_b0195) 2017; 9 Long (10.1016/j.isprsjprs.2019.11.023_b0335) 2015 Farooq (10.1016/j.isprsjprs.2019.11.023_b0140) 2017 Razakarivony (10.1016/j.isprsjprs.2019.11.023_b0380) 2015; 34 Simonyan (10.1016/j.isprsjprs.2019.11.023_b0435) 2015 Zitnick (10.1016/j.isprsjprs.2019.11.023_b0595) 2014 10.1016/j.isprsjprs.2019.11.023_b0305 Szegedy (10.1016/j.isprsjprs.2019.11.023_b0455) 2017 Das (10.1016/j.isprsjprs.2019.11.023_b0110) 2011; 49 Yokoya (10.1016/j.isprsjprs.2019.11.023_b0540) 2015; 8 10.1016/j.isprsjprs.2019.11.023_b0300 Szegedy (10.1016/j.isprsjprs.2019.11.023_b0460) 2015 Tian (10.1016/j.isprsjprs.2019.11.023_b0485) 2017 Zhu (10.1016/j.isprsjprs.2019.11.023_b0585) 2017; 5 10.1016/j.isprsjprs.2019.11.023_b0010 Mikolov (10.1016/j.isprsjprs.2019.11.023_b0350) 2012 Xia (10.1016/j.isprsjprs.2019.11.023_b0505) 2018 Cheng (10.1016/j.isprsjprs.2019.11.023_b0045) 2013; 34 Yang (10.1016/j.isprsjprs.2019.11.023_b0520) 2018; 9 Everingham (10.1016/j.isprsjprs.2019.11.023_b0130) 2015; 111 Mordan (10.1016/j.isprsjprs.2019.11.023_b0355) 2018 He (10.1016/j.isprsjprs.2019.11.023_b0210) 2016 Cheng (10.1016/j.isprsjprs.2019.11.023_b0050) 2016; 117 Ioffe (10.1016/j.isprsjprs.2019.11.023_b0240) 2015 Deng (10.1016/j.isprsjprs.2019.11.023_b0115) 2009 Guo (10.1016/j.isprsjprs.2019.11.023_b0170) 2018; 10 Jia (10.1016/j.isprsjprs.2019.11.023_b0245) 2014 Cheng (10.1016/j.isprsjprs.2019.11.023_b0075) 2016; 54 Salberg (10.1016/j.isprsjprs.2019.11.023_b0410) 2015 Chen (10.1016/j.isprsjprs.2019.11.023_b0040) 2018; 40 10.1016/j.isprsjprs.2019.11.023_b0085 Long (10.1016/j.isprsjprs.2019.11.023_b0340) 2017; 55 Newell (10.1016/j.isprsjprs.2019.11.023_b0365) 2016; Vis Han (10.1016/j.isprsjprs.2019.11.023_b0180) 2018; 35 Yang (10.1016/j.isprsjprs.2019.11.023_b0530) 2017; 14 Everingham (10.1016/j.isprsjprs.2019.11.023_b0135) 2010; 88 Hu (10.1016/j.isprsjprs.2019.11.023_b0230) 2018 Law (10.1016/j.isprsjprs.2019.11.023_b0260) 2018 Russell (10.1016/j.isprsjprs.2019.11.023_b0405) 2008; 77 Zhong (10.1016/j.isprsjprs.2019.11.023_b0565) 2017; 17 Hinton (10.1016/j.isprsjprs.2019.11.023_b0220) 2012; 29 Liu (10.1016/j.isprsjprs.2019.11.023_b0320) 2016 Gidaris (10.1016/j.isprsjprs.2019.11.023_b0155) 2015 10.1016/j.isprsjprs.2019.11.023_b0525 Liu (10.1016/j.isprsjprs.2019.11.023_b0330) 2016; 13 Liu (10.1016/j.isprsjprs.2019.11.023_b0315) 2018 |
References_xml | – volume: 37 start-page: 1904 year: 2014 end-page: 1916 ident: b0205 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 9 start-page: 666 year: 2017 ident: b0195 article-title: An efficient and robust integrated geospatial object detection framework for high spatial resolution remote sensing imagery publication-title: Remote Sens. – volume: 88 start-page: 303 year: 2010 end-page: 338 ident: b0135 article-title: The pascal visual object classes (voc) challenge publication-title: Int. J. Comput. Vis. – start-page: 6517 year: 2017 end-page: 6525 ident: b0390 article-title: YOLO9000: better, faster, stronger publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 53 start-page: 3325 year: 2015 end-page: 3337 ident: b0175 article-title: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: Vis start-page: 30 year: 2008 end-page: 43 ident: b0215 article-title: Learning spatial context: using stuff to find things publication-title: Proc. Eur. Conf. Comput. – start-page: 3337 year: 2017 end-page: 3340 ident: b0140 article-title: Efficient object proposals extraction for target detection in VHR remote sensing images publication-title: Proc. IEEE Int. Geosci. Remote Sens. Sympos. – start-page: 3353 year: 2017 end-page: 3356 ident: b0190 article-title: Robust geospatial object detection based on pre-trained faster R-CNN framework for high spatial resolution imagery publication-title: Proc. IEEE Int. Geosci. Remote Sens. Sympos. – start-page: 3431 year: 2015 end-page: 3440 ident: b0335 article-title: Fully convolutional networks for semantic segmentation publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – start-page: 1 year: 2018 end-page: 21 ident: b0355 article-title: End-to-end learning of latent deformable part-based representations for object detection publication-title: Int. J. Comput. Vis. – start-page: 1134 year: 2015 end-page: 1142 ident: b0155 article-title: Object detection via a multi-region and semantic segmentation-aware CNN model publication-title: Proc. IEEE Int. Conf. Comput. Vision – start-page: 2117 year: 2017 end-page: 2125 ident: b0280 article-title: Feature pyramid networks for object detection publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 9 start-page: 1312 year: 2017 ident: b0515 article-title: Deformable ConvNet with aspect ratio constrained NMS for object detection in remote sensing imagery publication-title: Remote Sens. – volume: 13 start-page: 1074 year: 2016 end-page: 1078 ident: b0330 article-title: Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 34 start-page: 45 year: 2013 end-page: 59 ident: b0045 article-title: Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA publication-title: Int. J. Remote Sens. – volume: 85 start-page: 32 year: 2013 end-page: 43 ident: b0055 article-title: Object detection in remote sensing imagery using a discriminatively trained mixture model publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 35 start-page: 84 year: 2018 end-page: 100 ident: b0180 article-title: Advanced deep-learning techniques for salient and category-specific object detection: a survey publication-title: IEEE Signal Process. Magaz. – start-page: 391 year: 2014 end-page: 405 ident: b0595 article-title: Edge boxes: locating object proposals from edges publication-title: Proc. Eur. Conf. Comput. Vis. – start-page: 2874 year: 2016 end-page: 2883 ident: b0025 article-title: Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 40 start-page: 834 year: 2018 end-page: 848 ident: b0040 article-title: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 39 start-page: 1320 year: 2017 end-page: 1334 ident: b0370 article-title: DeepID-Net: object detection with deformable part based convolutional neural networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 14 start-page: 1665 year: 2017 end-page: 1669 ident: b0275 article-title: Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 8759 year: 2018 end-page: 8768 ident: b0315 article-title: Path aggregation network for instance segmentation publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 34 start-page: 33 year: 2011 end-page: 50 ident: b0030 article-title: Building development monitoring in multitemporal remotely sensed image pairs with stochastic birth-death dynamics publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 330 year: 2016 end-page: 348 ident: b0425 article-title: Contextual priming and feedback for faster r-cnn publication-title: Proc. Eur. Conf. Comput. Vis – start-page: 734 year: 2018 end-page: 750 ident: b0260 article-title: Cornernet: Detecting objects as paired keypoints publication-title: Proc. Eur. Conf. Comput. Vis. – reference: Yang, X., Fu, K., Sun, H., Yang, J., Guo, Z., Yan, M., Zhan, T., Xian, S., 2018b. R2CNN++: Multi-Dimensional Attention Based Rotation Invariant Detector with Robust Anchor Strategy. arXiv preprint arXiv:1811.07126. – start-page: 3578 year: 2018 end-page: 3587 ident: b0440 article-title: An analysis of scale invariance in object detection - SNIP publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – start-page: 354 year: 2016 end-page: 370 ident: b0035 article-title: A unified multi-scale deep convolutional neural network for fast object detection publication-title: Proc. Eur. Conf. Comput. Vis. – start-page: 580 year: 2014 end-page: 587 ident: b0165 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 111 start-page: 98 year: 2015 end-page: 136 ident: b0130 article-title: The pascal visual object classes challenge: A retrospective publication-title: Int. J. Comput. Vis. – volume: 32 start-page: 1627 year: 2010 end-page: 1645 ident: b0145 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1 year: 2017 end-page: 4 ident: b0375 article-title: Automatic differentiation in pytorch publication-title: Proc. Conf. Adv. Neural Inform. Process. Syst. Workshop – reference: Fu, C.-Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C., 2017. DSSD: Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659. – start-page: 4703 year: 2015 end-page: 4711 ident: b0590 article-title: segdeepm: Exploiting segmentation and context in deep neural networks for object detection publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – start-page: 2818 year: 2016 end-page: 2826 ident: b0465 article-title: Rethinking the inception architecture for computer vision publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 36 start-page: 618 year: 2015 end-page: 644 ident: b0510 article-title: Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images publication-title: Int. J. Remote Sens. – volume: Vis start-page: 483 year: 2016 end-page: 499 ident: b0365 article-title: Stacked hourglass networks for human pose estimation publication-title: Proc. Eur. Conf. Comput. – volume: 52 start-page: 6627 year: 2014 end-page: 6638 ident: b0015 article-title: Detection of compound structures using a Gaussian mixture model with spectral and spatial constraints publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 13 start-page: 740 year: 2017 end-page: 744 ident: b0420 article-title: Convolutional neural network based automatic object detection on aerial images publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 21 year: 2016 end-page: 37 ident: b0320 article-title: SSD: Single Shot MultiBox Detector publication-title: Proc. Eur. Conf. Comput. Vis. – volume: 54 start-page: 5553 year: 2016 end-page: 5563 ident: b0555 article-title: Weakly supervised learning based on coupled convolutional neural networks for aircraft detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 17 start-page: 336 year: 2017 ident: b0475 article-title: Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining publication-title: Sensors – start-page: 12 year: 2017 ident: b0455 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning publication-title: AAAI – reference: Redmon, J., Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767. – start-page: 265 year: 2016 end-page: 283 ident: b0005 article-title: TensorFlow: a system for large-scale machine learning publication-title: Proc. Conf. Oper. Syst. Des. Implement – volume: 56 start-page: 2811 year: 2018 end-page: 2821 ident: b0070 article-title: When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 1 year: 2015 end-page: 13 ident: b0435 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc. Int. Conf. Learn. Represent – start-page: 779 year: 2016 end-page: 788 ident: b0385 article-title: You only look once: Unified, real-time object detection publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – reference: Liu, S., Huang, D., Wang, Y., 2017b. Receptive Field Block Net for Accurate and Fast Object Detection. arXiv preprint arXiv:1711.07767. – start-page: 1440 year: 2015 end-page: 1448 ident: b0160 article-title: Fast r-cnn publication-title: Proc. IEEE Int. Conf. Comput. Vision – start-page: 761 year: 2016 end-page: 769 ident: b0430 article-title: Training region-based object detectors with online hard example mining publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit – start-page: 1998 year: 2017 end-page: 2006 ident: b0485 article-title: Cross-view image matching for geo-localization in urban environments publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 9 start-page: 229 year: 2018 end-page: 237 ident: b0520 article-title: Aircraft detection in remote sensing images based on a deep residual network and Super-Vector coding publication-title: Remote Sens. Lett. – reference: Agarwal, S., Terrail, J.O.D., Jurie, F., 2018. Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks. arXiv preprint arXiv:1809.03193. – volume: Vis start-page: 818 year: 2014 end-page: 833 ident: b0550 article-title: Visualizing and understanding convolutional networks publication-title: Proc. Eur. Conf. Comput. – volume: 98 start-page: 119 year: 2014 end-page: 132 ident: b0060 article-title: Multi-class geospatial object detection and geographic image classification based on collection of part detectors publication-title: ISPRS J. Photogramm. Remote Sens. – volume: Vis start-page: 785 year: 2016 end-page: 800 ident: b0360 article-title: A large contextual dataset for classification, detection and counting of cars with deep learning publication-title: Proc. Eur. Conf. Comput. – volume: 10 start-page: 783 year: 2018 ident: b0500 article-title: Deep cube-pair network for hyperspectral imagery classification publication-title: Remote Sens. – volume: 10 start-page: 3652 year: 2017 end-page: 3664 ident: b0120 article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. – start-page: 1 year: 2009 end-page: 8 ident: b0480 article-title: Overhead imagery research data set — an annotated data library & tools to aid in the development of computer vision algorithms publication-title: Proc. IEEE Appl. Imag. Pattern Recognit. Workshop – volume: 104 start-page: 154 year: 2013 end-page: 171 ident: b0495 article-title: Selective search for object recognition publication-title: Int. J. Comput. Vis. – year: 2017 ident: b0200 article-title: Mask R.-C.N.N. publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 9 start-page: 1170 year: 2017 ident: b0470 article-title: Arbitrary-oriented vehicle detection in aerial imagery with single convolutional neural networks publication-title: Remote Sens. – reference: Liu, L., Pan, Z., Lei, B., 2017a. Learning a Rotation Invariant Detector with Rotatable Bounding Box. arXiv preprint arXiv:1711.09405. – volume: 10 start-page: 131 year: 2018 ident: b0170 article-title: Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network publication-title: Remote Sens. – volume: 39 start-page: 1137 year: 2017 end-page: 1149 ident: b0400 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 770 year: 2016 end-page: 778 ident: b0210 article-title: Deep residual learning for image recognition publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – start-page: 4700 year: 2017 end-page: 4708 ident: b0235 article-title: Densely connected convolutional networks publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – start-page: 1081 year: 2018 end-page: 1090 ident: b0445 article-title: R-FCN-3000 at 30fps: decoupling detection and classification publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 5 start-page: 8 year: 2017 end-page: 36 ident: b0585 article-title: Deep learning in remote sensing: a comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Magaz. – start-page: 1 year: 2015 end-page: 9 ident: b0460 article-title: Going deeper with convolutions publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 34 start-page: 187 year: 2015 end-page: 203 ident: b0380 article-title: Vehicle detection in aerial imagery: A small target detection benchmark publication-title: J. Vis. Commun. Image Represent. – volume: 35 start-page: 1915 year: 2013 end-page: 1929 ident: b0090 article-title: Learning hierarchical features for scene labeling publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 27 start-page: 4357 year: 2018 end-page: 4366 ident: b0345 article-title: Gabor convolutional networks publication-title: IEEE Trans. Image Process. – start-page: 1799 year: 2014 end-page: 1807 ident: b0490 article-title: Joint training of a convolutional network and a graphical model for human pose estimation publication-title: Proc. Conf. Adv. Neural Inform. Process. Syst. – volume: 11 start-page: 1 year: 2017 ident: b0535 article-title: Ship detection in optical remote sensing images based on deep convolutional neural networks publication-title: J. Appl. Remote Sens. – volume: 9 start-page: 618 year: 2017 ident: b0125 article-title: Convolutional neural networks based hyperspectral image classification method with adaptive kernels publication-title: Remote Sens. – start-page: 1893 year: 2015 end-page: 1896 ident: b0410 article-title: Detection of seals in remote sensing images using features extracted from deep convolutional neural networks publication-title: Proc. IEEE Int. Geosci. Remote Sens. Sympos. – start-page: 675 year: 2014 end-page: 678 ident: b0245 article-title: Caffe: Convolutional architecture for fast feature embedding publication-title: Proc. ACM Int. Conf. Multimedia – volume: 77 start-page: 157 year: 2008 end-page: 173 ident: b0405 article-title: LabelMe: A database and web-based tool for image annotation publication-title: Int. J. Comput. Vis. – start-page: 9310 year: 2018 end-page: 9320 ident: b0450 article-title: SNIPER: Efficient multi-scale training publication-title: Proc. Conf. Adv. Neural Inform. Process. Syst. – volume: Syst start-page: 379 year: 2016 end-page: 387 ident: b0100 article-title: R-FCN: Object detection via region-based fully convolutional networks publication-title: Proc. Conf. Adv. Neural Inform. Process. – start-page: 2999 year: 2017 end-page: 3007 ident: b0290 article-title: Focal loss for dense object detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 55 start-page: 2486 year: 2017 end-page: 2498 ident: b0340 article-title: Accurate object localization in remote sensing images based on convolutional neural networks publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Cheng, L., Liu, X., Li, L., Jiao, L., Tang, X., 2018b. Deep Adaptive Proposal Network for Object Detection in Optical Remote Sensing Images. arXiv preprint arXiv:1807.07327. – volume: 56 start-page: 2337 year: 2018 end-page: 2348 ident: b0265 article-title: Rotation-insensitive and context-augmented object detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 8 start-page: 4895 year: 2017 end-page: 4909 ident: b0560 article-title: A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. – start-page: 196 year: 2012 end-page: 201 ident: b0350 article-title: Strategies for training large scale neural network language models publication-title: Proc. IEEE Workshop Autom. Speech Recognit. Underst. – volume: 17 start-page: 2720 year: 2017 ident: b0565 article-title: Robust vehicle detection in aerial images based on cascaded convolutional neural networks publication-title: Sensors – start-page: 248 year: 2009 end-page: 255 ident: b0115 article-title: Imagenet: A large-scale hierarchical image database publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit – volume: Vision start-page: 764 year: 2017 end-page: 773 ident: b0105 article-title: Deformable convolutional networks publication-title: Proc. IEEE Int. Conf. Comput. – volume: 2010 start-page: 73 year: 2010 end-page: 82 ident: b0095 article-title: The DGPF-test on digital airborne camera evaluation-overview and test design publication-title: Photogrammetrie - Fernerkundung - Geoinformation – start-page: 845 year: 2016 end-page: 853 ident: b0250 article-title: Hypernet: Towards accurate region proposal generation and joint object detection publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – start-page: 1097 year: 2012 end-page: 1105 ident: b0255 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc. Conf. Adv. Neural Inform. Process. Syst. – volume: 117 start-page: 11 year: 2016 end-page: 28 ident: b0050 article-title: A survey on object detection in optical remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 54 start-page: 7405 year: 2016 end-page: 7415 ident: b0075 article-title: Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 138 start-page: 281 year: 2018 end-page: 294 ident: b0570 article-title: Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 15 start-page: 937 year: 2018 end-page: 941 ident: b0325 article-title: Arbitrary-oriented ship detection framework in optical remote-sensing images publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 448 year: 2015 end-page: 456 ident: b0240 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift publication-title: Proc. IEEE Int. Conf. Machine Learning – start-page: 1 year: 2014 end-page: 16 ident: b0415 article-title: OverFeat: integrated recognition, localization and detection using convolutional networks publication-title: Proc. Int. Conf. Learn. Represent – volume: 52 start-page: 6508 year: 2014 end-page: 6520 ident: b0020 article-title: VHR object detection based on structural feature extraction and query expansion publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 7132 year: 2018 end-page: 7141 ident: b0230 article-title: Squeeze-and-excitation networks publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 54 start-page: 5832 year: 2016 end-page: 5845 ident: b0600 article-title: Ship detection in spaceborne optical image with SVD networks publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 14 start-page: 1293 year: 2017 end-page: 1297 ident: b0530 article-title: M-FCN: effective fully convolutional network-based airplane detection framework publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 89 start-page: 37 year: 2014 end-page: 48 ident: b0185 article-title: Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 2884 year: 2016 end-page: 2893 ident: b0080 article-title: RIFD-CNN: rotation-invariant and fisher discriminative convolutional neural networks for object detection publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 12 start-page: 1938 year: 2015 end-page: 1942 ident: b0295 article-title: Fast multiclass vehicle detection on aerial images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: b0220 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Process. Magaz. – volume: 27 start-page: 925 year: 2016 end-page: 944 ident: b0575 article-title: Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping publication-title: Multidimens. Syst. Signal Process. – reference: Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J., 2017. Light-head r-cnn: In defense of two-stage object detector. arXiv preprint arXiv:1711.07264. – start-page: 3974 year: 2018 end-page: 3983 ident: b0505 article-title: DOTA: A large-scale dataset for object detection in aerial images publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – start-page: 5822 year: 2017 end-page: 5831 ident: b0225 article-title: Tube convolutional neural network (T-CNN) for action detection in videos publication-title: Proc. IEEE Int. Conf. Comput. Vision – volume: 49 start-page: 3906 year: 2011 end-page: 3931 ident: b0110 article-title: Use of salient features for the design of a multistage framework to extract roads from high-resolution multispectral satellite images publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 740 year: 2014 end-page: 755 ident: b0285 article-title: Microsoft coco: Common objects in context publication-title: Proc. Eur. Conf. Comput. Vis. – volume: 28 start-page: 265 year: 2019 end-page: 278 ident: b0065 article-title: Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection publication-title: IEEE Trans. Image Process. – start-page: 3735 year: 2015 end-page: 3739 ident: b0580 article-title: Orientation robust object detection in aerial images using deep convolutional neural network publication-title: Proc. IEEE Int. Conf. Image Processing – reference: Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M., 2018a. Deep learning for generic object detection: A survey. arXiv preprint arXiv:1809.02165. – volume: 8 start-page: 2053 year: 2015 end-page: 2062 ident: b0540 article-title: Object detection based on sparse representation and hough voting for optical remote sensing imagery publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. – volume: 12 start-page: 2183 year: 2015 end-page: 2187 ident: b0545 article-title: Rotation-invariant object detection in high-resolution satellite imagery using superpixel-based deep hough forests publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 52 start-page: 6508 year: 2014 ident: 10.1016/j.isprsjprs.2019.11.023_b0020 article-title: VHR object detection based on structural feature extraction and query expansion publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2296782 – start-page: 2117 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0280 article-title: Feature pyramid networks for object detection publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – start-page: 5822 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0225 article-title: Tube convolutional neural network (T-CNN) for action detection in videos publication-title: Proc. IEEE Int. Conf. Comput. Vision – start-page: 2874 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0025 article-title: Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 54 start-page: 7405 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0075 article-title: Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2601622 – start-page: 1097 year: 2012 ident: 10.1016/j.isprsjprs.2019.11.023_b0255 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc. Conf. Adv. Neural Inform. Process. Syst. – volume: 77 start-page: 157 year: 2008 ident: 10.1016/j.isprsjprs.2019.11.023_b0405 article-title: LabelMe: A database and web-based tool for image annotation publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-007-0090-8 – ident: 10.1016/j.isprsjprs.2019.11.023_b0150 – volume: 27 start-page: 4357 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0345 article-title: Gabor convolutional networks publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2835143 – start-page: 1799 year: 2014 ident: 10.1016/j.isprsjprs.2019.11.023_b0490 article-title: Joint training of a convolutional network and a graphical model for human pose estimation publication-title: Proc. Conf. Adv. Neural Inform. Process. Syst. – ident: 10.1016/j.isprsjprs.2019.11.023_b0525 – volume: 37 start-page: 1904 year: 2014 ident: 10.1016/j.isprsjprs.2019.11.023_b0205 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – volume: 12 start-page: 2183 year: 2015 ident: 10.1016/j.isprsjprs.2019.11.023_b0545 article-title: Rotation-invariant object detection in high-resolution satellite imagery using superpixel-based deep hough forests publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2432135 – start-page: 675 year: 2014 ident: 10.1016/j.isprsjprs.2019.11.023_b0245 article-title: Caffe: Convolutional architecture for fast feature embedding publication-title: Proc. ACM Int. Conf. Multimedia doi: 10.1145/2647868.2654889 – start-page: 354 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0035 article-title: A unified multi-scale deep convolutional neural network for fast object detection publication-title: Proc. Eur. Conf. Comput. Vis. – volume: 35 start-page: 1915 year: 2013 ident: 10.1016/j.isprsjprs.2019.11.023_b0090 article-title: Learning hierarchical features for scene labeling publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.231 – volume: 56 start-page: 2811 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0070 article-title: When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2783902 – volume: 27 start-page: 925 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0575 article-title: Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping publication-title: Multidimens. Syst. Signal Process. doi: 10.1007/s11045-015-0370-3 – start-page: 779 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0385 article-title: You only look once: Unified, real-time object detection publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 11 start-page: 1 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0535 article-title: Ship detection in optical remote sensing images based on deep convolutional neural networks publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.11.042611 – volume: 17 start-page: 2720 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0565 article-title: Robust vehicle detection in aerial images based on cascaded convolutional neural networks publication-title: Sensors doi: 10.3390/s17122720 – start-page: 1998 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0485 article-title: Cross-view image matching for geo-localization in urban environments publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: Vis start-page: 818 year: 2014 ident: 10.1016/j.isprsjprs.2019.11.023_b0550 article-title: Visualizing and understanding convolutional networks publication-title: Proc. Eur. Conf. Comput. – volume: 98 start-page: 119 year: 2014 ident: 10.1016/j.isprsjprs.2019.11.023_b0060 article-title: Multi-class geospatial object detection and geographic image classification based on collection of part detectors publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.10.002 – start-page: 3431 year: 2015 ident: 10.1016/j.isprsjprs.2019.11.023_b0335 article-title: Fully convolutional networks for semantic segmentation publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – start-page: 1 year: 2009 ident: 10.1016/j.isprsjprs.2019.11.023_b0480 article-title: Overhead imagery research data set — an annotated data library & tools to aid in the development of computer vision algorithms – volume: 13 start-page: 1074 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0330 article-title: Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2565705 – volume: 34 start-page: 45 year: 2013 ident: 10.1016/j.isprsjprs.2019.11.023_b0045 article-title: Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.705443 – start-page: 1 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0355 article-title: End-to-end learning of latent deformable part-based representations for object detection publication-title: Int. J. Comput. Vis. – volume: 2010 start-page: 73 year: 2010 ident: 10.1016/j.isprsjprs.2019.11.023_b0095 article-title: The DGPF-test on digital airborne camera evaluation-overview and test design publication-title: Photogrammetrie - Fernerkundung - Geoinformation doi: 10.1127/1432-8364/2010/0041 – start-page: 1134 year: 2015 ident: 10.1016/j.isprsjprs.2019.11.023_b0155 article-title: Object detection via a multi-region and semantic segmentation-aware CNN model – volume: Vision start-page: 764 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0105 article-title: Deformable convolutional networks publication-title: Proc. IEEE Int. Conf. Comput. – start-page: 7132 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0230 article-title: Squeeze-and-excitation networks publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – start-page: 1440 year: 2015 ident: 10.1016/j.isprsjprs.2019.11.023_b0160 article-title: Fast r-cnn publication-title: Proc. IEEE Int. Conf. Comput. Vision – volume: 15 start-page: 937 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0325 article-title: Arbitrary-oriented ship detection framework in optical remote-sensing images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2813094 – start-page: 21 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0320 article-title: SSD: Single Shot MultiBox Detector – volume: 36 start-page: 618 year: 2015 ident: 10.1016/j.isprsjprs.2019.11.023_b0510 article-title: Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.999881 – volume: 9 start-page: 1170 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0470 article-title: Arbitrary-oriented vehicle detection in aerial imagery with single convolutional neural networks publication-title: Remote Sens. doi: 10.3390/rs9111170 – volume: 17 start-page: 336 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0475 article-title: Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining publication-title: Sensors doi: 10.3390/s17020336 – volume: Vis start-page: 785 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0360 article-title: A large contextual dataset for classification, detection and counting of cars with deep learning publication-title: Proc. Eur. Conf. Comput. – volume: 104 start-page: 154 year: 2013 ident: 10.1016/j.isprsjprs.2019.11.023_b0495 article-title: Selective search for object recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0620-5 – volume: 34 start-page: 33 year: 2011 ident: 10.1016/j.isprsjprs.2019.11.023_b0030 article-title: Building development monitoring in multitemporal remotely sensed image pairs with stochastic birth-death dynamics publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.94 – volume: 9 start-page: 618 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0125 article-title: Convolutional neural networks based hyperspectral image classification method with adaptive kernels publication-title: Remote Sens. doi: 10.3390/rs9060618 – volume: Vis start-page: 483 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0365 article-title: Stacked hourglass networks for human pose estimation publication-title: Proc. Eur. Conf. Comput. – volume: 32 start-page: 1627 year: 2010 ident: 10.1016/j.isprsjprs.2019.11.023_b0145 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.167 – volume: 138 start-page: 281 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0570 article-title: Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.02.014 – start-page: 3735 year: 2015 ident: 10.1016/j.isprsjprs.2019.11.023_b0580 article-title: Orientation robust object detection in aerial images using deep convolutional neural network – start-page: 2999 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0290 article-title: Focal loss for dense object detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 734 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0260 article-title: Cornernet: Detecting objects as paired keypoints publication-title: Proc. Eur. Conf. Comput. Vis. – start-page: 1 year: 2015 ident: 10.1016/j.isprsjprs.2019.11.023_b0460 article-title: Going deeper with convolutions publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 10 start-page: 131 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0170 article-title: Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network publication-title: Remote Sens. doi: 10.3390/rs10010131 – volume: 13 start-page: 740 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0420 article-title: Convolutional neural network based automatic object detection on aerial images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2542358 – volume: 52 start-page: 6627 year: 2014 ident: 10.1016/j.isprsjprs.2019.11.023_b0015 article-title: Detection of compound structures using a Gaussian mixture model with spectral and spatial constraints publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2299540 – start-page: 2884 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0080 article-title: RIFD-CNN: rotation-invariant and fisher discriminative convolutional neural networks for object detection – start-page: 580 year: 2014 ident: 10.1016/j.isprsjprs.2019.11.023_b0165 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 12 start-page: 1938 year: 2015 ident: 10.1016/j.isprsjprs.2019.11.023_b0295 article-title: Fast multiclass vehicle detection on aerial images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2439517 – volume: 111 start-page: 98 year: 2015 ident: 10.1016/j.isprsjprs.2019.11.023_b0130 article-title: The pascal visual object classes challenge: A retrospective publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0733-5 – start-page: 1 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0375 article-title: Automatic differentiation in pytorch publication-title: Proc. Conf. Adv. Neural Inform. Process. Syst. Workshop – volume: 54 start-page: 5832 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0600 article-title: Ship detection in spaceborne optical image with SVD networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2572736 – start-page: 391 year: 2014 ident: 10.1016/j.isprsjprs.2019.11.023_b0595 article-title: Edge boxes: locating object proposals from edges publication-title: Proc. Eur. Conf. Comput. Vis. – volume: 28 start-page: 265 year: 2019 ident: 10.1016/j.isprsjprs.2019.11.023_b0065 article-title: Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2867198 – volume: 117 start-page: 11 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0050 article-title: A survey on object detection in optical remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.03.014 – start-page: 4700 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0235 article-title: Densely connected convolutional networks – start-page: 6517 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0390 article-title: YOLO9000: better, faster, stronger – volume: 8 start-page: 4895 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0560 article-title: A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2015.2467377 – volume: 55 start-page: 2486 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0340 article-title: Accurate object localization in remote sensing images based on convolutional neural networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2645610 – ident: 10.1016/j.isprsjprs.2019.11.023_b0395 – volume: 14 start-page: 1293 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0530 article-title: M-FCN: effective fully convolutional network-based airplane detection framework publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2708722 – start-page: 3353 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0190 article-title: Robust geospatial object detection based on pre-trained faster R-CNN framework for high spatial resolution imagery publication-title: Proc. IEEE Int. Geosci. Remote Sens. Sympos. – start-page: 1 year: 2014 ident: 10.1016/j.isprsjprs.2019.11.023_b0415 article-title: OverFeat: integrated recognition, localization and detection using convolutional networks publication-title: Proc. Int. Conf. Learn. Represent – volume: 9 start-page: 666 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0195 article-title: An efficient and robust integrated geospatial object detection framework for high spatial resolution remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs9070666 – volume: Syst start-page: 379 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0100 article-title: R-FCN: Object detection via region-based fully convolutional networks publication-title: Proc. Conf. Adv. Neural Inform. Process. – ident: 10.1016/j.isprsjprs.2019.11.023_b0305 – year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0200 article-title: Mask R.-C.N.N. publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1081 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0445 article-title: R-FCN-3000 at 30fps: decoupling detection and classification publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – start-page: 3578 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0440 article-title: An analysis of scale invariance in object detection - SNIP – volume: 40 start-page: 834 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0040 article-title: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – start-page: 196 year: 2012 ident: 10.1016/j.isprsjprs.2019.11.023_b0350 article-title: Strategies for training large scale neural network language models publication-title: Proc. IEEE Workshop Autom. Speech Recognit. Underst. – start-page: 1 year: 2015 ident: 10.1016/j.isprsjprs.2019.11.023_b0435 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc. Int. Conf. Learn. Represent – volume: 49 start-page: 3906 year: 2011 ident: 10.1016/j.isprsjprs.2019.11.023_b0110 article-title: Use of salient features for the design of a multistage framework to extract roads from high-resolution multispectral satellite images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2136381 – volume: 9 start-page: 229 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0520 article-title: Aircraft detection in remote sensing images based on a deep residual network and Super-Vector coding publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2017.1415474 – volume: 35 start-page: 84 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0180 article-title: Advanced deep-learning techniques for salient and category-specific object detection: a survey publication-title: IEEE Signal Process. Magaz. doi: 10.1109/MSP.2017.2749125 – ident: 10.1016/j.isprsjprs.2019.11.023_b0310 doi: 10.1007/978-3-030-01252-6_24 – start-page: 265 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0005 article-title: TensorFlow: a system for large-scale machine learning publication-title: Proc. Conf. Oper. Syst. Des. Implement – start-page: 330 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0425 article-title: Contextual priming and feedback for faster r-cnn publication-title: Proc. Eur. Conf. Comput. Vis – volume: 8 start-page: 2053 year: 2015 ident: 10.1016/j.isprsjprs.2019.11.023_b0540 article-title: Object detection based on sparse representation and hough voting for optical remote sensing imagery publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2015.2404578 – start-page: 4703 year: 2015 ident: 10.1016/j.isprsjprs.2019.11.023_b0590 article-title: segdeepm: Exploiting segmentation and context in deep neural networks for object detection publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – start-page: 8759 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0315 article-title: Path aggregation network for instance segmentation publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 56 start-page: 2337 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0265 article-title: Rotation-insensitive and context-augmented object detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2778300 – ident: 10.1016/j.isprsjprs.2019.11.023_b0010 – ident: 10.1016/j.isprsjprs.2019.11.023_b0270 – ident: 10.1016/j.isprsjprs.2019.11.023_b0300 doi: 10.1007/s11263-019-01247-4 – volume: 39 start-page: 1320 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0370 article-title: DeepID-Net: object detection with deformable part based convolutional neural networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2587642 – start-page: 3337 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0140 article-title: Efficient object proposals extraction for target detection in VHR remote sensing images publication-title: Proc. IEEE Int. Geosci. Remote Sens. Sympos. – volume: 53 start-page: 3325 year: 2015 ident: 10.1016/j.isprsjprs.2019.11.023_b0175 article-title: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2374218 – volume: 14 start-page: 1665 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0275 article-title: Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2727515 – volume: 9 start-page: 1312 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0515 article-title: Deformable ConvNet with aspect ratio constrained NMS for object detection in remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs9121312 – ident: 10.1016/j.isprsjprs.2019.11.023_b0085 – start-page: 740 year: 2014 ident: 10.1016/j.isprsjprs.2019.11.023_b0285 article-title: Microsoft coco: Common objects in context publication-title: Proc. Eur. Conf. Comput. Vis. – volume: 10 start-page: 3652 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0120 article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2017.2694890 – volume: 34 start-page: 187 year: 2015 ident: 10.1016/j.isprsjprs.2019.11.023_b0380 article-title: Vehicle detection in aerial imagery: A small target detection benchmark publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2015.11.002 – volume: 85 start-page: 32 year: 2013 ident: 10.1016/j.isprsjprs.2019.11.023_b0055 article-title: Object detection in remote sensing imagery using a discriminatively trained mixture model publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.08.001 – start-page: 761 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0430 article-title: Training region-based object detectors with online hard example mining publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit – start-page: 9310 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0450 article-title: SNIPER: Efficient multi-scale training publication-title: Proc. Conf. Adv. Neural Inform. Process. Syst. – volume: 5 start-page: 8 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0585 article-title: Deep learning in remote sensing: a comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Magaz. doi: 10.1109/MGRS.2017.2762307 – start-page: 1893 year: 2015 ident: 10.1016/j.isprsjprs.2019.11.023_b0410 article-title: Detection of seals in remote sensing images using features extracted from deep convolutional neural networks publication-title: Proc. IEEE Int. Geosci. Remote Sens. Sympos. – start-page: 448 year: 2015 ident: 10.1016/j.isprsjprs.2019.11.023_b0240 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift – volume: 10 start-page: 783 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0500 article-title: Deep cube-pair network for hyperspectral imagery classification publication-title: Remote Sens. doi: 10.3390/rs10050783 – volume: Vis start-page: 30 year: 2008 ident: 10.1016/j.isprsjprs.2019.11.023_b0215 article-title: Learning spatial context: using stuff to find things publication-title: Proc. Eur. Conf. Comput. – volume: 39 start-page: 1137 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0400 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – start-page: 12 year: 2017 ident: 10.1016/j.isprsjprs.2019.11.023_b0455 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning – volume: 88 start-page: 303 year: 2010 ident: 10.1016/j.isprsjprs.2019.11.023_b0135 article-title: The pascal visual object classes (voc) challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0275-4 – start-page: 845 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0250 article-title: Hypernet: Towards accurate region proposal generation and joint object detection publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – start-page: 770 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0210 article-title: Deep residual learning for image recognition publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – start-page: 2818 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0465 article-title: Rethinking the inception architecture for computer vision publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 54 start-page: 5553 year: 2016 ident: 10.1016/j.isprsjprs.2019.11.023_b0555 article-title: Weakly supervised learning based on coupled convolutional neural networks for aircraft detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2569141 – start-page: 248 year: 2009 ident: 10.1016/j.isprsjprs.2019.11.023_b0115 article-title: Imagenet: A large-scale hierarchical image database publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit – volume: 89 start-page: 37 year: 2014 ident: 10.1016/j.isprsjprs.2019.11.023_b0185 article-title: Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.12.011 – start-page: 3974 year: 2018 ident: 10.1016/j.isprsjprs.2019.11.023_b0505 article-title: DOTA: A large-scale dataset for object detection in aerial images publication-title: Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. – volume: 29 start-page: 82 year: 2012 ident: 10.1016/j.isprsjprs.2019.11.023_b0220 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Process. Magaz. doi: 10.1109/MSP.2012.2205597 |
SSID | ssj0001568 |
Score | 2.7128475 |
Snippet | Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 296 |
SubjectTerms | Benchmark dataset computer vision Convolutional Neural Network (CNN) data collection Deep learning image analysis Object detection Optical remote sensing images remote sensing surveys |
Title | Object detection in optical remote sensing images: A survey and a new benchmark |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2019.11.023 https://www.proquest.com/docview/2400518149 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5ED-pBtCrWR1nBa2yy2bx6K6JUxXpQwVvYVzTVpiVphV787c6kSX2AePAQCGGWhNnNzDe738wQciKV7wmeCAtulMW19q3QC4wlmNaODBSzPUxOvun7vQd-9eg9LpGzOhcGaZWV7Z_b9NJaV0_alTbb4zRt39kQOjCA-wBBygxMzGDnAdL6Tt8_aR7OPB0OhS2U_sbxSotxXgzgQo5XdIrlPJn7m4f6YatLB3SxSTYq5Ei784_bIksma5D1L_UEG2S1amn-PNsmt7cSt1ioNpOSbZXRNKOjcbl1TXMDM2Rogez17ImmQ7AqRYd2aTHN38yMikxTQQFxUwkaeR6K_GWHPFyc35_1rKp7gqW4wydWlERY6SUR4IKVDrkjbEdyVxk3CQTnnqu0clyjfalClycKm3BEInIFi1QAQMLdJcvZKDN7hCoWKuPIKOTG54EBUGHAjdmSMemzxA-bxK81FquqtDh2uHiNaw7ZIF6oOkZVQ-ARg6qbxF4MHM-ra_w9pFNPSfxtocTgA_4efFxPYgy_EZ6NiMyMpiDE0TyFEC_u_-cFB2SNYUBe7tEckuVJPjVHgFomslUuyxZZ6V5e9_ofFtnuaA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH5oPagHccXdEbzGJpPJ5q2IUrd6UMHbMFtsXNKStIL_3jdpUlQQDx4CIcwj4c3ke9-beQvAkVRhIFgqHLxRDtM6dOIgMo6gWnsyUtQNbHLyTS_sPrDLx-BxBk6bXBgbVllj_wTTK7Sun7RrbbaHWda-c9F1oEj3kYJUGZizMGerU7EWzHUurrq9KSB7k4w4O96xAt_CvLJyWJTPeNkwr-TYVvSk_m9G6gdcVzbofBmWavJIOpPvW4EZk6_C4peSgqswX3c173-swe2ttLssRJtRFXCVkywng2G1e00Kg5NkSGkD2PMnkr0hsJQnpEPKcfFuPojINREESTeRqJT-myhe1uHh_Oz-tOvUDRQcxTw2cpI0scVeUoFWWOmYecL1JPOV8dNIMBb4SivPNzqUKvZZqmwfjkQkvqCJipBL-BvQyge52QSiaKyMJ5OYmZBFBnmFQUvmSkplSNMw3oKw0RhXdXVx2-TilTdhZM98qmpuVY2-B0dVb4E7FRxOCmz8LXLSTAn_tlY4moG_hQ-bSeT4J9njEZGbwRgHMYtQMbqM2_95wQHMd-9vrvn1Re9qBxao9c-rLZtdaI2KsdlDEjOS-_Ui_QRDKfEZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object+detection+in+optical+remote+sensing+images%3A+A+survey+and+a+new+benchmark&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Li%2C+Ke&rft.au=Wan%2C+Gang&rft.au=Cheng%2C+Gong&rft.au=Meng%2C+Liqiu&rft.date=2020-01-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=159&rft.spage=296&rft.epage=307&rft_id=info:doi/10.1016%2Fj.isprsjprs.2019.11.023&rft.externalDocID=S0924271619302825 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |