A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems
•Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed.•Experiments are performed to validate the simulation results.•Annual performances of the three solar systems used in china are predicted.•Energy comparison between the three solar systems is analyzed. Buildings ne...
Saved in:
Published in | Energy conversion and management Vol. 140; pp. 1 - 13 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
15.05.2017
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed.•Experiments are performed to validate the simulation results.•Annual performances of the three solar systems used in china are predicted.•Energy comparison between the three solar systems is analyzed.
Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the largest potential for reducing the energy consumption among the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems. And for a rural house with large available area, system with photovoltaic and hybrid photovoltaic/thermal modules can obtained the most net annual electricity output, and the installation area of the hybrid photovoltaic/thermal collectors mainly depended on the hot water load of the building. |
---|---|
AbstractList | •Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed.•Experiments are performed to validate the simulation results.•Annual performances of the three solar systems used in china are predicted.•Energy comparison between the three solar systems is analyzed.
Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the largest potential for reducing the energy consumption among the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems. And for a rural house with large available area, system with photovoltaic and hybrid photovoltaic/thermal modules can obtained the most net annual electricity output, and the installation area of the hybrid photovoltaic/thermal collectors mainly depended on the hot water load of the building. Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the largest potential for reducing the energy consumption among the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems. And for a rural house with large available area, system with photovoltaic and hybrid photovoltaic/thermal modules can obtained the most net annual electricity output, and the installation area of the hybrid photovoltaic/thermal collectors mainly depended on the hot water load of the building. Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300 L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the largest potential for reducing the energy consumption among the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems. And for a rural house with large available area, system with photovoltaic and hybrid photovoltaic/thermal modules can obtained the most net annual electricity output, and the installation area of the hybrid photovoltaic/thermal collectors mainly depended on the hot water load of the building. |
Author | Qixing, Wu Xuxin, Zhao Tao, Zhang Hongyuan, Sun Lei, Ma Huide, Fu |
Author_xml | – sequence: 1 givenname: Fu surname: Huide fullname: Huide, Fu email: huidef@szu.edu.cn organization: College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen City, Guangdong Province, People’s Republic of China – sequence: 2 givenname: Zhao surname: Xuxin fullname: Xuxin, Zhao email: zhaoxx@szu.edu.cn organization: College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen City, Guangdong Province, People’s Republic of China – sequence: 3 givenname: Ma surname: Lei fullname: Lei, Ma organization: College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen City, Guangdong Province, People’s Republic of China – sequence: 4 givenname: Zhang surname: Tao fullname: Tao, Zhang organization: College of Energy and Mechanical Engineering, Shanghai University of Electric Power, 2103 Pingliang Road, Yangpu District, Shanghai City, China – sequence: 5 givenname: Wu surname: Qixing fullname: Qixing, Wu organization: College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen City, Guangdong Province, People’s Republic of China – sequence: 6 givenname: Sun surname: Hongyuan fullname: Hongyuan, Sun organization: College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen City, Guangdong Province, People’s Republic of China |
BookMark | eNqFkctq3DAUhkVJIZO0rxAE3XRRO5J8kV26aAi9QSBZtGuhkY5jDbLkSvKA8yJ93Wo6CZRscjZanO87iP8_QyfOO0DogpKSEtpe7kpwyrtJupIRykvCStL0r9CGdrwvGGP8BG0I7dui60l9is5i3BFCqoa0G_TnCis_zTLIZPaAY1r0ir3DaQwAOK0zROwHHL2VAS_JWPOQyQMAanTe-nuTicEHvF2M1cbdx4_4bvTJ771N0qgPj24aIUzSYuk0HtdtMBrP_2GXT_u4xgRTfINeD9JGePv4nqNfX7_8vP5e3Nx--3F9dVOomtap6BWTrO01aep6m4dz2lGmW9m1nWJEQ8-HrmmhIdsGCDCudFvVnLBuoL0ceHWO3h_vzsH_XiAmMZmowFrpwC9RsJxUzVjDDui7Z-jOL8Hl32WK1TVntKoy9elIqeBjDDAIZdK_yFKQxgpKxKE1sRNPrYlDa4IwkVvLevtMn4OZZFhfFj8fRchp7Q0EEZXJJGgTQCWhvXnpxF_x5rvJ |
CitedBy_id | crossref_primary_10_3390_app12062792 crossref_primary_10_2478_sjce_2022_0016 crossref_primary_10_3390_en13184621 crossref_primary_10_1016_j_enbuild_2024_114965 crossref_primary_10_1016_j_enconman_2018_10_080 crossref_primary_10_1016_j_solener_2024_113126 crossref_primary_10_1016_j_rser_2022_112304 crossref_primary_10_1016_j_solener_2023_112278 crossref_primary_10_1016_j_applthermaleng_2020_115926 crossref_primary_10_1016_j_enconman_2019_111838 crossref_primary_10_1016_j_enconman_2019_111959 crossref_primary_10_1016_j_rser_2022_112824 crossref_primary_10_1016_j_enconman_2020_112674 crossref_primary_10_1016_j_rser_2021_111738 crossref_primary_10_32604_fdmp_2022_022239 crossref_primary_10_1177_17442591231182330 crossref_primary_10_1016_j_csite_2021_101209 crossref_primary_10_1016_j_enconman_2019_01_039 crossref_primary_10_1016_j_renene_2020_06_101 crossref_primary_10_1016_j_energy_2017_10_143 crossref_primary_10_1016_j_enconman_2023_117395 crossref_primary_10_1016_j_renene_2024_120091 crossref_primary_10_1016_j_solener_2019_06_005 crossref_primary_10_1016_j_heliyon_2024_e41425 crossref_primary_10_1016_j_enconman_2021_113988 crossref_primary_10_1016_j_solener_2020_06_046 crossref_primary_10_1016_j_csite_2021_101577 crossref_primary_10_1016_j_enconman_2020_113774 crossref_primary_10_1016_j_energy_2022_125386 crossref_primary_10_1108_HFF_05_2018_0257 crossref_primary_10_1016_j_energy_2020_119636 crossref_primary_10_3390_su16219565 crossref_primary_10_3390_en15249634 crossref_primary_10_1007_s40095_020_00353_1 crossref_primary_10_3390_su131810270 crossref_primary_10_1016_j_rser_2018_12_026 crossref_primary_10_3390_nano13071232 crossref_primary_10_1016_j_renene_2021_03_110 crossref_primary_10_1016_j_renene_2023_119710 crossref_primary_10_1016_j_energy_2021_123018 crossref_primary_10_1002_ceat_202300084 crossref_primary_10_1080_15435075_2022_2107397 crossref_primary_10_1016_j_energy_2023_127093 crossref_primary_10_1016_j_jobe_2024_110981 crossref_primary_10_1016_j_enconman_2020_112739 crossref_primary_10_1016_j_ijepes_2021_106821 crossref_primary_10_1016_j_renene_2023_01_032 crossref_primary_10_1016_j_psep_2023_09_015 crossref_primary_10_1016_j_enconman_2018_02_008 crossref_primary_10_3390_su141710502 crossref_primary_10_1016_j_applthermaleng_2024_123279 crossref_primary_10_1016_j_solener_2020_07_062 crossref_primary_10_1016_j_apenergy_2019_114380 crossref_primary_10_1016_j_renene_2023_119265 crossref_primary_10_1016_j_solener_2020_01_015 crossref_primary_10_1016_j_solmat_2024_113045 crossref_primary_10_3390_polym14112285 crossref_primary_10_1088_1742_6596_2940_1_012024 crossref_primary_10_3390_buildings12101636 crossref_primary_10_1039_D4SE00381K crossref_primary_10_3390_pr11051547 crossref_primary_10_1007_s10854_021_06225_6 crossref_primary_10_1016_j_enconman_2019_111802 crossref_primary_10_1016_j_aei_2024_102435 crossref_primary_10_1016_j_matcom_2019_09_013 crossref_primary_10_1016_j_enconman_2019_02_037 crossref_primary_10_1007_s10668_022_02406_3 crossref_primary_10_1115_1_4050061 crossref_primary_10_1016_j_tsep_2024_102727 crossref_primary_10_1016_j_enconman_2019_01_115 crossref_primary_10_1016_j_solener_2020_01_002 crossref_primary_10_1080_15567036_2022_2143962 crossref_primary_10_1016_j_solener_2020_06_087 crossref_primary_10_1016_j_energy_2018_04_138 crossref_primary_10_1016_j_enconman_2019_112167 crossref_primary_10_1016_j_enconman_2024_119158 crossref_primary_10_1016_j_solener_2021_01_005 crossref_primary_10_1016_j_solener_2022_10_047 crossref_primary_10_1115_1_4049867 crossref_primary_10_1016_j_solener_2020_04_053 crossref_primary_10_1016_j_energy_2025_134505 crossref_primary_10_1016_j_energy_2020_116913 crossref_primary_10_3390_fluids8080221 crossref_primary_10_1080_15567036_2022_2136801 crossref_primary_10_1002_er_6298 crossref_primary_10_1016_j_seta_2020_100694 crossref_primary_10_1016_j_enbenv_2024_12_001 crossref_primary_10_3390_en12163078 crossref_primary_10_1016_j_csite_2024_104621 crossref_primary_10_1016_j_renene_2020_12_008 crossref_primary_10_1016_j_solener_2021_06_010 crossref_primary_10_1016_j_enconman_2019_112196 crossref_primary_10_1080_15567036_2021_1945711 crossref_primary_10_1016_j_applthermaleng_2020_116035 crossref_primary_10_1016_j_jclepro_2023_137296 crossref_primary_10_1016_j_apenergy_2020_115105 crossref_primary_10_3390_en15155667 crossref_primary_10_1016_j_enconman_2021_114478 crossref_primary_10_1364_AO_58_004726 crossref_primary_10_3390_en12061022 crossref_primary_10_3390_su15043332 crossref_primary_10_1016_j_enbuild_2018_03_016 crossref_primary_10_1016_j_enconman_2017_08_080 crossref_primary_10_1007_s11630_022_1653_2 crossref_primary_10_1016_j_jobe_2019_100845 crossref_primary_10_1002_er_5872 crossref_primary_10_1016_j_scs_2018_10_036 crossref_primary_10_1016_j_energy_2023_128829 crossref_primary_10_1016_j_rser_2019_109329 crossref_primary_10_1016_j_enconman_2024_119456 crossref_primary_10_1016_j_jcou_2019_07_003 crossref_primary_10_1016_j_renene_2020_09_062 crossref_primary_10_1016_j_enconman_2020_112895 crossref_primary_10_1007_s11468_024_02399_x crossref_primary_10_1016_j_energy_2022_124312 crossref_primary_10_1016_j_matcom_2018_09_003 crossref_primary_10_2478_rtuect_2022_0046 crossref_primary_10_1002_er_6397 crossref_primary_10_1016_j_ijheatfluidflow_2024_109389 crossref_primary_10_1016_j_renene_2024_121435 crossref_primary_10_1016_j_energy_2018_04_152 crossref_primary_10_1016_j_enconman_2018_08_010 |
Cites_doi | 10.1016/j.apenergy.2005.02.007 10.1016/j.energy.2013.07.050 10.1016/j.solener.2013.11.024 10.1115/1.3450517 10.1016/j.rser.2005.12.012 10.1016/j.enconman.2015.04.082 10.1016/j.solener.2013.09.022 10.1016/j.solener.2007.04.006 10.1016/j.enconman.2013.11.017 10.1016/j.solener.2011.02.006 10.1016/j.applthermaleng.2011.01.030 10.1016/j.applthermaleng.2011.06.021 10.1016/j.enconman.2013.10.033 10.1016/j.solener.2013.02.002 10.1016/j.enconman.2006.01.012 10.1016/j.solener.2008.08.013 10.1016/j.enconman.2014.09.030 10.1016/j.solener.2015.10.013 10.1016/j.solener.2003.07.001 10.1016/j.rser.2015.06.022 10.1016/S0196-8904(99)00136-3 10.1016/j.enconman.2015.01.001 10.1016/S0038-092X(03)00121-X 10.1016/j.renene.2008.02.001 10.1016/j.enbuild.2014.02.078 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier Science Ltd. May 15, 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. May 15, 2017 |
DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.enconman.2017.02.059 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2227 |
EndPage | 13 |
ExternalDocumentID | 10_1016_j_enconman_2017_02_059 S019689041730170X |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ 7ST 7TB 8FD C1K EFKBS FR3 H8D KR7 L7M SOI 7S9 AFXIZ L.6 |
ID | FETCH-LOGICAL-c414t-9c2a269d0544bbbb771812d6a868c20de97f856e50b5e0e27cd6347028f19af73 |
IEDL.DBID | .~1 |
ISSN | 0196-8904 |
IngestDate | Fri Jul 11 07:19:02 EDT 2025 Wed Aug 13 06:40:21 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Tue Jul 01 01:17:20 EDT 2025 Fri Feb 23 02:33:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Energy-saving Photovoltaic Photovoltaic/thermal Solar thermal Solar energy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-9c2a269d0544bbbb771812d6a868c20de97f856e50b5e0e27cd6347028f19af73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2024472133 |
PQPubID | 2047472 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2000422527 proquest_journals_2024472133 crossref_citationtrail_10_1016_j_enconman_2017_02_059 crossref_primary_10_1016_j_enconman_2017_02_059 elsevier_sciencedirect_doi_10_1016_j_enconman_2017_02_059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-15 |
PublicationDateYYYYMMDD | 2017-05-15 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy conversion and management |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Xu, Zhang, Deng (b0070) 2011; 31 Mishra, Tiwari (b0060) 2013; 91 Fudholi, Sopian, Yazdi (b0025) 2014; 78 Jiang, Ji, Yi (b0135) 2008; 33 Buker, Mempouo, Riffat (b0095) 2014; 76 Duffie, Beckman (b0115) 1991 Holman (b0125) 1989 Ji, Guo, Sun (b0035) 2014; 88 Ji, Pei, Chow (b0065) 2008; 82 Hegazy (b0030) 2000; 41 Zondag (b0080) 2008; 12 Michael, Iniyan, Ranko (b0010) 2015; 51 Zondag, de Vries, van Helden (b0020) 2003; 74 US Department of Energy. Pei, Fu, Zhang (b0040) 2011; 85 Clara, Inger, Anne (b0005) 2015; 122 Zhang, Zhao, Shen (b0075) 2013; 97 Anderson, Duke, Morrison (b0085) 2009; 83 He, Chow, Ji (b0015) 2006; 83 Xu, Ji, Sun (b0055) 2015; 100 Kalogirou, Tripanagnostopoulos (b0050) 2006; 47 Feng, Zheng, Wang (b0100) 2015; 93 Kunnemeyer, Anderson, Duke (b0045) 2014; 101 Chow (b0110) 2003; 75 Hollands, Unny, Raithby (b0120) 1976; 98 Bahaidarah, Subhan, Gandhidasan (b0130) 2013; 59 He, Zhang, Ji (b0105) 2011; 31 Ibrahim, Fudholi, Sopian (b0090) 2014; 77 2008. Feng (10.1016/j.enconman.2017.02.059_b0100) 2015; 93 Buker (10.1016/j.enconman.2017.02.059_b0095) 2014; 76 He (10.1016/j.enconman.2017.02.059_b0015) 2006; 83 Kunnemeyer (10.1016/j.enconman.2017.02.059_b0045) 2014; 101 Michael (10.1016/j.enconman.2017.02.059_b0010) 2015; 51 Xu (10.1016/j.enconman.2017.02.059_b0055) 2015; 100 Ji (10.1016/j.enconman.2017.02.059_b0035) 2014; 88 Mishra (10.1016/j.enconman.2017.02.059_b0060) 2013; 91 Clara (10.1016/j.enconman.2017.02.059_b0005) 2015; 122 Hegazy (10.1016/j.enconman.2017.02.059_b0030) 2000; 41 Chow (10.1016/j.enconman.2017.02.059_b0110) 2003; 75 Zondag (10.1016/j.enconman.2017.02.059_b0020) 2003; 74 Fudholi (10.1016/j.enconman.2017.02.059_b0025) 2014; 78 Hollands (10.1016/j.enconman.2017.02.059_b0120) 1976; 98 Bahaidarah (10.1016/j.enconman.2017.02.059_b0130) 2013; 59 Zhang (10.1016/j.enconman.2017.02.059_b0075) 2013; 97 Duffie (10.1016/j.enconman.2017.02.059_b0115) 1991 Holman (10.1016/j.enconman.2017.02.059_b0125) 1989 Jiang (10.1016/j.enconman.2017.02.059_b0135) 2008; 33 Xu (10.1016/j.enconman.2017.02.059_b0070) 2011; 31 Anderson (10.1016/j.enconman.2017.02.059_b0085) 2009; 83 Ibrahim (10.1016/j.enconman.2017.02.059_b0090) 2014; 77 10.1016/j.enconman.2017.02.059_b0140 He (10.1016/j.enconman.2017.02.059_b0105) 2011; 31 Kalogirou (10.1016/j.enconman.2017.02.059_b0050) 2006; 47 Zondag (10.1016/j.enconman.2017.02.059_b0080) 2008; 12 Pei (10.1016/j.enconman.2017.02.059_b0040) 2011; 85 Ji (10.1016/j.enconman.2017.02.059_b0065) 2008; 82 |
References_xml | – year: 1991 ident: b0115 article-title: Solar engineering of thermal processes – volume: 82 start-page: 43 year: 2008 end-page: 52 ident: b0065 article-title: Experimental study of photovoltaic solar assisted heat pump system publication-title: Sol Energy – year: 1989 ident: b0125 article-title: Heat transfer, Singapore, Metric Editions – volume: 47 start-page: 3368 year: 2006 end-page: 3382 ident: b0050 article-title: Hybrid PV/T solar systems for domestic hot water and electricity production publication-title: Energy Convers Manage – volume: 85 start-page: 911 year: 2011 end-page: 921 ident: b0040 article-title: A numerical and experimental study on a heat pipe PV/T system publication-title: Sol Energy – volume: 100 start-page: 191 year: 2015 end-page: 200 ident: b0055 article-title: Outdoor performance analysis of a 1090×point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells publication-title: Energy Convers Manage – volume: 101 start-page: 19 year: 2014 end-page: 27 ident: b0045 article-title: Performance of a V-trough photovoltaic/thermal concentrator publication-title: Sol Energy – volume: 31 start-page: 3689 year: 2011 end-page: 3695 ident: b0070 article-title: Experimental study on the operating characteristics of a novel low-concentrating solar photovoltaic/thermal integrated heat pump water heating system publication-title: Appl Therm Eng – volume: 78 start-page: 641 year: 2014 end-page: 651 ident: b0025 article-title: Performance analysis of photovoltaic thermal (PVT) water collectors publication-title: Energy Convers Manage – volume: 31 start-page: 3369 year: 2011 end-page: 3376 ident: b0105 article-title: Comparative experiment study on photovoltaic and thermal solar system under natural circulation of water publication-title: Appl Therm Eng – volume: 97 start-page: 551 year: 2013 end-page: 568 ident: b0075 article-title: Design, fabrication and experimental study of a solar photovoltaic/loop-heat-pipe based heat pump system publication-title: Sol Energy – volume: 76 start-page: 164 year: 2014 end-page: 175 ident: b0095 article-title: Performance evaluation and techno-economic analysis of a novel building integrated PV/T roof collector: an experimental validation publication-title: Energy Build – volume: 12 start-page: 891 year: 2008 end-page: 959 ident: b0080 article-title: Flat-plate PV–thermal collectors and systems: a review publication-title: Renew Sustain Energy Rev – volume: 33 start-page: 2491 year: 2008 end-page: 2498 ident: b0135 article-title: The influence of PV coverage ratio on thermal and electrical performance of photovoltaic–Trombe wall publication-title: Renew Energy – volume: 77 start-page: 527 year: 2014 end-page: 534 ident: b0090 article-title: Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system publication-title: Energy Convers Manage – volume: 51 start-page: 62 year: 2015 end-page: 88 ident: b0010 article-title: Flat plate solar photovoltaic–thermal (PV/T) systems: a reference guide publication-title: Renew Sustain Energy Rev – volume: 98 start-page: 189 year: 1976 end-page: 193 ident: b0120 article-title: Free convection heat transfer across inclined air layers publication-title: Trans Am Soc Mech Eng, J Heat Transf – volume: 59 start-page: 445 year: 2013 end-page: 453 ident: b0130 article-title: Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions publication-title: Energy – volume: 91 start-page: 161 year: 2013 end-page: 173 ident: b0060 article-title: Energy matrices analyses of hybrid photovoltaic thermal (HPVT) water collector with different PV technology publication-title: Sol Energy – volume: 88 start-page: 650 year: 2014 end-page: 656 ident: b0035 article-title: Experimental investigation of tri-functional photovoltaic/thermal solar collector publication-title: Energy Convers Manage – volume: 83 start-page: 445 year: 2009 end-page: 455 ident: b0085 article-title: Performance of a building integrated photovoltaic/thermal (BIPVT) solar collector publication-title: Sol Energy – volume: 41 start-page: 861 year: 2000 end-page: 881 ident: b0030 article-title: Comparative study of the performances of four photovoltaic/thermal solar air collectors publication-title: Energy Convers Manage – reference: US Department of Energy. < – reference: >; 2008. – volume: 122 start-page: 986 year: 2015 end-page: 996 ident: b0005 article-title: Solar energy for net zero energy buildings – a comparison between solar thermal, PV and photovoltaic–thermal (PV/T) systems publication-title: Sol Energy – volume: 93 start-page: 63 year: 2015 end-page: 71 ident: b0100 article-title: A novel solar multifunctional PV/T/D system for green building roofs publication-title: Energy Convers Manage – volume: 83 start-page: 199 year: 2006 end-page: 210 ident: b0015 article-title: Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water publication-title: Appl Energy – volume: 75 start-page: 143 year: 2003 end-page: 152 ident: b0110 article-title: Performance analysis of photovoltaic-thermal collector by explicit dynamic model publication-title: Sol Energy – volume: 74 start-page: 253 year: 2003 end-page: 269 ident: b0020 article-title: The yield of different combined PV-thermal collector designs publication-title: Sol Energy – volume: 83 start-page: 199 year: 2006 ident: 10.1016/j.enconman.2017.02.059_b0015 article-title: Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water publication-title: Appl Energy doi: 10.1016/j.apenergy.2005.02.007 – volume: 59 start-page: 445 year: 2013 ident: 10.1016/j.enconman.2017.02.059_b0130 article-title: Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions publication-title: Energy doi: 10.1016/j.energy.2013.07.050 – volume: 101 start-page: 19 year: 2014 ident: 10.1016/j.enconman.2017.02.059_b0045 article-title: Performance of a V-trough photovoltaic/thermal concentrator publication-title: Sol Energy doi: 10.1016/j.solener.2013.11.024 – volume: 98 start-page: 189 year: 1976 ident: 10.1016/j.enconman.2017.02.059_b0120 article-title: Free convection heat transfer across inclined air layers publication-title: Trans Am Soc Mech Eng, J Heat Transf doi: 10.1115/1.3450517 – volume: 12 start-page: 891 issue: 4 year: 2008 ident: 10.1016/j.enconman.2017.02.059_b0080 article-title: Flat-plate PV–thermal collectors and systems: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2005.12.012 – volume: 100 start-page: 191 year: 2015 ident: 10.1016/j.enconman.2017.02.059_b0055 article-title: Outdoor performance analysis of a 1090×point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.04.082 – volume: 97 start-page: 551 year: 2013 ident: 10.1016/j.enconman.2017.02.059_b0075 article-title: Design, fabrication and experimental study of a solar photovoltaic/loop-heat-pipe based heat pump system publication-title: Sol Energy doi: 10.1016/j.solener.2013.09.022 – year: 1989 ident: 10.1016/j.enconman.2017.02.059_b0125 – volume: 82 start-page: 43 year: 2008 ident: 10.1016/j.enconman.2017.02.059_b0065 article-title: Experimental study of photovoltaic solar assisted heat pump system publication-title: Sol Energy doi: 10.1016/j.solener.2007.04.006 – year: 1991 ident: 10.1016/j.enconman.2017.02.059_b0115 – volume: 78 start-page: 641 year: 2014 ident: 10.1016/j.enconman.2017.02.059_b0025 article-title: Performance analysis of photovoltaic thermal (PVT) water collectors publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2013.11.017 – volume: 85 start-page: 911 year: 2011 ident: 10.1016/j.enconman.2017.02.059_b0040 article-title: A numerical and experimental study on a heat pipe PV/T system publication-title: Sol Energy doi: 10.1016/j.solener.2011.02.006 – volume: 31 start-page: 3689 year: 2011 ident: 10.1016/j.enconman.2017.02.059_b0070 article-title: Experimental study on the operating characteristics of a novel low-concentrating solar photovoltaic/thermal integrated heat pump water heating system publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.01.030 – volume: 31 start-page: 3369 year: 2011 ident: 10.1016/j.enconman.2017.02.059_b0105 article-title: Comparative experiment study on photovoltaic and thermal solar system under natural circulation of water publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.06.021 – volume: 77 start-page: 527 year: 2014 ident: 10.1016/j.enconman.2017.02.059_b0090 article-title: Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2013.10.033 – volume: 91 start-page: 161 year: 2013 ident: 10.1016/j.enconman.2017.02.059_b0060 article-title: Energy matrices analyses of hybrid photovoltaic thermal (HPVT) water collector with different PV technology publication-title: Sol Energy doi: 10.1016/j.solener.2013.02.002 – ident: 10.1016/j.enconman.2017.02.059_b0140 – volume: 47 start-page: 3368 year: 2006 ident: 10.1016/j.enconman.2017.02.059_b0050 article-title: Hybrid PV/T solar systems for domestic hot water and electricity production publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2006.01.012 – volume: 83 start-page: 445 year: 2009 ident: 10.1016/j.enconman.2017.02.059_b0085 article-title: Performance of a building integrated photovoltaic/thermal (BIPVT) solar collector publication-title: Sol Energy doi: 10.1016/j.solener.2008.08.013 – volume: 88 start-page: 650 year: 2014 ident: 10.1016/j.enconman.2017.02.059_b0035 article-title: Experimental investigation of tri-functional photovoltaic/thermal solar collector publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.09.030 – volume: 122 start-page: 986 year: 2015 ident: 10.1016/j.enconman.2017.02.059_b0005 article-title: Solar energy for net zero energy buildings – a comparison between solar thermal, PV and photovoltaic–thermal (PV/T) systems publication-title: Sol Energy doi: 10.1016/j.solener.2015.10.013 – volume: 75 start-page: 143 year: 2003 ident: 10.1016/j.enconman.2017.02.059_b0110 article-title: Performance analysis of photovoltaic-thermal collector by explicit dynamic model publication-title: Sol Energy doi: 10.1016/j.solener.2003.07.001 – volume: 51 start-page: 62 year: 2015 ident: 10.1016/j.enconman.2017.02.059_b0010 article-title: Flat plate solar photovoltaic–thermal (PV/T) systems: a reference guide publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.06.022 – volume: 41 start-page: 861 issue: 8 year: 2000 ident: 10.1016/j.enconman.2017.02.059_b0030 article-title: Comparative study of the performances of four photovoltaic/thermal solar air collectors publication-title: Energy Convers Manage doi: 10.1016/S0196-8904(99)00136-3 – volume: 93 start-page: 63 year: 2015 ident: 10.1016/j.enconman.2017.02.059_b0100 article-title: A novel solar multifunctional PV/T/D system for green building roofs publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.01.001 – volume: 74 start-page: 253 year: 2003 ident: 10.1016/j.enconman.2017.02.059_b0020 article-title: The yield of different combined PV-thermal collector designs publication-title: Sol Energy doi: 10.1016/S0038-092X(03)00121-X – volume: 33 start-page: 2491 year: 2008 ident: 10.1016/j.enconman.2017.02.059_b0135 article-title: The influence of PV coverage ratio on thermal and electrical performance of photovoltaic–Trombe wall publication-title: Renew Energy doi: 10.1016/j.renene.2008.02.001 – volume: 76 start-page: 164 year: 2014 ident: 10.1016/j.enconman.2017.02.059_b0095 article-title: Performance evaluation and techno-economic analysis of a novel building integrated PV/T roof collector: an experimental validation publication-title: Energy Build doi: 10.1016/j.enbuild.2014.02.078 |
SSID | ssj0003506 |
Score | 2.5456755 |
SecondaryResourceType | review_article |
Snippet | •Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed.•Experiments are performed to validate the simulation results.•Annual... Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Buildings China collectors Comparative studies Computer simulation Electricity energy Energy consumption Energy modeling Energy-saving Heat Hot water Hybrid systems Installation Modules Photovoltaic Photovoltaic cells Photovoltaic/thermal Photovoltaics Residential areas Residential buildings Residential energy residential housing Rural areas rural families simulation models Solar collectors Solar energy Solar heating Solar thermal summer Thermal energy Water demand |
Title | A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems |
URI | https://dx.doi.org/10.1016/j.enconman.2017.02.059 https://www.proquest.com/docview/2024472133 https://www.proquest.com/docview/2000422527 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iFz2IT3ysEsGjta80abwti7IqiqDC3kKaZnFlbRdbD178G_5dZ7qpriJ4sLc2GZpmJpMvaeYbQg4150wYLT1MdgQLlNB40sjM01AgYErLdUM8f3XN-_fsYpAM5kivjYXBY5XO9099euOt3RPf9aY_GY38W2R2SWXAQjRSEQwwgp0JtPLjt69jHnHS5NfEyh7WnokSfjxGrsjiSSMPaiga7k7kLP19gvrhqpv552yFLDvgSLvTtq2SOVuskaUZOsF18t6l5ovMmzbMsbQsaA36shQ3WytaDmmFq1kKBjd2MZi0bvfXYdlMAcXSzCXLrk7ozUNZl-DDaj0yR04WQeMTNEYXOX14xZgvOpmp5rflU5roaoPcn53e9fqeS7zgGRayGrQV6YjLHOAcy-ASAnFAznXKUxMFuZVimCbcJkGW2MBGwuQ8ZgKgyjCUeijiTTJflIXdIhSE01QDTIt5xjLDQIBlXFgZRHnAdbxNkra3lXGs5JgcY6za42ePqtWSQi2pIFKgpW3if8pNprwcf0rIVpnqm4UpmDz-lO202ldujFdQDtAIFtAxfMTBZzGMTvzlogtbvmCdhmQticTOP16_SxbxDg8thEmHzNfPL3YPsFCd7TfGvk8WuueX_esPtp0NjA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-DupBfOLbCB6tfaVJ401EWZ8IKuwtpGkWV7RdbD148W_4d53pprqK4MEeOxnaZiYzX9LkG0J2NedMGC09LHYEE5TQeNLIzNMgEJDSct0Qz19e8c4dO-sm3TFy1J6FwW2VLvYPY3oTrd0d3_WmP-j3_RtkdkllwEJ0UhF0x8kkg-GLZQz23772ecRJU2ATW3vYfOSY8MM-kkUWTxqJUEPRkHciaenvGepHrG4S0MkcmXXIkR4OX26ejNligcyM8AkukvdDar7YvGlDHUvLgtZgMEtxtbWiZY9WOJ2l4HGP7hAmrdsFdpg3U4CxNHPVsqsDen1f1iUEsVr3zZ7TRdT4BC-ji5zev-KhLzoYaea38iFPdLVE7k6Ob486nqu84BkWshrMFemIyxzwHMvgEgKBQM51ylMTBbmVopcm3CZBltjARsLkPGYCsEovlLon4mUyUZSFXSEUlNNUA06LecYyw0CBZVxYGUR5wHW8SpK2t5VxtORYHeNRtfvPHlRrJYVWUkGkwEqrxP_UGwyJOf7UkK0x1TcXU5A9_tTdaK2v3CCvQA7YCGbQMXzEzqcYhif-c9GFLV-wTcOylkRi7R-P3yZTndvLC3VxenW-TqZRgjsYwmSDTNTPL3YTgFGdbTWO_wG7vQ8a |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+on+three+types+of+solar+utilization+technologies+for+buildings%EF%BC%9A+Photovoltaic%2C+solar+thermal+and+hybrid+photovoltaic%2Fthermal+systems&rft.jtitle=Energy+conversion+and+management&rft.au=Huide%2C+Fu&rft.au=Xuxin%2C+Zhao&rft.au=Lei%2C+Ma&rft.au=Tao%2C+Zhang&rft.date=2017-05-15&rft.issn=0196-8904&rft_id=info:doi/10.1016%2Fj.enconman.2017.02.059&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |