Application of eXtreme gradient boosting trees in the construction of credit risk assessment models for financial institutions
The majority of the studies on credit risk assessment models for financial institutions during recent years focus on the improvement of imbalanced data or on the enhancement of classification accuracy with multistage modeling. Whilst multistage modeling and data pre-processing can boost accuracy som...
Saved in:
Published in | Applied soft computing Vol. 73; pp. 914 - 920 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The majority of the studies on credit risk assessment models for financial institutions during recent years focus on the improvement of imbalanced data or on the enhancement of classification accuracy with multistage modeling. Whilst multistage modeling and data pre-processing can boost accuracy somewhat, the heterogeneous nature of data may affects the classification accuracy of classifiers. This paper intends to use the classifier, eXtreme gradient boosting tree (XGBoost), to construct a credit risk assessment model for financial institutions. Cluster-based under-sampling is deployed to process imbalanced data. Finally, the area under the receiver operative curve and the accuracy of classifications are the assessment indicators, in the comparison with other frequently used single-stage classifiers such as logistic regression, self-organizing algorithms and support vector machine. The results indicate that the XGBoost classifier used by this paper achieve better results than the other three and can serve as a superior tool for the development of credit risk models for financial institutions.
•This paper construct a credit risk assessment model for financial institutions.•This paper constructs a credit risk assessment model with the XGBoost method.•The research results can improvement of the loan business efficiency. |
---|---|
AbstractList | The majority of the studies on credit risk assessment models for financial institutions during recent years focus on the improvement of imbalanced data or on the enhancement of classification accuracy with multistage modeling. Whilst multistage modeling and data pre-processing can boost accuracy somewhat, the heterogeneous nature of data may affects the classification accuracy of classifiers. This paper intends to use the classifier, eXtreme gradient boosting tree (XGBoost), to construct a credit risk assessment model for financial institutions. Cluster-based under-sampling is deployed to process imbalanced data. Finally, the area under the receiver operative curve and the accuracy of classifications are the assessment indicators, in the comparison with other frequently used single-stage classifiers such as logistic regression, self-organizing algorithms and support vector machine. The results indicate that the XGBoost classifier used by this paper achieve better results than the other three and can serve as a superior tool for the development of credit risk models for financial institutions.
•This paper construct a credit risk assessment model for financial institutions.•This paper constructs a credit risk assessment model with the XGBoost method.•The research results can improvement of the loan business efficiency. |
Author | Chang, Kuei-Hu Wu, Guan-Jhih Chang, Yung-Chia |
Author_xml | – sequence: 1 givenname: Yung-Chia surname: Chang fullname: Chang, Yung-Chia organization: Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu 300, Taiwan – sequence: 2 givenname: Kuei-Hu orcidid: 0000-0002-9630-7386 surname: Chang fullname: Chang, Kuei-Hu email: evenken2002@yahoo.com.tw organization: Department of Management Sciences, R.O.C. Military Academy, Kaohsiung 830, Taiwan – sequence: 3 givenname: Guan-Jhih surname: Wu fullname: Wu, Guan-Jhih organization: Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu 300, Taiwan |
BookMark | eNp9kE1LAzEQhoNUsFb_gKf8gV2T_Q54KcUvKHhR8BbSZLambpOSSQUv_nazVi8eCgMzDDwvvM85mTjvgJArznLOeHO9yRV6nReMdzkTOSvECZnyri0y0XR8ku666bJKVM0ZOUfcsASJopuSr_luN1itovWO-p7CawywBboOylhwka68x2jdmqY_ILWOxjeg2juMYa__MB3A2EiDxXeqEAFxO8Jbb2BA2vtAe-uU01YNKSIFxv2I4gU57dWAcPm7Z-Tl7vZ58ZAtn-4fF_NlpitexUys2pKLlgndAtQAFdRl0wpVm16XpVkZVpfKdKppi16lKcWqMqxSbaEMN8DKGekOuTp4xAC91Db-lI5B2UFyJkePciNHj3L0KJmQyWNCi3_oLtitCp_HoZsDlOrDh4UgUSedOlkKoKM03h7DvwHheJNx |
CitedBy_id | crossref_primary_10_1016_j_pacfin_2024_102550 crossref_primary_10_3233_IDA_216228 crossref_primary_10_1016_j_asoc_2021_107946 crossref_primary_10_1109_ACCESS_2021_3125920 crossref_primary_10_2478_jaiscr_2023_0017 crossref_primary_10_3390_app14167231 crossref_primary_10_1016_j_patrec_2020_05_035 crossref_primary_10_1155_2020_8706285 crossref_primary_10_1007_s40808_022_01678_y crossref_primary_10_1016_j_inteco_2021_10_003 crossref_primary_10_3233_JIFS_231344 crossref_primary_10_1080_1331677X_2020_1867213 crossref_primary_10_1016_j_asoc_2021_107672 crossref_primary_10_3390_e23010027 crossref_primary_10_1186_s12911_024_02473_8 crossref_primary_10_3390_s24248148 crossref_primary_10_11648_j_mlr_20240902_15 crossref_primary_10_1016_j_jcis_2023_05_052 crossref_primary_10_3389_fams_2023_1195810 crossref_primary_10_3390_risks7020067 crossref_primary_10_1111_risa_14215 crossref_primary_10_1016_j_trc_2022_103704 crossref_primary_10_2139_ssrn_3929927 crossref_primary_10_3390_s21082748 crossref_primary_10_1016_j_mar_2023_100876 crossref_primary_10_1007_s10479_024_05921_w crossref_primary_10_1007_s44379_024_00004_w crossref_primary_10_1016_j_ins_2021_01_061 crossref_primary_10_1016_j_eswa_2021_114840 crossref_primary_10_3390_electronics13050973 crossref_primary_10_1016_j_conbuildmat_2020_120083 crossref_primary_10_4236_tel_2021_112019 crossref_primary_10_1016_j_techfore_2021_121371 crossref_primary_10_1016_j_asoc_2019_105640 crossref_primary_10_1016_j_scitotenv_2023_161996 crossref_primary_10_2298_FUEE2401211U crossref_primary_10_3390_ma15124164 crossref_primary_10_1007_s13198_021_01462_8 crossref_primary_10_1002_ett_4869 crossref_primary_10_1016_j_eswa_2023_122778 crossref_primary_10_1016_j_jmrt_2023_02_021 crossref_primary_10_1016_j_comnet_2024_110879 crossref_primary_10_33166_AETiC_2023_02_005 crossref_primary_10_3390_info12040156 crossref_primary_10_1038_s42254_023_00603_1 crossref_primary_10_1002_for_3080 crossref_primary_10_3390_chemosensors11040229 crossref_primary_10_1016_j_apr_2020_05_009 crossref_primary_10_1016_j_eswa_2022_117271 crossref_primary_10_1155_2023_7690322 crossref_primary_10_3390_ijgi9090507 crossref_primary_10_3390_math11132961 crossref_primary_10_1007_s10614_024_10766_3 crossref_primary_10_1155_2022_8005493 crossref_primary_10_1007_s40808_023_01882_4 crossref_primary_10_1111_exsy_13275 crossref_primary_10_3390_math12020182 crossref_primary_10_1016_j_aei_2024_102852 crossref_primary_10_1016_j_procs_2024_09_130 crossref_primary_10_2139_ssrn_4355268 crossref_primary_10_1109_TFUZZ_2022_3226250 crossref_primary_10_3390_math12101427 crossref_primary_10_3390_risks10050102 crossref_primary_10_1007_s00542_024_05778_w crossref_primary_10_1016_j_eswa_2022_116624 crossref_primary_10_1016_j_ijleo_2024_171838 crossref_primary_10_1038_s41598_024_83394_4 crossref_primary_10_3390_s22207711 crossref_primary_10_1177_0739456X241268464 crossref_primary_10_1155_2021_6655510 crossref_primary_10_1016_j_heliyon_2022_e11388 crossref_primary_10_1109_ACCESS_2024_3383837 crossref_primary_10_17150_2411_6262_2023_14_3__822_834 crossref_primary_10_1142_S0219649224500515 crossref_primary_10_1016_j_eswa_2020_113799 crossref_primary_10_1007_s00477_024_02745_9 crossref_primary_10_1142_S0218126622501973 crossref_primary_10_3390_fi14060180 crossref_primary_10_1016_j_eswa_2022_118873 crossref_primary_10_1016_j_ejor_2023_11_022 crossref_primary_10_1080_19475705_2021_1880977 crossref_primary_10_3390_chemosensors10120506 crossref_primary_10_1155_2024_2644725 crossref_primary_10_14495_jsiaml_13_25 crossref_primary_10_1109_ACCESS_2020_3047138 crossref_primary_10_1016_j_jenvman_2025_124323 crossref_primary_10_1080_01605682_2024_2416908 crossref_primary_10_21919_remef_v19i4_868 crossref_primary_10_1108_JM2_09_2020_0235 crossref_primary_10_2196_25635 crossref_primary_10_3389_fgene_2022_836798 crossref_primary_10_1016_j_ejor_2024_10_046 crossref_primary_10_1177_11786221231195824 crossref_primary_10_1016_j_asoc_2021_107989 crossref_primary_10_1016_j_ijforecast_2021_12_011 crossref_primary_10_7717_peerj_cs_670 crossref_primary_10_1016_j_eswa_2023_119677 crossref_primary_10_1016_j_knosys_2021_106875 crossref_primary_10_3390_risks10040071 crossref_primary_10_3390_risks9070136 crossref_primary_10_1080_08839514_2022_2074129 crossref_primary_10_1016_j_ijmedinf_2019_103979 crossref_primary_10_1088_1742_6596_1539_1_012030 crossref_primary_10_1016_j_compbiomed_2020_103845 crossref_primary_10_1016_j_jseaes_2024_106367 crossref_primary_10_1016_j_istruc_2024_106524 crossref_primary_10_3934_math_2024049 crossref_primary_10_1002_2050_7038_13181 crossref_primary_10_3389_frfst_2022_979028 crossref_primary_10_1016_j_jmrt_2023_04_223 crossref_primary_10_1016_j_joi_2022_101333 crossref_primary_10_1007_s13201_024_02301_4 crossref_primary_10_1016_j_conbuildmat_2020_120286 crossref_primary_10_1016_j_asoc_2021_108160 crossref_primary_10_1016_j_geoen_2023_211837 crossref_primary_10_1177_1042258720945206 crossref_primary_10_3390_risks11050097 crossref_primary_10_1016_j_asoc_2020_106263 crossref_primary_10_32604_cmes_2024_046960 crossref_primary_10_1016_j_asoc_2020_106262 crossref_primary_10_3390_urbansci7030091 crossref_primary_10_2139_ssrn_4094656 crossref_primary_10_1016_j_knosys_2020_106462 crossref_primary_10_1108_GKMC_12_2023_0492 crossref_primary_10_2139_ssrn_4141190 crossref_primary_10_1177_10422587221121291 crossref_primary_10_1007_s00477_021_02075_0 crossref_primary_10_59400_be_v2i1_544 crossref_primary_10_1108_IMDS_08_2022_0468 crossref_primary_10_1109_ACCESS_2024_3520159 crossref_primary_10_3168_jds_2022_22803 crossref_primary_10_1002_for_2860 crossref_primary_10_1109_TCSS_2023_3239523 crossref_primary_10_4018_JDM_321739 crossref_primary_10_1016_j_ijforecast_2024_12_004 crossref_primary_10_1155_2023_5609996 crossref_primary_10_1016_j_engappai_2025_110278 crossref_primary_10_1371_journal_pdig_0000541 crossref_primary_10_1109_TCBB_2021_3061300 crossref_primary_10_1016_j_irfa_2023_103005 crossref_primary_10_1038_s41598_021_90164_z crossref_primary_10_3390_s24165081 crossref_primary_10_1002_for_3040 crossref_primary_10_31590_ejosat_1082297 crossref_primary_10_1016_j_techfore_2021_120658 crossref_primary_10_3390_sym13040652 crossref_primary_10_3390_math12162467 crossref_primary_10_1109_ACCESS_2024_3484409 crossref_primary_10_1080_01431161_2024_2307945 crossref_primary_10_1038_s41467_022_31753_y crossref_primary_10_3390_math12213423 crossref_primary_10_1016_j_eswa_2022_117233 crossref_primary_10_3390_su13052459 crossref_primary_10_1007_s10614_022_10308_9 crossref_primary_10_1109_ACCESS_2020_3027337 crossref_primary_10_2139_ssrn_4141327 crossref_primary_10_1108_CG_01_2022_0048 crossref_primary_10_1016_j_orp_2023_100292 crossref_primary_10_1111_rssa_12813 crossref_primary_10_1109_ACCESS_2024_3490778 crossref_primary_10_1016_j_ins_2019_04_060 crossref_primary_10_1080_15623599_2025_2467065 crossref_primary_10_1016_j_asoc_2021_107734 crossref_primary_10_1016_j_ymeth_2024_01_005 crossref_primary_10_1002_jcaf_22539 crossref_primary_10_1016_j_engappai_2020_104036 crossref_primary_10_1007_s10115_024_02129_z crossref_primary_10_1016_j_ejor_2023_06_036 crossref_primary_10_1080_14697688_2025_2466740 crossref_primary_10_1186_s40854_023_00517_y crossref_primary_10_1016_j_knosys_2019_105118 crossref_primary_10_1021_acs_energyfuels_0c00846 crossref_primary_10_1007_s10614_021_10227_1 crossref_primary_10_1016_j_atmosres_2019_104716 crossref_primary_10_1016_j_ijleo_2024_171929 crossref_primary_10_1016_j_eswa_2022_118158 crossref_primary_10_1016_j_bdr_2021_100287 crossref_primary_10_1016_j_eswa_2023_121349 crossref_primary_10_1177_09544100231153298 crossref_primary_10_1016_j_asoc_2024_111538 crossref_primary_10_1007_s11053_019_09576_4 crossref_primary_10_1016_j_physa_2019_122370 crossref_primary_10_3389_fevo_2021_771439 crossref_primary_10_1016_j_frl_2023_103698 |
Cites_doi | 10.1145/2939672.2939785 10.1016/j.amc.2005.05.027 10.1057/palgrave.jors.2601545 10.1016/S0167-9473(01)00065-2 10.1016/j.eswa.2011.09.058 10.1002/sim.6956 10.1093/bja/aex117 10.1016/j.eswa.2007.11.067 10.1148/radiology.143.1.7063747 10.1016/S0957-4174(02)00044-1 10.3390/en10122067 10.1214/aos/1013203451 10.1007/BF00058655 10.1016/j.eswa.2006.07.007 10.1016/j.eswa.2008.10.015 10.1520/JTE20130330 10.1016/j.eswa.2004.12.008 10.1371/journal.pone.0164300 10.1080/03610926.2014.968730 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2018.09.029 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 920 |
ExternalDocumentID | 10_1016_j_asoc_2018_09_029 S1568494618305465 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c414t-9b7319709c7ee5ee4e53679a5dfc33dbd053ad8a672fa2fa39b4d04a72ad1de03 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:13:07 EDT 2025 Tue Jul 01 01:50:01 EDT 2025 Fri Feb 23 02:24:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Credit risk assessment model Support vector machine Receiver operative curve eXtreme gradient boosting tree |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-9b7319709c7ee5ee4e53679a5dfc33dbd053ad8a672fa2fa39b4d04a72ad1de03 |
ORCID | 0000-0002-9630-7386 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2018_09_029 crossref_primary_10_1016_j_asoc_2018_09_029 elsevier_sciencedirect_doi_10_1016_j_asoc_2018_09_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Silvilairat, Charoenkwan, Saekho, Tantiworawit, Phrommintikul, Srichairatanakool, Chattipakorn (b19) 2017; 11 Chang, Chang, Chu, Tong (b4) 2016; 45 Y. Freund, R.E. Shapire, Experiments with a new boosting algorithm, in: Proceedings of 13th International Conference on Machine Learning (ICML), Bari, Italy (1996), pp. 148-156. Chang, Chang, Hsiao (b23) 2014; 42 Chuang, Lin (b8) 2009; 36 Hanley, McNeil (b22) 1982; 143 Baesens, Van Gestel, Viaene, Stepanova, Suykens, Vanthienen (b1) 2003; 54 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b16) 2011; 12 Huang, Tzeng, Ong (b5) 2006; 174 Wang, Dong, Tian (b17) 2017; 10 Fong, Yin, Huang (b20) 2016; 35 Huang, Chen, Wang (b6) 2007; 33 Hajian-Tilaki (b18) 2013; 4 Friedman (b12) 2001; 29 Tyree, Weinberger, Agrawal, Paykin (b14) 2011 Guelman (b13) 2012; 39 Lin (b7) 2009; 36 Wong, Oliver, Moonesinghe (b21) 2017; 119 Boser, Guyon, Vapnik (b25) 1992 T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in :Proceeding of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco (2016) pp. 785-794. Breiman (b10) 1996; 24 Ivakhnenko (b24) 1966; 13 Friedman (b15) 2002; 38 Lee, Chiu, Lu, Chen (b2) 2002; 23 Min, Lee (b3) 2005; 28 Friedman (10.1016/j.asoc.2018.09.029_b12) 2001; 29 Wong (10.1016/j.asoc.2018.09.029_b21) 2017; 119 Wang (10.1016/j.asoc.2018.09.029_b17) 2017; 10 Hanley (10.1016/j.asoc.2018.09.029_b22) 1982; 143 Silvilairat (10.1016/j.asoc.2018.09.029_b19) 2017; 11 Pedregosa (10.1016/j.asoc.2018.09.029_b16) 2011; 12 Huang (10.1016/j.asoc.2018.09.029_b5) 2006; 174 10.1016/j.asoc.2018.09.029_b11 Breiman (10.1016/j.asoc.2018.09.029_b10) 1996; 24 Baesens (10.1016/j.asoc.2018.09.029_b1) 2003; 54 10.1016/j.asoc.2018.09.029_b9 Lin (10.1016/j.asoc.2018.09.029_b7) 2009; 36 Friedman (10.1016/j.asoc.2018.09.029_b15) 2002; 38 Fong (10.1016/j.asoc.2018.09.029_b20) 2016; 35 Ivakhnenko (10.1016/j.asoc.2018.09.029_b24) 1966; 13 Guelman (10.1016/j.asoc.2018.09.029_b13) 2012; 39 Boser (10.1016/j.asoc.2018.09.029_b25) 1992 Hajian-Tilaki (10.1016/j.asoc.2018.09.029_b18) 2013; 4 Lee (10.1016/j.asoc.2018.09.029_b2) 2002; 23 Chang (10.1016/j.asoc.2018.09.029_b23) 2014; 42 Min (10.1016/j.asoc.2018.09.029_b3) 2005; 28 Chuang (10.1016/j.asoc.2018.09.029_b8) 2009; 36 Chang (10.1016/j.asoc.2018.09.029_b4) 2016; 45 Huang (10.1016/j.asoc.2018.09.029_b6) 2007; 33 Tyree (10.1016/j.asoc.2018.09.029_b14) 2011 |
References_xml | – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b10 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 45 start-page: 6803 year: 2016 end-page: 6815 ident: b4 article-title: Establish decision tree-based short-term default credit risk assessment models publication-title: Commun. Stat. Theory Methods – volume: 38 start-page: 367 year: 2002 end-page: 378 ident: b15 article-title: Stochastic gradient boosting publication-title: Comput. Statist. Data Anal. – volume: 28 start-page: 603 year: 2005 end-page: 614 ident: b3 article-title: Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters publication-title: Expert Syst. Appl. – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: b12 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Statist. – volume: 10 year: 2017 ident: b17 article-title: A novel method of statistical line loss estimation for distribution feeders based on feeder cluster and modified XGBoost publication-title: Energies – volume: 13 start-page: 43 year: 1966 end-page: 55 ident: b24 article-title: The group method of data handling–a rival of the method of stochastic approximation publication-title: Sov. Aut. Control – volume: 36 start-page: 8333 year: 2009 end-page: 8341 ident: b7 article-title: A new two-stage hybrid approach of credit risk in banking industry publication-title: Expert Syst. Appl. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b16 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 54 start-page: 627 year: 2003 end-page: 635 ident: b1 article-title: Benchmarking state-of-the-art classification algorithms for credit scoring publication-title: J. Oper. Res. Soc. – volume: 36 start-page: 1685 year: 2009 end-page: 1694 ident: b8 article-title: Constructing a reassigning credit scoring model publication-title: Expert Syst. Appl. – volume: 23 start-page: 245 year: 2002 end-page: 254 ident: b2 article-title: Credit scoring using the hybrid neural discriminant technique publication-title: Expert Syst. Appl. – volume: 11 year: 2017 ident: b19 article-title: Heart rate variability for early detection of cardiac iron deposition in patients with transfusion-dependent thalassemia publication-title: PLos One – volume: 174 start-page: 1039 year: 2006 end-page: 1053 ident: b5 article-title: Two-stage genetic programming (2SGP) for the credit scoring model publication-title: Appl. Math. Comput. – volume: 33 start-page: 847 year: 2007 end-page: 856 ident: b6 article-title: Credit scoring with a data mining approach based on support vector machines publication-title: Expert Syst. Appl. – reference: T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in :Proceeding of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco (2016) pp. 785-794. – start-page: 387 year: 2011 end-page: 396 ident: b14 article-title: Parallel boosted regression trees for web search ranking publication-title: Proceedings of the 20th international conference on World wide web – start-page: 144 year: 1992 end-page: 152 ident: b25 article-title: A training algorithm for optimal margin classifiers publication-title: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory – volume: 35 start-page: 3792 year: 2016 end-page: 3809 ident: b20 article-title: Combining biomarkers linearly and nonlinearly for classification using the area under the ROC curve publication-title: Stat. Med. – volume: 143 start-page: 29 year: 1982 end-page: 36 ident: b22 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology – volume: 39 start-page: 3659 year: 2012 end-page: 3667 ident: b13 article-title: Gradient boosting trees for auto insurance loss cost modeling and prediction publication-title: Expert Syst. Appl. – volume: 4 start-page: 627 year: 2013 end-page: 653 ident: b18 article-title: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation publication-title: Caspian J. Internal Med. – reference: Y. Freund, R.E. Shapire, Experiments with a new boosting algorithm, in: Proceedings of 13th International Conference on Machine Learning (ICML), Bari, Italy (1996), pp. 148-156. – volume: 42 start-page: 1427 year: 2014 end-page: 1437 ident: b23 article-title: A novel credit risk assessment model using a granular computing technique publication-title: J. Test. Eval. – volume: 119 start-page: 95 year: 2017 end-page: 105 ident: b21 article-title: Predicting postoperative morbidity in adult elective surgical patients using the Surgical Outcome Risk Tool (SORT) publication-title: Br. J. Anaesth. – ident: 10.1016/j.asoc.2018.09.029_b9 doi: 10.1145/2939672.2939785 – volume: 174 start-page: 1039 issue: 2 year: 2006 ident: 10.1016/j.asoc.2018.09.029_b5 article-title: Two-stage genetic programming (2SGP) for the credit scoring model publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.05.027 – volume: 54 start-page: 627 issue: 6 year: 2003 ident: 10.1016/j.asoc.2018.09.029_b1 article-title: Benchmarking state-of-the-art classification algorithms for credit scoring publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2601545 – volume: 38 start-page: 367 issue: 4 year: 2002 ident: 10.1016/j.asoc.2018.09.029_b15 article-title: Stochastic gradient boosting publication-title: Comput. Statist. Data Anal. doi: 10.1016/S0167-9473(01)00065-2 – volume: 39 start-page: 3659 issue: 3 year: 2012 ident: 10.1016/j.asoc.2018.09.029_b13 article-title: Gradient boosting trees for auto insurance loss cost modeling and prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.058 – ident: 10.1016/j.asoc.2018.09.029_b11 – volume: 35 start-page: 3792 issue: 21 year: 2016 ident: 10.1016/j.asoc.2018.09.029_b20 article-title: Combining biomarkers linearly and nonlinearly for classification using the area under the ROC curve publication-title: Stat. Med. doi: 10.1002/sim.6956 – volume: 119 start-page: 95 issue: 1 year: 2017 ident: 10.1016/j.asoc.2018.09.029_b21 article-title: Predicting postoperative morbidity in adult elective surgical patients using the Surgical Outcome Risk Tool (SORT) publication-title: Br. J. Anaesth. doi: 10.1093/bja/aex117 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.asoc.2018.09.029_b16 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 36 start-page: 1685 issue: 2 year: 2009 ident: 10.1016/j.asoc.2018.09.029_b8 article-title: Constructing a reassigning credit scoring model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.11.067 – start-page: 387 year: 2011 ident: 10.1016/j.asoc.2018.09.029_b14 article-title: Parallel boosted regression trees for web search ranking – volume: 4 start-page: 627 issue: 2 year: 2013 ident: 10.1016/j.asoc.2018.09.029_b18 article-title: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation publication-title: Caspian J. Internal Med. – volume: 143 start-page: 29 issue: 1 year: 1982 ident: 10.1016/j.asoc.2018.09.029_b22 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 23 start-page: 245 issue: 3 year: 2002 ident: 10.1016/j.asoc.2018.09.029_b2 article-title: Credit scoring using the hybrid neural discriminant technique publication-title: Expert Syst. Appl. doi: 10.1016/S0957-4174(02)00044-1 – volume: 10 issue: 12 year: 2017 ident: 10.1016/j.asoc.2018.09.029_b17 article-title: A novel method of statistical line loss estimation for distribution feeders based on feeder cluster and modified XGBoost publication-title: Energies doi: 10.3390/en10122067 – volume: 13 start-page: 43 issue: 3 year: 1966 ident: 10.1016/j.asoc.2018.09.029_b24 article-title: The group method of data handling–a rival of the method of stochastic approximation publication-title: Sov. Aut. Control – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.asoc.2018.09.029_b12 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Statist. doi: 10.1214/aos/1013203451 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.asoc.2018.09.029_b10 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – start-page: 144 year: 1992 ident: 10.1016/j.asoc.2018.09.029_b25 article-title: A training algorithm for optimal margin classifiers – volume: 33 start-page: 847 issue: 4 year: 2007 ident: 10.1016/j.asoc.2018.09.029_b6 article-title: Credit scoring with a data mining approach based on support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.07.007 – volume: 36 start-page: 8333 issue: 4 year: 2009 ident: 10.1016/j.asoc.2018.09.029_b7 article-title: A new two-stage hybrid approach of credit risk in banking industry publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.10.015 – volume: 42 start-page: 1427 issue: 6 year: 2014 ident: 10.1016/j.asoc.2018.09.029_b23 article-title: A novel credit risk assessment model using a granular computing technique publication-title: J. Test. Eval. doi: 10.1520/JTE20130330 – volume: 28 start-page: 603 issue: 4 year: 2005 ident: 10.1016/j.asoc.2018.09.029_b3 article-title: Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2004.12.008 – volume: 11 issue: 10 year: 2017 ident: 10.1016/j.asoc.2018.09.029_b19 article-title: Heart rate variability for early detection of cardiac iron deposition in patients with transfusion-dependent thalassemia publication-title: PLos One doi: 10.1371/journal.pone.0164300 – volume: 45 start-page: 6803 issue: 23 year: 2016 ident: 10.1016/j.asoc.2018.09.029_b4 article-title: Establish decision tree-based short-term default credit risk assessment models publication-title: Commun. Stat. Theory Methods doi: 10.1080/03610926.2014.968730 |
SSID | ssj0016928 |
Score | 2.6013212 |
Snippet | The majority of the studies on credit risk assessment models for financial institutions during recent years focus on the improvement of imbalanced data or on... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 914 |
SubjectTerms | Credit risk assessment model eXtreme gradient boosting tree Receiver operative curve Support vector machine |
Title | Application of eXtreme gradient boosting trees in the construction of credit risk assessment models for financial institutions |
URI | https://dx.doi.org/10.1016/j.asoc.2018.09.029 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3iU26m6R7LMVSX0XUQm_LviIVSYvNub_dmWTTKogHIRASdkLYmd2d2f3mG0Ius1iFWaaRDA9iE65SE-iQ24A5CIGEdsxYTE5-HCejCb-bxtMGGdS5MAir9HN_NaeXs7V_0_G92VnMZp0XiDx6XPAEjDLEkt6Ywc5TtPLr1RrmESWirK-KjQNs7RNnKoyXgh5AeFev5Dot3cxfFqdvC85wj-x4T5H2q5_ZJw2XH5DdugoD9YPykKz6mzNoOs-omxa450ffPks0V0HBj14iuJniAfSSznIKTh818w13LIohc-isoAg1p2pN10nLSjlLCq4tzWpyDvhEhTBAkz0ik-HN62AU-KoKgeERLwKhUxh2aShM6lzsHHcxS1KhYpsZxqy2MCyV7akk7WYKLiY0tyFosatsZF3Ijkkzn-fuhFBjwN2AkKfLNOfacOGQHU6FTmimhHMtEtXdKY2nHMfKFx-yxpa9S1SBRBXIUEhQQYtcrWUWFeHGn63jWkvyh9lIWBH-kDv9p9wZ2canCs9yTpqgJ3cBXkmh26XZtclWf_D88IT32_vR-AvowueK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAL5SlKecwBTihsNnaS9aGHCqi29HGhlfZm_JigRWi3YiMhLv1T_MHOJM4WJNQDUqWcktiyZybjmfjzNwCvm9LlTeOFDI9zE-3qkPlcx0wRp0DGkwpRDicfn1TTM_1pVs424PdwFkZglcn39z6989bpzihJc3Q-n48-c-Yx0UZXbJS5lPROyMpD-vWT87bV7sEHVvKbotj_ePp-mqXSAlnQY91mxtdse3VuQk1UEmkqVVUbV8YmKBV9ZNt0ceKqumgcX8p4HXOeSuHiOFKuuN9bcFuzu5CyCe8u1riScWW6gq4yukyGl07q9KAyxyIXPNmkI1ft4tp_rIZ_rHD79-FeCk1xr5_9A9igxUPYGso-YPICj-Bi72rTG5cN0qyVn4z49UcHH2uRA_eVoKlRdrxXOF8gR5kYlldktdJMqErnLQq2Hd2aHxS70jwr5Fgam4ENhLvoIQ3yjTyGsxuR9RPYXCwX9BQwBI5vOMcqlNfaB21I6OhcTsYrZ4i2YTyI04bEcS6lNr7bAcz2zYoKrKjA5sayCrbh7brNec_wce3b5aAl-5edWl6Crmn37D_bvYI709PjI3t0cHK4A3flSQ-meQ6brDN6wSFR6192Jojw5aZt_hKxkiLi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+eXtreme+gradient+boosting+trees+in+the+construction+of+credit+risk+assessment+models+for+financial+institutions&rft.jtitle=Applied+soft+computing&rft.au=Chang%2C+Yung-Chia&rft.au=Chang%2C+Kuei-Hu&rft.au=Wu%2C+Guan-Jhih&rft.date=2018-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=73&rft.spage=914&rft.epage=920&rft_id=info:doi/10.1016%2Fj.asoc.2018.09.029&rft.externalDocID=S1568494618305465 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |