Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface

The radiative unsteady magnetohydrodynamic (MHD) flow of an incompressible viscous electrically conducting non-Newtonian Casson hybrid nanofluid over an infinite exponentially accelerated vertical moving porous surface under the influence of slip velocity in a rotating frame has been explored in thi...

Full description

Saved in:
Bibliographic Details
Published inCase studies in thermal engineering Vol. 27; p. 101229
Main Authors Krishna, M. Veera, Ahammad, N. Ameer, Chamkha, Ali J.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The radiative unsteady magnetohydrodynamic (MHD) flow of an incompressible viscous electrically conducting non-Newtonian Casson hybrid nanofluid over an infinite exponentially accelerated vertical moving porous surface under the influence of slip velocity in a rotating frame has been explored in this paper. Water and ethylene glycol mixture have been considered as a base Casson fluid. A steady homogeneous magnetic field is applied under the assumption of low magnetic Reynolds number. The ramped temperature and time varying concentration at the surface is made into consideration. First order consistent chemical reaction and thermal absorption are also considered. Silver and Titania nanoparticles are disseminated in base fluid water and ethylene glycol mixture to be formed as hybrid nanofluid. Laplace transformation technique is employed on the non-dimensional governing equations for the closed form solutions. Based on those outcomes, the expressions for non-dimensional shear stress, rates of heat and mass transfer are also evaluated. The graphical representations are presented to scrutinize the effects of physical parameters on the significant flow characteristics. The computational values of the shear stresses, rate of heat transfer and rate of mass transfer at the surface are tabulated by the different implanted parameters. The resultant velocity is increasing with an increasing in thermal and concentration buoyancy forces, whereas rotation and slip parameters have overturn result on it for both cases of uniform wall temperature and ramped wall temperature. Species concentration of Casson hybrid Ag-TiO2/WEG nanofluid is decreased with an increase in Schmidt number and chemical reaction parameter. The Nusselt number is increased with an increase in heat absorption at the surface. [Display omitted]
AbstractList The radiative unsteady magnetohydrodynamic (MHD) flow of an incompressible viscous electrically conducting non-Newtonian Casson hybrid nanofluid over an infinite exponentially accelerated vertical moving porous surface under the influence of slip velocity in a rotating frame has been explored in this paper. Water and ethylene glycol mixture have been considered as a base Casson fluid. A steady homogeneous magnetic field is applied under the assumption of low magnetic Reynolds number. The ramped temperature and time varying concentration at the surface is made into consideration. First order consistent chemical reaction and thermal absorption are also considered. Silver and Titania nanoparticles are disseminated in base fluid water and ethylene glycol mixture to be formed as hybrid nanofluid. Laplace transformation technique is employed on the non-dimensional governing equations for the closed form solutions. Based on those outcomes, the expressions for non-dimensional shear stress, rates of heat and mass transfer are also evaluated. The graphical representations are presented to scrutinize the effects of physical parameters on the significant flow characteristics. The computational values of the shear stresses, rate of heat transfer and rate of mass transfer at the surface are tabulated by the different implanted parameters. The resultant velocity is increasing with an increasing in thermal and concentration buoyancy forces, whereas rotation and slip parameters have overturn result on it for both cases of uniform wall temperature and ramped wall temperature. Species concentration of Casson hybrid Ag-TiO2/WEG nanofluid is decreased with an increase in Schmidt number and chemical reaction parameter. The Nusselt number is increased with an increase in heat absorption at the surface.
The radiative unsteady magnetohydrodynamic (MHD) flow of an incompressible viscous electrically conducting non-Newtonian Casson hybrid nanofluid over an infinite exponentially accelerated vertical moving porous surface under the influence of slip velocity in a rotating frame has been explored in this paper. Water and ethylene glycol mixture have been considered as a base Casson fluid. A steady homogeneous magnetic field is applied under the assumption of low magnetic Reynolds number. The ramped temperature and time varying concentration at the surface is made into consideration. First order consistent chemical reaction and thermal absorption are also considered. Silver and Titania nanoparticles are disseminated in base fluid water and ethylene glycol mixture to be formed as hybrid nanofluid. Laplace transformation technique is employed on the non-dimensional governing equations for the closed form solutions. Based on those outcomes, the expressions for non-dimensional shear stress, rates of heat and mass transfer are also evaluated. The graphical representations are presented to scrutinize the effects of physical parameters on the significant flow characteristics. The computational values of the shear stresses, rate of heat transfer and rate of mass transfer at the surface are tabulated by the different implanted parameters. The resultant velocity is increasing with an increasing in thermal and concentration buoyancy forces, whereas rotation and slip parameters have overturn result on it for both cases of uniform wall temperature and ramped wall temperature. Species concentration of Casson hybrid Ag-TiO2/WEG nanofluid is decreased with an increase in Schmidt number and chemical reaction parameter. The Nusselt number is increased with an increase in heat absorption at the surface. [Display omitted]
ArticleNumber 101229
Author Krishna, M. Veera
Ahammad, N. Ameer
Chamkha, Ali J.
Author_xml – sequence: 1
  givenname: M. Veera
  orcidid: 0000-0002-6580-1592
  surname: Krishna
  fullname: Krishna, M. Veera
  email: mvkmaths@rayalaseemauniversity.ac.in
  organization: Department of Mathematics, Rayalaseema University, Kurnool, Andhra Pradesh, 518007, India
– sequence: 2
  givenname: N. Ameer
  surname: Ahammad
  fullname: Ahammad, N. Ameer
  organization: Department of Mathematics, Faculty of Science, University of Tabuk, 71491, Saudi Arabia
– sequence: 3
  givenname: Ali J.
  surname: Chamkha
  fullname: Chamkha, Ali J.
  organization: Faculty of Engineering, Kuwait College of Science and Technology, Doha District, Kuwait
BookMark eNqFkU2LFDEQhhtZwXXdX-Alf2DGrnx0pw8eZNTdhRVBFLyFSlLRDG0yJJnR-ff27IiIBz1VUdTz1sf7tLtIOVHXPYd-DT0ML7ZrV2OjNe85nCqcT4-6S85BrkCNny_-yJ9017Vu-76HUWiQ8rLbfUAfscUDsXe3r1mY83eWA9tgrTmxr0dbomcJUw7zfsnygQrDxGIKMS1DGf3YLdukFnGejwydo5kKNvJs6WzR4cx2ueR9ZXVfAjp61j0OOFe6_hWvuk9v33zc3K7u39_cbV7dr5wE2VaTRDUKHIUSARQO1k-kAOSgvA4CNGk_TJw7dMEpqThY0JOSXlhAO1orrrq7s67PuDW7Er9hOZqM0TwUcvli8LTgTAbF4B0HIUBoaWHQdpx0P4kx6FED-kVLnLVcybUWCr_1oDcnD8zWPHhgTh6YswcLNf1FudiWV-fUCsb5P-zLM0vLiw6RiqkuUnLkYyHXlhviP_mfcaymQg
CitedBy_id crossref_primary_10_1080_17455030_2023_2198612
crossref_primary_10_1166_jon_2023_2023
crossref_primary_10_1063_5_0241553
crossref_primary_10_1166_jon_2023_1971
crossref_primary_10_1080_01430750_2022_2059004
crossref_primary_10_1166_jon_2023_1977
crossref_primary_10_1016_j_aej_2023_07_014
crossref_primary_10_1166_jon_2023_1976
crossref_primary_10_1371_journal_pone_0304794
crossref_primary_10_1021_acsomega_3c07311
crossref_primary_10_1002_htj_23302
crossref_primary_10_1080_19942060_2024_2381618
crossref_primary_10_1115_1_4054989
crossref_primary_10_3934_math_2023030
crossref_primary_10_1080_20550324_2021_2008208
crossref_primary_10_3390_asi7040063
crossref_primary_10_1166_jon_2023_2032
crossref_primary_10_1002_zamm_202300978
crossref_primary_10_1007_s40819_022_01345_x
crossref_primary_10_1016_j_padiff_2024_100616
crossref_primary_10_1166_jon_2023_1962
crossref_primary_10_1016_j_icheatmasstransfer_2022_106348
crossref_primary_10_1166_jon_2023_1961
crossref_primary_10_1166_jon_2023_1965
crossref_primary_10_1016_j_ijft_2025_101104
crossref_primary_10_1039_D3NA00732D
crossref_primary_10_1177_23977914231225174
crossref_primary_10_1615_NanoSciTechnolIntJ_2023045603
crossref_primary_10_1080_01430750_2023_2224337
crossref_primary_10_1080_02286203_2023_2295769
crossref_primary_10_32604_cmes_2024_046635
crossref_primary_10_1166_jon_2023_2021
crossref_primary_10_1016_j_asej_2023_102576
crossref_primary_10_1016_j_cplett_2022_139476
crossref_primary_10_3390_sym14101988
crossref_primary_10_1016_j_nanoso_2024_101334
crossref_primary_10_1088_1402_4896_ac7981
crossref_primary_10_1016_j_jhydrol_2023_129790
crossref_primary_10_1177_09544089241241459
crossref_primary_10_1016_j_csite_2023_102909
crossref_primary_10_1080_01430750_2023_2190338
crossref_primary_10_3390_eng6030055
crossref_primary_10_1016_j_ijhydene_2021_12_093
crossref_primary_10_1002_zamm_202400248
crossref_primary_10_1016_j_csite_2021_101504
crossref_primary_10_1177_09544089241282472
crossref_primary_10_1016_j_nanoso_2024_101349
crossref_primary_10_1615_InterJFluidMechRes_2024052375
crossref_primary_10_1515_polyeng_2024_0053
crossref_primary_10_1063_5_0173869
crossref_primary_10_1016_j_icheatmasstransfer_2022_106327
crossref_primary_10_1166_jon_2023_1945
crossref_primary_10_1016_j_triboint_2025_110532
crossref_primary_10_1177_23977914241248546
crossref_primary_10_1142_S0217984924504463
crossref_primary_10_1007_s13369_024_08909_7
crossref_primary_10_3389_fenrg_2022_1002672
crossref_primary_10_1016_j_arabjc_2022_104166
crossref_primary_10_1038_s41598_023_42609_w
crossref_primary_10_1177_16878132231215159
crossref_primary_10_1038_s41598_022_19625_3
crossref_primary_10_1080_01430750_2024_2410926
crossref_primary_10_1080_01430750_2023_2189161
crossref_primary_10_1088_1361_6528_aced57
crossref_primary_10_1007_s10973_024_13454_4
crossref_primary_10_1088_1361_6528_ad373d
crossref_primary_10_1007_s10973_024_12926_x
crossref_primary_10_2139_ssrn_4048769
crossref_primary_10_1016_j_csite_2022_102295
crossref_primary_10_1038_s41598_022_22460_1
crossref_primary_10_1080_17455030_2022_2048921
crossref_primary_10_1166_jon_2023_1934
crossref_primary_10_1166_jon_2023_1933
crossref_primary_10_1039_D3NA00735A
crossref_primary_10_1166_jon_2023_1938
crossref_primary_10_1016_j_padiff_2024_100786
crossref_primary_10_1039_D3NA00711A
crossref_primary_10_1002_zamm_202300940
crossref_primary_10_1080_17455030_2022_2050441
crossref_primary_10_1177_0958305X241244487
crossref_primary_10_1007_s11771_022_5053_2
crossref_primary_10_1142_S0217979224502217
crossref_primary_10_1002_zamm_202300934
crossref_primary_10_1166_jon_2023_1923
crossref_primary_10_1002_zamm_202300256
crossref_primary_10_1166_jon_2023_1920
crossref_primary_10_2174_1573413717666211018113823
crossref_primary_10_1166_jon_2023_1925
crossref_primary_10_1515_rams_2024_0020
crossref_primary_10_1016_j_csite_2023_102902
crossref_primary_10_1002_zamm_202200127
crossref_primary_10_1002_htj_22663
crossref_primary_10_1002_htj_22784
crossref_primary_10_1080_16583655_2022_2040281
crossref_primary_10_1088_1361_6528_acd38b
crossref_primary_10_1177_23977914241259095
crossref_primary_10_1166_jon_2022_1824
crossref_primary_10_1039_D3NA00453H
crossref_primary_10_1166_jon_2022_1823
crossref_primary_10_1007_s10973_023_12690_4
crossref_primary_10_1080_10407782_2024_2360668
crossref_primary_10_1039_D3NA00769C
crossref_primary_10_1515_ntrev_2022_0089
crossref_primary_10_1080_02286203_2023_2288770
crossref_primary_10_1002_htj_22754
crossref_primary_10_1016_j_fuel_2022_123601
crossref_primary_10_1038_s41598_022_15658_w
crossref_primary_10_1515_phys_2024_0075
crossref_primary_10_1016_j_aej_2022_02_005
crossref_primary_10_1007_s40430_025_05504_1
crossref_primary_10_1080_10407790_2023_2200984
crossref_primary_10_1142_S0217979223502909
crossref_primary_10_1016_j_icheatmasstransfer_2021_105671
crossref_primary_10_1615_JPorMedia_2024051851
crossref_primary_10_1002_cjce_25352
crossref_primary_10_1080_10420150_2024_2338370
crossref_primary_10_1063_5_0199911
crossref_primary_10_1166_jon_2023_1907
crossref_primary_10_1166_jon_2023_1906
crossref_primary_10_3390_pr11092736
crossref_primary_10_1177_16878132231209875
crossref_primary_10_1016_j_csite_2024_104129
crossref_primary_10_1016_j_csite_2024_104800
crossref_primary_10_1016_j_heliyon_2023_e12962
crossref_primary_10_1016_j_icheatmasstransfer_2022_106376
crossref_primary_10_1016_j_csite_2021_101557
crossref_primary_10_1080_10407790_2023_2252600
crossref_primary_10_1080_17455030_2021_1985185
crossref_primary_10_1166_jon_2022_1847
crossref_primary_10_1142_S0217979223501515
crossref_primary_10_1007_s12648_023_02754_4
crossref_primary_10_1177_09544062231209828
crossref_primary_10_2139_ssrn_3990038
crossref_primary_10_1016_j_padiff_2022_100468
crossref_primary_10_1142_S0217984924504293
crossref_primary_10_1080_17455030_2022_2055811
crossref_primary_10_1002_htj_23144
crossref_primary_10_1038_s41598_022_07655_w
crossref_primary_10_1016_j_mtcomm_2023_107522
crossref_primary_10_1166_jon_2024_2144
crossref_primary_10_1177_09544062221119055
crossref_primary_10_1166_jon_2024_2148
crossref_primary_10_1038_s41598_023_34259_9
crossref_primary_10_1080_01430750_2023_2256338
crossref_primary_10_1108_HFF_04_2023_0191
crossref_primary_10_1166_jon_2022_1835
crossref_primary_10_1166_jon_2024_2160
crossref_primary_10_1080_02286203_2024_2441487
crossref_primary_10_1166_jon_2024_2162
crossref_primary_10_1166_jon_2022_1832
crossref_primary_10_3389_fphy_2022_949907
crossref_primary_10_1016_j_aej_2022_11_009
crossref_primary_10_1080_17455030_2022_2086318
crossref_primary_10_1177_09544089241242956
crossref_primary_10_3390_en16237776
crossref_primary_10_1177_23977914241307593
crossref_primary_10_1177_09544089221133966
crossref_primary_10_1002_htj_23035
crossref_primary_10_1016_j_csite_2021_101571
crossref_primary_10_1080_10407782_2023_2219832
crossref_primary_10_1177_23977914231196379
crossref_primary_10_1016_j_csite_2024_105637
crossref_primary_10_1142_S021797922550002X
crossref_primary_10_1002_htj_23033
crossref_primary_10_1166_jon_2022_1866
crossref_primary_10_1016_j_jmmm_2023_171034
crossref_primary_10_1166_jon_2022_1864
crossref_primary_10_1166_jon_2022_1861
crossref_primary_10_1155_2023_9342174
crossref_primary_10_1016_j_heliyon_2024_e25102
crossref_primary_10_3390_sym15020399
crossref_primary_10_1002_zamm_202400408
crossref_primary_10_1063_5_0157429
crossref_primary_10_1142_S0217979224502114
crossref_primary_10_1007_s13204_022_02495_6
crossref_primary_10_1080_01430750_2024_2354505
crossref_primary_10_1080_10407782_2024_2338259
crossref_primary_10_1166_jon_2022_1854
crossref_primary_10_1166_jon_2024_2187
crossref_primary_10_1515_ntrev_2024_0099
crossref_primary_10_1166_jon_2022_1852
crossref_primary_10_1007_s12043_024_02792_5
crossref_primary_10_1080_02286203_2022_2079109
crossref_primary_10_1166_jon_2022_1850
crossref_primary_10_1002_htj_22965
crossref_primary_10_1016_j_padiff_2024_100796
crossref_primary_10_1080_16583655_2022_2087396
crossref_primary_10_1177_16878140211070937
crossref_primary_10_1002_htj_22962
crossref_primary_10_1016_j_arabjc_2023_105037
crossref_primary_10_1016_j_hybadv_2024_100303
crossref_primary_10_1007_s13369_024_09108_0
crossref_primary_10_1142_S0217979225500298
crossref_primary_10_3390_sym14030627
crossref_primary_10_1002_htj_23010
crossref_primary_10_1002_zamm_202200624
crossref_primary_10_1016_j_csite_2024_105536
crossref_primary_10_1177_23977914241304063
crossref_primary_10_1021_acsomega_3c02949
crossref_primary_10_1038_s41598_023_32374_1
crossref_primary_10_1177_23977914241270905
crossref_primary_10_1166_jon_2024_2110
crossref_primary_10_1166_jon_2022_1886
crossref_primary_10_1007_s41939_024_00643_9
crossref_primary_10_1002_htj_22814
crossref_primary_10_1080_01430750_2024_2321210
crossref_primary_10_1002_htj_23221
crossref_primary_10_1016_j_jics_2023_100983
crossref_primary_10_1016_j_heliyon_2023_e14875
crossref_primary_10_1166_jon_2023_2071
crossref_primary_10_1016_j_icheatmasstransfer_2022_106303
crossref_primary_10_1002_zamm_202300536
crossref_primary_10_1002_zamm_202300657
crossref_primary_10_1166_jon_2022_1877
crossref_primary_10_1166_jon_2022_1875
crossref_primary_10_1002_fld_5325
crossref_primary_10_1002_zamm_202300770
crossref_primary_10_1166_jon_2022_1872
crossref_primary_10_1016_j_jrras_2024_101213
crossref_primary_10_3390_sym14091940
crossref_primary_10_1080_17455030_2022_2111476
crossref_primary_10_1080_13873954_2024_2311392
crossref_primary_10_1088_1402_4896_ac6e51
crossref_primary_10_1166_jon_2023_2062
crossref_primary_10_1016_j_csite_2023_103035
crossref_primary_10_1166_jon_2023_2065
crossref_primary_10_1007_s13369_022_07218_1
crossref_primary_10_1177_0958305X241270239
crossref_primary_10_1166_jon_2023_2044
crossref_primary_10_1080_17455030_2022_2128228
crossref_primary_10_1080_02286203_2023_2301627
crossref_primary_10_1002_htj_22914
crossref_primary_10_1016_j_thradv_2024_100003
crossref_primary_10_3390_math10050769
crossref_primary_10_1016_j_csite_2022_102316
crossref_primary_10_1080_02286203_2024_2406435
crossref_primary_10_1080_10420150_2024_2359695
crossref_primary_10_1166_jon_2024_2123
crossref_primary_10_1016_j_enganabound_2022_12_007
crossref_primary_10_1108_WJE_01_2024_0043
crossref_primary_10_1166_jon_2023_2053
crossref_primary_10_1016_j_cherd_2024_06_037
crossref_primary_10_1002_zamm_202200557
crossref_primary_10_1016_j_csite_2023_103008
crossref_primary_10_1093_jcde_qwae036
crossref_primary_10_1166_jon_2023_1981
crossref_primary_10_1166_jon_2023_2039
crossref_primary_10_1166_jon_2023_1985
crossref_primary_10_1166_jon_2023_2034
crossref_primary_10_1615_SpecialTopicsRevPorousMedia_v15_i2_20
crossref_primary_10_1166_jon_2023_1989
crossref_primary_10_1080_10420150_2024_2381239
crossref_primary_10_1080_17455030_2022_2136780
crossref_primary_10_1166_jon_2022_1894
crossref_primary_10_1080_10407790_2023_2231633
crossref_primary_10_1166_jon_2022_1892
crossref_primary_10_1166_jon_2022_1890
crossref_primary_10_1016_j_csite_2023_102847
crossref_primary_10_1007_s42452_024_05866_6
crossref_primary_10_1080_01430750_2022_2161633
crossref_primary_10_1016_j_csite_2023_103934
crossref_primary_10_1038_s41598_022_20155_1
crossref_primary_10_1166_jon_2023_2040
crossref_primary_10_1166_jon_2023_2041
crossref_primary_10_1166_jon_2023_2042
crossref_primary_10_1515_phys_2023_0150
crossref_primary_10_3390_mca28010018
crossref_primary_10_3390_sym14081496
Cites_doi 10.1007/s11771-019-4087-6
10.1115/1.3108418
10.1016/j.icheatmasstransfer.2020.104494
10.1016/j.icheatmasstransfer.2019.104430
10.1016/j.ijheatmasstransfer.2019.05.076
10.1140/epjp/i2019-12623-1
10.1016/j.est.2020.101720
10.1016/j.icheatmasstransfer.2017.05.024
10.3390/app8020192
10.1007/s00231-010-0740-1
10.1016/j.rinp.2018.01.063
10.1139/cjp-2015-0799
10.1016/j.icheatmasstransfer.2019.104449
10.1108/MMMS-06-2017-0045
10.3390/app8122396
10.1016/j.csite.2015.06.002
10.1016/S0020-7462(03)00043-X
10.1016/j.jppr.2020.04.003
10.1108/HFF-01-2019-0031
10.1016/j.cjph.2017.11.026
10.1016/j.rser.2014.11.023
10.1016/j.rinp.2017.06.034
10.1007/s10973-016-5436-4
10.1515/ijnsns-2016-0037
10.3390/app8040587
10.1016/j.jcis.2017.03.024
10.1016/j.csite.2021.100974
10.1016/j.icheatmasstransfer.2019.104398
10.1016/j.ijheatmasstransfer.2018.06.005
10.15282/ijame.14.4.2017.14.0375
10.1016/j.cmpb.2019.105131
10.1016/j.ijheatmasstransfer.2018.11.030
10.4028/www.scientific.net/DDF.390.83
10.1016/j.rser.2016.09.108
10.1016/j.rser.2016.12.072
10.1016/j.icheatmasstransfer.2021.105399
10.1002/htj.21667
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2021.101229
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_a36dc21331384b168b7980937f8781ad
10_1016_j_csite_2021_101229
S2214157X21003920
GroupedDBID 0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-94a573a7353f15a6bd9e511465d8f318e8d6922cacfc54521b18954d3b1ab7bb3
IEDL.DBID IXB
ISSN 2214-157X
IngestDate Wed Aug 27 01:15:48 EDT 2025
Thu Apr 24 23:13:04 EDT 2025
Tue Jul 01 02:28:29 EDT 2025
Tue Jul 25 20:58:12 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MHD flows
Casson fluid
Nanofluids
Porous medium
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-94a573a7353f15a6bd9e511465d8f318e8d6922cacfc54521b18954d3b1ab7bb3
ORCID 0000-0002-6580-1592
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2214157X21003920
ParticipantIDs doaj_primary_oai_doaj_org_article_a36dc21331384b168b7980937f8781ad
crossref_primary_10_1016_j_csite_2021_101229
crossref_citationtrail_10_1016_j_csite_2021_101229
elsevier_sciencedirect_doi_10_1016_j_csite_2021_101229
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Rashad, Armaghani, Chamkha, Mansour (bib18) 2018; 56
Devi, Devi (bib41) 2016; 94
Khaled, Vafai (bib39) 2004; 39
Nayak, Hakeem, Ganga, Khan, Waqas, Makinde (bib15) 2020; 186
Hayat, Nadeem (bib7) 2017; 7
Khan, Waqas, Hayat, Alsaedi (bib14) 2017; 498
Krishna, Chamkha (bib33) 2020; 113
Nabil, Azmi, Hamid, Mamat, Hagos (bib44) 2017; 86
Krishna (bib35) 2021; 31
Kamran, Hussain, Sagheer, Akmal (bib17) 2017; 7
Molana, Ghasemiasl, Armaghani (bib19) 2021; 145
Seth, Ansari, Nandkeolyar (bib46) 2011; 47
Shaw, Nayak, Dogonchi, Elmasry, Alsulami (bib20) 2021; 26
Ali, Babar, Shah, Shajid, Qasim, Javed (bib45) 2018; 8
Ellahi (bib9) 2018; 8
Hashemi-Tilehnoee, Sahebi, Dogonchi, Seyyedi, Tashakor (bib27) 2019; 139
Choi, Eastman (bib1) 1995
Casson (bib12) 1959
Dogonchi, Asghar, Waqas (bib31) 2020; 112
Jamshed, Aziz (bib8) 2018; 9
Usman, Hamid, Zubair, Haq, Wang (bib11) 2018; 126
Ghosh, Mukhopadhyay (bib13) 2017; 14
Dogonchi, Ganji (bib22) 2015; 6
Seyyedi, Sahebi, Dogonchi, Hashemi-Tilehnoee (bib29) 2019; 130
Mondal, Dogonchi, Tripathi, Waqas, Seyyedi, Hashemi-Tilehnoee, Ganji (bib24) 2020; 42
Aman, Zokri, Ismail, Salleh, Khan (bib10) 2018; 44
Aman, Zokri, Ismail, Salleh, Khan (bib43) 2019; 390
Seyyedi, Dogonchi, Hashemi-Tilehnoee, Waqas, Ganji (bib25) 2020; 110
Sarkar, Ghosh, Adil (bib3) 2015; 43
Sundar, Sharma, Singh, Sousa (bib2) 2017; 68
Dogonchi, Waqas, Gulzar, Hashemi-Tilehnoee, Seyyedi, Ganji (bib26) 2019; 29
Toghraie, Vahid, Masoud (bib6) 2016; 125
Seyyedi, Dogonchi, Nuraei, Hashemi-Tilehnoee (bib28) 2019; 134
Krishna (bib36) 2021; 126
Hashemi-Tilehnoee, Dogonchi, Seyyedi, Sharifpur (bib30) 2020; 31
Krishna (bib34) 2020; 119
Lauge, Brenner, Stone (bib40) 2007
Minea (bib5) 2017; 71
Krishna (bib32) 2020; 49
Singh, Srinivasa (bib38) 2018; 14
Dogonchi, Waqas, Seyyedi, Hashemi-Tilehnoee, Ganji (bib23) 2020; 111
Devi, Devi (bib4) 2016; 17
Rasoola, Chamkha, Muhammad, Shafiqd, Khan (bib16) 2020; 9
Chamkha, Dogonchi, Ganji (bib21) 2018; 8
Nakamura, Sawada (bib37) 1988; 110
Lund, Omar, Khan, Dero (bib42) 2019; 26
Dogonchi (10.1016/j.csite.2021.101229_bib22) 2015; 6
Krishna (10.1016/j.csite.2021.101229_bib35) 2021; 31
Aman (10.1016/j.csite.2021.101229_bib43) 2019; 390
Ali (10.1016/j.csite.2021.101229_bib45) 2018; 8
Seyyedi (10.1016/j.csite.2021.101229_bib28) 2019; 134
Kamran (10.1016/j.csite.2021.101229_bib17) 2017; 7
Usman (10.1016/j.csite.2021.101229_bib11) 2018; 126
Nayak (10.1016/j.csite.2021.101229_bib15) 2020; 186
Choi (10.1016/j.csite.2021.101229_bib1) 1995
Ellahi (10.1016/j.csite.2021.101229_bib9) 2018; 8
Hashemi-Tilehnoee (10.1016/j.csite.2021.101229_bib27) 2019; 139
Dogonchi (10.1016/j.csite.2021.101229_bib31) 2020; 112
Nakamura (10.1016/j.csite.2021.101229_bib37) 1988; 110
Aman (10.1016/j.csite.2021.101229_bib10) 2018; 44
Krishna (10.1016/j.csite.2021.101229_bib36) 2021; 126
Krishna (10.1016/j.csite.2021.101229_bib34) 2020; 119
Sarkar (10.1016/j.csite.2021.101229_bib3) 2015; 43
Shaw (10.1016/j.csite.2021.101229_bib20) 2021; 26
Lauge (10.1016/j.csite.2021.101229_bib40) 2007
Singh (10.1016/j.csite.2021.101229_bib38) 2018; 14
Sundar (10.1016/j.csite.2021.101229_bib2) 2017; 68
Hashemi-Tilehnoee (10.1016/j.csite.2021.101229_bib30) 2020; 31
Lund (10.1016/j.csite.2021.101229_bib42) 2019; 26
Devi (10.1016/j.csite.2021.101229_bib4) 2016; 17
Chamkha (10.1016/j.csite.2021.101229_bib21) 2018; 8
Dogonchi (10.1016/j.csite.2021.101229_bib26) 2019; 29
Krishna (10.1016/j.csite.2021.101229_bib32) 2020; 49
Toghraie (10.1016/j.csite.2021.101229_bib6) 2016; 125
Hayat (10.1016/j.csite.2021.101229_bib7) 2017; 7
Molana (10.1016/j.csite.2021.101229_bib19) 2021; 145
Jamshed (10.1016/j.csite.2021.101229_bib8) 2018; 9
Seyyedi (10.1016/j.csite.2021.101229_bib25) 2020; 110
Seth (10.1016/j.csite.2021.101229_bib46) 2011; 47
Rasoola (10.1016/j.csite.2021.101229_bib16) 2020; 9
Ghosh (10.1016/j.csite.2021.101229_bib13) 2017; 14
Dogonchi (10.1016/j.csite.2021.101229_bib23) 2020; 111
Mondal (10.1016/j.csite.2021.101229_bib24) 2020; 42
Minea (10.1016/j.csite.2021.101229_bib5) 2017; 71
Rashad (10.1016/j.csite.2021.101229_bib18) 2018; 56
Casson (10.1016/j.csite.2021.101229_bib12) 1959
Devi (10.1016/j.csite.2021.101229_bib41) 2016; 94
Khan (10.1016/j.csite.2021.101229_bib14) 2017; 498
Khaled (10.1016/j.csite.2021.101229_bib39) 2004; 39
Seyyedi (10.1016/j.csite.2021.101229_bib29) 2019; 130
Nabil (10.1016/j.csite.2021.101229_bib44) 2017; 86
Krishna (10.1016/j.csite.2021.101229_bib33) 2020; 113
References_xml – volume: 71
  start-page: 426
  year: 2017
  end-page: 434
  ident: bib5
  article-title: Challenges in hybrid nanofluids behavior in turbulent flow: recent research and numerical comparison
  publication-title: Renew. Sustain. Energy Rev.
– volume: 17
  start-page: 249
  year: 2016
  end-page: 257
  ident: bib4
  article-title: Numerical investigation of hydromagnetic hybrid Cu-Al
  publication-title: Int. J. Nonlinear Sci. Numer. Stimul.
– volume: 112
  year: 2020
  ident: bib31
  article-title: CVFEM simulation for Fe3O4-H2O nanofluid in an annulus between two triangular enclosures subjected to magnetic field and thermal radiation
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 49
  start-page: 1374
  year: 2020
  end-page: 1385
  ident: bib32
  article-title: Heat transport on steady MHD flow of copper and alumina nanofluids past a stretching porous surface
  publication-title: Heat Transfer
– volume: 390
  start-page: 83
  year: 2019
  end-page: 90
  ident: bib43
  article-title: Casson model of MHD flow of SA-based hybrid nanofluid using Caputo time-fractional models
  publication-title: Defect Diffusion Forum
– volume: 186
  year: 2020
  ident: bib15
  article-title: Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: a combined approach to good absorber of solar energy and intensification of heat transport
  publication-title: Comput. Methods Progr. Biomed.
– volume: 9
  start-page: 159
  year: 2020
  end-page: 168
  ident: bib16
  article-title: Darcy-Forchheimer relation in Casson type MHD nanofluid flow over non-linear stretching surface
  publication-title: Propolsion and Power Res.
– volume: 47
  start-page: 551
  year: 2011
  end-page: 561
  ident: bib46
  article-title: MHD natural convection flow with radiative heat transfer past an impulsively moving plate with ramped wall temperature
  publication-title: Heat Mass Tran.
– volume: 14
  start-page: 4785
  year: 2017
  end-page: 4804
  ident: bib13
  article-title: MHD slip flow and heat transfer of Casson nanofluid over an exponentially stretching permeable sheet
  publication-title: Int. J. Automot. Mech. Eng.
– volume: 56
  start-page: 193
  year: 2018
  end-page: 211
  ident: bib18
  article-title: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location
  publication-title: Chin. J. Phys.
– volume: 29
  start-page: 4430
  year: 2019
  end-page: 4444
  ident: bib26
  article-title: Simulation of Fe
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 8
  start-page: 587
  year: 2018
  ident: bib45
  article-title: Preparation techniques of TiO
  publication-title: Appl. Sci
– year: 1995
  ident: bib1
  article-title: Enhancing Thermal Conductivity of Fluids with Nanoparticles, No. ANL/MSD/CP-84938
– volume: 8
  start-page: 2396
  year: 2018
  ident: bib21
  article-title: Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impacts: a numerical study using CVFEM
  publication-title: Appl. Sci.
– volume: 7
  start-page: 2317
  year: 2017
  end-page: 2324
  ident: bib7
  article-title: Heat transfer enhancement with Ag–CuO/water hybrid nanofluid
  publication-title: Results Phys
– volume: 125
  start-page: 527
  year: 2016
  end-page: 535
  ident: bib6
  article-title: Measurement of thermal conductivity of ZnO–TiO
  publication-title: J. Therm. Anal. Calorim.
– volume: 8
  start-page: 192
  year: 2018
  ident: bib9
  article-title: Special issue on recent developments of nanofluids
  publication-title: Appl. Sci.
– volume: 139
  start-page: 974
  year: 2019
  end-page: 981
  ident: bib27
  article-title: Simulation of the dynamic behavior of a rectangular single-phase natural circulation vertical loop with asymmetric heater
  publication-title: Int. J. Heat Mass Tran.
– year: 2007
  ident: bib40
  article-title: Microfluidics: the No-Slip Boundary Condition
– volume: 119
  year: 2020
  ident: bib34
  article-title: Hall and ion slip impacts on unsteady MHD free convective rotating flow of Jeffreys fluid with ramped wall temperature
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 110
  start-page: 137
  year: 1988
  end-page: 143
  ident: bib37
  article-title: Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis
  publication-title: ASME J. Biomech. Eng.
– volume: 68
  start-page: 185
  year: 2017
  end-page: 198
  ident: bib2
  article-title: Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – a review
  publication-title: Renew. Sustain. Energy Rev.
– year: 1959
  ident: bib12
  article-title: A Flow Equation for Pigment Oil Suspensions of the Printing Ink Type
– volume: 498
  start-page: 85
  year: 2017
  end-page: 90
  ident: bib14
  article-title: A comparative study of Casson fluid with homogeneous-heterogeneous reactions
  publication-title: J. Colloid Interface Sci.
– volume: 126
  year: 2021
  ident: bib36
  article-title: Hall and ion slip effects on radiative MHD rotating flow of Jeffreys fluid past an infinite vertical flat porous surface with ramped wall velocity and temperature
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 7
  start-page: 3037
  year: 2017
  end-page: 3048
  ident: bib17
  article-title: A numerical study of magnetohydrodynamics flow in Casson nanofluid combined with Joule heating and slip boundary conditions
  publication-title: Res. Phys.
– volume: 94
  start-page: 490
  year: 2016
  end-page: 496
  ident: bib41
  article-title: Numerical investigation of three-dimensional hybrid Cu-Al
  publication-title: Can. J. Phys.
– volume: 6
  start-page: 40
  year: 2015
  end-page: 51
  ident: bib22
  article-title: Investigation of heat transfer for cooling turbine disks with a non-Newtonian fluid flow using DRA
  publication-title: Case Studies in Thermal Eng.
– volume: 31
  year: 2020
  ident: bib30
  article-title: Magneto-fluid dynamic and second law analysis in a hot porous cavity filled by nanofluid and nano-encapsulated phase change material suspension with different layout of cooling channels
  publication-title: J. Energy Storage
– volume: 26
  year: 2021
  ident: bib20
  article-title: Hydrothermal and entropy production analyses of magneto-cross nanoliquid under rectified Fourier viewpoint: a robust approach to industrial applications
  publication-title: Case Studies in Thermal Eng.
– volume: 130
  start-page: 1343
  year: 2019
  end-page: 1357
  ident: bib29
  article-title: Numerical and experimental analysis of a rectangular single-phase natural circulation loop with asymmetric heater position
  publication-title: Int. J. Heat Mass Tran.
– volume: 43
  start-page: 164
  year: 2015
  end-page: 177
  ident: bib3
  article-title: A review on hybrid nanofluids: recent research, development and applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 9
  start-page: 195
  year: 2018
  end-page: 205
  ident: bib8
  article-title: A comparative entropy based analysis of Cu and Fe
  publication-title: Results Phys
– volume: 110
  year: 2020
  ident: bib25
  article-title: Investigation of entropy generation in a square inclined cavity using control volume finite element method with aided quadratic Lagrange interpolation functions
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 126
  start-page: 1347
  year: 2018
  end-page: 1356
  ident: bib11
  article-title: Cu-Al
  publication-title: Int. J. Heat Mass Tran.
– volume: 31
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib35
  article-title: Radiation-absorption, chemical reaction, Hall and ion slip impacts on magnetohydrodynamic free convective flow over semi-infinite moving absorbent surface
  publication-title: Chin. J. Chem. Eng.
– volume: 134
  start-page: 268
  year: 2019
  ident: bib28
  article-title: Numerical analysis of entropy generation of a nanofluid in a semi-annulus porous enclosure with different nanoparticle shapes in the presence of a magnetic field
  publication-title: Euro. Phys. J. Plus
– volume: 14
  start-page: 216
  year: 2018
  end-page: 235
  ident: bib38
  article-title: Unsteady natural convection flow of a rotating fluid past an exponential accelerated vertical plate with Hall current, ion-slip and magnetic effect
  publication-title: Multidiscip. Model. Mater. Struct.
– volume: 26
  start-page: 1283
  year: 2019
  end-page: 1293
  ident: bib42
  article-title: Multiple solutions of Cu-C
  publication-title: J. Cent. South Univ.
– volume: 145
  start-page: 1
  year: 2021
  end-page: 14
  ident: bib19
  article-title: A different look at the effect of temperature on the nanofluids thermal conductivity: focus on the experimental-based models
  publication-title: J. Therm. Anal. Calorim.
– volume: 111
  year: 2020
  ident: bib23
  article-title: A modified Fourier approach for analysis of nanofluid heat generation within a semi-circular enclosure subjected to MFD viscosity
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 86
  start-page: 181
  year: 2017
  end-page: 189
  ident: bib44
  article-title: An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: ethylene glycol mixture
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 113
  year: 2020
  ident: bib33
  article-title: Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 44
  start-page: 131
  year: 2018
  end-page: 139
  ident: bib10
  article-title: Effect of MHD and porosity on exact solutions and flow of a hybrid Casson-nanofluid
  publication-title: J. Adv. Res. Fluid Mech. Therm. Sci.
– volume: 39
  start-page: 795
  year: 2004
  ident: bib39
  article-title: The effect of slip condition on Stokes and Couette flows due to an oscillating wall: exact solutions
  publication-title: Int. J. Non Lin. Mech.
– volume: 42
  year: 2020
  ident: bib24
  article-title: A theoretical nanofluid analysis exhibiting hydromagnetics characteristics employing CVFEM
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– volume: 26
  start-page: 1283
  year: 2019
  ident: 10.1016/j.csite.2021.101229_bib42
  article-title: Multiple solutions of Cu-C6H9NaO7 and Ag-C6H9NaO7 nanofluids flow over nonlinear shrinking surface
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-019-4087-6
– volume: 110
  start-page: 137
  year: 1988
  ident: 10.1016/j.csite.2021.101229_bib37
  article-title: Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis
  publication-title: ASME J. Biomech. Eng.
  doi: 10.1115/1.3108418
– volume: 113
  year: 2020
  ident: 10.1016/j.csite.2021.101229_bib33
  article-title: Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2020.104494
– year: 2007
  ident: 10.1016/j.csite.2021.101229_bib40
– volume: 111
  year: 2020
  ident: 10.1016/j.csite.2021.101229_bib23
  article-title: A modified Fourier approach for analysis of nanofluid heat generation within a semi-circular enclosure subjected to MFD viscosity
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2019.104430
– volume: 139
  start-page: 974
  year: 2019
  ident: 10.1016/j.csite.2021.101229_bib27
  article-title: Simulation of the dynamic behavior of a rectangular single-phase natural circulation vertical loop with asymmetric heater
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.05.076
– volume: 134
  start-page: 268
  year: 2019
  ident: 10.1016/j.csite.2021.101229_bib28
  article-title: Numerical analysis of entropy generation of a nanofluid in a semi-annulus porous enclosure with different nanoparticle shapes in the presence of a magnetic field
  publication-title: Euro. Phys. J. Plus
  doi: 10.1140/epjp/i2019-12623-1
– volume: 31
  year: 2020
  ident: 10.1016/j.csite.2021.101229_bib30
  article-title: Magneto-fluid dynamic and second law analysis in a hot porous cavity filled by nanofluid and nano-encapsulated phase change material suspension with different layout of cooling channels
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101720
– volume: 86
  start-page: 181
  year: 2017
  ident: 10.1016/j.csite.2021.101229_bib44
  article-title: An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: ethylene glycol mixture
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2017.05.024
– volume: 8
  start-page: 192
  year: 2018
  ident: 10.1016/j.csite.2021.101229_bib9
  article-title: Special issue on recent developments of nanofluids
  publication-title: Appl. Sci.
  doi: 10.3390/app8020192
– volume: 47
  start-page: 551
  issue: 5
  year: 2011
  ident: 10.1016/j.csite.2021.101229_bib46
  article-title: MHD natural convection flow with radiative heat transfer past an impulsively moving plate with ramped wall temperature
  publication-title: Heat Mass Tran.
  doi: 10.1007/s00231-010-0740-1
– volume: 9
  start-page: 195
  year: 2018
  ident: 10.1016/j.csite.2021.101229_bib8
  article-title: A comparative entropy based analysis of Cu and Fe3O4/methanol Powell-Eyering nanofluid in solar thermal collectors subjected to thermal radiation, variable thermal conductivity and impact of different nanoparticles shape
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2018.01.063
– volume: 94
  start-page: 490
  issue: 5
  year: 2016
  ident: 10.1016/j.csite.2021.101229_bib41
  article-title: Numerical investigation of three-dimensional hybrid Cu-Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating
  publication-title: Can. J. Phys.
  doi: 10.1139/cjp-2015-0799
– volume: 112
  year: 2020
  ident: 10.1016/j.csite.2021.101229_bib31
  article-title: CVFEM simulation for Fe3O4-H2O nanofluid in an annulus between two triangular enclosures subjected to magnetic field and thermal radiation
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2019.104449
– volume: 14
  start-page: 216
  issue: 2
  year: 2018
  ident: 10.1016/j.csite.2021.101229_bib38
  article-title: Unsteady natural convection flow of a rotating fluid past an exponential accelerated vertical plate with Hall current, ion-slip and magnetic effect
  publication-title: Multidiscip. Model. Mater. Struct.
  doi: 10.1108/MMMS-06-2017-0045
– volume: 8
  start-page: 2396
  issue: 12
  year: 2018
  ident: 10.1016/j.csite.2021.101229_bib21
  article-title: Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impacts: a numerical study using CVFEM
  publication-title: Appl. Sci.
  doi: 10.3390/app8122396
– volume: 31
  start-page: 1
  year: 2021
  ident: 10.1016/j.csite.2021.101229_bib35
  article-title: Radiation-absorption, chemical reaction, Hall and ion slip impacts on magnetohydrodynamic free convective flow over semi-infinite moving absorbent surface
  publication-title: Chin. J. Chem. Eng.
– volume: 6
  start-page: 40
  year: 2015
  ident: 10.1016/j.csite.2021.101229_bib22
  article-title: Investigation of heat transfer for cooling turbine disks with a non-Newtonian fluid flow using DRA
  publication-title: Case Studies in Thermal Eng.
  doi: 10.1016/j.csite.2015.06.002
– volume: 39
  start-page: 795
  year: 2004
  ident: 10.1016/j.csite.2021.101229_bib39
  article-title: The effect of slip condition on Stokes and Couette flows due to an oscillating wall: exact solutions
  publication-title: Int. J. Non Lin. Mech.
  doi: 10.1016/S0020-7462(03)00043-X
– volume: 9
  start-page: 159
  issue: 2
  year: 2020
  ident: 10.1016/j.csite.2021.101229_bib16
  article-title: Darcy-Forchheimer relation in Casson type MHD nanofluid flow over non-linear stretching surface
  publication-title: Propolsion and Power Res.
  doi: 10.1016/j.jppr.2020.04.003
– volume: 119
  year: 2020
  ident: 10.1016/j.csite.2021.101229_bib34
  article-title: Hall and ion slip impacts on unsteady MHD free convective rotating flow of Jeffreys fluid with ramped wall temperature
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 29
  start-page: 4430
  issue: 11
  year: 2019
  ident: 10.1016/j.csite.2021.101229_bib26
  article-title: Simulation of Fe3O4-H2O nanoliquid in a triangular enclosure subjected to Cattaneo–Christov theory of heat conduction
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-01-2019-0031
– volume: 56
  start-page: 193
  issue: 1
  year: 2018
  ident: 10.1016/j.csite.2021.101229_bib18
  article-title: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2017.11.026
– volume: 43
  start-page: 164
  year: 2015
  ident: 10.1016/j.csite.2021.101229_bib3
  article-title: A review on hybrid nanofluids: recent research, development and applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.11.023
– volume: 7
  start-page: 2317
  year: 2017
  ident: 10.1016/j.csite.2021.101229_bib7
  article-title: Heat transfer enhancement with Ag–CuO/water hybrid nanofluid
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2017.06.034
– volume: 125
  start-page: 527
  year: 2016
  ident: 10.1016/j.csite.2021.101229_bib6
  article-title: Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-016-5436-4
– volume: 17
  start-page: 249
  year: 2016
  ident: 10.1016/j.csite.2021.101229_bib4
  article-title: Numerical investigation of hydromagnetic hybrid Cu-Al2O3/water nanofluid flow over a permeable stretching sheet with suction
  publication-title: Int. J. Nonlinear Sci. Numer. Stimul.
  doi: 10.1515/ijnsns-2016-0037
– volume: 8
  start-page: 587
  year: 2018
  ident: 10.1016/j.csite.2021.101229_bib45
  article-title: Preparation techniques of TiO2 nanofluids and challenges: a review
  publication-title: Appl. Sci.
  doi: 10.3390/app8040587
– volume: 498
  start-page: 85
  year: 2017
  ident: 10.1016/j.csite.2021.101229_bib14
  article-title: A comparative study of Casson fluid with homogeneous-heterogeneous reactions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.03.024
– volume: 26
  year: 2021
  ident: 10.1016/j.csite.2021.101229_bib20
  article-title: Hydrothermal and entropy production analyses of magneto-cross nanoliquid under rectified Fourier viewpoint: a robust approach to industrial applications
  publication-title: Case Studies in Thermal Eng.
  doi: 10.1016/j.csite.2021.100974
– volume: 42
  issue: 19
  year: 2020
  ident: 10.1016/j.csite.2021.101229_bib24
  article-title: A theoretical nanofluid analysis exhibiting hydromagnetics characteristics employing CVFEM
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– volume: 110
  year: 2020
  ident: 10.1016/j.csite.2021.101229_bib25
  article-title: Investigation of entropy generation in a square inclined cavity using control volume finite element method with aided quadratic Lagrange interpolation functions
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2019.104398
– volume: 126
  start-page: 1347
  year: 2018
  ident: 10.1016/j.csite.2021.101229_bib11
  article-title: Cu-Al2O3/water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2018.06.005
– volume: 14
  start-page: 4785
  issue: 4
  year: 2017
  ident: 10.1016/j.csite.2021.101229_bib13
  article-title: MHD slip flow and heat transfer of Casson nanofluid over an exponentially stretching permeable sheet
  publication-title: Int. J. Automot. Mech. Eng.
  doi: 10.15282/ijame.14.4.2017.14.0375
– volume: 186
  year: 2020
  ident: 10.1016/j.csite.2021.101229_bib15
  article-title: Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: a combined approach to good absorber of solar energy and intensification of heat transport
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2019.105131
– volume: 7
  start-page: 3037
  year: 2017
  ident: 10.1016/j.csite.2021.101229_bib17
  article-title: A numerical study of magnetohydrodynamics flow in Casson nanofluid combined with Joule heating and slip boundary conditions
  publication-title: Res. Phys.
– volume: 130
  start-page: 1343
  year: 2019
  ident: 10.1016/j.csite.2021.101229_bib29
  article-title: Numerical and experimental analysis of a rectangular single-phase natural circulation loop with asymmetric heater position
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2018.11.030
– volume: 390
  start-page: 83
  year: 2019
  ident: 10.1016/j.csite.2021.101229_bib43
  article-title: Casson model of MHD flow of SA-based hybrid nanofluid using Caputo time-fractional models
  publication-title: Defect Diffusion Forum
  doi: 10.4028/www.scientific.net/DDF.390.83
– volume: 44
  start-page: 131
  year: 2018
  ident: 10.1016/j.csite.2021.101229_bib10
  article-title: Effect of MHD and porosity on exact solutions and flow of a hybrid Casson-nanofluid
  publication-title: J. Adv. Res. Fluid Mech. Therm. Sci.
– volume: 145
  start-page: 1
  year: 2021
  ident: 10.1016/j.csite.2021.101229_bib19
  article-title: A different look at the effect of temperature on the nanofluids thermal conductivity: focus on the experimental-based models
  publication-title: J. Therm. Anal. Calorim.
– volume: 68
  start-page: 185
  year: 2017
  ident: 10.1016/j.csite.2021.101229_bib2
  article-title: Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.09.108
– volume: 71
  start-page: 426
  year: 2017
  ident: 10.1016/j.csite.2021.101229_bib5
  article-title: Challenges in hybrid nanofluids behavior in turbulent flow: recent research and numerical comparison
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.12.072
– year: 1995
  ident: 10.1016/j.csite.2021.101229_bib1
– volume: 126
  year: 2021
  ident: 10.1016/j.csite.2021.101229_bib36
  article-title: Hall and ion slip effects on radiative MHD rotating flow of Jeffreys fluid past an infinite vertical flat porous surface with ramped wall velocity and temperature
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2021.105399
– volume: 49
  start-page: 1374
  issue: 3
  year: 2020
  ident: 10.1016/j.csite.2021.101229_bib32
  article-title: Heat transport on steady MHD flow of copper and alumina nanofluids past a stretching porous surface
  publication-title: Heat Transfer
  doi: 10.1002/htj.21667
– year: 1959
  ident: 10.1016/j.csite.2021.101229_bib12
SSID ssj0001738144
Score 2.6203175
Snippet The radiative unsteady magnetohydrodynamic (MHD) flow of an incompressible viscous electrically conducting non-Newtonian Casson hybrid nanofluid over an...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 101229
SubjectTerms Casson fluid
MHD flows
Nanofluids
Porous medium
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnuihojzUpYB86JEI_IqdIy1UK6RyQFTaW-TxQxRFyardVdt_z4yTLTmVC7fISmxrPPF8k3z-hrFTiAaysKKCpDBBaUBVjbZQBSVNBu-FgsK2-F4vr_S3lVnNSn0RJ2yUBx4N99GrOgaJmZRQToOoHdjGYRpus7NO-Ei7L8a8WTJVvq5YjESlkquUQlfC2NVOcqiQu0L5NYuJv6AWWQDm37BU1Ptn0WkWcS6es8MJKvLP4xSP2F7qX7CDmYDgS7b-QdICtGPxy-UXnrvhjg-ZnyMiHnr-64GOY_He90PutnhFdE3ue45edU1Yk6f79dATX8h33QP3IWAQIu2IyEuZZlw_jvh82N7y2-1N9iG9YlcXX3-eL6uphkIVtNAbNLw3VnmrjMrC-BpikwydRDbRZXyfk4t1I2XwIQcqNy5AuMboqEB4sADqNdvvcSbHjGMgT7rxAUA0WqYA3iWVEJ2baCKYTwsmdyZswyQwTnUuunbHJPvdFru3ZPd2tPuCfXh8aD3qazx9-xmtzeOtJI5dGtBl2sll2n-5zILVu5VtJ5wx4gfs6vqp0d_8j9FP2DPqciQEvmX7m5tteofAZgPviw__Ad3b86E
  priority: 102
  providerName: Directory of Open Access Journals
Title Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface
URI https://dx.doi.org/10.1016/j.csite.2021.101229
https://doaj.org/article/a36dc21331384b168b7980937f8781ad
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWe4ID4inKwsoHjkSt7Th2jmxhVSHBAVipt8jjBxRFSdVtBfvvmXGS3XLZA7fEshNrZjLfjDMPxt5C0JCEEQVEhQ5KDaqoSwOFV1IncE4oyNEWX6rVVflprdcnbDnlwlBY5aj7B52etfU4Mh-pOd9uNvNvUgpEH7NGp2WBKE9-uyptTuJbX9ydsxjEpNzTleYXtGAqPpTDvHz-SSsR6mhEZlPzDqByHf8jnDrCnsvH7NFoNPL3w76esJPYPWUPj0oJPmPbr1RkgHQX_7z6wFPb_-Z94ku0jfuO_7yhxCzeua5P7QGvKHCTu46jfG3I6uTxz7bvKHLIte0Nd94jHFEVicBzw2bkJEdLvT9c8-vDLjkfn7Ory4_fl6ti7KZQ-FKUe2SB00Y5o7RKQrsKQh015STrYBN-2dGGqpbSO588NR4XIGyty6BAODAA6gU77XAnLxlHSI9l7TyAqEsZPTgbVUQ7XQcdQC9mTE4kbPxYapw6XrTNFFP2q8l0b4juzUD3GXt3u2g7VNq4f_oF8eZ2KpXJzgP97kczyknjVBW8RDdcKFuCqCyY2i7QIkvWWOHCjFUTZ5t_pA4ftbnv7a_-d-EZe0B3Qzjga3a63x3iGzRr9nCejwPOs_T-BdZ59qc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMsTx_gRrRrO46TAwfaUu3SxwFaaW_B40dZFCWrfajs7-IPMnaSdrn0gNRb5NiONZ7M900yniHkPVgJnimWgBPooBQgkiJVkBjBpQetmYAYbXGajc_Tr1M53SF_-rMwIayys_2tTY_WumsZdtIczmez4XfOGaKPmqLTMkKUH3WRlUduc4l-2_LT5AA3-QPnh1_O9sdJV1ogMSlLV7geLZXQSkjhmdQZ2MLJcEBX2tyjmrvcZgXnRhtvQhVuBiwvZGoFMA0KQOC8d8hdZB8qWIPJdO_6w45CEIxFZMMCk7DCPttRjCsz8a8wR2wNLTxy22tEjIUDtoBxC-wOH5GHHUuln1tBPCY7rn5CHmzlLnxK5t9CVoNgLOnJ-ID6qrmkjaf7SMabmv7chJNgtNZ146s1XoVIUaprigo9CzSXut_zpg6hSrqqNlQbg_gX0lZYGitEo-pQdA2a9ZIu1wuvjXtGzm9Fxs_Jbo0reUEocgiXFtoAsCLlzoDOnXDoGEgrLcjRgPBehKXpcpuHEhtV2Qex_Sqj3Msg97KV-4B8vBo0b1N73Nx9L-zNVdeQlzs2NIuLslPMUovMGo5-PxN5CizLQRX5CCmgz1XOtB2QrN_Z8h81x6lmNz395f8OfEfujc9OjsvjyenRK3I_3GljEV-T3dVi7d4gp1rB26jDlPy47ZfmL8aHMlM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiative+MHD+flow+of+Casson+hybrid+nanofluid+over+an+infinite+exponentially+accelerated+vertical+porous+surface&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Krishna%2C+M.+Veera&rft.au=Ahammad%2C+N.+Ameer&rft.au=Chamkha%2C+Ali+J.&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=27&rft_id=info:doi/10.1016%2Fj.csite.2021.101229&rft.externalDocID=S2214157X21003920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon