Advanced cooling techniques of P.V. modules: A state of art
The efficiency of solar systems, in particular photovoltaic panels, is generally low. The output of the P.V. module is adversely affected by their surface rise in temperature. This increase is associated with the absorbed sunlight that is converted into heat, resulting in reduced power output, energ...
Saved in:
Published in | Case studies in thermal engineering Vol. 21; p. 100674 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The efficiency of solar systems, in particular photovoltaic panels, is generally low. The output of the P.V. module is adversely affected by their surface rise in temperature. This increase is associated with the absorbed sunlight that is converted into heat, resulting in reduced power output, energy efficiency, performance and life of the panel. The use of cooling techniques can offer a potential solution to avoid excessive heating of P.V. panels and to reduce cell temperature. This paper presents details of various feasible cooling methods, including novel and advanced solutions for P.V. panels and indicates future trends of research. Different features and capability about each cooling techniques are presented, to provide better insight and valuable guidelines for researchers who intend to study, improve or optimise any type of cooling techniques of P·V. modules. |
---|---|
AbstractList | The efficiency of solar systems, in particular photovoltaic panels, is generally low. The output of the P.V. module is adversely affected by their surface rise in temperature. This increase is associated with the absorbed sunlight that is converted into heat, resulting in reduced power output, energy efficiency, performance and life of the panel. The use of cooling techniques can offer a potential solution to avoid excessive heating of P.V. panels and to reduce cell temperature. This paper presents details of various feasible cooling methods, including novel and advanced solutions for P.V. panels and indicates future trends of research. Different features and capability about each cooling techniques are presented, to provide better insight and valuable guidelines for researchers who intend to study, improve or optimise any type of cooling techniques of P·V. modules. |
ArticleNumber | 100674 |
Author | Sudhakar, K. Kirpichnikova, I Dwivedi, Pushpendu Soni, Archana Solomin, E |
Author_xml | – sequence: 1 givenname: Pushpendu surname: Dwivedi fullname: Dwivedi, Pushpendu organization: Energy Centre, Maulana Azad National Institute of Technology, Bhopal, India – sequence: 2 givenname: K. surname: Sudhakar fullname: Sudhakar, K. email: sudhakar@ump.edu.my organization: Energy Centre, Maulana Azad National Institute of Technology, Bhopal, India – sequence: 3 givenname: Archana surname: Soni fullname: Soni, Archana organization: Energy Centre, Maulana Azad National Institute of Technology, Bhopal, India – sequence: 4 givenname: E surname: Solomin fullname: Solomin, E organization: Department of Electric Stations, Grids and Power Supply Systems, South Ural State University, Chelyabinsk, Russian Federation – sequence: 5 givenname: I surname: Kirpichnikova fullname: Kirpichnikova, I organization: Department of Electric Stations, Grids and Power Supply Systems, South Ural State University, Chelyabinsk, Russian Federation |
BookMark | eNp9kMtKAzEUhoMoqLVP4GZeoGNuM5koLop4KRR0oeIupCdnaso40WQs-PbOtArioquEc_h-zv8dk_02tEjIKaM5o6w8W-WQfIc5p3yY0FLJPXLEOZMTVqiX_T__QzJOaUUpZUpUTMojcjF1a9sCugxCaHy7zDqE19Z_fGLKQp095M959hbcZ4PpPJtmqbMdDgsbuxNyUNsm4fjnHZGnm-vHq7vJ_P52djWdT0Ay2U10Vbmag3KCMa204NwB0zXXyCgAULkQkpfaMl7WgGVRFdo5W9UMS0WdWIgRmW1zXbAr8x79m41fJlhvNoMQl6a_xkODppBSlFoxxV1fz2qti1pLLpTUFBSKPktvsyCGlCLWBnxfyYe2i9Y3hlEzSDUrs5FqBqlmK7VnxT_295bd1OWWwl7R2mM0CTwOyn1E6PoOfif_DTg-kFk |
CitedBy_id | crossref_primary_10_1007_s13204_022_02633_0 crossref_primary_10_1021_acs_energyfuels_3c03627 crossref_primary_10_1016_j_rinp_2024_107364 crossref_primary_10_1016_j_solener_2025_113245 crossref_primary_10_1016_j_solener_2023_111980 crossref_primary_10_3390_technologies12090171 crossref_primary_10_1016_j_solener_2023_111987 crossref_primary_10_1080_15435075_2023_2244057 crossref_primary_10_1016_j_csite_2021_101723 crossref_primary_10_1177_09576509241231852 crossref_primary_10_1515_ijeeps_2023_0398 crossref_primary_10_1002_admt_202401285 crossref_primary_10_1016_j_renene_2020_11_138 crossref_primary_10_1088_1361_6463_ac1ef8 crossref_primary_10_1016_j_egyr_2022_06_067 crossref_primary_10_22227_1997_0935_2023_12_1892_1900 crossref_primary_10_1002_solr_202100429 crossref_primary_10_1186_s40807_024_00100_8 crossref_primary_10_1016_j_aej_2022_09_006 crossref_primary_10_1016_j_energy_2022_126355 crossref_primary_10_1016_j_seja_2024_100084 crossref_primary_10_1016_j_egyr_2022_09_054 crossref_primary_10_1088_1755_1315_1261_1_012013 crossref_primary_10_1016_j_csite_2023_103479 crossref_primary_10_1002_ep_14304 crossref_primary_10_1088_1755_1315_1205_1_012012 crossref_primary_10_3390_en17030588 crossref_primary_10_3103_S0003701X23601084 crossref_primary_10_3389_fenrg_2022_937155 crossref_primary_10_1016_j_solmat_2022_111739 crossref_primary_10_1016_j_renene_2023_01_027 crossref_primary_10_3390_en16247939 crossref_primary_10_3103_S0003701X22010108 crossref_primary_10_1016_j_csite_2024_105029 crossref_primary_10_1016_j_renene_2024_120390 crossref_primary_10_3390_agriculture13040854 crossref_primary_10_1016_j_joule_2021_01_012 crossref_primary_10_3390_coatings13091606 crossref_primary_10_1002_ese3_1043 crossref_primary_10_3390_app142210373 crossref_primary_10_1016_j_energy_2021_121190 crossref_primary_10_1016_j_mechatronics_2022_102845 crossref_primary_10_3390_su151712947 crossref_primary_10_1038_s41598_025_90523_0 crossref_primary_10_1088_2053_1591_ad7fb8 crossref_primary_10_1016_j_clet_2022_100579 crossref_primary_10_1016_j_aej_2022_02_059 crossref_primary_10_1007_s10098_024_02985_x crossref_primary_10_1016_j_csite_2024_104355 crossref_primary_10_1016_j_meaene_2024_100006 crossref_primary_10_1016_j_solener_2022_04_065 crossref_primary_10_1051_mattech_2024004 crossref_primary_10_1016_j_rser_2023_114005 crossref_primary_10_1002_ese3_2026 crossref_primary_10_1016_j_renene_2022_12_090 crossref_primary_10_1051_e3sconf_202123900003 crossref_primary_10_1109_ACCESS_2023_3340145 crossref_primary_10_1016_j_renene_2024_121800 crossref_primary_10_1016_j_csite_2025_105969 crossref_primary_10_1016_j_psep_2024_06_043 crossref_primary_10_1007_s12008_022_01161_z crossref_primary_10_1016_j_egyr_2023_04_269 crossref_primary_10_1016_j_csite_2024_104341 crossref_primary_10_3390_a17070274 crossref_primary_10_1016_j_enbenv_2023_10_001 crossref_primary_10_1615_HeatTransRes_2022044259 crossref_primary_10_1016_j_solener_2021_01_007 crossref_primary_10_1016_j_solener_2024_112345 crossref_primary_10_1016_j_heliyon_2021_e07920 crossref_primary_10_1109_ACCESS_2023_3280265 crossref_primary_10_3390_en16104102 crossref_primary_10_3390_app13106229 crossref_primary_10_3390_su152216044 crossref_primary_10_59313_jsr_a_1634164 crossref_primary_10_35940_ijrte_C6448_0910321 crossref_primary_10_1016_j_jenvman_2024_120304 crossref_primary_10_1007_s10973_024_13761_w crossref_primary_10_3390_c10020046 crossref_primary_10_1080_15567036_2023_2201185 crossref_primary_10_1016_j_ijhydene_2024_12_290 crossref_primary_10_1016_j_jwpe_2023_104698 crossref_primary_10_3390_en15155667 crossref_primary_10_1016_j_solmat_2020_110922 crossref_primary_10_1016_j_ijft_2024_100748 crossref_primary_10_2478_sbeef_2023_0001 crossref_primary_10_1016_j_enganabound_2023_12_005 crossref_primary_10_1016_j_est_2023_107220 crossref_primary_10_1007_s40430_022_03964_3 crossref_primary_10_1016_j_renene_2023_119478 crossref_primary_10_1088_1757_899X_1116_1_012049 crossref_primary_10_15377_2409_5818_2023_10_4 crossref_primary_10_1016_j_matpr_2023_05_007 crossref_primary_10_1016_j_solmat_2024_112958 crossref_primary_10_1039_D4NR02217C crossref_primary_10_1007_s11277_021_09264_8 crossref_primary_10_3390_app112311370 crossref_primary_10_3103_S0003701X22030021 crossref_primary_10_1016_j_apenergy_2024_124737 crossref_primary_10_1016_j_csite_2021_101317 crossref_primary_10_3390_en17246245 crossref_primary_10_1016_j_matpr_2021_06_122 crossref_primary_10_1093_ijlct_ctac053 crossref_primary_10_1016_j_applthermaleng_2023_121801 crossref_primary_10_1016_j_oceaneng_2023_114416 crossref_primary_10_1016_j_egyr_2023_01_130 crossref_primary_10_1016_j_rser_2024_114288 crossref_primary_10_1016_j_rineng_2024_102225 crossref_primary_10_1016_j_ecmx_2024_100580 crossref_primary_10_1080_15567036_2023_2254731 crossref_primary_10_18186_thermal_1448632 crossref_primary_10_14710_ijred_2023_54348 crossref_primary_10_2339_politeknik_1163785 crossref_primary_10_3390_buildings13081950 crossref_primary_10_1016_j_renene_2024_121600 crossref_primary_10_22399_ijcesen_1092 crossref_primary_10_1016_j_csite_2021_101209 crossref_primary_10_3390_en14102751 crossref_primary_10_1016_j_csite_2024_105404 crossref_primary_10_1016_j_renene_2024_121062 crossref_primary_10_1016_j_rser_2024_114393 crossref_primary_10_1109_LED_2024_3416760 crossref_primary_10_1016_j_psep_2023_11_009 crossref_primary_10_1016_j_heliyon_2024_e27973 crossref_primary_10_1016_j_ijft_2023_100538 crossref_primary_10_1016_j_seta_2021_101518 crossref_primary_10_1080_10407782_2023_2207732 crossref_primary_10_1109_ACCESS_2024_3385429 crossref_primary_10_1016_j_csite_2023_103283 crossref_primary_10_3390_cleantechnol4030046 crossref_primary_10_1016_j_energy_2024_133706 crossref_primary_10_1016_j_est_2024_113706 crossref_primary_10_1016_j_applthermaleng_2024_123846 crossref_primary_10_1016_j_energy_2023_128746 crossref_primary_10_3389_fenrg_2023_996176 crossref_primary_10_1002_est2_379 crossref_primary_10_1016_j_renene_2023_119154 crossref_primary_10_1016_j_ecmx_2024_100671 crossref_primary_10_1016_j_jclepro_2023_136953 crossref_primary_10_46810_tdfd_1444225 crossref_primary_10_1016_j_jpowsour_2023_232812 crossref_primary_10_1007_s12273_023_1051_z crossref_primary_10_1016_j_optcom_2025_131780 crossref_primary_10_1007_s12667_023_00622_y crossref_primary_10_1080_15567036_2023_2256687 crossref_primary_10_3390_en15176278 crossref_primary_10_1016_j_enbenv_2024_02_008 crossref_primary_10_1016_j_egyr_2024_07_004 crossref_primary_10_3390_solar3040033 crossref_primary_10_36222_ejt_1404493 crossref_primary_10_1016_j_rser_2023_113347 crossref_primary_10_3389_fenrg_2023_1121138 crossref_primary_10_1016_j_csite_2022_101811 crossref_primary_10_1016_j_renene_2024_121516 crossref_primary_10_1016_j_ijft_2023_100517 crossref_primary_10_1016_j_est_2024_113032 crossref_primary_10_1016_j_solener_2021_03_022 crossref_primary_10_3390_en17246321 crossref_primary_10_1016_j_csite_2023_103382 crossref_primary_10_1002_pip_3788 crossref_primary_10_1007_s10765_024_03409_0 crossref_primary_10_1016_j_apenergy_2022_120036 crossref_primary_10_1016_j_solener_2024_112750 crossref_primary_10_1080_01430750_2024_2372361 crossref_primary_10_1155_2023_3456536 crossref_primary_10_1007_s11356_022_19957_7 crossref_primary_10_14710_ijred_2023_56052 crossref_primary_10_1051_epjpv_2024037 crossref_primary_10_1515_ijeeps_2023_0477 crossref_primary_10_1016_j_jclepro_2022_132339 crossref_primary_10_3390_app142311045 crossref_primary_10_3390_en15165884 crossref_primary_10_1016_j_enconman_2024_119034 crossref_primary_10_3390_su12229750 crossref_primary_10_1016_j_xcrp_2022_101156 crossref_primary_10_1039_D4EE03525A crossref_primary_10_1007_s10973_025_14132_9 crossref_primary_10_1109_ACCESS_2024_3504009 crossref_primary_10_1080_02286203_2022_2105785 crossref_primary_10_3390_app13031949 crossref_primary_10_3390_en17195013 crossref_primary_10_1016_j_enconman_2023_116939 crossref_primary_10_1680_jener_24_00025 crossref_primary_10_1016_j_icheatmasstransfer_2022_106310 crossref_primary_10_1007_s11356_021_14191_z crossref_primary_10_1016_j_esr_2025_101682 crossref_primary_10_1016_j_energy_2024_131840 crossref_primary_10_1177_0309524X231178793 crossref_primary_10_1016_j_csite_2021_101380 crossref_primary_10_1016_j_jksues_2023_09_001 crossref_primary_10_1016_j_rineng_2024_102573 crossref_primary_10_1115_1_4055299 crossref_primary_10_1177_1420326X241253665 crossref_primary_10_1016_j_solener_2024_113170 crossref_primary_10_1016_j_seta_2022_102095 crossref_primary_10_1016_j_csite_2024_105295 crossref_primary_10_1080_15567036_2023_2287090 crossref_primary_10_60084_hjas_v2i2_219 crossref_primary_10_1016_j_matpr_2020_07_130 crossref_primary_10_1016_j_solener_2022_06_028 crossref_primary_10_1016_j_envpol_2023_121474 crossref_primary_10_1016_j_matpr_2021_09_268 crossref_primary_10_1063_5_0063382 crossref_primary_10_1155_2023_4720545 crossref_primary_10_1155_2022_7129610 crossref_primary_10_1016_j_egyr_2024_11_046 crossref_primary_10_3390_en15186558 |
Cites_doi | 10.1155/2013/830968 10.17950/ijer/v3s9/904 10.1016/j.solener.2016.07.010 10.1016/j.rser.2018.12.051 10.1016/j.renene.2019.05.130 10.1016/j.apenergy.2011.01.017 10.1016/j.renene.2017.03.087 10.1016/j.egypro.2017.03.110 10.1016/j.renene.2015.12.011 10.1155/2014/898414 10.1016/j.energy.2018.05.204 10.1073/pnas.1509453112 10.1016/j.enbuild.2013.12.058 10.1016/j.solener.2013.01.026 10.1016/j.renene.2018.07.125 10.1016/j.enbuild.2011.09.017 10.1016/j.enconman.2018.01.028 10.1049/cp.2014.1515 10.1016/j.enconman.2013.10.019 10.3390/mi10090620 10.1007/s40430-017-0802-0 10.3934/energy.2015.4.699 10.1016/j.ijheatmasstransfer.2018.06.108 10.1016/j.solmat.2016.07.008 10.1016/j.rser.2017.05.053 10.1016/j.icheatmasstransfer.2014.04.009 10.1038/lsa.2012.34 10.1155/2020/1574274 10.1016/j.renene.2013.12.041 10.1093/ijlct/ctu013 10.1016/j.renene.2019.02.032 10.1016/j.solener.2017.11.059 10.1016/j.asej.2013.03.005 10.1016/j.enconman.2015.10.079 10.1016/j.solener.2013.08.018 10.1039/C6EE02271E 10.4236/epe.2010.23025 10.3103/S0003701X18010061 10.1016/j.solener.2017.01.070 10.1016/j.rser.2016.06.024 10.1364/OPTICA.1.000032 10.1016/j.rinp.2018.10.016 |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2020.100674 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ : directory of open access journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ : directory of open access journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_5443697172d144a9995f94237490c7e3 10_1016_j_csite_2020_100674 S2214157X19305416 |
GroupedDBID | 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c414t-988df2c7d311979322dc19f29e10ccc04b34269a126fce65859dda8f1e670d3b3 |
IEDL.DBID | DOA |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:19:45 EDT 2025 Tue Jul 01 02:28:26 EDT 2025 Thu Apr 24 23:01:45 EDT 2025 Tue Jul 25 21:04:03 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Energy efficiency PCM Cooling methods P.V. module Module temperature |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-988df2c7d311979322dc19f29e10ccc04b34269a126fce65859dda8f1e670d3b3 |
OpenAccessLink | https://doaj.org/article/5443697172d144a9995f94237490c7e3 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5443697172d144a9995f94237490c7e3 crossref_citationtrail_10_1016_j_csite_2020_100674 crossref_primary_10_1016_j_csite_2020_100674 elsevier_sciencedirect_doi_10_1016_j_csite_2020_100674 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Arifin, Danardono Dwi Prija Tjahjana, Hadi, Adhi Rachmanto, Gabriel, Sutanto (bib36) 2020 Hassan, Wahab, Arslan Qasim, Mansoor Janjua, Ali, Ali, Rehman Jadoon, Ali, Raza, Javaid (bib58) 2020; 145 Joshi, Dhoble (bib57) 2018; 157 Teo, Lee, Hawlader (bib14) 2012; 90 H. A. Hussien, M. Hasanuzzaman, A. H. Noman, and A. R. Abdulmunem, “Enhance photovoltaic/thermal system performance by using nano-fluid,” In 3rd IET International Conference on Clean Energy and Technology (CEAT) 2014, Kuching, Malaysia, November 2014. Moshfegh, Eslami, Hosseini (bib48) 2018 Haidar, Orfi, Oztop, Kaneesamkandi (bib51) 2016; 2 Wu, Xiong (bib15) 2014; 9 Salem, Elsayed, Abd-Elaziz, Elshazly (bib26) 2019; 138 Suresh, Naviynkumar, Kirubakaran (bib50) 2013 Parkunam, Pandiyan, Navaneethakrishnan, Arul, Vijayan (bib34) 2019 Haidar, Orfi, Kaneesamkandi (bib17) 2018; 11 Zhu, Raman, Wang, Anoma, Fan (bib40) 2014; 1 Han, Xue, Zheng, Alelyani, Chen (bib53) 2019; 131 Y. H. Zhao, et al., “A Sort of Micro Heat Pipe Array and Processing Technics,” Chinese Patent: 200810225649Y.. Hasan, Alnoman, Abdelbaqi (bib25) 2017; 146 Koteswararao, Radha, Vijay, Raja (bib5) 2016; 8 Alami (bib49) 2014; 77 Hasanuzzaman (bib6) 2016; 137 Taylor, Otanicar, Rosengarten (bib54) 2012; 1 Dorobanţu, Popescu, Popescu, Crăciunescu (bib8) 2013; 1 Grubišić-Čabo, Nižetić, Marco (bib4) 2016; vol. 1 Joshi, Dhoble (bib56) 2018; 54 Bashir, Ali, Ali, Khalil, Siddiqui (bib2) 2014; 2014 Lucas, Aguilar, Ruiz, Cutillas, Kaiser, Vicente (bib52) 2017; 111 Sato, Yamada (bib18) 2019; 104 Najafi, Keith (bib45) 2013; 91 Chikate, Sadawarte (bib11) 2015 Conceicao (bib12) 2018; 160 Tang, Quan, Zhao (bib30) 2010; 2 Sargunanathan (bib33) 2016 Du, Darkwa, Kokogiannakis (bib7) 2013; 97 Teo, Lee, Hawlader (bib19) 2012; 90 Tana, Date, Fernandes, BaljitSingh, Ganguly (bib27) March 2017; 110 Bashir, Ali, Amber, Bashir, Hassan, Imran, Sajid (bib1) 2016 Luo, Khoo, Hacke, Naumann, Lausch, Harvey, Singh, Chai, Wang, Aberle, Ramakrishna (bib10) 2017; 10 Saadi, Benissaad, Poncet, Kabar (bib38) 2018; 12 Benghanem, Al-Mashraqi, Daffallah (bib47) 2016; 89 Mehrotra S, Rawat, Debbarma, Sudhakar (bib22) 2014; 3 Kaldellis, Kapsali, Kavadias (bib13) 2014; 66 Salih (bib16) 2014 Karami, Rahimi (bib59) 2014; 55 Wang, Wang, Yuan (bib37) 2019; 10 S Moharrama, Abd-Elhadyb, Kandila, El-Sherif (bib24) 2013; 4 Jaafer Habeeb, Ghanim Mutasher, Abid Muslim Abd Ali (bib32) 2017; 17 Sardarabadi, Passandideh-Fard (bib44) Dec 2016; 157 Karthick, Pichandi, Ghosh, Stalin, Ramalingam, Vigneshkumar, Baranilingesan (bib28) 2020 Joshi, Dhoble (bib55) August 2017; 39 Ceylan, Gürel, Demircan, Aksu (bib9) 2014; 72 Zhu, Raman, Fan (bib41) 2015; 112 Rostami, Rahimi, Azimi (bib42) 2018; 160 Siecker (bib3) 2017; 79 A Wu, Zhang, Xiao, Guo (bib21) 2011; 43 Nižetić, Čoko, Yadav, Grubišić-Čabo (bib23) 2016; 108 Firoozzadeh, Shiravi, Shafiee (bib35) 2019; 10 Mazón-Hernández, García-Cascales, Vera-García, Káiser, Zamora (bib20) 2013; 2013 Ali, Ali, Moazzam, Babar Saeed (bib39) 2015; 3 Borkar, Prayagi, Gotmare (bib46) 2014; 3 Alizadeh, Ghasempour, Behshad Shafii, Hossein Ahmadi, Yan, Alhuyi Nazari (bib31) 2018; 127 Wang (10.1016/j.csite.2020.100674_bib37) 2019; 10 Hasan (10.1016/j.csite.2020.100674_bib25) 2017; 146 Du (10.1016/j.csite.2020.100674_bib7) 2013; 97 Moshfegh (10.1016/j.csite.2020.100674_bib48) 2018 Teo (10.1016/j.csite.2020.100674_bib14) 2012; 90 Sargunanathan (10.1016/j.csite.2020.100674_bib33) 2016 Firoozzadeh (10.1016/j.csite.2020.100674_bib35) 2019; 10 Salem (10.1016/j.csite.2020.100674_bib26) 2019; 138 Kaldellis (10.1016/j.csite.2020.100674_bib13) 2014; 66 Suresh (10.1016/j.csite.2020.100674_bib50) 2013 Jaafer Habeeb (10.1016/j.csite.2020.100674_bib32) 2017; 17 Tang (10.1016/j.csite.2020.100674_bib30) 2010; 2 Alami (10.1016/j.csite.2020.100674_bib49) 2014; 77 Mehrotra S (10.1016/j.csite.2020.100674_bib22) 2014; 3 Han (10.1016/j.csite.2020.100674_bib53) 2019; 131 Karthick (10.1016/j.csite.2020.100674_bib28) 2020 Zhu (10.1016/j.csite.2020.100674_bib40) 2014; 1 Chikate (10.1016/j.csite.2020.100674_bib11) 2015 10.1016/j.csite.2020.100674_bib43 Taylor (10.1016/j.csite.2020.100674_bib54) 2012; 1 Teo (10.1016/j.csite.2020.100674_bib19) 2012; 90 Conceicao (10.1016/j.csite.2020.100674_bib12) 2018; 160 Grubišić-Čabo (10.1016/j.csite.2020.100674_bib4) 2016; vol. 1 Bashir (10.1016/j.csite.2020.100674_bib2) 2014; 2014 Dorobanţu (10.1016/j.csite.2020.100674_bib8) 2013; 1 Ali (10.1016/j.csite.2020.100674_bib39) 2015; 3 Arifin (10.1016/j.csite.2020.100674_bib36) 2020 Najafi (10.1016/j.csite.2020.100674_bib45) 2013; 91 Joshi (10.1016/j.csite.2020.100674_bib55) 2017; 39 Lucas (10.1016/j.csite.2020.100674_bib52) 2017; 111 Rostami (10.1016/j.csite.2020.100674_bib42) 2018; 160 Hassan (10.1016/j.csite.2020.100674_bib58) 2020; 145 Mazón-Hernández (10.1016/j.csite.2020.100674_bib20) 2013; 2013 Hasanuzzaman (10.1016/j.csite.2020.100674_bib6) 2016; 137 Joshi (10.1016/j.csite.2020.100674_bib56) 2018; 54 S Moharrama (10.1016/j.csite.2020.100674_bib24) 2013; 4 Haidar (10.1016/j.csite.2020.100674_bib51) 2016; 2 Salih (10.1016/j.csite.2020.100674_bib16) 2014 Wu (10.1016/j.csite.2020.100674_bib15) 2014; 9 Borkar (10.1016/j.csite.2020.100674_bib46) 2014; 3 Karami (10.1016/j.csite.2020.100674_bib59) 2014; 55 Zhu (10.1016/j.csite.2020.100674_bib41) 2015; 112 A Wu (10.1016/j.csite.2020.100674_bib21) 2011; 43 Alizadeh (10.1016/j.csite.2020.100674_bib31) 2018; 127 Sardarabadi (10.1016/j.csite.2020.100674_bib44) 2016; 157 Koteswararao (10.1016/j.csite.2020.100674_bib5) 2016; 8 Siecker (10.1016/j.csite.2020.100674_bib3) 2017; 79 Tana (10.1016/j.csite.2020.100674_bib27) 2017; 110 Parkunam (10.1016/j.csite.2020.100674_bib34) 2019 Joshi (10.1016/j.csite.2020.100674_bib57) 2018; 157 Benghanem (10.1016/j.csite.2020.100674_bib47) 2016; 89 Bashir (10.1016/j.csite.2020.100674_bib1) 2016 Luo (10.1016/j.csite.2020.100674_bib10) 2017; 10 Saadi (10.1016/j.csite.2020.100674_bib38) 2018; 12 Nižetić (10.1016/j.csite.2020.100674_bib23) 2016; 108 Haidar (10.1016/j.csite.2020.100674_bib17) 2018; 11 Sato (10.1016/j.csite.2020.100674_bib18) 2019; 104 Ceylan (10.1016/j.csite.2020.100674_bib9) 2014; 72 10.1016/j.csite.2020.100674_bib29 |
References_xml | – volume: 66 start-page: 612 year: 2014 end-page: 624 ident: bib13 article-title: Temperature and wind speed impact on the efficiency of P.V. installations. Experience obtained from outdoor measurements in Greece publication-title: Renew. Energy – volume: 89 start-page: 51 year: 2016 end-page: 59 ident: bib47 article-title: Performance of solar cells using thermoelectric module in hot sites publication-title: Renew. Energy – volume: 10 start-page: 43 year: 2017 end-page: 68 ident: bib10 article-title: Potential-induced degradation in photovoltaic modules: a critical review publication-title: Energy Environ. Sci. – volume: 1 start-page: 1 year: 2013 end-page: 4 ident: bib8 article-title: Experimental assessment of PV panels publication-title: front water cooling strategy – volume: 145 start-page: 282 year: 2020 end-page: 293 ident: bib58 article-title: Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system publication-title: Renew. Energy – volume: 2 start-page: 171 year: 2010 end-page: 174 ident: bib30 article-title: Experimental investigation of solar panel cooling by a novel micro heat pipe array publication-title: Energy Power Eng. – volume: 12 start-page: 488 year: 2018 end-page: 494 ident: bib38 article-title: Effective cooling of photovoltaic solar cells by inserting triangular ribs: a numerical study publication-title: International Journal of Energy and Environmental Engineering – volume: 111 start-page: 26 year: 2017 end-page: 37 ident: bib52 article-title: Photovoltaic Evaporative Chimney as a new alternative to enhance solar cooling publication-title: Renew. Energy – year: 2016 ident: bib33 article-title: Performance enhancement of solar photovoltaic cells using effective cooling methods: a review publication-title: Renew. Sustain. Energy Rev. – volume: 97 start-page: 238 year: 2013 end-page: 254 ident: bib7 article-title: Thermal management systems for pho- tovoltaics (P.V.) installations: a critical review publication-title: Sol. Energy – volume: 1 start-page: e34 year: 2012 ident: bib54 article-title: Nanofluid-based optical filter optimisation for PV/T systems publication-title: Light Sci. Appl. – volume: 138 start-page: 876 year: 2019 end-page: 890 ident: bib26 article-title: Performance enhancement of the photovoltaic cells using Al2O3/PCM mixture and/or water cooling-techniques publication-title: Renew. Energy – volume: 110 start-page: 83 year: March 2017 end-page: 88 ident: bib27 article-title: Efficiency gains of photovoltaic system using latent heat thermal energy storage publication-title: Energy Procedia – start-page: 975 year: 2015 end-page: 8887 ident: bib11 article-title: The factors affecting the performance of solar cell publication-title: Int. J. Comput. Appl. Sci. Technol. – volume: 3 start-page: 699 year: 2015 end-page: 710 ident: bib39 article-title: Performance enhancement of P.V. cells through micro-channel cooling publication-title: AIMS Energy – reference: Y. H. Zhao, et al., “A Sort of Micro Heat Pipe Array and Processing Technics,” Chinese Patent: 200810225649Y.. – volume: 1 start-page: 32 year: 2014 ident: bib40 article-title: Radiative cooling of solar cells publication-title: Optica – volume: 131 year: 2019 ident: bib53 article-title: Spectral characterisation of spectrally selective liquid absorption filters and exploring their effects on concentrator solar cells publication-title: Renew. Energy – year: 2013 ident: bib50 article-title: Improved power output of P.V. system by low cost evaporative cooling technology publication-title: G 2013 International Conference on Green Computing, Communication and Conservation of Energy – volume: 11 start-page: 690 year: 2018 end-page: 697 ident: bib17 article-title: Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency publication-title: Results in Physics – volume: 104 start-page: 151 year: 2019 end-page: 166 ident: bib18 article-title: Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method publication-title: Renew. Sustain. Energy Rev. – volume: 91 start-page: 152 year: 2013 end-page: 160 ident: bib45 article-title: Optimisation of a cooling system based on Peltier effect for photovoltaic cells publication-title: Sol. Energy – volume: 8 start-page: 1451 year: 2016 end-page: 1456 ident: bib5 article-title: Experimental analysis of solar panel efficiency with different modes of cooling – volume: 79 start-page: 192 year: 2017 end-page: 203 ident: bib3 article-title: A review of solar photovoltaic systems cooling technologies publication-title: Renew. Sustain. Energy Rev. – volume: 127 start-page: 203 year: 2018 end-page: 208 ident: bib31 article-title: Numerical simulation of P.V. cooling by using single turn pulsating heat pipe publication-title: Int. J. Heat Mass Tran. – volume: 137 start-page: 25 year: 2016 end-page: 45 ident: bib6 article-title: Global advancement of cooling technologies for P.V. systems: a review publication-title: Sol. Energy – volume: 2 start-page: 928 year: 2016 end-page: 933 ident: bib51 article-title: Cooling of solar P.V. panels using evaporative cooling publication-title: J. Therm. Eng. – volume: 39 start-page: 3227 year: August 2017 end-page: 3236 ident: bib55 article-title: Experimental Investigation of solar photovoltaic thermal system using water, coconut oil and silicone oil as spectrum filters publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 108 start-page: 287 year: 2016 end-page: 296 ident: bib23 article-title: Water spray cooling technique applied on a photovoltaic panel: the performance response publication-title: Energy Convers. Manag. – volume: 160 start-page: 94 year: 2018 end-page: 102 ident: bib12 article-title: Saharan dust transport to Europe and its impact on photovoltaic performance: a case study of soiling in Portugal publication-title: Sol. Energy – volume: 10 start-page: 80 year: 2019 end-page: 84 ident: bib35 article-title: An experimental study on cooling the photovoltaic modules by fins to improve power generation: economic assessment.Iranian (iranica) publication-title: Journal of Energy and Environment – volume: 77 start-page: 668 year: 2014 end-page: 679 ident: bib49 article-title: Effects of evaporative cooling on efficiency of photovoltaic modules publication-title: Energy Convers. Manag. – volume: 9 start-page: 118 year: 2014 end-page: 126 ident: bib15 article-title: Passive cooling technology for photovoltaic panels for domestic houses publication-title: Int. J. Low Carbon Technol. – volume: 10 start-page: 620 year: 2019 ident: bib37 article-title: Analysis and optimisation of a microchannel heat sink with V-ribs using nanofluids for micro solar cells publication-title: Micromachines – volume: 72 start-page: 96 year: 2014 end-page: 101 ident: bib9 article-title: Cooling of a photovoltaic module with temperature controlled solar collector publication-title: Energy Build. – volume: 55 start-page: 45 year: 2014 end-page: 52 ident: bib59 article-title: Heat transfer enhancement in a hybrid microchannel-photovoltaic cell using Boehmite nano-fluid publication-title: Int. Commun. Heat Mass Tran. – volume: 2013 start-page: 10 year: 2013 ident: bib20 article-title: Improving the electrical parameters of a photovoltaic panel by means of an induced or forced air stream publication-title: Int. J. Photoenergy – volume: 112 start-page: 12282 year: 2015 end-page: 12287 ident: bib41 article-title: Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody publication-title: Proc. Natl. Acad. Sci. U.S.A. – year: 2019 ident: bib34 article-title: Experimental analysis on passive cooling of flat photovoltaic panel with heat sink and wick structure publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff. – year: 2014 ident: bib16 article-title: Performance enhancement of P.V. array based on water spraying technique publication-title: International Journal of Sustainable and Green Energy – volume: 2014 year: 2014 ident: bib2 article-title: Comparison of performance measurements of photovoltaic modules during winter months in Taxila, Pakistan publication-title: Int. J. Photoenergy – volume: 54 start-page: 4 year: 2018 end-page: 9 ident: bib56 article-title: Performance analysis of photovoltaic thermal system using silicone oil spectrum filter publication-title: Appl. Sol. Energy -Springer – volume: 157 start-page: 778 year: 2018 end-page: 791 ident: bib57 article-title: Analytical approach for performance estimation of BSPVT system with liquid spectrum filters publication-title: Energy – volume: 90 start-page: 309 year: 2012 end-page: 315 ident: bib19 article-title: An active cooling system for photovoltaic modules publication-title: Appl. Energy – start-page: 1 year: 2020 end-page: 11 ident: bib28 article-title: Performance enhancement of copper indium diselenide photovoltaic module using inorganic phase change material publication-title: Asia Pac. J. Chem. Eng. – volume: 4 start-page: 869 year: 2013 end-page: 877 ident: bib24 article-title: Enhancing the performance of photovoltaic panels by water cooling publication-title: Ain Shams Eng. J. – start-page: 1 year: 2016 end-page: 110 ident: bib1 article-title: Performance investigation of photovoltaic modules by back surface water cooling publication-title: Therm. Sci. – volume: 3 start-page: 536 year: 2014 end-page: 539 ident: bib46 article-title: Performance evaluation of photovoltaic solar panel using thermoelectric cooling publication-title: Int. J. Eng. Res. – volume: 90 start-page: 309 year: 2012 end-page: 315 ident: bib14 article-title: An active cooling system for photovoltaic modules publication-title: Appl. Energy – year: 2018 ident: bib48 article-title: Thermoelectric cooling of a photovoltaic panel publication-title: The Role of Exergy in Energy and the Environment. Green Energy and Technology – volume: 3 start-page: 1161 year: 2014 end-page: 1172 ident: bib22 article-title: Performance of a solar panel with water immersion cooling technique publication-title: Int. J. Sci. Environ. Technol. – volume: 157 start-page: 533 year: Dec 2016 end-page: 542 ident: bib44 article-title: Experimental and numerical study of metal-oxides/water nano-fluids as coolant in photovoltaic thermal systems (PVT) publication-title: Sol. Energy Mater. Sol. Cell. – reference: H. A. Hussien, M. Hasanuzzaman, A. H. Noman, and A. R. Abdulmunem, “Enhance photovoltaic/thermal system performance by using nano-fluid,” In 3rd IET International Conference on Clean Energy and Technology (CEAT) 2014, Kuching, Malaysia, November 2014. – volume: 146 start-page: 417 year: 2017 end-page: 429 ident: bib25 article-title: Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate publication-title: Sol. Energy – volume: 160 start-page: 141 year: 2018 end-page: 149 ident: bib42 article-title: Using high-frequency ultrasound waves and nano-fluid for increasing the efficiency and cooling performance of a P.V. module publication-title: Energy Convers. Manag. – volume: vol. 1 start-page: 63 year: 2016 end-page: 74 ident: bib4 publication-title: Photovoltaic Panels: a Review of the Cooling Techniques – volume: 17 start-page: 171 year: 2017 end-page: 185 ident: bib32 article-title: Cooling photovoltaic thermal solar panel by using heat pipe at baghdad climate publication-title: Int. J. Mech. Mechatron. Eng. – year: 2020 ident: bib36 article-title: Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks publication-title: Int. J. Photoenergy – volume: 43 start-page: 3558 year: 2011 end-page: 3567 ident: bib21 article-title: A heat pipe photovoltaic/thermal (PV/T) hybrid system and its performance evaluation publication-title: Energy Build. – volume: 2013 start-page: 10 year: 2013 ident: 10.1016/j.csite.2020.100674_bib20 article-title: Improving the electrical parameters of a photovoltaic panel by means of an induced or forced air stream publication-title: Int. J. Photoenergy doi: 10.1155/2013/830968 – volume: 17 start-page: 171 issue: 6 year: 2017 ident: 10.1016/j.csite.2020.100674_bib32 article-title: Cooling photovoltaic thermal solar panel by using heat pipe at baghdad climate publication-title: Int. J. Mech. Mechatron. Eng. – start-page: 975 year: 2015 ident: 10.1016/j.csite.2020.100674_bib11 article-title: The factors affecting the performance of solar cell publication-title: Int. J. Comput. Appl. Sci. Technol. – volume: 3 start-page: 536 year: 2014 ident: 10.1016/j.csite.2020.100674_bib46 article-title: Performance evaluation of photovoltaic solar panel using thermoelectric cooling publication-title: Int. J. Eng. Res. doi: 10.17950/ijer/v3s9/904 – volume: 137 start-page: 25 year: 2016 ident: 10.1016/j.csite.2020.100674_bib6 article-title: Global advancement of cooling technologies for P.V. systems: a review publication-title: Sol. Energy doi: 10.1016/j.solener.2016.07.010 – volume: 104 start-page: 151 year: 2019 ident: 10.1016/j.csite.2020.100674_bib18 article-title: Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.12.051 – volume: 145 start-page: 282 year: 2020 ident: 10.1016/j.csite.2020.100674_bib58 article-title: Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system publication-title: Renew. Energy doi: 10.1016/j.renene.2019.05.130 – volume: 90 start-page: 309 year: 2012 ident: 10.1016/j.csite.2020.100674_bib14 article-title: An active cooling system for photovoltaic modules publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.01.017 – volume: 111 start-page: 26 year: 2017 ident: 10.1016/j.csite.2020.100674_bib52 article-title: Photovoltaic Evaporative Chimney as a new alternative to enhance solar cooling publication-title: Renew. Energy doi: 10.1016/j.renene.2017.03.087 – volume: 110 start-page: 83 year: 2017 ident: 10.1016/j.csite.2020.100674_bib27 article-title: Efficiency gains of photovoltaic system using latent heat thermal energy storage publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.110 – volume: 1 start-page: 1 issue: 11 year: 2013 ident: 10.1016/j.csite.2020.100674_bib8 article-title: Experimental assessment of PV panels publication-title: front water cooling strategy – volume: 89 start-page: 51 year: 2016 ident: 10.1016/j.csite.2020.100674_bib47 article-title: Performance of solar cells using thermoelectric module in hot sites publication-title: Renew. Energy doi: 10.1016/j.renene.2015.12.011 – volume: 2014 year: 2014 ident: 10.1016/j.csite.2020.100674_bib2 article-title: Comparison of performance measurements of photovoltaic modules during winter months in Taxila, Pakistan publication-title: Int. J. Photoenergy doi: 10.1155/2014/898414 – volume: 157 start-page: 778 year: 2018 ident: 10.1016/j.csite.2020.100674_bib57 article-title: Analytical approach for performance estimation of BSPVT system with liquid spectrum filters publication-title: Energy doi: 10.1016/j.energy.2018.05.204 – volume: 112 start-page: 12282 year: 2015 ident: 10.1016/j.csite.2020.100674_bib41 article-title: Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1509453112 – volume: 72 start-page: 96 year: 2014 ident: 10.1016/j.csite.2020.100674_bib9 article-title: Cooling of a photovoltaic module with temperature controlled solar collector publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.12.058 – year: 2014 ident: 10.1016/j.csite.2020.100674_bib16 article-title: Performance enhancement of P.V. array based on water spraying technique publication-title: International Journal of Sustainable and Green Energy – volume: 91 start-page: 152 year: 2013 ident: 10.1016/j.csite.2020.100674_bib45 article-title: Optimisation of a cooling system based on Peltier effect for photovoltaic cells publication-title: Sol. Energy doi: 10.1016/j.solener.2013.01.026 – volume: 131 year: 2019 ident: 10.1016/j.csite.2020.100674_bib53 article-title: Spectral characterisation of spectrally selective liquid absorption filters and exploring their effects on concentrator solar cells publication-title: Renew. Energy doi: 10.1016/j.renene.2018.07.125 – start-page: 1 year: 2020 ident: 10.1016/j.csite.2020.100674_bib28 article-title: Performance enhancement of copper indium diselenide photovoltaic module using inorganic phase change material publication-title: Asia Pac. J. Chem. Eng. – volume: 43 start-page: 3558 year: 2011 ident: 10.1016/j.csite.2020.100674_bib21 article-title: A heat pipe photovoltaic/thermal (PV/T) hybrid system and its performance evaluation publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.09.017 – start-page: 1 year: 2016 ident: 10.1016/j.csite.2020.100674_bib1 article-title: Performance investigation of photovoltaic modules by back surface water cooling publication-title: Therm. Sci. – volume: vol. 1 start-page: 63 year: 2016 ident: 10.1016/j.csite.2020.100674_bib4 – volume: 160 start-page: 141 year: 2018 ident: 10.1016/j.csite.2020.100674_bib42 article-title: Using high-frequency ultrasound waves and nano-fluid for increasing the efficiency and cooling performance of a P.V. module publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.01.028 – year: 2019 ident: 10.1016/j.csite.2020.100674_bib34 article-title: Experimental analysis on passive cooling of flat photovoltaic panel with heat sink and wick structure publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff. – ident: 10.1016/j.csite.2020.100674_bib43 doi: 10.1049/cp.2014.1515 – volume: 12 start-page: 488 issue: 7 year: 2018 ident: 10.1016/j.csite.2020.100674_bib38 article-title: Effective cooling of photovoltaic solar cells by inserting triangular ribs: a numerical study publication-title: International Journal of Energy and Environmental Engineering – volume: 90 start-page: 309 issue: 1 year: 2012 ident: 10.1016/j.csite.2020.100674_bib19 article-title: An active cooling system for photovoltaic modules publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.01.017 – volume: 77 start-page: 668 year: 2014 ident: 10.1016/j.csite.2020.100674_bib49 article-title: Effects of evaporative cooling on efficiency of photovoltaic modules publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.10.019 – volume: 2 start-page: 928 year: 2016 ident: 10.1016/j.csite.2020.100674_bib51 article-title: Cooling of solar P.V. panels using evaporative cooling publication-title: J. Therm. Eng. – volume: 10 start-page: 620 issue: 9 year: 2019 ident: 10.1016/j.csite.2020.100674_bib37 article-title: Analysis and optimisation of a microchannel heat sink with V-ribs using nanofluids for micro solar cells publication-title: Micromachines doi: 10.3390/mi10090620 – volume: 39 start-page: 3227 issue: 8 year: 2017 ident: 10.1016/j.csite.2020.100674_bib55 article-title: Experimental Investigation of solar photovoltaic thermal system using water, coconut oil and silicone oil as spectrum filters publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-017-0802-0 – volume: 3 start-page: 699 issue: 4 year: 2015 ident: 10.1016/j.csite.2020.100674_bib39 article-title: Performance enhancement of P.V. cells through micro-channel cooling publication-title: AIMS Energy doi: 10.3934/energy.2015.4.699 – volume: 127 start-page: 203 year: 2018 ident: 10.1016/j.csite.2020.100674_bib31 article-title: Numerical simulation of P.V. cooling by using single turn pulsating heat pipe publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.06.108 – volume: 157 start-page: 533 year: 2016 ident: 10.1016/j.csite.2020.100674_bib44 article-title: Experimental and numerical study of metal-oxides/water nano-fluids as coolant in photovoltaic thermal systems (PVT) publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2016.07.008 – volume: 79 start-page: 192 year: 2017 ident: 10.1016/j.csite.2020.100674_bib3 article-title: A review of solar photovoltaic systems cooling technologies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.053 – volume: 55 start-page: 45 year: 2014 ident: 10.1016/j.csite.2020.100674_bib59 article-title: Heat transfer enhancement in a hybrid microchannel-photovoltaic cell using Boehmite nano-fluid publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2014.04.009 – volume: 1 start-page: e34 year: 2012 ident: 10.1016/j.csite.2020.100674_bib54 article-title: Nanofluid-based optical filter optimisation for PV/T systems publication-title: Light Sci. Appl. doi: 10.1038/lsa.2012.34 – year: 2020 ident: 10.1016/j.csite.2020.100674_bib36 article-title: Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks publication-title: Int. J. Photoenergy doi: 10.1155/2020/1574274 – volume: 66 start-page: 612 year: 2014 ident: 10.1016/j.csite.2020.100674_bib13 article-title: Temperature and wind speed impact on the efficiency of P.V. installations. Experience obtained from outdoor measurements in Greece publication-title: Renew. Energy doi: 10.1016/j.renene.2013.12.041 – volume: 9 start-page: 118 year: 2014 ident: 10.1016/j.csite.2020.100674_bib15 article-title: Passive cooling technology for photovoltaic panels for domestic houses publication-title: Int. J. Low Carbon Technol. doi: 10.1093/ijlct/ctu013 – volume: 138 start-page: 876 year: 2019 ident: 10.1016/j.csite.2020.100674_bib26 article-title: Performance enhancement of the photovoltaic cells using Al2O3/PCM mixture and/or water cooling-techniques publication-title: Renew. Energy doi: 10.1016/j.renene.2019.02.032 – volume: 160 start-page: 94 year: 2018 ident: 10.1016/j.csite.2020.100674_bib12 article-title: Saharan dust transport to Europe and its impact on photovoltaic performance: a case study of soiling in Portugal publication-title: Sol. Energy doi: 10.1016/j.solener.2017.11.059 – volume: 4 start-page: 869 year: 2013 ident: 10.1016/j.csite.2020.100674_bib24 article-title: Enhancing the performance of photovoltaic panels by water cooling publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2013.03.005 – volume: 108 start-page: 287 year: 2016 ident: 10.1016/j.csite.2020.100674_bib23 article-title: Water spray cooling technique applied on a photovoltaic panel: the performance response publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.10.079 – volume: 97 start-page: 238 year: 2013 ident: 10.1016/j.csite.2020.100674_bib7 article-title: Thermal management systems for pho- tovoltaics (P.V.) installations: a critical review publication-title: Sol. Energy doi: 10.1016/j.solener.2013.08.018 – volume: 10 start-page: 43 issue: 1 year: 2017 ident: 10.1016/j.csite.2020.100674_bib10 article-title: Potential-induced degradation in photovoltaic modules: a critical review publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02271E – volume: 2 start-page: 171 year: 2010 ident: 10.1016/j.csite.2020.100674_bib30 article-title: Experimental investigation of solar panel cooling by a novel micro heat pipe array publication-title: Energy Power Eng. doi: 10.4236/epe.2010.23025 – volume: 8 start-page: 1451 issue: 3 year: 2016 ident: 10.1016/j.csite.2020.100674_bib5 article-title: Experimental analysis of solar panel efficiency with different modes of cooling – volume: 54 start-page: 4 issue: Issue-01 year: 2018 ident: 10.1016/j.csite.2020.100674_bib56 article-title: Performance analysis of photovoltaic thermal system using silicone oil spectrum filter publication-title: Appl. Sol. Energy -Springer doi: 10.3103/S0003701X18010061 – volume: 146 start-page: 417 year: 2017 ident: 10.1016/j.csite.2020.100674_bib25 article-title: Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate publication-title: Sol. Energy doi: 10.1016/j.solener.2017.01.070 – year: 2018 ident: 10.1016/j.csite.2020.100674_bib48 article-title: Thermoelectric cooling of a photovoltaic panel – year: 2013 ident: 10.1016/j.csite.2020.100674_bib50 article-title: Improved power output of P.V. system by low cost evaporative cooling technology – ident: 10.1016/j.csite.2020.100674_bib29 – year: 2016 ident: 10.1016/j.csite.2020.100674_bib33 article-title: Performance enhancement of solar photovoltaic cells using effective cooling methods: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.06.024 – volume: 10 start-page: 80 issue: 2 year: 2019 ident: 10.1016/j.csite.2020.100674_bib35 article-title: An experimental study on cooling the photovoltaic modules by fins to improve power generation: economic assessment.Iranian (iranica) publication-title: Journal of Energy and Environment – volume: 1 start-page: 32 year: 2014 ident: 10.1016/j.csite.2020.100674_bib40 article-title: Radiative cooling of solar cells publication-title: Optica doi: 10.1364/OPTICA.1.000032 – volume: 3 start-page: 1161 year: 2014 ident: 10.1016/j.csite.2020.100674_bib22 article-title: Performance of a solar panel with water immersion cooling technique publication-title: Int. J. Sci. Environ. Technol. – volume: 11 start-page: 690 year: 2018 ident: 10.1016/j.csite.2020.100674_bib17 article-title: Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency publication-title: Results in Physics doi: 10.1016/j.rinp.2018.10.016 |
SSID | ssj0001738144 |
Score | 2.5841744 |
Snippet | The efficiency of solar systems, in particular photovoltaic panels, is generally low. The output of the P.V. module is adversely affected by their surface rise... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100674 |
SubjectTerms | Cooling methods Energy efficiency Module temperature P.V. module PCM |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqJhgQT1Fe8sBIaO24dgxTi0AVEggJirJFydlGRdBUpfx_zk5S2qUDYy6-PM6O73N89x0hF7mLtVEK8BNnJhLauEhLUFFhtBY2BsVCFYXHJzkciYe0l7bIbZML48Mq67m_mtPDbF1LOrU1O9PxuPPCOUPvo1KEIIg7mKfdjkUSkvjSwd9_FoU-KdR09e0jr9CQD4UwLwibtBxRkw8YkEqsOKjA47_kp5Z8z_0O2a5BI-1Xz7VLWnayR7aWqAT3yU2_3synUPo6PO90wc76TUtHn6_eruhXaX4-7fc17dOQSORP4MsekNH93evtMKoLI0QgmJhHOkmM46BM7DcBEYFxA0w7ri3rAkBXFLHPUM0Zlw4sYoyeNiZPHLNSdU1cxIdkY1JO7BGhBUsShygOcKWHaiZnCqCXK4dSqSS0CW-skUHNGu6LV3xmTXjYRxZMmHkTZpUJ2-RyoTStSDPWNx94My-aesbrIChn71nd5Znn6ZMaF5_cYHfmiGt7TvuYHqG7oGzcJrLppGxlAOGlxuvufvxfxROy6Y-qyL5TsjGf_dgzRCjz4jwMwV9aIN9S priority: 102 providerName: Elsevier |
Title | Advanced cooling techniques of P.V. modules: A state of art |
URI | https://dx.doi.org/10.1016/j.csite.2020.100674 https://doaj.org/article/5443697172d144a9995f94237490c7e3 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBISp04dgxTi6gKEoiBomxRcrYRqDSItv-fs5NUYSkLSwbHj-Qu0X3nO39HyEVuI6WlBPzFmQ640jZQAmRQaKW4iUAyX0Xh8UmMJ_whjdNWqS-XE1bRA1eCu3L8bEKh0xFqxP454pnYKpfLwVUfpPE8n2jzWs6U312RaIl8JdcwZDxgsUwbyiGf3AU-NIuOv08TEJL_Mkuevb9lnVoWZ7RDtmuoSAfVI-6SDTPbI1stAsF9cjOoQ_gUSld9542uOFnntLT0uffao5-lXk7N_JoOqD8-5G7gex-Qyeju5XYc1OUQAuCMLwKVJNqGIHXkQn-Iu0INTNlQGdYHgD4vIncuNWehsGAQWcRK6zyxzAjZ11ERHZLOrJyZI0ILliQWsRugf4fDdM4kQJxLi61CCuiSsJFGBjVXuCtZMc2apLCPzIswcyLMKhF2yeVq0FdFlbG--9CJedXV8Vz7BtR-Vms_-0v7XSIaJWU1ZKigAE71vm714_9Y_YRsuimr3L5T0ll8L80ZYpRFce4_R7zep8Mf1VrdOQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5Reig9VJSCCAXqQ48sib0be92eAgKFFhASD-Vm7Y5tFESziCT_n7F3N4QLh15tzz7Gj_nsGX8D8LPwqbZKIU1xbpNMW59oiSoprdaZS1HxmEXh4lIOb7M_o_5oBY7buzAhrLJZ--s1Pa7WTUm30Wb3aTzuXgvByfqoEUEQwh1cfoCPhAZUmJ1no6PXgxZFRikmdQ0CSZBo2YdinBdGL60g2BQiBqTK3lioSOS_ZKiWjM_pOnxpUCMb1B_2FVbcZAM-L3EJfoPfg8abz7AKiXju2YKedcoqz64O7w7Zv8rOH930FxuweJMoVNDfbsLt6cnN8TBpMiMkmPFslug8t16gsmnwAhIEExa59kI73kPEXlam4YpqwYX06Ahk9LW1Re65k6pn0zLdgtVJNXHbwEqe555gHNJWj8RswRViv1CeSqWS2AHRasNgQxseslc8mjY-7MFEFZqgQlOrsAMHC6GnmjXj_eZHQc2LpoHyOhZUz_em6XMTiPqkpt2nsNSdBQHbvtchqCfTPVQu7YBsO8m8GUH0qPF7b9_5X8Ef8Gl4c3Fuzs8u_36HtVBTh_ntwursee72CK7Myv04HF8Ao3bicg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+cooling+techniques+of+P.V.+modules%3A+A+state+of+art&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Dwivedi%2C+Pushpendu&rft.au=Sudhakar%2C+K.&rft.au=Soni%2C+Archana&rft.au=Solomin%2C+E&rft.date=2020-10-01&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=21&rft.spage=100674&rft_id=info:doi/10.1016%2Fj.csite.2020.100674&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csite_2020_100674 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |