Heat transfer analysis of radiator using different shaped nanoparticles water-based ternary hybrid nanofluid with applications: A fractional model
The suspension of nanoparticles in the conventional base fluids getting more attention of the scholars and researchers due to its unique thermal performance in different field of engineering sciences. Nanofluid performed well and showed satisfactory results in the heat transport phenomena which attr...
Saved in:
Published in | Case studies in thermal engineering Vol. 31; p. 101837 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The suspension of nanoparticles in the conventional base fluids getting more attention of the scholars and researchers due to its unique thermal performance in different field of engineering sciences. Nanofluid performed well and showed satisfactory results in the heat transport phenomena which attracted the scientists to suspend different combinations of nanoparticles which named as “hybrid nanofluid”. From the experimental investigations it is found that the rate of heat transfer is higher for hybrid nanofluid as compared to unitary nanofluid. Based on the above motivation the present study is focused to consider water-based ternary hybrid nanofluid with three different shaped nanoparticles i.e, spherical shaped aluminum oxide (Al2O3), cylindrical carbon nanotubes (CNT), and platelet shaped (Graphene) for the advance cooling process of radiator. From the present analysis it is found that this advance water-based ternary hybrid nanofluid showed promising enhancement in the heat transfer rate as compared to hybrid and unitary nanofluid. The present problem is formulated in the form of momentum and energy equations in terms of partial differential equations along with physical initial and boundary conditions. Furthermore, we have considered water-based ternary hybrid nanofluid with different shaped nanoparticles in channel. For the exact solutions the Laplace and Fourier transforms are applied. The influence of all the flow parameters is highlighted using the computational software MATHCAD. Using water-based ternary hybrid nanofluid enhances the rate of heat transfer up-to 33.67% which shows a promising thermal performance in the heat transfer rate. Furthermore, we have used nanoparticles in different ratios and found some interesting results which can be applied in different engineering problems specially, in cooling process. |
---|---|
AbstractList | The suspension of nanoparticles in the conventional base fluids getting more attention of the scholars and researchers due to its unique thermal performance in different field of engineering sciences. Nanofluid performed well and showed satisfactory results in the heat transport phenomena which attracted the scientists to suspend different combinations of nanoparticles which named as “hybrid nanofluid”. From the experimental investigations it is found that the rate of heat transfer is higher for hybrid nanofluid as compared to unitary nanofluid. Based on the above motivation the present study is focused to consider water-based ternary hybrid nanofluid with three different shaped nanoparticles i.e, spherical shaped aluminum oxide (Al2O3), cylindrical carbon nanotubes (CNT), and platelet shaped (Graphene) for the advance cooling process of radiator. From the present analysis it is found that this advance water-based ternary hybrid nanofluid showed promising enhancement in the heat transfer rate as compared to hybrid and unitary nanofluid. The present problem is formulated in the form of momentum and energy equations in terms of partial differential equations along with physical initial and boundary conditions. Furthermore, we have considered water-based ternary hybrid nanofluid with different shaped nanoparticles in channel. For the exact solutions the Laplace and Fourier transforms are applied. The influence of all the flow parameters is highlighted using the computational software MATHCAD. Using water-based ternary hybrid nanofluid enhances the rate of heat transfer up-to 33.67% which shows a promising thermal performance in the heat transfer rate. Furthermore, we have used nanoparticles in different ratios and found some interesting results which can be applied in different engineering problems specially, in cooling process. |
ArticleNumber | 101837 |
Author | Kumam, Wiyada Kumam, Poom Arif, Muhammad Mostafa, Zaydan |
Author_xml | – sequence: 1 givenname: Muhammad surname: Arif fullname: Arif, Muhammad organization: Fixed Point Research Laboratory, Fixed Point Theory and Applications Research Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand – sequence: 2 givenname: Poom orcidid: 0000-0002-5463-4581 surname: Kumam fullname: Kumam, Poom email: poom.kum@kmutt.ac.th organization: Fixed Point Research Laboratory, Fixed Point Theory and Applications Research Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand – sequence: 3 givenname: Wiyada surname: Kumam fullname: Kumam, Wiyada organization: Program in Applied Statistics, Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathumthani, 12110, Thailand – sequence: 4 givenname: Zaydan surname: Mostafa fullname: Mostafa, Zaydan organization: Laboratory of Mechanics, Faculty of Sciences Aïn‐Chock, Hassan II University of Casablanca, Casablanca, Morocco |
BookMark | eNqFUctuFDEQtFCQCEu-gIt_YBa_4hkjcYgiIJEicQGJm9Vj92S9mtgj2yHa3-CL8e5ECHGAU1e3u6rdXa_JWUwRCXnL2ZYzrt_tt66EilvBhDhWBtm_IOdCcNXxy_772R_4FbkoZc8Y470cuFLn5OcNQqU1QywTZgoR5kMJhaaJZvABasr0sYR4T32YWgfGSssOFvQ0QkwL5BrcjIU-QcXcjVDaS0MR8oHuDmMOa-M0Pzb0FOqOwrLMwUENKZb39IpOGdwxgZk-JI_zG_JygrngxXPckG-fPn69vunuvny-vb6665ziqnZm0r3Ro-mV40arkWuJvUED0gzCaz-CBuRSotAMJ3XJBNegxkGCGCQ6kBtyu-r6BHu75PDQ_mwTBHsqpHxvn7ezHMaeK-45MqnaVDN5PTpEzfrRiDZkQ-Sq5XIqJeP0W48ze3TJ7u3JJXt0ya4uNZb5i-VCPR2mGRLm_3A_rFxsJ_oRMNviAkaHPmR0te0Q_sn_BYGitBU |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e40289 crossref_primary_10_1140_epjs_s11734_024_01319_8 crossref_primary_10_1038_s41598_022_25127_z crossref_primary_10_1080_01430750_2022_2127891 crossref_primary_10_1002_zamm_202200182 crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2024052439 crossref_primary_10_1016_j_jmmm_2023_170765 crossref_primary_10_1039_D2RA08197K crossref_primary_10_3390_sym14112419 crossref_primary_10_1016_j_matcom_2024_06_019 crossref_primary_10_1016_j_rineng_2024_102749 crossref_primary_10_1016_j_cnsns_2024_108366 crossref_primary_10_1080_10407790_2024_2345702 crossref_primary_10_1080_17455030_2022_2097335 crossref_primary_10_1142_S0217979224503740 crossref_primary_10_26565_2312_4334_2024_1_19 crossref_primary_10_1007_s00231_024_03493_w crossref_primary_10_1007_s00231_023_03432_1 crossref_primary_10_1108_HFF_02_2023_0062 crossref_primary_10_3390_nano13050808 crossref_primary_10_1016_j_ijft_2023_100371 crossref_primary_10_1016_j_matpr_2022_10_099 crossref_primary_10_1016_j_aej_2022_10_021 crossref_primary_10_1016_j_jocs_2023_102031 crossref_primary_10_1002_zamm_202300733 crossref_primary_10_1002_htj_22506 crossref_primary_10_1016_j_csite_2023_102825 crossref_primary_10_1016_j_hybadv_2025_100427 crossref_primary_10_1016_j_csite_2022_102407 crossref_primary_10_1002_zamm_202200203 crossref_primary_10_1016_j_arabjc_2023_104721 crossref_primary_10_1038_s41598_023_27562_y crossref_primary_10_1002_zamm_202300063 crossref_primary_10_1080_10407782_2023_2272292 crossref_primary_10_1080_10407782_2024_2314735 crossref_primary_10_1002_zamm_202400476 crossref_primary_10_1016_j_csite_2024_104700 crossref_primary_10_1080_10407782_2023_2238891 crossref_primary_10_1016_j_icheatmasstransfer_2022_106557 crossref_primary_10_1016_j_energy_2024_131123 crossref_primary_10_1016_j_jrras_2024_101286 crossref_primary_10_1007_s10973_024_13875_1 crossref_primary_10_1038_s41598_023_29222_7 crossref_primary_10_1080_10407790_2023_2215916 crossref_primary_10_1002_zamm_202200080 crossref_primary_10_3389_fphy_2023_1031042 crossref_primary_10_1016_j_csite_2023_103725 crossref_primary_10_1515_arh_2024_0007 crossref_primary_10_1016_j_csite_2024_104217 crossref_primary_10_1080_01932691_2024_2427251 crossref_primary_10_1080_15368378_2024_2446506 crossref_primary_10_1016_j_csite_2024_105429 crossref_primary_10_1142_S0217984924500799 crossref_primary_10_1007_s13399_022_02989_x crossref_primary_10_1002_zamm_202400243 crossref_primary_10_1007_s10973_024_13698_0 crossref_primary_10_1016_j_heliyon_2024_e38352 crossref_primary_10_1515_phys_2023_0197 crossref_primary_10_1016_j_jestch_2024_101919 crossref_primary_10_1016_j_rineng_2025_104284 crossref_primary_10_1080_00295450_2024_2356331 crossref_primary_10_1016_j_tsep_2022_101521 crossref_primary_10_1108_HFF_06_2023_0349 crossref_primary_10_1016_j_rineng_2024_103055 crossref_primary_10_1142_S0217979225501668 crossref_primary_10_1186_s11671_022_03756_7 crossref_primary_10_3390_math11051237 crossref_primary_10_1007_s10973_023_12651_x crossref_primary_10_1080_10407782_2023_2175749 crossref_primary_10_1007_s44245_024_00074_3 crossref_primary_10_1016_j_cjph_2023_12_032 crossref_primary_10_1080_02286203_2024_2395900 crossref_primary_10_1002_zamm_202300667 crossref_primary_10_1080_10407782_2023_2228483 crossref_primary_10_1002_zamm_202200498 crossref_primary_10_1016_j_inoche_2023_111569 crossref_primary_10_37934_arnht_25_1_5372 crossref_primary_10_1016_j_csite_2024_105609 crossref_primary_10_1016_j_aej_2023_08_013 crossref_primary_10_1088_1402_4896_acd283 crossref_primary_10_1016_j_heliyon_2023_e14875 crossref_primary_10_1007_s12043_024_02758_7 crossref_primary_10_1016_j_csite_2024_104235 crossref_primary_10_1016_j_ijheatfluidflow_2024_109293 crossref_primary_10_1088_1361_6528_ace912 crossref_primary_10_1016_j_csite_2023_103787 crossref_primary_10_1080_17455030_2023_2169784 crossref_primary_10_1142_S0217984923502408 crossref_primary_10_1016_j_jmmm_2023_171264 crossref_primary_10_1140_epjp_s13360_023_03852_2 crossref_primary_10_3390_aerospace11040275 crossref_primary_10_3390_sym15081615 crossref_primary_10_1016_j_tsep_2024_102680 crossref_primary_10_3390_w15162973 crossref_primary_10_1007_s10973_025_14092_0 crossref_primary_10_1016_j_heliyon_2023_e21453 crossref_primary_10_1140_epjp_s13360_023_03680_4 crossref_primary_10_1016_j_heliyon_2024_e26163 crossref_primary_10_1007_s10973_025_14101_2 crossref_primary_10_1016_j_csite_2023_103398 crossref_primary_10_3390_nano12111794 crossref_primary_10_1016_j_camwa_2024_06_003 crossref_primary_10_1016_j_csite_2024_104014 crossref_primary_10_1039_D3NA00441D crossref_primary_10_1080_17455030_2022_2077471 crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2023047771 crossref_primary_10_3390_mi13040588 crossref_primary_10_1080_10407782_2023_2267750 crossref_primary_10_3390_app12136612 crossref_primary_10_1007_s10973_023_11950_7 crossref_primary_10_1016_j_icheatmasstransfer_2023_107011 crossref_primary_10_1016_j_swevo_2024_101775 crossref_primary_10_1080_10407782_2024_2318000 crossref_primary_10_1016_j_sciaf_2023_e01841 crossref_primary_10_1038_s41598_022_26253_4 crossref_primary_10_1016_j_chaos_2025_116083 crossref_primary_10_1615_HeatTransRes_2024051252 crossref_primary_10_1080_10407782_2024_2364858 crossref_primary_10_3934_math_2023215 crossref_primary_10_1515_nleng_2022_0276 crossref_primary_10_1002_htj_22643 crossref_primary_10_1038_s41598_023_45286_x crossref_primary_10_3390_nano13212861 crossref_primary_10_1515_phys_2022_0055 crossref_primary_10_3389_fenrg_2022_967307 crossref_primary_10_32604_cmes_2025_061296 |
Cites_doi | 10.1016/j.icheatmasstransfer.2017.11.007 10.1007/s13369-020-04757-3 10.1109/ACCESS.2020.2982028 10.1016/j.enconman.2016.01.004 10.1016/j.rser.2017.05.221 10.3367/UFNr.0135.198111d.0425 10.1007/s12217-019-09757-z 10.1007/s10973-020-09865-8 10.1016/j.csite.2021.101518 10.1088/1402-4896/abbf73 10.1016/j.powtec.2020.02.010 10.1016/j.icheatmasstransfer.2021.105711 10.1615/JPorMedia.2021026614 10.1140/epjst/e2019-900059-9 10.1016/j.csite.2021.101290 10.1515/zna-2020-0317 10.1016/j.powtec.2020.05.059 10.1016/j.icheatmasstransfer.2021.105800 10.1016/j.powtec.2020.05.013 10.1002/htj.21736 10.1016/j.icheatmasstransfer.2019.104389 10.1016/j.icheatmasstransfer.2019.104451 10.1063/1.3155999 10.1109/ACCESS.2019.2925699 10.1007/s10973-020-09488-z 10.1007/s10973-019-08836-y 10.1115/1.4043819 10.1016/j.icheatmasstransfer.2013.09.005 10.1016/j.expthermflusci.2013.11.018 10.1016/j.matcom.2021.11.019 10.1016/j.rser.2014.11.023 10.1016/j.molliq.2020.114889 10.1039/D0RA01134G |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2022.101837 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_1ab7141d1e0347969fd6bcee607b9213 10_1016_j_csite_2022_101837 S2214157X22000831 |
GroupedDBID | 0R~ 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c414t-9f6796b974c1964b163e79e9a3982d6dba6ae133e260ef450216a4b83a283eca3 |
IEDL.DBID | DOA |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:26:40 EDT 2025 Tue Jul 01 02:28:32 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Sun Apr 06 06:54:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Different shaped of nanoparticles Ternary hybrid nanofluid Channel flow Laplace and Fourier transforms Thermal performance Exact solutions |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-9f6796b974c1964b163e79e9a3982d6dba6ae133e260ef450216a4b83a283eca3 |
ORCID | 0000-0002-5463-4581 |
OpenAccessLink | https://doaj.org/article/1ab7141d1e0347969fd6bcee607b9213 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1ab7141d1e0347969fd6bcee607b9213 crossref_primary_10_1016_j_csite_2022_101837 crossref_citationtrail_10_1016_j_csite_2022_101837 elsevier_sciencedirect_doi_10_1016_j_csite_2022_101837 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Debnath, Bhatta (bib44) 2006 Makishima (bib13) 2004; 39 Ali, Shafiq, Manan, Wakif, Hussain (bib24) 2022; 194 Sahoo, Kumar (bib32) 2020; 111 Levin, Miller (bib1) 1981; 135 Elnaqeeb, Shah, Mirza (bib4) 2020; R2 Maxwell (bib42) 1873; vol. 1 Shah, Elnaqeeb, Animasaun, Mahsud (bib35) 2018; 4 Lorenzo, Hartley (bib46) 1999 Wakif, Chamkha, Animasaun, Zaydan, Waqas, Sehaqui (bib9) 2020; 45 Thumma, Wakif, Animasaun (bib16) 2020; 49 Atangana, Baleanu (bib43) 2016 Wakif, Sehaqui (bib12) 2020 Said, Sajid, Alim, Saidur, Rahim (bib3) 2013; 48 Shah, Wang, Elnaqeeb, Qi (bib38) 2021; 24 Arif, Kumam, Kumam, Khan, Ramzan (bib40) 2021 Xian, Sidik, Saidur (bib18) 2020; 110 Kazemi, Sefid, Afrand (bib19) 2020; 366 Sabu, Wakif, Areekara, Mathew, Shah (bib22) 2021; 129 Jiang, Zhou, Wang (bib27) 2020; 32 Arif, Kumam, Khan, Watthayu (bib29) 2021; 27 Sadeghinezhad, Mehrali, Saidur, Mehrali, Latibari, Akhiani, Metselaar (bib6) 2016; 111 Shi, Li, Wei, Gao (bib5) 2018; 90 Rasool, Wakif (bib7) 2021; 143 Benkhedda, Boufendi, Tayebi, Chamkha (bib30) 2020; 140 Sahu, Sarkar (bib26) 2019; 141 Sadaf, Abdelsalam (bib28) 2020; 10 Elnaqeeb, Shah, Vieru (bib10) 2020; 95 Wakif, Animasaun, Sehaqui (bib11) 2021; vol. 409 Soltani, Toghraie, Karimipour (bib20) 2020; 371 Wakif, Chamkha, Thumma, Animasaun, Sehaqui (bib15) 2021; 143 Arif, Ali, Khan, Nisar (bib37) 2020; 8 Sarkar, Ghosh, Adil (bib14) 2015; 43 Xuan, Zhai, Ma, Li, Wang (bib33) 2021; 323 Sidik, Jamil, Japar, Adamu (bib17) 2017; 80 Gradshteyn, Ryzhik (bib45) 2007 Choi, Eastman (bib2) 1995 Arif, Ali, Sheikh, Khan, Nisar (bib34) 2019; 7 Elnaqeeb (bib39) 2019; 228 Dawar, Wakif, Thumma, Shah (bib23) 2022; 130 Elnaqeeb, Animasaun, Shah (bib31) 2021; 76 Sahoo (bib41) 2020; 370 Ghozatloo, Rashidi, Shariaty-Niassar (bib8) 2014; 53 Timofeeva, Routbort, Singh (bib25) 2009; 106 Sun, Animasaun, Swain, Shah, Wakif, Olanrewaju (bib21) 2021 Shah, Wakif, Shah, Yook, Salah, Mahsud, Hussain (bib36) 2021; 28 Sun (10.1016/j.csite.2022.101837_bib21) 2021 Sadeghinezhad (10.1016/j.csite.2022.101837_bib6) 2016; 111 Atangana (10.1016/j.csite.2022.101837_bib43) 2016 Sidik (10.1016/j.csite.2022.101837_bib17) 2017; 80 Wakif (10.1016/j.csite.2022.101837_bib15) 2021; 143 Wakif (10.1016/j.csite.2022.101837_bib9) 2020; 45 Jiang (10.1016/j.csite.2022.101837_bib27) 2020; 32 Dawar (10.1016/j.csite.2022.101837_bib23) 2022; 130 Xian (10.1016/j.csite.2022.101837_bib18) 2020; 110 Shah (10.1016/j.csite.2022.101837_bib38) 2021; 24 Wakif (10.1016/j.csite.2022.101837_bib12) 2020 Sahu (10.1016/j.csite.2022.101837_bib26) 2019; 141 Debnath (10.1016/j.csite.2022.101837_bib44) 2006 Sahoo (10.1016/j.csite.2022.101837_bib41) 2020; 370 Sarkar (10.1016/j.csite.2022.101837_bib14) 2015; 43 Rasool (10.1016/j.csite.2022.101837_bib7) 2021; 143 Gradshteyn (10.1016/j.csite.2022.101837_bib45) 2007 Makishima (10.1016/j.csite.2022.101837_bib13) 2004; 39 Sadaf (10.1016/j.csite.2022.101837_bib28) 2020; 10 Elnaqeeb (10.1016/j.csite.2022.101837_bib39) 2019; 228 Ghozatloo (10.1016/j.csite.2022.101837_bib8) 2014; 53 Elnaqeeb (10.1016/j.csite.2022.101837_bib4) 2020; R2 Shi (10.1016/j.csite.2022.101837_bib5) 2018; 90 Thumma (10.1016/j.csite.2022.101837_bib16) 2020; 49 Said (10.1016/j.csite.2022.101837_bib3) 2013; 48 Sahoo (10.1016/j.csite.2022.101837_bib32) 2020; 111 Arif (10.1016/j.csite.2022.101837_bib40) 2021 Lorenzo (10.1016/j.csite.2022.101837_bib46) 1999 Shah (10.1016/j.csite.2022.101837_bib36) 2021; 28 Elnaqeeb (10.1016/j.csite.2022.101837_bib31) 2021; 76 Kazemi (10.1016/j.csite.2022.101837_bib19) 2020; 366 Benkhedda (10.1016/j.csite.2022.101837_bib30) 2020; 140 Choi (10.1016/j.csite.2022.101837_bib2) 1995 Wakif (10.1016/j.csite.2022.101837_bib11) 2021; vol. 409 Ali (10.1016/j.csite.2022.101837_bib24) 2022; 194 Arif (10.1016/j.csite.2022.101837_bib29) 2021; 27 Soltani (10.1016/j.csite.2022.101837_bib20) 2020; 371 Shah (10.1016/j.csite.2022.101837_bib35) 2018; 4 Arif (10.1016/j.csite.2022.101837_bib37) 2020; 8 Timofeeva (10.1016/j.csite.2022.101837_bib25) 2009; 106 Arif (10.1016/j.csite.2022.101837_bib34) 2019; 7 Sabu (10.1016/j.csite.2022.101837_bib22) 2021; 129 Maxwell (10.1016/j.csite.2022.101837_bib42) 1873; vol. 1 Elnaqeeb (10.1016/j.csite.2022.101837_bib10) 2020; 95 Levin (10.1016/j.csite.2022.101837_bib1) 1981; 135 Xuan (10.1016/j.csite.2022.101837_bib33) 2021; 323 |
References_xml | – volume: 48 start-page: 99 year: 2013 end-page: 107 ident: bib3 article-title: Experimental investigation of the thermophysical properties of AL2O3-nanofluid and its effect on a flat plate solar collector publication-title: Int. Commun. Heat Mass Tran. – volume: 110 start-page: 104389 year: 2020 ident: bib18 article-title: Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids publication-title: Int. Commun. Heat Mass Tran. – start-page: e1162 year: 2021 ident: bib40 article-title: A fractional model of Casson fluid with ramped wall temperature: engineering applications of engine oil publication-title: Comput. Math. Methods – volume: 366 start-page: 216 year: 2020 end-page: 229 ident: bib19 article-title: A novel comparative experimental study on rheological behavior of mono & hybrid nanofluids concerned graphene and silica nano-powders: characterization, stability and viscosity measurements publication-title: Powder Technol. – year: 2021 ident: bib21 article-title: Significance of nanoparticle radius, inter‐particle spacing, inclined magnetic field, and space‐dependent internal heating: the case of chemically reactive water conveying copper nanoparticles publication-title: ZAMM-J. Appl. Math. Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik – year: 2006 ident: bib44 article-title: Integral Transforms and Their Applications – volume: 135 start-page: 425 year: 1981 end-page: 440 ident: bib1 article-title: Maxwell a treatise on electricity and magnetism publication-title: Usp. Fiz. Nauk – volume: 45 start-page: 9423 year: 2020 end-page: 9438 ident: bib9 article-title: Novel physical insights into the thermodynamic irreversibilities within dissipative EMHD fluid flows past over a moving horizontal riga plate in the coexistence of wall suction and joule heating effects: a comprehensive numerical investigation publication-title: Arabian J. Sci. Eng. – volume: 228 start-page: 2695 year: 2019 end-page: 2712 ident: bib39 article-title: Modeling of Au (NPs)-blood flow through a catheterized multiple stenosed artery under radial magnetic field publication-title: Eur. Phys. J. Spec. Top. – year: 2007 ident: bib45 article-title: Table of Integrals, Series, and Products – year: 1999 ident: bib46 article-title: Generalized Functions for the Fractional Calculus – volume: 39 start-page: 90 year: 2004 end-page: 91 ident: bib13 article-title: Possibility of hybrid materials publication-title: Ceram. Jap. – volume: 80 start-page: 1112 year: 2017 end-page: 1122 ident: bib17 article-title: A review on preparation methods, stability and applications of hybrid nanofluids publication-title: Renew. Sustain. Energy Rev. – volume: 49 start-page: 2595 year: 2020 end-page: 2626 ident: bib16 article-title: Generalized differential quadrature analysis of unsteady three‐dimensional MHD radiating dissipative Casson fluid conveying tiny particles publication-title: Heat Transfer – volume: 32 start-page: 167 year: 2020 end-page: 177 ident: bib27 article-title: Effects of nanoparticle shapes on heat and mass transfer of nanofluid thermocapillary convection around a gas bubble publication-title: Microgravity Sci. Technol. – volume: 129 start-page: 105711 year: 2021 ident: bib22 article-title: Significance of nanoparticles' shape and thermo-hydrodynamic slip constraints on MHD alumina-water nanoliquid flows over a rotating heated disk: the passive control approach publication-title: Int. Commun. Heat Mass Tran. – volume: 130 start-page: 105800 year: 2022 ident: bib23 article-title: Towards a new MHD non-homogeneous convective nanofluid flow model for simulating a rotating inclined thin layer of sodium alginate-based Iron oxide exposed to incident solar energy publication-title: Int. Commun. Heat Mass Tran. – volume: 111 start-page: 104451 year: 2020 ident: bib32 article-title: Development of a new correlation to determine the viscosity of ternary hybrid nanofluid publication-title: Int. Commun. Heat Mass Tran. – volume: 143 year: 2021 ident: bib15 article-title: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno's nanofluid model publication-title: J. Therm. Anal. Calorim. – year: 1995 ident: bib2 article-title: (No. ANL/MSD/CP-84938 – volume: 8 start-page: 77378 year: 2020 end-page: 77395 ident: bib37 article-title: A time fractional model with non-singular kernel the generalized Couette flow of couple stress nanofluid publication-title: IEEE Access – volume: 24 year: 2021 ident: bib38 article-title: Soret and memory effects on unsteady MHD natural convection heat and mass transfer flow in a porous medium with Newtonian heating publication-title: J. Porous Media – volume: 4 start-page: 1 year: 2018 end-page: 18 ident: bib35 article-title: Insight into the natural convection flow through a vertical cylinder using caputo time-fractional derivatives publication-title: Int. J. Algorithm. Comput. Math. – volume: 90 start-page: 111 year: 2018 end-page: 120 ident: bib5 article-title: Numerical investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in a microchannel publication-title: Int. Commun. Heat Mass Tran. – volume: 111 start-page: 466 year: 2016 end-page: 487 ident: bib6 article-title: A comprehensive review on graphene nanofluids: recent research, development and applications publication-title: Energy Convers. Manag. – volume: vol. 409 start-page: 90 year: 2021 end-page: 94 ident: bib11 article-title: A brief technical note on the onset of convection in a horizontal nanofluid layer of finite depth via wakif-galerkin weighted residuals technique (WGWRT) publication-title: Defect and Diffusion Forum – volume: 323 start-page: 114889 year: 2021 ident: bib33 article-title: Thermo-economic performance and sensitivity analysis of ternary hybrid nanofluids publication-title: J. Mol. Liq. – volume: 7 start-page: 88643 year: 2019 end-page: 88655 ident: bib34 article-title: Fractional model of couple stress fluid for generalized Couette flow: a comparative analysis of Atangana–Baleanu and Caputo–Fabrizio fractional derivatives publication-title: IEEE Access – volume: 43 start-page: 164 year: 2015 end-page: 177 ident: bib14 article-title: A review on hybrid nanofluids: recent research, development and applications publication-title: Renew. Sustain. Energy Rev. – volume: 140 start-page: 411 year: 2020 end-page: 425 ident: bib30 article-title: Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect publication-title: J. Therm. Anal. Calorim. – volume: 141 year: 2019 ident: bib26 article-title: Steady-state energetic and exergetic performances of single-phase natural circulation loop with hybrid nanofluids publication-title: J. Heat Tran. – volume: 53 start-page: 136 year: 2014 end-page: 141 ident: bib8 article-title: Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger publication-title: Exp. Therm. Fluid Sci. – volume: 194 start-page: 254 year: 2022 end-page: 268 ident: bib24 article-title: Bioconvection: significance of mixed convection and mhd on dynamics of Casson nanofluid in the stagnation point of rotating sphere via finite element simulation publication-title: Math. Comput. Simulat. – volume: 76 start-page: 231 year: 2021 end-page: 243 ident: bib31 article-title: Ternary-hybrid nanofluids: significance of suction and dual-stretching on three-dimensional flow of water conveying nanoparticles with various shapes and densities publication-title: Z. Naturforsch. – volume: 95 start-page: 115705 year: 2020 ident: bib10 article-title: Heat transfer enhancement in natural convection flow of nanofluid with Cattaneo thermal transport publication-title: Phys. Scripta – volume: 28 start-page: 101518 year: 2021 ident: bib36 article-title: Effects of fractional derivative and heat source/sink on MHD free convection flow of nanofluids in a vertical cylinder: a generalized Fourier's law model publication-title: Case Stud. Therm. Eng. – year: 2016 ident: bib43 article-title: New Fractional Derivatives with Nonlocal and Non-singular Kernel: Theory and Application to Heat Transfer Model – year: 2020 ident: bib12 article-title: Generalized differential quadrature scrutinization of an advanced MHD stability problem concerned water‐based nanofluids with metal/metal oxide nanomaterials: a proper application of the revised two‐phase nanofluid model with convective heating and through‐flow boundary conditions publication-title: Numer. Methods Part. Differ. Equ. – volume: 27 start-page: 101290 year: 2021 ident: bib29 article-title: Thermal performance of GO-MoS2/engine oil as Maxwell hybrid nanofluid flow with heat transfer in oscillating vertical cylinder publication-title: Case Stud. Therm. Eng. – volume: R2 year: 2020 ident: bib4 article-title: Natural convection flows of carbon nanotubes nanofluids with Prabhakar‐like thermal transport publication-title: Math. Methods Appl. Sci. – volume: 370 start-page: 19 year: 2020 end-page: 28 ident: bib41 article-title: Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid publication-title: Powder Technol. – volume: 371 start-page: 37 year: 2020 end-page: 44 ident: bib20 article-title: Experimental measurements of thermal conductivity of engine oil-based hybrid and mono nanofluids with tungsten oxide (WO3) and MWCNTs inclusions publication-title: Powder Technol. – volume: 106 year: 2009 ident: bib25 article-title: Particle shape effects on thermophysical properties of alumina nanofluids publication-title: J. Appl. Phys. – volume: 143 start-page: 2379 year: 2021 end-page: 2393 ident: bib7 article-title: Numerical spectral examination of EMHD mixed convective flow of second-grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno's nanofluid model publication-title: J. Therm. Anal. Calorim. – volume: vol. 1 year: 1873 ident: bib42 publication-title: A Treatise on Electricity and Magnetism – volume: 10 start-page: 15035 year: 2020 end-page: 15043 ident: bib28 article-title: Adverse effects of a hybrid nanofluid in a wavy non-uniform annulus with convective boundary conditions publication-title: RSC Adv. – volume: 90 start-page: 111 year: 2018 ident: 10.1016/j.csite.2022.101837_bib5 article-title: Numerical investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in a microchannel publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2017.11.007 – year: 2020 ident: 10.1016/j.csite.2022.101837_bib12 publication-title: Numer. Methods Part. Differ. Equ. – volume: 45 start-page: 9423 issue: 11 year: 2020 ident: 10.1016/j.csite.2022.101837_bib9 article-title: Novel physical insights into the thermodynamic irreversibilities within dissipative EMHD fluid flows past over a moving horizontal riga plate in the coexistence of wall suction and joule heating effects: a comprehensive numerical investigation publication-title: Arabian J. Sci. Eng. doi: 10.1007/s13369-020-04757-3 – volume: 8 start-page: 77378 year: 2020 ident: 10.1016/j.csite.2022.101837_bib37 article-title: A time fractional model with non-singular kernel the generalized Couette flow of couple stress nanofluid publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982028 – volume: 111 start-page: 466 year: 2016 ident: 10.1016/j.csite.2022.101837_bib6 article-title: A comprehensive review on graphene nanofluids: recent research, development and applications publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.01.004 – volume: 80 start-page: 1112 year: 2017 ident: 10.1016/j.csite.2022.101837_bib17 article-title: A review on preparation methods, stability and applications of hybrid nanofluids publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.221 – volume: 135 start-page: 425 issue: 3 year: 1981 ident: 10.1016/j.csite.2022.101837_bib1 article-title: Maxwell a treatise on electricity and magnetism publication-title: Usp. Fiz. Nauk doi: 10.3367/UFNr.0135.198111d.0425 – volume: 32 start-page: 167 issue: 2 year: 2020 ident: 10.1016/j.csite.2022.101837_bib27 article-title: Effects of nanoparticle shapes on heat and mass transfer of nanofluid thermocapillary convection around a gas bubble publication-title: Microgravity Sci. Technol. doi: 10.1007/s12217-019-09757-z – volume: 143 start-page: 2379 issue: 3 year: 2021 ident: 10.1016/j.csite.2022.101837_bib7 article-title: Numerical spectral examination of EMHD mixed convective flow of second-grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno's nanofluid model publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09865-8 – volume: 28 start-page: 101518 year: 2021 ident: 10.1016/j.csite.2022.101837_bib36 article-title: Effects of fractional derivative and heat source/sink on MHD free convection flow of nanofluids in a vertical cylinder: a generalized Fourier's law model publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101518 – volume: 95 start-page: 115705 issue: 11 year: 2020 ident: 10.1016/j.csite.2022.101837_bib10 article-title: Heat transfer enhancement in natural convection flow of nanofluid with Cattaneo thermal transport publication-title: Phys. Scripta doi: 10.1088/1402-4896/abbf73 – volume: R2 year: 2020 ident: 10.1016/j.csite.2022.101837_bib4 article-title: Natural convection flows of carbon nanotubes nanofluids with Prabhakar‐like thermal transport publication-title: Math. Methods Appl. Sci. – volume: 366 start-page: 216 year: 2020 ident: 10.1016/j.csite.2022.101837_bib19 article-title: A novel comparative experimental study on rheological behavior of mono & hybrid nanofluids concerned graphene and silica nano-powders: characterization, stability and viscosity measurements publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.02.010 – volume: 129 start-page: 105711 year: 2021 ident: 10.1016/j.csite.2022.101837_bib22 article-title: Significance of nanoparticles' shape and thermo-hydrodynamic slip constraints on MHD alumina-water nanoliquid flows over a rotating heated disk: the passive control approach publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2021.105711 – volume: 24 issue: 7 year: 2021 ident: 10.1016/j.csite.2022.101837_bib38 article-title: Soret and memory effects on unsteady MHD natural convection heat and mass transfer flow in a porous medium with Newtonian heating publication-title: J. Porous Media doi: 10.1615/JPorMedia.2021026614 – volume: 228 start-page: 2695 issue: 12 year: 2019 ident: 10.1016/j.csite.2022.101837_bib39 article-title: Modeling of Au (NPs)-blood flow through a catheterized multiple stenosed artery under radial magnetic field publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2019-900059-9 – volume: 27 start-page: 101290 year: 2021 ident: 10.1016/j.csite.2022.101837_bib29 article-title: Thermal performance of GO-MoS2/engine oil as Maxwell hybrid nanofluid flow with heat transfer in oscillating vertical cylinder publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101290 – volume: 76 start-page: 231 issue: 3 year: 2021 ident: 10.1016/j.csite.2022.101837_bib31 article-title: Ternary-hybrid nanofluids: significance of suction and dual-stretching on three-dimensional flow of water conveying nanoparticles with various shapes and densities publication-title: Z. Naturforsch. doi: 10.1515/zna-2020-0317 – year: 2016 ident: 10.1016/j.csite.2022.101837_bib43 – volume: 371 start-page: 37 year: 2020 ident: 10.1016/j.csite.2022.101837_bib20 article-title: Experimental measurements of thermal conductivity of engine oil-based hybrid and mono nanofluids with tungsten oxide (WO3) and MWCNTs inclusions publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.05.059 – volume: 130 start-page: 105800 year: 2022 ident: 10.1016/j.csite.2022.101837_bib23 article-title: Towards a new MHD non-homogeneous convective nanofluid flow model for simulating a rotating inclined thin layer of sodium alginate-based Iron oxide exposed to incident solar energy publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2021.105800 – volume: 370 start-page: 19 year: 2020 ident: 10.1016/j.csite.2022.101837_bib41 article-title: Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.05.013 – volume: 49 start-page: 2595 issue: 5 year: 2020 ident: 10.1016/j.csite.2022.101837_bib16 article-title: Generalized differential quadrature analysis of unsteady three‐dimensional MHD radiating dissipative Casson fluid conveying tiny particles publication-title: Heat Transfer doi: 10.1002/htj.21736 – volume: 110 start-page: 104389 year: 2020 ident: 10.1016/j.csite.2022.101837_bib18 article-title: Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2019.104389 – volume: 111 start-page: 104451 year: 2020 ident: 10.1016/j.csite.2022.101837_bib32 article-title: Development of a new correlation to determine the viscosity of ternary hybrid nanofluid publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2019.104451 – volume: 106 issue: 1 year: 2009 ident: 10.1016/j.csite.2022.101837_bib25 article-title: Particle shape effects on thermophysical properties of alumina nanofluids publication-title: J. Appl. Phys. doi: 10.1063/1.3155999 – year: 2007 ident: 10.1016/j.csite.2022.101837_bib45 – year: 2006 ident: 10.1016/j.csite.2022.101837_bib44 – volume: 39 start-page: 90 issue: 2 year: 2004 ident: 10.1016/j.csite.2022.101837_bib13 article-title: Possibility of hybrid materials publication-title: Ceram. Jap. – year: 1995 ident: 10.1016/j.csite.2022.101837_bib2 – year: 1999 ident: 10.1016/j.csite.2022.101837_bib46 – volume: 7 start-page: 88643 year: 2019 ident: 10.1016/j.csite.2022.101837_bib34 article-title: Fractional model of couple stress fluid for generalized Couette flow: a comparative analysis of Atangana–Baleanu and Caputo–Fabrizio fractional derivatives publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2925699 – volume: vol. 1 year: 1873 ident: 10.1016/j.csite.2022.101837_bib42 – volume: 143 issue: 2 year: 2021 ident: 10.1016/j.csite.2022.101837_bib15 article-title: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno's nanofluid model publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09488-z – volume: 140 start-page: 411 issue: 1 year: 2020 ident: 10.1016/j.csite.2022.101837_bib30 article-title: Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-08836-y – volume: 141 issue: 8 year: 2019 ident: 10.1016/j.csite.2022.101837_bib26 article-title: Steady-state energetic and exergetic performances of single-phase natural circulation loop with hybrid nanofluids publication-title: J. Heat Tran. doi: 10.1115/1.4043819 – volume: 48 start-page: 99 year: 2013 ident: 10.1016/j.csite.2022.101837_bib3 article-title: Experimental investigation of the thermophysical properties of AL2O3-nanofluid and its effect on a flat plate solar collector publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2013.09.005 – year: 2021 ident: 10.1016/j.csite.2022.101837_bib21 article-title: Significance of nanoparticle radius, inter‐particle spacing, inclined magnetic field, and space‐dependent internal heating: the case of chemically reactive water conveying copper nanoparticles publication-title: ZAMM-J. Appl. Math. Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik – start-page: e1162 year: 2021 ident: 10.1016/j.csite.2022.101837_bib40 article-title: A fractional model of Casson fluid with ramped wall temperature: engineering applications of engine oil publication-title: Comput. Math. Methods – volume: 53 start-page: 136 year: 2014 ident: 10.1016/j.csite.2022.101837_bib8 article-title: Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2013.11.018 – volume: vol. 409 start-page: 90 year: 2021 ident: 10.1016/j.csite.2022.101837_bib11 article-title: A brief technical note on the onset of convection in a horizontal nanofluid layer of finite depth via wakif-galerkin weighted residuals technique (WGWRT) – volume: 194 start-page: 254 year: 2022 ident: 10.1016/j.csite.2022.101837_bib24 article-title: Bioconvection: significance of mixed convection and mhd on dynamics of Casson nanofluid in the stagnation point of rotating sphere via finite element simulation publication-title: Math. Comput. Simulat. doi: 10.1016/j.matcom.2021.11.019 – volume: 43 start-page: 164 year: 2015 ident: 10.1016/j.csite.2022.101837_bib14 article-title: A review on hybrid nanofluids: recent research, development and applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.11.023 – volume: 323 start-page: 114889 year: 2021 ident: 10.1016/j.csite.2022.101837_bib33 article-title: Thermo-economic performance and sensitivity analysis of ternary hybrid nanofluids publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.114889 – volume: 10 start-page: 15035 issue: 26 year: 2020 ident: 10.1016/j.csite.2022.101837_bib28 article-title: Adverse effects of a hybrid nanofluid in a wavy non-uniform annulus with convective boundary conditions publication-title: RSC Adv. doi: 10.1039/D0RA01134G – volume: 4 start-page: 1 issue: 3 year: 2018 ident: 10.1016/j.csite.2022.101837_bib35 article-title: Insight into the natural convection flow through a vertical cylinder using caputo time-fractional derivatives publication-title: Int. J. Algorithm. Comput. Math. |
SSID | ssj0001738144 |
Score | 2.56345 |
Snippet | The suspension of nanoparticles in the conventional base fluids getting more attention of the scholars and researchers due to its unique thermal performance in... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 101837 |
SubjectTerms | Channel flow Different shaped of nanoparticles Exact solutions Laplace and Fourier transforms Ternary hybrid nanofluid Thermal performance |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqTjAgnqK85IGRqI3j5sHWVlQVEixQKVvkOHZbVKVVSIX6N_jF3DlOCUsHtsSyE8tn-b47331HyH3KIyUz5juuwmvGTEsnFJl2JFpiUvYUF5go_PLqT6b8Oe7HLTKqc2EwrNKe_dWZbk5r29K1q9ldLxbdN8Zc0D5BzJgBEmgCeTw0SXzx8NfPEoBOMjVdsb-DA2ryIRPmJc0lLQNVhi0h1kNvKCjD49_QUw3dMz4mRxY00kE1rxPSUvkpOWxQCZ6R7wkcqrQ0MFQVVFiuEbrStED6ATCtKca4z2hdEqWkn3OxVhnNRQ6Wsw2Qo18APgsHlVtGjbOw2NL5FvO6TEe93MATem9p8-77kQ6oLqokCZipqa9zTqbjp_fRxLH1FhzJXV46kUanUgoWhkSarhSgmgoiFQkvChkWnhK-UGDTKrCBlOZ9gAe-4GnoCcAoSgrvgrTzVa4uCRWu6vdEKD2EM9yTItBhP9BaY928UMoOYfUiJ9KSkWNNjGVSR519JEYyCUomqSTTIQ-7QeuKi2N_9yFKb9cVibRNw6qYJXZVE1ekAWyjzFU9zKn1I535KQAHvxekEXO9DvFr2Sd_9iV8arHv71f_HXhNDvCtinO7Ie2y2KhbAD5lemd29g-JSwPt priority: 102 providerName: Elsevier |
Title | Heat transfer analysis of radiator using different shaped nanoparticles water-based ternary hybrid nanofluid with applications: A fractional model |
URI | https://dx.doi.org/10.1016/j.csite.2022.101837 https://doaj.org/article/1ab7141d1e0347969fd6bcee607b9213 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBIRJ04L7YWURUkmKiULbIdm4KqtAqpUP8Gv5g7O6kylYUliiLHtnyW7zv7_H2E3EiealX4kcc0HjMWRnmJKIynMBJTaqC5wIvCL6_RZMqfszDrSH1hTpijB3YDd8eEjBlnBdMDvPQYpaaIJKzs0SCWqW_1an3weZ1gyu6uxOCJrJKr7zPusTDOWsohm9yl7NEsBP4-fklQBb3jlix7f8c7dTzO-IDsN1CRDl0XD8mOLo_IXodA8Jj8TGAppbUFn7qiomEYoQtDKyQdgICaYmb7O22FUGr6NRNLXdBSlBAvN2lx9BsgZ-WhSyuo3SKs1nS2xttctqCZr-AN92xp98T7ng6pqdzVCOipVdU5IdPx49vDxGtUFjzFGa-91OBWkoS4QiE5lwSApuNUpyJIEx_lpkQkNESyGiIfbXgIoCASXCaBAGSilQhOSa9clPqMUMF0OBCJChDE8ECJ2CRhbIxBtbxEqT7x20HOVUNBjkoY87zNNfvMrWVytEzuLNMnt5uflo6BY3vxEVpvUxTps-0HmFR5M6r5X5OqT6LW9nmDRBzCgKo-trV-_h-tX5BdrNJlul2SXl2t9BVAn1pe21kOz6ds9Av6jwPh |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDMCAeIry9MBI1MZJ82CjFVV5tAsgdbMcx26LqrQKqRB_g1_MneNAWDqwRY6dRD7H99357jtCrhI_VjJlgeMqPGZMtXQikWpHoiUmZUv5AhOFB8Og_-o_jNqjNdKtcmEwrNLu_eWebnZr29K0s9lcTKfNZ8Zc0D7hiDEDJMAE2gA0EOLfeT_q_DpaQlBKpqgrDnBwRMU-ZOK8pDmlZaDLsCXCgug1DWWI_GuKqqZ8ertkx6JGelt-2B5ZU9k-2a5xCR6Qrz7sqrQwOFTlVFiyETrXNEf-AbCtKQa5j2lVE6Wg7xOxUCnNRAams42Qox-APnMHtVtKjbcw_6STT0zsMh31bAlX6L6l9cPvG3pLdV5mScCXmgI7h-S1d_fS7Tu24IIjfdcvnFijVykBE0MiT1cCWE2FsYqFF0cMK0-JQCgwahUYQUr7bcAHgfCTyBMAUpQU3hFZz-aZOiZUuKrdEpH0EM_4nhShjtqh1hoL50VSNgirJplLy0aORTFmvAo7e-NGMhwlw0vJNMj1z6BFScaxunsHpffTFZm0TcM8H3M7q9wVSQjrKHVVC5Nqg1inQQLIIWiFScxcr0GCSvb8z8KER01Xvf3kvwMvyWb_ZfDEn-6Hj6dkC--UQW9nZL3Il-ocUFCRXJhV_g2cTQcN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+transfer+analysis+of+radiator+using+different+shaped+nanoparticles+water-based+ternary+hybrid+nanofluid+with+applications%3A+A+fractional+model&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Muhammad+Arif&rft.au=Poom+Kumam&rft.au=Wiyada+Kumam&rft.au=Zaydan+Mostafa&rft.date=2022-03-01&rft.pub=Elsevier&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=31&rft.spage=101837&rft_id=info:doi/10.1016%2Fj.csite.2022.101837&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1ab7141d1e0347969fd6bcee607b9213 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |