A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems

•Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed.•Experiments are performed to validate the simulation results.•Annual performances of the three solar systems used in china are predicted.•Energy comparison between the three solar systems is analyzed. Buildings ne...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 140; pp. 1 - 13
Main Authors Huide, Fu, Xuxin, Zhao, Lei, Ma, Tao, Zhang, Qixing, Wu, Hongyuan, Sun
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.05.2017
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed.•Experiments are performed to validate the simulation results.•Annual performances of the three solar systems used in china are predicted.•Energy comparison between the three solar systems is analyzed. Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the largest potential for reducing the energy consumption among the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems. And for a rural house with large available area, system with photovoltaic and hybrid photovoltaic/thermal modules can obtained the most net annual electricity output, and the installation area of the hybrid photovoltaic/thermal collectors mainly depended on the hot water load of the building.
AbstractList •Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed.•Experiments are performed to validate the simulation results.•Annual performances of the three solar systems used in china are predicted.•Energy comparison between the three solar systems is analyzed. Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the largest potential for reducing the energy consumption among the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems. And for a rural house with large available area, system with photovoltaic and hybrid photovoltaic/thermal modules can obtained the most net annual electricity output, and the installation area of the hybrid photovoltaic/thermal collectors mainly depended on the hot water load of the building.
Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the largest potential for reducing the energy consumption among the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems. And for a rural house with large available area, system with photovoltaic and hybrid photovoltaic/thermal modules can obtained the most net annual electricity output, and the installation area of the hybrid photovoltaic/thermal collectors mainly depended on the hot water load of the building.
Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300 L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the largest potential for reducing the energy consumption among the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems. And for a rural house with large available area, system with photovoltaic and hybrid photovoltaic/thermal modules can obtained the most net annual electricity output, and the installation area of the hybrid photovoltaic/thermal collectors mainly depended on the hot water load of the building.
Author Qixing, Wu
Xuxin, Zhao
Tao, Zhang
Hongyuan, Sun
Lei, Ma
Huide, Fu
Author_xml – sequence: 1
  givenname: Fu
  surname: Huide
  fullname: Huide, Fu
  email: huidef@szu.edu.cn
  organization: College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen City, Guangdong Province, People’s Republic of China
– sequence: 2
  givenname: Zhao
  surname: Xuxin
  fullname: Xuxin, Zhao
  email: zhaoxx@szu.edu.cn
  organization: College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen City, Guangdong Province, People’s Republic of China
– sequence: 3
  givenname: Ma
  surname: Lei
  fullname: Lei, Ma
  organization: College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen City, Guangdong Province, People’s Republic of China
– sequence: 4
  givenname: Zhang
  surname: Tao
  fullname: Tao, Zhang
  organization: College of Energy and Mechanical Engineering, Shanghai University of Electric Power, 2103 Pingliang Road, Yangpu District, Shanghai City, China
– sequence: 5
  givenname: Wu
  surname: Qixing
  fullname: Qixing, Wu
  organization: College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen City, Guangdong Province, People’s Republic of China
– sequence: 6
  givenname: Sun
  surname: Hongyuan
  fullname: Hongyuan, Sun
  organization: College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen City, Guangdong Province, People’s Republic of China
BookMark eNqFkctq3DAUhkVJIZO0rxAE3XRRO5J8kV26aAi9QSBZtGuhkY5jDbLkSvKA8yJ93Wo6CZRscjZanO87iP8_QyfOO0DogpKSEtpe7kpwyrtJupIRykvCStL0r9CGdrwvGGP8BG0I7dui60l9is5i3BFCqoa0G_TnCis_zTLIZPaAY1r0ir3DaQwAOK0zROwHHL2VAS_JWPOQyQMAanTe-nuTicEHvF2M1cbdx4_4bvTJ771N0qgPj24aIUzSYuk0HtdtMBrP_2GXT_u4xgRTfINeD9JGePv4nqNfX7_8vP5e3Nx--3F9dVOomtap6BWTrO01aep6m4dz2lGmW9m1nWJEQ8-HrmmhIdsGCDCudFvVnLBuoL0ceHWO3h_vzsH_XiAmMZmowFrpwC9RsJxUzVjDDui7Z-jOL8Hl32WK1TVntKoy9elIqeBjDDAIZdK_yFKQxgpKxKE1sRNPrYlDa4IwkVvLevtMn4OZZFhfFj8fRchp7Q0EEZXJJGgTQCWhvXnpxF_x5rvJ
CitedBy_id crossref_primary_10_3390_app12062792
crossref_primary_10_2478_sjce_2022_0016
crossref_primary_10_3390_en13184621
crossref_primary_10_1016_j_enbuild_2024_114965
crossref_primary_10_1016_j_enconman_2018_10_080
crossref_primary_10_1016_j_solener_2024_113126
crossref_primary_10_1016_j_rser_2022_112304
crossref_primary_10_1016_j_solener_2023_112278
crossref_primary_10_1016_j_applthermaleng_2020_115926
crossref_primary_10_1016_j_enconman_2019_111838
crossref_primary_10_1016_j_enconman_2019_111959
crossref_primary_10_1016_j_rser_2022_112824
crossref_primary_10_1016_j_enconman_2020_112674
crossref_primary_10_1016_j_rser_2021_111738
crossref_primary_10_32604_fdmp_2022_022239
crossref_primary_10_1177_17442591231182330
crossref_primary_10_1016_j_csite_2021_101209
crossref_primary_10_1016_j_enconman_2019_01_039
crossref_primary_10_1016_j_renene_2020_06_101
crossref_primary_10_1016_j_energy_2017_10_143
crossref_primary_10_1016_j_enconman_2023_117395
crossref_primary_10_1016_j_renene_2024_120091
crossref_primary_10_1016_j_solener_2019_06_005
crossref_primary_10_1016_j_heliyon_2024_e41425
crossref_primary_10_1016_j_enconman_2021_113988
crossref_primary_10_1016_j_solener_2020_06_046
crossref_primary_10_1016_j_csite_2021_101577
crossref_primary_10_1016_j_enconman_2020_113774
crossref_primary_10_1016_j_energy_2022_125386
crossref_primary_10_1108_HFF_05_2018_0257
crossref_primary_10_1016_j_energy_2020_119636
crossref_primary_10_3390_su16219565
crossref_primary_10_3390_en15249634
crossref_primary_10_1007_s40095_020_00353_1
crossref_primary_10_3390_su131810270
crossref_primary_10_1016_j_rser_2018_12_026
crossref_primary_10_3390_nano13071232
crossref_primary_10_1016_j_renene_2021_03_110
crossref_primary_10_1016_j_renene_2023_119710
crossref_primary_10_1016_j_energy_2021_123018
crossref_primary_10_1002_ceat_202300084
crossref_primary_10_1080_15435075_2022_2107397
crossref_primary_10_1016_j_energy_2023_127093
crossref_primary_10_1016_j_jobe_2024_110981
crossref_primary_10_1016_j_enconman_2020_112739
crossref_primary_10_1016_j_ijepes_2021_106821
crossref_primary_10_1016_j_renene_2023_01_032
crossref_primary_10_1016_j_psep_2023_09_015
crossref_primary_10_1016_j_enconman_2018_02_008
crossref_primary_10_3390_su141710502
crossref_primary_10_1016_j_applthermaleng_2024_123279
crossref_primary_10_1016_j_solener_2020_07_062
crossref_primary_10_1016_j_apenergy_2019_114380
crossref_primary_10_1016_j_renene_2023_119265
crossref_primary_10_1016_j_solener_2020_01_015
crossref_primary_10_1016_j_solmat_2024_113045
crossref_primary_10_3390_polym14112285
crossref_primary_10_1088_1742_6596_2940_1_012024
crossref_primary_10_3390_buildings12101636
crossref_primary_10_1039_D4SE00381K
crossref_primary_10_3390_pr11051547
crossref_primary_10_1007_s10854_021_06225_6
crossref_primary_10_1016_j_enconman_2019_111802
crossref_primary_10_1016_j_aei_2024_102435
crossref_primary_10_1016_j_matcom_2019_09_013
crossref_primary_10_1016_j_enconman_2019_02_037
crossref_primary_10_1007_s10668_022_02406_3
crossref_primary_10_1115_1_4050061
crossref_primary_10_1016_j_tsep_2024_102727
crossref_primary_10_1016_j_enconman_2019_01_115
crossref_primary_10_1016_j_solener_2020_01_002
crossref_primary_10_1080_15567036_2022_2143962
crossref_primary_10_1016_j_solener_2020_06_087
crossref_primary_10_1016_j_energy_2018_04_138
crossref_primary_10_1016_j_enconman_2019_112167
crossref_primary_10_1016_j_enconman_2024_119158
crossref_primary_10_1016_j_solener_2021_01_005
crossref_primary_10_1016_j_solener_2022_10_047
crossref_primary_10_1115_1_4049867
crossref_primary_10_1016_j_solener_2020_04_053
crossref_primary_10_1016_j_energy_2025_134505
crossref_primary_10_1016_j_energy_2020_116913
crossref_primary_10_3390_fluids8080221
crossref_primary_10_1080_15567036_2022_2136801
crossref_primary_10_1002_er_6298
crossref_primary_10_1016_j_seta_2020_100694
crossref_primary_10_1016_j_enbenv_2024_12_001
crossref_primary_10_3390_en12163078
crossref_primary_10_1016_j_csite_2024_104621
crossref_primary_10_1016_j_renene_2020_12_008
crossref_primary_10_1016_j_solener_2021_06_010
crossref_primary_10_1016_j_enconman_2019_112196
crossref_primary_10_1080_15567036_2021_1945711
crossref_primary_10_1016_j_applthermaleng_2020_116035
crossref_primary_10_1016_j_jclepro_2023_137296
crossref_primary_10_1016_j_apenergy_2020_115105
crossref_primary_10_3390_en15155667
crossref_primary_10_1016_j_enconman_2021_114478
crossref_primary_10_1364_AO_58_004726
crossref_primary_10_3390_en12061022
crossref_primary_10_3390_su15043332
crossref_primary_10_1016_j_enbuild_2018_03_016
crossref_primary_10_1016_j_enconman_2017_08_080
crossref_primary_10_1007_s11630_022_1653_2
crossref_primary_10_1016_j_jobe_2019_100845
crossref_primary_10_1002_er_5872
crossref_primary_10_1016_j_scs_2018_10_036
crossref_primary_10_1016_j_energy_2023_128829
crossref_primary_10_1016_j_rser_2019_109329
crossref_primary_10_1016_j_enconman_2024_119456
crossref_primary_10_1016_j_jcou_2019_07_003
crossref_primary_10_1016_j_renene_2020_09_062
crossref_primary_10_1016_j_enconman_2020_112895
crossref_primary_10_1007_s11468_024_02399_x
crossref_primary_10_1016_j_energy_2022_124312
crossref_primary_10_1016_j_matcom_2018_09_003
crossref_primary_10_2478_rtuect_2022_0046
crossref_primary_10_1002_er_6397
crossref_primary_10_1016_j_ijheatfluidflow_2024_109389
crossref_primary_10_1016_j_renene_2024_121435
crossref_primary_10_1016_j_energy_2018_04_152
crossref_primary_10_1016_j_enconman_2018_08_010
Cites_doi 10.1016/j.apenergy.2005.02.007
10.1016/j.energy.2013.07.050
10.1016/j.solener.2013.11.024
10.1115/1.3450517
10.1016/j.rser.2005.12.012
10.1016/j.enconman.2015.04.082
10.1016/j.solener.2013.09.022
10.1016/j.solener.2007.04.006
10.1016/j.enconman.2013.11.017
10.1016/j.solener.2011.02.006
10.1016/j.applthermaleng.2011.01.030
10.1016/j.applthermaleng.2011.06.021
10.1016/j.enconman.2013.10.033
10.1016/j.solener.2013.02.002
10.1016/j.enconman.2006.01.012
10.1016/j.solener.2008.08.013
10.1016/j.enconman.2014.09.030
10.1016/j.solener.2015.10.013
10.1016/j.solener.2003.07.001
10.1016/j.rser.2015.06.022
10.1016/S0196-8904(99)00136-3
10.1016/j.enconman.2015.01.001
10.1016/S0038-092X(03)00121-X
10.1016/j.renene.2008.02.001
10.1016/j.enbuild.2014.02.078
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier Science Ltd. May 15, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. May 15, 2017
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2017.02.059
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
EndPage 13
ExternalDocumentID 10_1016_j_enconman_2017_02_059
S019689041730170X
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
7ST
7TB
8FD
C1K
EFKBS
FR3
H8D
KR7
L7M
SOI
7S9
AFXIZ
L.6
ID FETCH-LOGICAL-c414t-9c2a269d0544bbbb771812d6a868c20de97f856e50b5e0e27cd6347028f19af73
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Fri Jul 11 07:19:02 EDT 2025
Wed Aug 13 06:40:21 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Tue Jul 01 01:17:20 EDT 2025
Fri Feb 23 02:33:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy-saving
Photovoltaic
Photovoltaic/thermal
Solar thermal
Solar energy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-9c2a269d0544bbbb771812d6a868c20de97f856e50b5e0e27cd6347028f19af73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2024472133
PQPubID 2047472
PageCount 13
ParticipantIDs proquest_miscellaneous_2000422527
proquest_journals_2024472133
crossref_citationtrail_10_1016_j_enconman_2017_02_059
crossref_primary_10_1016_j_enconman_2017_02_059
elsevier_sciencedirect_doi_10_1016_j_enconman_2017_02_059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-15
PublicationDateYYYYMMDD 2017-05-15
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Xu, Zhang, Deng (b0070) 2011; 31
Mishra, Tiwari (b0060) 2013; 91
Fudholi, Sopian, Yazdi (b0025) 2014; 78
Jiang, Ji, Yi (b0135) 2008; 33
Buker, Mempouo, Riffat (b0095) 2014; 76
Duffie, Beckman (b0115) 1991
Holman (b0125) 1989
Ji, Guo, Sun (b0035) 2014; 88
Ji, Pei, Chow (b0065) 2008; 82
Hegazy (b0030) 2000; 41
Zondag (b0080) 2008; 12
Michael, Iniyan, Ranko (b0010) 2015; 51
Zondag, de Vries, van Helden (b0020) 2003; 74
US Department of Energy.
Pei, Fu, Zhang (b0040) 2011; 85
Clara, Inger, Anne (b0005) 2015; 122
Zhang, Zhao, Shen (b0075) 2013; 97
Anderson, Duke, Morrison (b0085) 2009; 83
He, Chow, Ji (b0015) 2006; 83
Xu, Ji, Sun (b0055) 2015; 100
Kalogirou, Tripanagnostopoulos (b0050) 2006; 47
Feng, Zheng, Wang (b0100) 2015; 93
Kunnemeyer, Anderson, Duke (b0045) 2014; 101
Chow (b0110) 2003; 75
Hollands, Unny, Raithby (b0120) 1976; 98
Bahaidarah, Subhan, Gandhidasan (b0130) 2013; 59
He, Zhang, Ji (b0105) 2011; 31
Ibrahim, Fudholi, Sopian (b0090) 2014; 77
2008.
Feng (10.1016/j.enconman.2017.02.059_b0100) 2015; 93
Buker (10.1016/j.enconman.2017.02.059_b0095) 2014; 76
He (10.1016/j.enconman.2017.02.059_b0015) 2006; 83
Kunnemeyer (10.1016/j.enconman.2017.02.059_b0045) 2014; 101
Michael (10.1016/j.enconman.2017.02.059_b0010) 2015; 51
Xu (10.1016/j.enconman.2017.02.059_b0055) 2015; 100
Ji (10.1016/j.enconman.2017.02.059_b0035) 2014; 88
Mishra (10.1016/j.enconman.2017.02.059_b0060) 2013; 91
Clara (10.1016/j.enconman.2017.02.059_b0005) 2015; 122
Hegazy (10.1016/j.enconman.2017.02.059_b0030) 2000; 41
Chow (10.1016/j.enconman.2017.02.059_b0110) 2003; 75
Zondag (10.1016/j.enconman.2017.02.059_b0020) 2003; 74
Fudholi (10.1016/j.enconman.2017.02.059_b0025) 2014; 78
Hollands (10.1016/j.enconman.2017.02.059_b0120) 1976; 98
Bahaidarah (10.1016/j.enconman.2017.02.059_b0130) 2013; 59
Zhang (10.1016/j.enconman.2017.02.059_b0075) 2013; 97
Duffie (10.1016/j.enconman.2017.02.059_b0115) 1991
Holman (10.1016/j.enconman.2017.02.059_b0125) 1989
Jiang (10.1016/j.enconman.2017.02.059_b0135) 2008; 33
Xu (10.1016/j.enconman.2017.02.059_b0070) 2011; 31
Anderson (10.1016/j.enconman.2017.02.059_b0085) 2009; 83
Ibrahim (10.1016/j.enconman.2017.02.059_b0090) 2014; 77
10.1016/j.enconman.2017.02.059_b0140
He (10.1016/j.enconman.2017.02.059_b0105) 2011; 31
Kalogirou (10.1016/j.enconman.2017.02.059_b0050) 2006; 47
Zondag (10.1016/j.enconman.2017.02.059_b0080) 2008; 12
Pei (10.1016/j.enconman.2017.02.059_b0040) 2011; 85
Ji (10.1016/j.enconman.2017.02.059_b0065) 2008; 82
References_xml – year: 1991
  ident: b0115
  article-title: Solar engineering of thermal processes
– volume: 82
  start-page: 43
  year: 2008
  end-page: 52
  ident: b0065
  article-title: Experimental study of photovoltaic solar assisted heat pump system
  publication-title: Sol Energy
– year: 1989
  ident: b0125
  article-title: Heat transfer, Singapore, Metric Editions
– volume: 47
  start-page: 3368
  year: 2006
  end-page: 3382
  ident: b0050
  article-title: Hybrid PV/T solar systems for domestic hot water and electricity production
  publication-title: Energy Convers Manage
– volume: 85
  start-page: 911
  year: 2011
  end-page: 921
  ident: b0040
  article-title: A numerical and experimental study on a heat pipe PV/T system
  publication-title: Sol Energy
– volume: 100
  start-page: 191
  year: 2015
  end-page: 200
  ident: b0055
  article-title: Outdoor performance analysis of a 1090×point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells
  publication-title: Energy Convers Manage
– volume: 101
  start-page: 19
  year: 2014
  end-page: 27
  ident: b0045
  article-title: Performance of a V-trough photovoltaic/thermal concentrator
  publication-title: Sol Energy
– volume: 31
  start-page: 3689
  year: 2011
  end-page: 3695
  ident: b0070
  article-title: Experimental study on the operating characteristics of a novel low-concentrating solar photovoltaic/thermal integrated heat pump water heating system
  publication-title: Appl Therm Eng
– volume: 78
  start-page: 641
  year: 2014
  end-page: 651
  ident: b0025
  article-title: Performance analysis of photovoltaic thermal (PVT) water collectors
  publication-title: Energy Convers Manage
– volume: 31
  start-page: 3369
  year: 2011
  end-page: 3376
  ident: b0105
  article-title: Comparative experiment study on photovoltaic and thermal solar system under natural circulation of water
  publication-title: Appl Therm Eng
– volume: 97
  start-page: 551
  year: 2013
  end-page: 568
  ident: b0075
  article-title: Design, fabrication and experimental study of a solar photovoltaic/loop-heat-pipe based heat pump system
  publication-title: Sol Energy
– volume: 76
  start-page: 164
  year: 2014
  end-page: 175
  ident: b0095
  article-title: Performance evaluation and techno-economic analysis of a novel building integrated PV/T roof collector: an experimental validation
  publication-title: Energy Build
– volume: 12
  start-page: 891
  year: 2008
  end-page: 959
  ident: b0080
  article-title: Flat-plate PV–thermal collectors and systems: a review
  publication-title: Renew Sustain Energy Rev
– volume: 33
  start-page: 2491
  year: 2008
  end-page: 2498
  ident: b0135
  article-title: The influence of PV coverage ratio on thermal and electrical performance of photovoltaic–Trombe wall
  publication-title: Renew Energy
– volume: 77
  start-page: 527
  year: 2014
  end-page: 534
  ident: b0090
  article-title: Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system
  publication-title: Energy Convers Manage
– volume: 51
  start-page: 62
  year: 2015
  end-page: 88
  ident: b0010
  article-title: Flat plate solar photovoltaic–thermal (PV/T) systems: a reference guide
  publication-title: Renew Sustain Energy Rev
– volume: 98
  start-page: 189
  year: 1976
  end-page: 193
  ident: b0120
  article-title: Free convection heat transfer across inclined air layers
  publication-title: Trans Am Soc Mech Eng, J Heat Transf
– volume: 59
  start-page: 445
  year: 2013
  end-page: 453
  ident: b0130
  article-title: Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions
  publication-title: Energy
– volume: 91
  start-page: 161
  year: 2013
  end-page: 173
  ident: b0060
  article-title: Energy matrices analyses of hybrid photovoltaic thermal (HPVT) water collector with different PV technology
  publication-title: Sol Energy
– volume: 88
  start-page: 650
  year: 2014
  end-page: 656
  ident: b0035
  article-title: Experimental investigation of tri-functional photovoltaic/thermal solar collector
  publication-title: Energy Convers Manage
– volume: 83
  start-page: 445
  year: 2009
  end-page: 455
  ident: b0085
  article-title: Performance of a building integrated photovoltaic/thermal (BIPVT) solar collector
  publication-title: Sol Energy
– volume: 41
  start-page: 861
  year: 2000
  end-page: 881
  ident: b0030
  article-title: Comparative study of the performances of four photovoltaic/thermal solar air collectors
  publication-title: Energy Convers Manage
– reference: US Department of Energy. <
– reference: >; 2008.
– volume: 122
  start-page: 986
  year: 2015
  end-page: 996
  ident: b0005
  article-title: Solar energy for net zero energy buildings – a comparison between solar thermal, PV and photovoltaic–thermal (PV/T) systems
  publication-title: Sol Energy
– volume: 93
  start-page: 63
  year: 2015
  end-page: 71
  ident: b0100
  article-title: A novel solar multifunctional PV/T/D system for green building roofs
  publication-title: Energy Convers Manage
– volume: 83
  start-page: 199
  year: 2006
  end-page: 210
  ident: b0015
  article-title: Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water
  publication-title: Appl Energy
– volume: 75
  start-page: 143
  year: 2003
  end-page: 152
  ident: b0110
  article-title: Performance analysis of photovoltaic-thermal collector by explicit dynamic model
  publication-title: Sol Energy
– volume: 74
  start-page: 253
  year: 2003
  end-page: 269
  ident: b0020
  article-title: The yield of different combined PV-thermal collector designs
  publication-title: Sol Energy
– volume: 83
  start-page: 199
  year: 2006
  ident: 10.1016/j.enconman.2017.02.059_b0015
  article-title: Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2005.02.007
– volume: 59
  start-page: 445
  year: 2013
  ident: 10.1016/j.enconman.2017.02.059_b0130
  article-title: Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2013.07.050
– volume: 101
  start-page: 19
  year: 2014
  ident: 10.1016/j.enconman.2017.02.059_b0045
  article-title: Performance of a V-trough photovoltaic/thermal concentrator
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2013.11.024
– volume: 98
  start-page: 189
  year: 1976
  ident: 10.1016/j.enconman.2017.02.059_b0120
  article-title: Free convection heat transfer across inclined air layers
  publication-title: Trans Am Soc Mech Eng, J Heat Transf
  doi: 10.1115/1.3450517
– volume: 12
  start-page: 891
  issue: 4
  year: 2008
  ident: 10.1016/j.enconman.2017.02.059_b0080
  article-title: Flat-plate PV–thermal collectors and systems: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2005.12.012
– volume: 100
  start-page: 191
  year: 2015
  ident: 10.1016/j.enconman.2017.02.059_b0055
  article-title: Outdoor performance analysis of a 1090×point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.04.082
– volume: 97
  start-page: 551
  year: 2013
  ident: 10.1016/j.enconman.2017.02.059_b0075
  article-title: Design, fabrication and experimental study of a solar photovoltaic/loop-heat-pipe based heat pump system
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2013.09.022
– year: 1989
  ident: 10.1016/j.enconman.2017.02.059_b0125
– volume: 82
  start-page: 43
  year: 2008
  ident: 10.1016/j.enconman.2017.02.059_b0065
  article-title: Experimental study of photovoltaic solar assisted heat pump system
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2007.04.006
– year: 1991
  ident: 10.1016/j.enconman.2017.02.059_b0115
– volume: 78
  start-page: 641
  year: 2014
  ident: 10.1016/j.enconman.2017.02.059_b0025
  article-title: Performance analysis of photovoltaic thermal (PVT) water collectors
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.11.017
– volume: 85
  start-page: 911
  year: 2011
  ident: 10.1016/j.enconman.2017.02.059_b0040
  article-title: A numerical and experimental study on a heat pipe PV/T system
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2011.02.006
– volume: 31
  start-page: 3689
  year: 2011
  ident: 10.1016/j.enconman.2017.02.059_b0070
  article-title: Experimental study on the operating characteristics of a novel low-concentrating solar photovoltaic/thermal integrated heat pump water heating system
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.01.030
– volume: 31
  start-page: 3369
  year: 2011
  ident: 10.1016/j.enconman.2017.02.059_b0105
  article-title: Comparative experiment study on photovoltaic and thermal solar system under natural circulation of water
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.06.021
– volume: 77
  start-page: 527
  year: 2014
  ident: 10.1016/j.enconman.2017.02.059_b0090
  article-title: Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.10.033
– volume: 91
  start-page: 161
  year: 2013
  ident: 10.1016/j.enconman.2017.02.059_b0060
  article-title: Energy matrices analyses of hybrid photovoltaic thermal (HPVT) water collector with different PV technology
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2013.02.002
– ident: 10.1016/j.enconman.2017.02.059_b0140
– volume: 47
  start-page: 3368
  year: 2006
  ident: 10.1016/j.enconman.2017.02.059_b0050
  article-title: Hybrid PV/T solar systems for domestic hot water and electricity production
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2006.01.012
– volume: 83
  start-page: 445
  year: 2009
  ident: 10.1016/j.enconman.2017.02.059_b0085
  article-title: Performance of a building integrated photovoltaic/thermal (BIPVT) solar collector
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2008.08.013
– volume: 88
  start-page: 650
  year: 2014
  ident: 10.1016/j.enconman.2017.02.059_b0035
  article-title: Experimental investigation of tri-functional photovoltaic/thermal solar collector
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.09.030
– volume: 122
  start-page: 986
  year: 2015
  ident: 10.1016/j.enconman.2017.02.059_b0005
  article-title: Solar energy for net zero energy buildings – a comparison between solar thermal, PV and photovoltaic–thermal (PV/T) systems
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2015.10.013
– volume: 75
  start-page: 143
  year: 2003
  ident: 10.1016/j.enconman.2017.02.059_b0110
  article-title: Performance analysis of photovoltaic-thermal collector by explicit dynamic model
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2003.07.001
– volume: 51
  start-page: 62
  year: 2015
  ident: 10.1016/j.enconman.2017.02.059_b0010
  article-title: Flat plate solar photovoltaic–thermal (PV/T) systems: a reference guide
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.06.022
– volume: 41
  start-page: 861
  issue: 8
  year: 2000
  ident: 10.1016/j.enconman.2017.02.059_b0030
  article-title: Comparative study of the performances of four photovoltaic/thermal solar air collectors
  publication-title: Energy Convers Manage
  doi: 10.1016/S0196-8904(99)00136-3
– volume: 93
  start-page: 63
  year: 2015
  ident: 10.1016/j.enconman.2017.02.059_b0100
  article-title: A novel solar multifunctional PV/T/D system for green building roofs
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.01.001
– volume: 74
  start-page: 253
  year: 2003
  ident: 10.1016/j.enconman.2017.02.059_b0020
  article-title: The yield of different combined PV-thermal collector designs
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(03)00121-X
– volume: 33
  start-page: 2491
  year: 2008
  ident: 10.1016/j.enconman.2017.02.059_b0135
  article-title: The influence of PV coverage ratio on thermal and electrical performance of photovoltaic–Trombe wall
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2008.02.001
– volume: 76
  start-page: 164
  year: 2014
  ident: 10.1016/j.enconman.2017.02.059_b0095
  article-title: Performance evaluation and techno-economic analysis of a novel building integrated PV/T roof collector: an experimental validation
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.02.078
SSID ssj0003506
Score 2.5456755
SecondaryResourceType review_article
Snippet •Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed.•Experiments are performed to validate the simulation results.•Annual...
Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Buildings
China
collectors
Comparative studies
Computer simulation
Electricity
energy
Energy consumption
Energy modeling
Energy-saving
Heat
Hot water
Hybrid systems
Installation
Modules
Photovoltaic
Photovoltaic cells
Photovoltaic/thermal
Photovoltaics
Residential areas
Residential buildings
Residential energy
residential housing
Rural areas
rural families
simulation models
Solar collectors
Solar energy
Solar heating
Solar thermal
summer
Thermal energy
Water demand
Title A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems
URI https://dx.doi.org/10.1016/j.enconman.2017.02.059
https://www.proquest.com/docview/2024472133
https://www.proquest.com/docview/2000422527
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iFz2IT3ysEsGjta80abwti7IqiqDC3kKaZnFlbRdbD178G_5dZ7qpriJ4sLc2GZpmJpMvaeYbQg4150wYLT1MdgQLlNB40sjM01AgYErLdUM8f3XN-_fsYpAM5kivjYXBY5XO9099euOt3RPf9aY_GY38W2R2SWXAQjRSEQwwgp0JtPLjt69jHnHS5NfEyh7WnokSfjxGrsjiSSMPaiga7k7kLP19gvrhqpv552yFLDvgSLvTtq2SOVuskaUZOsF18t6l5ovMmzbMsbQsaA36shQ3WytaDmmFq1kKBjd2MZi0bvfXYdlMAcXSzCXLrk7ozUNZl-DDaj0yR04WQeMTNEYXOX14xZgvOpmp5rflU5roaoPcn53e9fqeS7zgGRayGrQV6YjLHOAcy-ASAnFAznXKUxMFuZVimCbcJkGW2MBGwuQ8ZgKgyjCUeijiTTJflIXdIhSE01QDTIt5xjLDQIBlXFgZRHnAdbxNkra3lXGs5JgcY6za42ePqtWSQi2pIFKgpW3if8pNprwcf0rIVpnqm4UpmDz-lO202ldujFdQDtAIFtAxfMTBZzGMTvzlogtbvmCdhmQticTOP16_SxbxDg8thEmHzNfPL3YPsFCd7TfGvk8WuueX_esPtp0NjA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-DupBfOLbCB6tfaVJ401EWZ8IKuwtpGkWV7RdbD148W_4d53pprqK4MEeOxnaZiYzX9LkG0J2NedMGC09LHYEE5TQeNLIzNMgEJDSct0Qz19e8c4dO-sm3TFy1J6FwW2VLvYPY3oTrd0d3_WmP-j3_RtkdkllwEJ0UhF0x8kkg-GLZQz23772ecRJU2ATW3vYfOSY8MM-kkUWTxqJUEPRkHciaenvGepHrG4S0MkcmXXIkR4OX26ejNligcyM8AkukvdDar7YvGlDHUvLgtZgMEtxtbWiZY9WOJ2l4HGP7hAmrdsFdpg3U4CxNHPVsqsDen1f1iUEsVr3zZ7TRdT4BC-ji5zev-KhLzoYaea38iFPdLVE7k6Ob486nqu84BkWshrMFemIyxzwHMvgEgKBQM51ylMTBbmVopcm3CZBltjARsLkPGYCsEovlLon4mUyUZSFXSEUlNNUA06LecYyw0CBZVxYGUR5wHW8SpK2t5VxtORYHeNRtfvPHlRrJYVWUkGkwEqrxP_UGwyJOf7UkK0x1TcXU5A9_tTdaK2v3CCvQA7YCGbQMXzEzqcYhif-c9GFLV-wTcOylkRi7R-P3yZTndvLC3VxenW-TqZRgjsYwmSDTNTPL3YTgFGdbTWO_wG7vQ8a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+on+three+types+of+solar+utilization+technologies+for+buildings%EF%BC%9A+Photovoltaic%2C+solar+thermal+and+hybrid+photovoltaic%2Fthermal+systems&rft.jtitle=Energy+conversion+and+management&rft.au=Huide%2C+Fu&rft.au=Xuxin%2C+Zhao&rft.au=Lei%2C+Ma&rft.au=Tao%2C+Zhang&rft.date=2017-05-15&rft.issn=0196-8904&rft_id=info:doi/10.1016%2Fj.enconman.2017.02.059&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon