Application of eXtreme gradient boosting trees in the construction of credit risk assessment models for financial institutions

The majority of the studies on credit risk assessment models for financial institutions during recent years focus on the improvement of imbalanced data or on the enhancement of classification accuracy with multistage modeling. Whilst multistage modeling and data pre-processing can boost accuracy som...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 73; pp. 914 - 920
Main Authors Chang, Yung-Chia, Chang, Kuei-Hu, Wu, Guan-Jhih
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The majority of the studies on credit risk assessment models for financial institutions during recent years focus on the improvement of imbalanced data or on the enhancement of classification accuracy with multistage modeling. Whilst multistage modeling and data pre-processing can boost accuracy somewhat, the heterogeneous nature of data may affects the classification accuracy of classifiers. This paper intends to use the classifier, eXtreme gradient boosting tree (XGBoost), to construct a credit risk assessment model for financial institutions. Cluster-based under-sampling is deployed to process imbalanced data. Finally, the area under the receiver operative curve and the accuracy of classifications are the assessment indicators, in the comparison with other frequently used single-stage classifiers such as logistic regression, self-organizing algorithms and support vector machine. The results indicate that the XGBoost classifier used by this paper achieve better results than the other three and can serve as a superior tool for the development of credit risk models for financial institutions. •This paper construct a credit risk assessment model for financial institutions.•This paper constructs a credit risk assessment model with the XGBoost method.•The research results can improvement of the loan business efficiency.
AbstractList The majority of the studies on credit risk assessment models for financial institutions during recent years focus on the improvement of imbalanced data or on the enhancement of classification accuracy with multistage modeling. Whilst multistage modeling and data pre-processing can boost accuracy somewhat, the heterogeneous nature of data may affects the classification accuracy of classifiers. This paper intends to use the classifier, eXtreme gradient boosting tree (XGBoost), to construct a credit risk assessment model for financial institutions. Cluster-based under-sampling is deployed to process imbalanced data. Finally, the area under the receiver operative curve and the accuracy of classifications are the assessment indicators, in the comparison with other frequently used single-stage classifiers such as logistic regression, self-organizing algorithms and support vector machine. The results indicate that the XGBoost classifier used by this paper achieve better results than the other three and can serve as a superior tool for the development of credit risk models for financial institutions. •This paper construct a credit risk assessment model for financial institutions.•This paper constructs a credit risk assessment model with the XGBoost method.•The research results can improvement of the loan business efficiency.
Author Chang, Kuei-Hu
Wu, Guan-Jhih
Chang, Yung-Chia
Author_xml – sequence: 1
  givenname: Yung-Chia
  surname: Chang
  fullname: Chang, Yung-Chia
  organization: Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu 300, Taiwan
– sequence: 2
  givenname: Kuei-Hu
  orcidid: 0000-0002-9630-7386
  surname: Chang
  fullname: Chang, Kuei-Hu
  email: evenken2002@yahoo.com.tw
  organization: Department of Management Sciences, R.O.C. Military Academy, Kaohsiung 830, Taiwan
– sequence: 3
  givenname: Guan-Jhih
  surname: Wu
  fullname: Wu, Guan-Jhih
  organization: Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu 300, Taiwan
BookMark eNp9kE1LAzEQhoNUsFb_gKf8gV2T_Q54KcUvKHhR8BbSZLambpOSSQUv_nazVi8eCgMzDDwvvM85mTjvgJArznLOeHO9yRV6nReMdzkTOSvECZnyri0y0XR8ku666bJKVM0ZOUfcsASJopuSr_luN1itovWO-p7CawywBboOylhwka68x2jdmqY_ILWOxjeg2juMYa__MB3A2EiDxXeqEAFxO8Jbb2BA2vtAe-uU01YNKSIFxv2I4gU57dWAcPm7Z-Tl7vZ58ZAtn-4fF_NlpitexUys2pKLlgndAtQAFdRl0wpVm16XpVkZVpfKdKppi16lKcWqMqxSbaEMN8DKGekOuTp4xAC91Db-lI5B2UFyJkePciNHj3L0KJmQyWNCi3_oLtitCp_HoZsDlOrDh4UgUSedOlkKoKM03h7DvwHheJNx
CitedBy_id crossref_primary_10_1016_j_pacfin_2024_102550
crossref_primary_10_3233_IDA_216228
crossref_primary_10_1016_j_asoc_2021_107946
crossref_primary_10_1109_ACCESS_2021_3125920
crossref_primary_10_2478_jaiscr_2023_0017
crossref_primary_10_3390_app14167231
crossref_primary_10_1016_j_patrec_2020_05_035
crossref_primary_10_1155_2020_8706285
crossref_primary_10_1007_s40808_022_01678_y
crossref_primary_10_1016_j_inteco_2021_10_003
crossref_primary_10_3233_JIFS_231344
crossref_primary_10_1080_1331677X_2020_1867213
crossref_primary_10_1016_j_asoc_2021_107672
crossref_primary_10_3390_e23010027
crossref_primary_10_1186_s12911_024_02473_8
crossref_primary_10_3390_s24248148
crossref_primary_10_11648_j_mlr_20240902_15
crossref_primary_10_1016_j_jcis_2023_05_052
crossref_primary_10_3389_fams_2023_1195810
crossref_primary_10_3390_risks7020067
crossref_primary_10_1111_risa_14215
crossref_primary_10_1016_j_trc_2022_103704
crossref_primary_10_2139_ssrn_3929927
crossref_primary_10_3390_s21082748
crossref_primary_10_1016_j_mar_2023_100876
crossref_primary_10_1007_s10479_024_05921_w
crossref_primary_10_1007_s44379_024_00004_w
crossref_primary_10_1016_j_ins_2021_01_061
crossref_primary_10_1016_j_eswa_2021_114840
crossref_primary_10_3390_electronics13050973
crossref_primary_10_1016_j_conbuildmat_2020_120083
crossref_primary_10_4236_tel_2021_112019
crossref_primary_10_1016_j_techfore_2021_121371
crossref_primary_10_1016_j_asoc_2019_105640
crossref_primary_10_1016_j_scitotenv_2023_161996
crossref_primary_10_2298_FUEE2401211U
crossref_primary_10_3390_ma15124164
crossref_primary_10_1007_s13198_021_01462_8
crossref_primary_10_1002_ett_4869
crossref_primary_10_1016_j_eswa_2023_122778
crossref_primary_10_1016_j_jmrt_2023_02_021
crossref_primary_10_1016_j_comnet_2024_110879
crossref_primary_10_33166_AETiC_2023_02_005
crossref_primary_10_3390_info12040156
crossref_primary_10_1038_s42254_023_00603_1
crossref_primary_10_1002_for_3080
crossref_primary_10_3390_chemosensors11040229
crossref_primary_10_1016_j_apr_2020_05_009
crossref_primary_10_1016_j_eswa_2022_117271
crossref_primary_10_1155_2023_7690322
crossref_primary_10_3390_ijgi9090507
crossref_primary_10_3390_math11132961
crossref_primary_10_1007_s10614_024_10766_3
crossref_primary_10_1155_2022_8005493
crossref_primary_10_1007_s40808_023_01882_4
crossref_primary_10_1111_exsy_13275
crossref_primary_10_3390_math12020182
crossref_primary_10_1016_j_aei_2024_102852
crossref_primary_10_1016_j_procs_2024_09_130
crossref_primary_10_2139_ssrn_4355268
crossref_primary_10_1109_TFUZZ_2022_3226250
crossref_primary_10_3390_math12101427
crossref_primary_10_3390_risks10050102
crossref_primary_10_1007_s00542_024_05778_w
crossref_primary_10_1016_j_eswa_2022_116624
crossref_primary_10_1016_j_ijleo_2024_171838
crossref_primary_10_1038_s41598_024_83394_4
crossref_primary_10_3390_s22207711
crossref_primary_10_1177_0739456X241268464
crossref_primary_10_1155_2021_6655510
crossref_primary_10_1016_j_heliyon_2022_e11388
crossref_primary_10_1109_ACCESS_2024_3383837
crossref_primary_10_17150_2411_6262_2023_14_3__822_834
crossref_primary_10_1142_S0219649224500515
crossref_primary_10_1016_j_eswa_2020_113799
crossref_primary_10_1007_s00477_024_02745_9
crossref_primary_10_1142_S0218126622501973
crossref_primary_10_3390_fi14060180
crossref_primary_10_1016_j_eswa_2022_118873
crossref_primary_10_1016_j_ejor_2023_11_022
crossref_primary_10_1080_19475705_2021_1880977
crossref_primary_10_3390_chemosensors10120506
crossref_primary_10_1155_2024_2644725
crossref_primary_10_14495_jsiaml_13_25
crossref_primary_10_1109_ACCESS_2020_3047138
crossref_primary_10_1016_j_jenvman_2025_124323
crossref_primary_10_1080_01605682_2024_2416908
crossref_primary_10_21919_remef_v19i4_868
crossref_primary_10_1108_JM2_09_2020_0235
crossref_primary_10_2196_25635
crossref_primary_10_3389_fgene_2022_836798
crossref_primary_10_1016_j_ejor_2024_10_046
crossref_primary_10_1177_11786221231195824
crossref_primary_10_1016_j_asoc_2021_107989
crossref_primary_10_1016_j_ijforecast_2021_12_011
crossref_primary_10_7717_peerj_cs_670
crossref_primary_10_1016_j_eswa_2023_119677
crossref_primary_10_1016_j_knosys_2021_106875
crossref_primary_10_3390_risks10040071
crossref_primary_10_3390_risks9070136
crossref_primary_10_1080_08839514_2022_2074129
crossref_primary_10_1016_j_ijmedinf_2019_103979
crossref_primary_10_1088_1742_6596_1539_1_012030
crossref_primary_10_1016_j_compbiomed_2020_103845
crossref_primary_10_1016_j_jseaes_2024_106367
crossref_primary_10_1016_j_istruc_2024_106524
crossref_primary_10_3934_math_2024049
crossref_primary_10_1002_2050_7038_13181
crossref_primary_10_3389_frfst_2022_979028
crossref_primary_10_1016_j_jmrt_2023_04_223
crossref_primary_10_1016_j_joi_2022_101333
crossref_primary_10_1007_s13201_024_02301_4
crossref_primary_10_1016_j_conbuildmat_2020_120286
crossref_primary_10_1016_j_asoc_2021_108160
crossref_primary_10_1016_j_geoen_2023_211837
crossref_primary_10_1177_1042258720945206
crossref_primary_10_3390_risks11050097
crossref_primary_10_1016_j_asoc_2020_106263
crossref_primary_10_32604_cmes_2024_046960
crossref_primary_10_1016_j_asoc_2020_106262
crossref_primary_10_3390_urbansci7030091
crossref_primary_10_2139_ssrn_4094656
crossref_primary_10_1016_j_knosys_2020_106462
crossref_primary_10_1108_GKMC_12_2023_0492
crossref_primary_10_2139_ssrn_4141190
crossref_primary_10_1177_10422587221121291
crossref_primary_10_1007_s00477_021_02075_0
crossref_primary_10_59400_be_v2i1_544
crossref_primary_10_1108_IMDS_08_2022_0468
crossref_primary_10_1109_ACCESS_2024_3520159
crossref_primary_10_3168_jds_2022_22803
crossref_primary_10_1002_for_2860
crossref_primary_10_1109_TCSS_2023_3239523
crossref_primary_10_4018_JDM_321739
crossref_primary_10_1016_j_ijforecast_2024_12_004
crossref_primary_10_1155_2023_5609996
crossref_primary_10_1016_j_engappai_2025_110278
crossref_primary_10_1371_journal_pdig_0000541
crossref_primary_10_1109_TCBB_2021_3061300
crossref_primary_10_1016_j_irfa_2023_103005
crossref_primary_10_1038_s41598_021_90164_z
crossref_primary_10_3390_s24165081
crossref_primary_10_1002_for_3040
crossref_primary_10_31590_ejosat_1082297
crossref_primary_10_1016_j_techfore_2021_120658
crossref_primary_10_3390_sym13040652
crossref_primary_10_3390_math12162467
crossref_primary_10_1109_ACCESS_2024_3484409
crossref_primary_10_1080_01431161_2024_2307945
crossref_primary_10_1038_s41467_022_31753_y
crossref_primary_10_3390_math12213423
crossref_primary_10_1016_j_eswa_2022_117233
crossref_primary_10_3390_su13052459
crossref_primary_10_1007_s10614_022_10308_9
crossref_primary_10_1109_ACCESS_2020_3027337
crossref_primary_10_2139_ssrn_4141327
crossref_primary_10_1108_CG_01_2022_0048
crossref_primary_10_1016_j_orp_2023_100292
crossref_primary_10_1111_rssa_12813
crossref_primary_10_1109_ACCESS_2024_3490778
crossref_primary_10_1016_j_ins_2019_04_060
crossref_primary_10_1080_15623599_2025_2467065
crossref_primary_10_1016_j_asoc_2021_107734
crossref_primary_10_1016_j_ymeth_2024_01_005
crossref_primary_10_1002_jcaf_22539
crossref_primary_10_1016_j_engappai_2020_104036
crossref_primary_10_1007_s10115_024_02129_z
crossref_primary_10_1016_j_ejor_2023_06_036
crossref_primary_10_1080_14697688_2025_2466740
crossref_primary_10_1186_s40854_023_00517_y
crossref_primary_10_1016_j_knosys_2019_105118
crossref_primary_10_1021_acs_energyfuels_0c00846
crossref_primary_10_1007_s10614_021_10227_1
crossref_primary_10_1016_j_atmosres_2019_104716
crossref_primary_10_1016_j_ijleo_2024_171929
crossref_primary_10_1016_j_eswa_2022_118158
crossref_primary_10_1016_j_bdr_2021_100287
crossref_primary_10_1016_j_eswa_2023_121349
crossref_primary_10_1177_09544100231153298
crossref_primary_10_1016_j_asoc_2024_111538
crossref_primary_10_1007_s11053_019_09576_4
crossref_primary_10_1016_j_physa_2019_122370
crossref_primary_10_3389_fevo_2021_771439
crossref_primary_10_1016_j_frl_2023_103698
Cites_doi 10.1145/2939672.2939785
10.1016/j.amc.2005.05.027
10.1057/palgrave.jors.2601545
10.1016/S0167-9473(01)00065-2
10.1016/j.eswa.2011.09.058
10.1002/sim.6956
10.1093/bja/aex117
10.1016/j.eswa.2007.11.067
10.1148/radiology.143.1.7063747
10.1016/S0957-4174(02)00044-1
10.3390/en10122067
10.1214/aos/1013203451
10.1007/BF00058655
10.1016/j.eswa.2006.07.007
10.1016/j.eswa.2008.10.015
10.1520/JTE20130330
10.1016/j.eswa.2004.12.008
10.1371/journal.pone.0164300
10.1080/03610926.2014.968730
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2018.09.029
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 920
ExternalDocumentID 10_1016_j_asoc_2018_09_029
S1568494618305465
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c414t-9b7319709c7ee5ee4e53679a5dfc33dbd053ad8a672fa2fa39b4d04a72ad1de03
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:13:07 EDT 2025
Tue Jul 01 01:50:01 EDT 2025
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Credit risk assessment model
Support vector machine
Receiver operative curve
eXtreme gradient boosting tree
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-9b7319709c7ee5ee4e53679a5dfc33dbd053ad8a672fa2fa39b4d04a72ad1de03
ORCID 0000-0002-9630-7386
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2018_09_029
crossref_primary_10_1016_j_asoc_2018_09_029
elsevier_sciencedirect_doi_10_1016_j_asoc_2018_09_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Silvilairat, Charoenkwan, Saekho, Tantiworawit, Phrommintikul, Srichairatanakool, Chattipakorn (b19) 2017; 11
Chang, Chang, Chu, Tong (b4) 2016; 45
Y. Freund, R.E. Shapire, Experiments with a new boosting algorithm, in: Proceedings of 13th International Conference on Machine Learning (ICML), Bari, Italy (1996), pp. 148-156.
Chang, Chang, Hsiao (b23) 2014; 42
Chuang, Lin (b8) 2009; 36
Hanley, McNeil (b22) 1982; 143
Baesens, Van Gestel, Viaene, Stepanova, Suykens, Vanthienen (b1) 2003; 54
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b16) 2011; 12
Huang, Tzeng, Ong (b5) 2006; 174
Wang, Dong, Tian (b17) 2017; 10
Fong, Yin, Huang (b20) 2016; 35
Huang, Chen, Wang (b6) 2007; 33
Hajian-Tilaki (b18) 2013; 4
Friedman (b12) 2001; 29
Tyree, Weinberger, Agrawal, Paykin (b14) 2011
Guelman (b13) 2012; 39
Lin (b7) 2009; 36
Wong, Oliver, Moonesinghe (b21) 2017; 119
Boser, Guyon, Vapnik (b25) 1992
T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in :Proceeding of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco (2016) pp. 785-794.
Breiman (b10) 1996; 24
Ivakhnenko (b24) 1966; 13
Friedman (b15) 2002; 38
Lee, Chiu, Lu, Chen (b2) 2002; 23
Min, Lee (b3) 2005; 28
Friedman (10.1016/j.asoc.2018.09.029_b12) 2001; 29
Wong (10.1016/j.asoc.2018.09.029_b21) 2017; 119
Wang (10.1016/j.asoc.2018.09.029_b17) 2017; 10
Hanley (10.1016/j.asoc.2018.09.029_b22) 1982; 143
Silvilairat (10.1016/j.asoc.2018.09.029_b19) 2017; 11
Pedregosa (10.1016/j.asoc.2018.09.029_b16) 2011; 12
Huang (10.1016/j.asoc.2018.09.029_b5) 2006; 174
10.1016/j.asoc.2018.09.029_b11
Breiman (10.1016/j.asoc.2018.09.029_b10) 1996; 24
Baesens (10.1016/j.asoc.2018.09.029_b1) 2003; 54
10.1016/j.asoc.2018.09.029_b9
Lin (10.1016/j.asoc.2018.09.029_b7) 2009; 36
Friedman (10.1016/j.asoc.2018.09.029_b15) 2002; 38
Fong (10.1016/j.asoc.2018.09.029_b20) 2016; 35
Ivakhnenko (10.1016/j.asoc.2018.09.029_b24) 1966; 13
Guelman (10.1016/j.asoc.2018.09.029_b13) 2012; 39
Boser (10.1016/j.asoc.2018.09.029_b25) 1992
Hajian-Tilaki (10.1016/j.asoc.2018.09.029_b18) 2013; 4
Lee (10.1016/j.asoc.2018.09.029_b2) 2002; 23
Chang (10.1016/j.asoc.2018.09.029_b23) 2014; 42
Min (10.1016/j.asoc.2018.09.029_b3) 2005; 28
Chuang (10.1016/j.asoc.2018.09.029_b8) 2009; 36
Chang (10.1016/j.asoc.2018.09.029_b4) 2016; 45
Huang (10.1016/j.asoc.2018.09.029_b6) 2007; 33
Tyree (10.1016/j.asoc.2018.09.029_b14) 2011
References_xml – volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b10
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 45
  start-page: 6803
  year: 2016
  end-page: 6815
  ident: b4
  article-title: Establish decision tree-based short-term default credit risk assessment models
  publication-title: Commun. Stat. Theory Methods
– volume: 38
  start-page: 367
  year: 2002
  end-page: 378
  ident: b15
  article-title: Stochastic gradient boosting
  publication-title: Comput. Statist. Data Anal.
– volume: 28
  start-page: 603
  year: 2005
  end-page: 614
  ident: b3
  article-title: Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
  publication-title: Expert Syst. Appl.
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: b12
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Statist.
– volume: 10
  year: 2017
  ident: b17
  article-title: A novel method of statistical line loss estimation for distribution feeders based on feeder cluster and modified XGBoost
  publication-title: Energies
– volume: 13
  start-page: 43
  year: 1966
  end-page: 55
  ident: b24
  article-title: The group method of data handling–a rival of the method of stochastic approximation
  publication-title: Sov. Aut. Control
– volume: 36
  start-page: 8333
  year: 2009
  end-page: 8341
  ident: b7
  article-title: A new two-stage hybrid approach of credit risk in banking industry
  publication-title: Expert Syst. Appl.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b16
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 54
  start-page: 627
  year: 2003
  end-page: 635
  ident: b1
  article-title: Benchmarking state-of-the-art classification algorithms for credit scoring
  publication-title: J. Oper. Res. Soc.
– volume: 36
  start-page: 1685
  year: 2009
  end-page: 1694
  ident: b8
  article-title: Constructing a reassigning credit scoring model
  publication-title: Expert Syst. Appl.
– volume: 23
  start-page: 245
  year: 2002
  end-page: 254
  ident: b2
  article-title: Credit scoring using the hybrid neural discriminant technique
  publication-title: Expert Syst. Appl.
– volume: 11
  year: 2017
  ident: b19
  article-title: Heart rate variability for early detection of cardiac iron deposition in patients with transfusion-dependent thalassemia
  publication-title: PLos One
– volume: 174
  start-page: 1039
  year: 2006
  end-page: 1053
  ident: b5
  article-title: Two-stage genetic programming (2SGP) for the credit scoring model
  publication-title: Appl. Math. Comput.
– volume: 33
  start-page: 847
  year: 2007
  end-page: 856
  ident: b6
  article-title: Credit scoring with a data mining approach based on support vector machines
  publication-title: Expert Syst. Appl.
– reference: T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in :Proceeding of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco (2016) pp. 785-794.
– start-page: 387
  year: 2011
  end-page: 396
  ident: b14
  article-title: Parallel boosted regression trees for web search ranking
  publication-title: Proceedings of the 20th international conference on World wide web
– start-page: 144
  year: 1992
  end-page: 152
  ident: b25
  article-title: A training algorithm for optimal margin classifiers
  publication-title: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory
– volume: 35
  start-page: 3792
  year: 2016
  end-page: 3809
  ident: b20
  article-title: Combining biomarkers linearly and nonlinearly for classification using the area under the ROC curve
  publication-title: Stat. Med.
– volume: 143
  start-page: 29
  year: 1982
  end-page: 36
  ident: b22
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
– volume: 39
  start-page: 3659
  year: 2012
  end-page: 3667
  ident: b13
  article-title: Gradient boosting trees for auto insurance loss cost modeling and prediction
  publication-title: Expert Syst. Appl.
– volume: 4
  start-page: 627
  year: 2013
  end-page: 653
  ident: b18
  article-title: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation
  publication-title: Caspian J. Internal Med.
– reference: Y. Freund, R.E. Shapire, Experiments with a new boosting algorithm, in: Proceedings of 13th International Conference on Machine Learning (ICML), Bari, Italy (1996), pp. 148-156.
– volume: 42
  start-page: 1427
  year: 2014
  end-page: 1437
  ident: b23
  article-title: A novel credit risk assessment model using a granular computing technique
  publication-title: J. Test. Eval.
– volume: 119
  start-page: 95
  year: 2017
  end-page: 105
  ident: b21
  article-title: Predicting postoperative morbidity in adult elective surgical patients using the Surgical Outcome Risk Tool (SORT)
  publication-title: Br. J. Anaesth.
– ident: 10.1016/j.asoc.2018.09.029_b9
  doi: 10.1145/2939672.2939785
– volume: 174
  start-page: 1039
  issue: 2
  year: 2006
  ident: 10.1016/j.asoc.2018.09.029_b5
  article-title: Two-stage genetic programming (2SGP) for the credit scoring model
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.05.027
– volume: 54
  start-page: 627
  issue: 6
  year: 2003
  ident: 10.1016/j.asoc.2018.09.029_b1
  article-title: Benchmarking state-of-the-art classification algorithms for credit scoring
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601545
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  ident: 10.1016/j.asoc.2018.09.029_b15
  article-title: Stochastic gradient boosting
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 39
  start-page: 3659
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2018.09.029_b13
  article-title: Gradient boosting trees for auto insurance loss cost modeling and prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.058
– ident: 10.1016/j.asoc.2018.09.029_b11
– volume: 35
  start-page: 3792
  issue: 21
  year: 2016
  ident: 10.1016/j.asoc.2018.09.029_b20
  article-title: Combining biomarkers linearly and nonlinearly for classification using the area under the ROC curve
  publication-title: Stat. Med.
  doi: 10.1002/sim.6956
– volume: 119
  start-page: 95
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2018.09.029_b21
  article-title: Predicting postoperative morbidity in adult elective surgical patients using the Surgical Outcome Risk Tool (SORT)
  publication-title: Br. J. Anaesth.
  doi: 10.1093/bja/aex117
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.asoc.2018.09.029_b16
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 36
  start-page: 1685
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2018.09.029_b8
  article-title: Constructing a reassigning credit scoring model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.11.067
– start-page: 387
  year: 2011
  ident: 10.1016/j.asoc.2018.09.029_b14
  article-title: Parallel boosted regression trees for web search ranking
– volume: 4
  start-page: 627
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2018.09.029_b18
  article-title: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation
  publication-title: Caspian J. Internal Med.
– volume: 143
  start-page: 29
  issue: 1
  year: 1982
  ident: 10.1016/j.asoc.2018.09.029_b22
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 23
  start-page: 245
  issue: 3
  year: 2002
  ident: 10.1016/j.asoc.2018.09.029_b2
  article-title: Credit scoring using the hybrid neural discriminant technique
  publication-title: Expert Syst. Appl.
  doi: 10.1016/S0957-4174(02)00044-1
– volume: 10
  issue: 12
  year: 2017
  ident: 10.1016/j.asoc.2018.09.029_b17
  article-title: A novel method of statistical line loss estimation for distribution feeders based on feeder cluster and modified XGBoost
  publication-title: Energies
  doi: 10.3390/en10122067
– volume: 13
  start-page: 43
  issue: 3
  year: 1966
  ident: 10.1016/j.asoc.2018.09.029_b24
  article-title: The group method of data handling–a rival of the method of stochastic approximation
  publication-title: Sov. Aut. Control
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.asoc.2018.09.029_b12
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1013203451
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.asoc.2018.09.029_b10
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– start-page: 144
  year: 1992
  ident: 10.1016/j.asoc.2018.09.029_b25
  article-title: A training algorithm for optimal margin classifiers
– volume: 33
  start-page: 847
  issue: 4
  year: 2007
  ident: 10.1016/j.asoc.2018.09.029_b6
  article-title: Credit scoring with a data mining approach based on support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.07.007
– volume: 36
  start-page: 8333
  issue: 4
  year: 2009
  ident: 10.1016/j.asoc.2018.09.029_b7
  article-title: A new two-stage hybrid approach of credit risk in banking industry
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.10.015
– volume: 42
  start-page: 1427
  issue: 6
  year: 2014
  ident: 10.1016/j.asoc.2018.09.029_b23
  article-title: A novel credit risk assessment model using a granular computing technique
  publication-title: J. Test. Eval.
  doi: 10.1520/JTE20130330
– volume: 28
  start-page: 603
  issue: 4
  year: 2005
  ident: 10.1016/j.asoc.2018.09.029_b3
  article-title: Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2004.12.008
– volume: 11
  issue: 10
  year: 2017
  ident: 10.1016/j.asoc.2018.09.029_b19
  article-title: Heart rate variability for early detection of cardiac iron deposition in patients with transfusion-dependent thalassemia
  publication-title: PLos One
  doi: 10.1371/journal.pone.0164300
– volume: 45
  start-page: 6803
  issue: 23
  year: 2016
  ident: 10.1016/j.asoc.2018.09.029_b4
  article-title: Establish decision tree-based short-term default credit risk assessment models
  publication-title: Commun. Stat. Theory Methods
  doi: 10.1080/03610926.2014.968730
SSID ssj0016928
Score 2.6013212
Snippet The majority of the studies on credit risk assessment models for financial institutions during recent years focus on the improvement of imbalanced data or on...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 914
SubjectTerms Credit risk assessment model
eXtreme gradient boosting tree
Receiver operative curve
Support vector machine
Title Application of eXtreme gradient boosting trees in the construction of credit risk assessment models for financial institutions
URI https://dx.doi.org/10.1016/j.asoc.2018.09.029
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3iU26m6R7LMVSX0XUQm_LviIVSYvNub_dmWTTKogHIRASdkLYmd2d2f3mG0Ius1iFWaaRDA9iE65SE-iQ24A5CIGEdsxYTE5-HCejCb-bxtMGGdS5MAir9HN_NaeXs7V_0_G92VnMZp0XiDx6XPAEjDLEkt6Ywc5TtPLr1RrmESWirK-KjQNs7RNnKoyXgh5AeFev5Dot3cxfFqdvC85wj-x4T5H2q5_ZJw2XH5DdugoD9YPykKz6mzNoOs-omxa450ffPks0V0HBj14iuJniAfSSznIKTh818w13LIohc-isoAg1p2pN10nLSjlLCq4tzWpyDvhEhTBAkz0ik-HN62AU-KoKgeERLwKhUxh2aShM6lzsHHcxS1KhYpsZxqy2MCyV7akk7WYKLiY0tyFosatsZF3Ijkkzn-fuhFBjwN2AkKfLNOfacOGQHU6FTmimhHMtEtXdKY2nHMfKFx-yxpa9S1SBRBXIUEhQQYtcrWUWFeHGn63jWkvyh9lIWBH-kDv9p9wZ2canCs9yTpqgJ3cBXkmh26XZtclWf_D88IT32_vR-AvowueK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAL5SlKecwBTihsNnaS9aGHCqi29HGhlfZm_JigRWi3YiMhLv1T_MHOJM4WJNQDUqWcktiyZybjmfjzNwCvm9LlTeOFDI9zE-3qkPlcx0wRp0DGkwpRDicfn1TTM_1pVs424PdwFkZglcn39z6989bpzihJc3Q-n48-c-Yx0UZXbJS5lPROyMpD-vWT87bV7sEHVvKbotj_ePp-mqXSAlnQY91mxtdse3VuQk1UEmkqVVUbV8YmKBV9ZNt0ceKqumgcX8p4HXOeSuHiOFKuuN9bcFuzu5CyCe8u1riScWW6gq4yukyGl07q9KAyxyIXPNmkI1ft4tp_rIZ_rHD79-FeCk1xr5_9A9igxUPYGso-YPICj-Bi72rTG5cN0qyVn4z49UcHH2uRA_eVoKlRdrxXOF8gR5kYlldktdJMqErnLQq2Hd2aHxS70jwr5Fgam4ENhLvoIQ3yjTyGsxuR9RPYXCwX9BQwBI5vOMcqlNfaB21I6OhcTsYrZ4i2YTyI04bEcS6lNr7bAcz2zYoKrKjA5sayCrbh7brNec_wce3b5aAl-5edWl6Crmn37D_bvYI709PjI3t0cHK4A3flSQ-meQ6brDN6wSFR6192Jojw5aZt_hKxkiLi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+eXtreme+gradient+boosting+trees+in+the+construction+of+credit+risk+assessment+models+for+financial+institutions&rft.jtitle=Applied+soft+computing&rft.au=Chang%2C+Yung-Chia&rft.au=Chang%2C+Kuei-Hu&rft.au=Wu%2C+Guan-Jhih&rft.date=2018-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=73&rft.spage=914&rft.epage=920&rft_id=info:doi/10.1016%2Fj.asoc.2018.09.029&rft.externalDocID=S1568494618305465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon