Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface
The radiative unsteady magnetohydrodynamic (MHD) flow of an incompressible viscous electrically conducting non-Newtonian Casson hybrid nanofluid over an infinite exponentially accelerated vertical moving porous surface under the influence of slip velocity in a rotating frame has been explored in thi...
Saved in:
Published in | Case studies in thermal engineering Vol. 27; p. 101229 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The radiative unsteady magnetohydrodynamic (MHD) flow of an incompressible viscous electrically conducting non-Newtonian Casson hybrid nanofluid over an infinite exponentially accelerated vertical moving porous surface under the influence of slip velocity in a rotating frame has been explored in this paper. Water and ethylene glycol mixture have been considered as a base Casson fluid. A steady homogeneous magnetic field is applied under the assumption of low magnetic Reynolds number. The ramped temperature and time varying concentration at the surface is made into consideration. First order consistent chemical reaction and thermal absorption are also considered. Silver and Titania nanoparticles are disseminated in base fluid water and ethylene glycol mixture to be formed as hybrid nanofluid. Laplace transformation technique is employed on the non-dimensional governing equations for the closed form solutions. Based on those outcomes, the expressions for non-dimensional shear stress, rates of heat and mass transfer are also evaluated. The graphical representations are presented to scrutinize the effects of physical parameters on the significant flow characteristics. The computational values of the shear stresses, rate of heat transfer and rate of mass transfer at the surface are tabulated by the different implanted parameters. The resultant velocity is increasing with an increasing in thermal and concentration buoyancy forces, whereas rotation and slip parameters have overturn result on it for both cases of uniform wall temperature and ramped wall temperature. Species concentration of Casson hybrid Ag-TiO2/WEG nanofluid is decreased with an increase in Schmidt number and chemical reaction parameter. The Nusselt number is increased with an increase in heat absorption at the surface.
[Display omitted] |
---|---|
AbstractList | The radiative unsteady magnetohydrodynamic (MHD) flow of an incompressible viscous electrically conducting non-Newtonian Casson hybrid nanofluid over an infinite exponentially accelerated vertical moving porous surface under the influence of slip velocity in a rotating frame has been explored in this paper. Water and ethylene glycol mixture have been considered as a base Casson fluid. A steady homogeneous magnetic field is applied under the assumption of low magnetic Reynolds number. The ramped temperature and time varying concentration at the surface is made into consideration. First order consistent chemical reaction and thermal absorption are also considered. Silver and Titania nanoparticles are disseminated in base fluid water and ethylene glycol mixture to be formed as hybrid nanofluid. Laplace transformation technique is employed on the non-dimensional governing equations for the closed form solutions. Based on those outcomes, the expressions for non-dimensional shear stress, rates of heat and mass transfer are also evaluated. The graphical representations are presented to scrutinize the effects of physical parameters on the significant flow characteristics. The computational values of the shear stresses, rate of heat transfer and rate of mass transfer at the surface are tabulated by the different implanted parameters. The resultant velocity is increasing with an increasing in thermal and concentration buoyancy forces, whereas rotation and slip parameters have overturn result on it for both cases of uniform wall temperature and ramped wall temperature. Species concentration of Casson hybrid Ag-TiO2/WEG nanofluid is decreased with an increase in Schmidt number and chemical reaction parameter. The Nusselt number is increased with an increase in heat absorption at the surface. The radiative unsteady magnetohydrodynamic (MHD) flow of an incompressible viscous electrically conducting non-Newtonian Casson hybrid nanofluid over an infinite exponentially accelerated vertical moving porous surface under the influence of slip velocity in a rotating frame has been explored in this paper. Water and ethylene glycol mixture have been considered as a base Casson fluid. A steady homogeneous magnetic field is applied under the assumption of low magnetic Reynolds number. The ramped temperature and time varying concentration at the surface is made into consideration. First order consistent chemical reaction and thermal absorption are also considered. Silver and Titania nanoparticles are disseminated in base fluid water and ethylene glycol mixture to be formed as hybrid nanofluid. Laplace transformation technique is employed on the non-dimensional governing equations for the closed form solutions. Based on those outcomes, the expressions for non-dimensional shear stress, rates of heat and mass transfer are also evaluated. The graphical representations are presented to scrutinize the effects of physical parameters on the significant flow characteristics. The computational values of the shear stresses, rate of heat transfer and rate of mass transfer at the surface are tabulated by the different implanted parameters. The resultant velocity is increasing with an increasing in thermal and concentration buoyancy forces, whereas rotation and slip parameters have overturn result on it for both cases of uniform wall temperature and ramped wall temperature. Species concentration of Casson hybrid Ag-TiO2/WEG nanofluid is decreased with an increase in Schmidt number and chemical reaction parameter. The Nusselt number is increased with an increase in heat absorption at the surface. [Display omitted] |
ArticleNumber | 101229 |
Author | Krishna, M. Veera Ahammad, N. Ameer Chamkha, Ali J. |
Author_xml | – sequence: 1 givenname: M. Veera orcidid: 0000-0002-6580-1592 surname: Krishna fullname: Krishna, M. Veera email: mvkmaths@rayalaseemauniversity.ac.in organization: Department of Mathematics, Rayalaseema University, Kurnool, Andhra Pradesh, 518007, India – sequence: 2 givenname: N. Ameer surname: Ahammad fullname: Ahammad, N. Ameer organization: Department of Mathematics, Faculty of Science, University of Tabuk, 71491, Saudi Arabia – sequence: 3 givenname: Ali J. surname: Chamkha fullname: Chamkha, Ali J. organization: Faculty of Engineering, Kuwait College of Science and Technology, Doha District, Kuwait |
BookMark | eNqFkU2LFDEQhhtZwXXdX-Alf2DGrnx0pw8eZNTdhRVBFLyFSlLRDG0yJJnR-ff27IiIBz1VUdTz1sf7tLtIOVHXPYd-DT0ML7ZrV2OjNe85nCqcT4-6S85BrkCNny_-yJ9017Vu-76HUWiQ8rLbfUAfscUDsXe3r1mY83eWA9tgrTmxr0dbomcJUw7zfsnygQrDxGIKMS1DGf3YLdukFnGejwydo5kKNvJs6WzR4cx2ueR9ZXVfAjp61j0OOFe6_hWvuk9v33zc3K7u39_cbV7dr5wE2VaTRDUKHIUSARQO1k-kAOSgvA4CNGk_TJw7dMEpqThY0JOSXlhAO1orrrq7s67PuDW7Er9hOZqM0TwUcvli8LTgTAbF4B0HIUBoaWHQdpx0P4kx6FED-kVLnLVcybUWCr_1oDcnD8zWPHhgTh6YswcLNf1FudiWV-fUCsb5P-zLM0vLiw6RiqkuUnLkYyHXlhviP_mfcaymQg |
CitedBy_id | crossref_primary_10_1080_17455030_2023_2198612 crossref_primary_10_1166_jon_2023_2023 crossref_primary_10_1063_5_0241553 crossref_primary_10_1166_jon_2023_1971 crossref_primary_10_1080_01430750_2022_2059004 crossref_primary_10_1166_jon_2023_1977 crossref_primary_10_1016_j_aej_2023_07_014 crossref_primary_10_1166_jon_2023_1976 crossref_primary_10_1371_journal_pone_0304794 crossref_primary_10_1021_acsomega_3c07311 crossref_primary_10_1002_htj_23302 crossref_primary_10_1080_19942060_2024_2381618 crossref_primary_10_1115_1_4054989 crossref_primary_10_3934_math_2023030 crossref_primary_10_1080_20550324_2021_2008208 crossref_primary_10_3390_asi7040063 crossref_primary_10_1166_jon_2023_2032 crossref_primary_10_1002_zamm_202300978 crossref_primary_10_1007_s40819_022_01345_x crossref_primary_10_1016_j_padiff_2024_100616 crossref_primary_10_1166_jon_2023_1962 crossref_primary_10_1016_j_icheatmasstransfer_2022_106348 crossref_primary_10_1166_jon_2023_1961 crossref_primary_10_1166_jon_2023_1965 crossref_primary_10_1016_j_ijft_2025_101104 crossref_primary_10_1039_D3NA00732D crossref_primary_10_1177_23977914231225174 crossref_primary_10_1615_NanoSciTechnolIntJ_2023045603 crossref_primary_10_1080_01430750_2023_2224337 crossref_primary_10_1080_02286203_2023_2295769 crossref_primary_10_32604_cmes_2024_046635 crossref_primary_10_1166_jon_2023_2021 crossref_primary_10_1016_j_asej_2023_102576 crossref_primary_10_1016_j_cplett_2022_139476 crossref_primary_10_3390_sym14101988 crossref_primary_10_1016_j_nanoso_2024_101334 crossref_primary_10_1088_1402_4896_ac7981 crossref_primary_10_1016_j_jhydrol_2023_129790 crossref_primary_10_1177_09544089241241459 crossref_primary_10_1016_j_csite_2023_102909 crossref_primary_10_1080_01430750_2023_2190338 crossref_primary_10_3390_eng6030055 crossref_primary_10_1016_j_ijhydene_2021_12_093 crossref_primary_10_1002_zamm_202400248 crossref_primary_10_1016_j_csite_2021_101504 crossref_primary_10_1177_09544089241282472 crossref_primary_10_1016_j_nanoso_2024_101349 crossref_primary_10_1615_InterJFluidMechRes_2024052375 crossref_primary_10_1515_polyeng_2024_0053 crossref_primary_10_1063_5_0173869 crossref_primary_10_1016_j_icheatmasstransfer_2022_106327 crossref_primary_10_1166_jon_2023_1945 crossref_primary_10_1016_j_triboint_2025_110532 crossref_primary_10_1177_23977914241248546 crossref_primary_10_1142_S0217984924504463 crossref_primary_10_1007_s13369_024_08909_7 crossref_primary_10_3389_fenrg_2022_1002672 crossref_primary_10_1016_j_arabjc_2022_104166 crossref_primary_10_1038_s41598_023_42609_w crossref_primary_10_1177_16878132231215159 crossref_primary_10_1038_s41598_022_19625_3 crossref_primary_10_1080_01430750_2024_2410926 crossref_primary_10_1080_01430750_2023_2189161 crossref_primary_10_1088_1361_6528_aced57 crossref_primary_10_1007_s10973_024_13454_4 crossref_primary_10_1088_1361_6528_ad373d crossref_primary_10_1007_s10973_024_12926_x crossref_primary_10_2139_ssrn_4048769 crossref_primary_10_1016_j_csite_2022_102295 crossref_primary_10_1038_s41598_022_22460_1 crossref_primary_10_1080_17455030_2022_2048921 crossref_primary_10_1166_jon_2023_1934 crossref_primary_10_1166_jon_2023_1933 crossref_primary_10_1039_D3NA00735A crossref_primary_10_1166_jon_2023_1938 crossref_primary_10_1016_j_padiff_2024_100786 crossref_primary_10_1039_D3NA00711A crossref_primary_10_1002_zamm_202300940 crossref_primary_10_1080_17455030_2022_2050441 crossref_primary_10_1177_0958305X241244487 crossref_primary_10_1007_s11771_022_5053_2 crossref_primary_10_1142_S0217979224502217 crossref_primary_10_1002_zamm_202300934 crossref_primary_10_1166_jon_2023_1923 crossref_primary_10_1002_zamm_202300256 crossref_primary_10_1166_jon_2023_1920 crossref_primary_10_2174_1573413717666211018113823 crossref_primary_10_1166_jon_2023_1925 crossref_primary_10_1515_rams_2024_0020 crossref_primary_10_1016_j_csite_2023_102902 crossref_primary_10_1002_zamm_202200127 crossref_primary_10_1002_htj_22663 crossref_primary_10_1002_htj_22784 crossref_primary_10_1080_16583655_2022_2040281 crossref_primary_10_1088_1361_6528_acd38b crossref_primary_10_1177_23977914241259095 crossref_primary_10_1166_jon_2022_1824 crossref_primary_10_1039_D3NA00453H crossref_primary_10_1166_jon_2022_1823 crossref_primary_10_1007_s10973_023_12690_4 crossref_primary_10_1080_10407782_2024_2360668 crossref_primary_10_1039_D3NA00769C crossref_primary_10_1515_ntrev_2022_0089 crossref_primary_10_1080_02286203_2023_2288770 crossref_primary_10_1002_htj_22754 crossref_primary_10_1016_j_fuel_2022_123601 crossref_primary_10_1038_s41598_022_15658_w crossref_primary_10_1515_phys_2024_0075 crossref_primary_10_1016_j_aej_2022_02_005 crossref_primary_10_1007_s40430_025_05504_1 crossref_primary_10_1080_10407790_2023_2200984 crossref_primary_10_1142_S0217979223502909 crossref_primary_10_1016_j_icheatmasstransfer_2021_105671 crossref_primary_10_1615_JPorMedia_2024051851 crossref_primary_10_1002_cjce_25352 crossref_primary_10_1080_10420150_2024_2338370 crossref_primary_10_1063_5_0199911 crossref_primary_10_1166_jon_2023_1907 crossref_primary_10_1166_jon_2023_1906 crossref_primary_10_3390_pr11092736 crossref_primary_10_1177_16878132231209875 crossref_primary_10_1016_j_csite_2024_104129 crossref_primary_10_1016_j_csite_2024_104800 crossref_primary_10_1016_j_heliyon_2023_e12962 crossref_primary_10_1016_j_icheatmasstransfer_2022_106376 crossref_primary_10_1016_j_csite_2021_101557 crossref_primary_10_1080_10407790_2023_2252600 crossref_primary_10_1080_17455030_2021_1985185 crossref_primary_10_1166_jon_2022_1847 crossref_primary_10_1142_S0217979223501515 crossref_primary_10_1007_s12648_023_02754_4 crossref_primary_10_1177_09544062231209828 crossref_primary_10_2139_ssrn_3990038 crossref_primary_10_1016_j_padiff_2022_100468 crossref_primary_10_1142_S0217984924504293 crossref_primary_10_1080_17455030_2022_2055811 crossref_primary_10_1002_htj_23144 crossref_primary_10_1038_s41598_022_07655_w crossref_primary_10_1016_j_mtcomm_2023_107522 crossref_primary_10_1166_jon_2024_2144 crossref_primary_10_1177_09544062221119055 crossref_primary_10_1166_jon_2024_2148 crossref_primary_10_1038_s41598_023_34259_9 crossref_primary_10_1080_01430750_2023_2256338 crossref_primary_10_1108_HFF_04_2023_0191 crossref_primary_10_1166_jon_2022_1835 crossref_primary_10_1166_jon_2024_2160 crossref_primary_10_1080_02286203_2024_2441487 crossref_primary_10_1166_jon_2024_2162 crossref_primary_10_1166_jon_2022_1832 crossref_primary_10_3389_fphy_2022_949907 crossref_primary_10_1016_j_aej_2022_11_009 crossref_primary_10_1080_17455030_2022_2086318 crossref_primary_10_1177_09544089241242956 crossref_primary_10_3390_en16237776 crossref_primary_10_1177_23977914241307593 crossref_primary_10_1177_09544089221133966 crossref_primary_10_1002_htj_23035 crossref_primary_10_1016_j_csite_2021_101571 crossref_primary_10_1080_10407782_2023_2219832 crossref_primary_10_1177_23977914231196379 crossref_primary_10_1016_j_csite_2024_105637 crossref_primary_10_1142_S021797922550002X crossref_primary_10_1002_htj_23033 crossref_primary_10_1166_jon_2022_1866 crossref_primary_10_1016_j_jmmm_2023_171034 crossref_primary_10_1166_jon_2022_1864 crossref_primary_10_1166_jon_2022_1861 crossref_primary_10_1155_2023_9342174 crossref_primary_10_1016_j_heliyon_2024_e25102 crossref_primary_10_3390_sym15020399 crossref_primary_10_1002_zamm_202400408 crossref_primary_10_1063_5_0157429 crossref_primary_10_1142_S0217979224502114 crossref_primary_10_1007_s13204_022_02495_6 crossref_primary_10_1080_01430750_2024_2354505 crossref_primary_10_1080_10407782_2024_2338259 crossref_primary_10_1166_jon_2022_1854 crossref_primary_10_1166_jon_2024_2187 crossref_primary_10_1515_ntrev_2024_0099 crossref_primary_10_1166_jon_2022_1852 crossref_primary_10_1007_s12043_024_02792_5 crossref_primary_10_1080_02286203_2022_2079109 crossref_primary_10_1166_jon_2022_1850 crossref_primary_10_1002_htj_22965 crossref_primary_10_1016_j_padiff_2024_100796 crossref_primary_10_1080_16583655_2022_2087396 crossref_primary_10_1177_16878140211070937 crossref_primary_10_1002_htj_22962 crossref_primary_10_1016_j_arabjc_2023_105037 crossref_primary_10_1016_j_hybadv_2024_100303 crossref_primary_10_1007_s13369_024_09108_0 crossref_primary_10_1142_S0217979225500298 crossref_primary_10_3390_sym14030627 crossref_primary_10_1002_htj_23010 crossref_primary_10_1002_zamm_202200624 crossref_primary_10_1016_j_csite_2024_105536 crossref_primary_10_1177_23977914241304063 crossref_primary_10_1021_acsomega_3c02949 crossref_primary_10_1038_s41598_023_32374_1 crossref_primary_10_1177_23977914241270905 crossref_primary_10_1166_jon_2024_2110 crossref_primary_10_1166_jon_2022_1886 crossref_primary_10_1007_s41939_024_00643_9 crossref_primary_10_1002_htj_22814 crossref_primary_10_1080_01430750_2024_2321210 crossref_primary_10_1002_htj_23221 crossref_primary_10_1016_j_jics_2023_100983 crossref_primary_10_1016_j_heliyon_2023_e14875 crossref_primary_10_1166_jon_2023_2071 crossref_primary_10_1016_j_icheatmasstransfer_2022_106303 crossref_primary_10_1002_zamm_202300536 crossref_primary_10_1002_zamm_202300657 crossref_primary_10_1166_jon_2022_1877 crossref_primary_10_1166_jon_2022_1875 crossref_primary_10_1002_fld_5325 crossref_primary_10_1002_zamm_202300770 crossref_primary_10_1166_jon_2022_1872 crossref_primary_10_1016_j_jrras_2024_101213 crossref_primary_10_3390_sym14091940 crossref_primary_10_1080_17455030_2022_2111476 crossref_primary_10_1080_13873954_2024_2311392 crossref_primary_10_1088_1402_4896_ac6e51 crossref_primary_10_1166_jon_2023_2062 crossref_primary_10_1016_j_csite_2023_103035 crossref_primary_10_1166_jon_2023_2065 crossref_primary_10_1007_s13369_022_07218_1 crossref_primary_10_1177_0958305X241270239 crossref_primary_10_1166_jon_2023_2044 crossref_primary_10_1080_17455030_2022_2128228 crossref_primary_10_1080_02286203_2023_2301627 crossref_primary_10_1002_htj_22914 crossref_primary_10_1016_j_thradv_2024_100003 crossref_primary_10_3390_math10050769 crossref_primary_10_1016_j_csite_2022_102316 crossref_primary_10_1080_02286203_2024_2406435 crossref_primary_10_1080_10420150_2024_2359695 crossref_primary_10_1166_jon_2024_2123 crossref_primary_10_1016_j_enganabound_2022_12_007 crossref_primary_10_1108_WJE_01_2024_0043 crossref_primary_10_1166_jon_2023_2053 crossref_primary_10_1016_j_cherd_2024_06_037 crossref_primary_10_1002_zamm_202200557 crossref_primary_10_1016_j_csite_2023_103008 crossref_primary_10_1093_jcde_qwae036 crossref_primary_10_1166_jon_2023_1981 crossref_primary_10_1166_jon_2023_2039 crossref_primary_10_1166_jon_2023_1985 crossref_primary_10_1166_jon_2023_2034 crossref_primary_10_1615_SpecialTopicsRevPorousMedia_v15_i2_20 crossref_primary_10_1166_jon_2023_1989 crossref_primary_10_1080_10420150_2024_2381239 crossref_primary_10_1080_17455030_2022_2136780 crossref_primary_10_1166_jon_2022_1894 crossref_primary_10_1080_10407790_2023_2231633 crossref_primary_10_1166_jon_2022_1892 crossref_primary_10_1166_jon_2022_1890 crossref_primary_10_1016_j_csite_2023_102847 crossref_primary_10_1007_s42452_024_05866_6 crossref_primary_10_1080_01430750_2022_2161633 crossref_primary_10_1016_j_csite_2023_103934 crossref_primary_10_1038_s41598_022_20155_1 crossref_primary_10_1166_jon_2023_2040 crossref_primary_10_1166_jon_2023_2041 crossref_primary_10_1166_jon_2023_2042 crossref_primary_10_1515_phys_2023_0150 crossref_primary_10_3390_mca28010018 crossref_primary_10_3390_sym14081496 |
Cites_doi | 10.1007/s11771-019-4087-6 10.1115/1.3108418 10.1016/j.icheatmasstransfer.2020.104494 10.1016/j.icheatmasstransfer.2019.104430 10.1016/j.ijheatmasstransfer.2019.05.076 10.1140/epjp/i2019-12623-1 10.1016/j.est.2020.101720 10.1016/j.icheatmasstransfer.2017.05.024 10.3390/app8020192 10.1007/s00231-010-0740-1 10.1016/j.rinp.2018.01.063 10.1139/cjp-2015-0799 10.1016/j.icheatmasstransfer.2019.104449 10.1108/MMMS-06-2017-0045 10.3390/app8122396 10.1016/j.csite.2015.06.002 10.1016/S0020-7462(03)00043-X 10.1016/j.jppr.2020.04.003 10.1108/HFF-01-2019-0031 10.1016/j.cjph.2017.11.026 10.1016/j.rser.2014.11.023 10.1016/j.rinp.2017.06.034 10.1007/s10973-016-5436-4 10.1515/ijnsns-2016-0037 10.3390/app8040587 10.1016/j.jcis.2017.03.024 10.1016/j.csite.2021.100974 10.1016/j.icheatmasstransfer.2019.104398 10.1016/j.ijheatmasstransfer.2018.06.005 10.15282/ijame.14.4.2017.14.0375 10.1016/j.cmpb.2019.105131 10.1016/j.ijheatmasstransfer.2018.11.030 10.4028/www.scientific.net/DDF.390.83 10.1016/j.rser.2016.09.108 10.1016/j.rser.2016.12.072 10.1016/j.icheatmasstransfer.2021.105399 10.1002/htj.21667 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2021.101229 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_a36dc21331384b168b7980937f8781ad 10_1016_j_csite_2021_101229 S2214157X21003920 |
GroupedDBID | 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c414t-94a573a7353f15a6bd9e511465d8f318e8d6922cacfc54521b18954d3b1ab7bb3 |
IEDL.DBID | IXB |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:15:48 EDT 2025 Thu Apr 24 23:13:04 EDT 2025 Tue Jul 01 02:28:29 EDT 2025 Tue Jul 25 20:58:12 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MHD flows Casson fluid Nanofluids Porous medium |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-94a573a7353f15a6bd9e511465d8f318e8d6922cacfc54521b18954d3b1ab7bb3 |
ORCID | 0000-0002-6580-1592 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2214157X21003920 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a36dc21331384b168b7980937f8781ad crossref_primary_10_1016_j_csite_2021_101229 crossref_citationtrail_10_1016_j_csite_2021_101229 elsevier_sciencedirect_doi_10_1016_j_csite_2021_101229 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Rashad, Armaghani, Chamkha, Mansour (bib18) 2018; 56 Devi, Devi (bib41) 2016; 94 Khaled, Vafai (bib39) 2004; 39 Nayak, Hakeem, Ganga, Khan, Waqas, Makinde (bib15) 2020; 186 Hayat, Nadeem (bib7) 2017; 7 Khan, Waqas, Hayat, Alsaedi (bib14) 2017; 498 Krishna, Chamkha (bib33) 2020; 113 Nabil, Azmi, Hamid, Mamat, Hagos (bib44) 2017; 86 Krishna (bib35) 2021; 31 Kamran, Hussain, Sagheer, Akmal (bib17) 2017; 7 Molana, Ghasemiasl, Armaghani (bib19) 2021; 145 Seth, Ansari, Nandkeolyar (bib46) 2011; 47 Shaw, Nayak, Dogonchi, Elmasry, Alsulami (bib20) 2021; 26 Ali, Babar, Shah, Shajid, Qasim, Javed (bib45) 2018; 8 Ellahi (bib9) 2018; 8 Hashemi-Tilehnoee, Sahebi, Dogonchi, Seyyedi, Tashakor (bib27) 2019; 139 Choi, Eastman (bib1) 1995 Casson (bib12) 1959 Dogonchi, Asghar, Waqas (bib31) 2020; 112 Jamshed, Aziz (bib8) 2018; 9 Usman, Hamid, Zubair, Haq, Wang (bib11) 2018; 126 Ghosh, Mukhopadhyay (bib13) 2017; 14 Dogonchi, Ganji (bib22) 2015; 6 Seyyedi, Sahebi, Dogonchi, Hashemi-Tilehnoee (bib29) 2019; 130 Mondal, Dogonchi, Tripathi, Waqas, Seyyedi, Hashemi-Tilehnoee, Ganji (bib24) 2020; 42 Aman, Zokri, Ismail, Salleh, Khan (bib10) 2018; 44 Aman, Zokri, Ismail, Salleh, Khan (bib43) 2019; 390 Seyyedi, Dogonchi, Hashemi-Tilehnoee, Waqas, Ganji (bib25) 2020; 110 Sarkar, Ghosh, Adil (bib3) 2015; 43 Sundar, Sharma, Singh, Sousa (bib2) 2017; 68 Dogonchi, Waqas, Gulzar, Hashemi-Tilehnoee, Seyyedi, Ganji (bib26) 2019; 29 Toghraie, Vahid, Masoud (bib6) 2016; 125 Seyyedi, Dogonchi, Nuraei, Hashemi-Tilehnoee (bib28) 2019; 134 Krishna (bib36) 2021; 126 Hashemi-Tilehnoee, Dogonchi, Seyyedi, Sharifpur (bib30) 2020; 31 Krishna (bib34) 2020; 119 Lauge, Brenner, Stone (bib40) 2007 Minea (bib5) 2017; 71 Krishna (bib32) 2020; 49 Singh, Srinivasa (bib38) 2018; 14 Dogonchi, Waqas, Seyyedi, Hashemi-Tilehnoee, Ganji (bib23) 2020; 111 Devi, Devi (bib4) 2016; 17 Rasoola, Chamkha, Muhammad, Shafiqd, Khan (bib16) 2020; 9 Chamkha, Dogonchi, Ganji (bib21) 2018; 8 Nakamura, Sawada (bib37) 1988; 110 Lund, Omar, Khan, Dero (bib42) 2019; 26 Dogonchi (10.1016/j.csite.2021.101229_bib22) 2015; 6 Krishna (10.1016/j.csite.2021.101229_bib35) 2021; 31 Aman (10.1016/j.csite.2021.101229_bib43) 2019; 390 Ali (10.1016/j.csite.2021.101229_bib45) 2018; 8 Seyyedi (10.1016/j.csite.2021.101229_bib28) 2019; 134 Kamran (10.1016/j.csite.2021.101229_bib17) 2017; 7 Usman (10.1016/j.csite.2021.101229_bib11) 2018; 126 Nayak (10.1016/j.csite.2021.101229_bib15) 2020; 186 Choi (10.1016/j.csite.2021.101229_bib1) 1995 Ellahi (10.1016/j.csite.2021.101229_bib9) 2018; 8 Hashemi-Tilehnoee (10.1016/j.csite.2021.101229_bib27) 2019; 139 Dogonchi (10.1016/j.csite.2021.101229_bib31) 2020; 112 Nakamura (10.1016/j.csite.2021.101229_bib37) 1988; 110 Aman (10.1016/j.csite.2021.101229_bib10) 2018; 44 Krishna (10.1016/j.csite.2021.101229_bib36) 2021; 126 Krishna (10.1016/j.csite.2021.101229_bib34) 2020; 119 Sarkar (10.1016/j.csite.2021.101229_bib3) 2015; 43 Shaw (10.1016/j.csite.2021.101229_bib20) 2021; 26 Lauge (10.1016/j.csite.2021.101229_bib40) 2007 Singh (10.1016/j.csite.2021.101229_bib38) 2018; 14 Sundar (10.1016/j.csite.2021.101229_bib2) 2017; 68 Hashemi-Tilehnoee (10.1016/j.csite.2021.101229_bib30) 2020; 31 Lund (10.1016/j.csite.2021.101229_bib42) 2019; 26 Devi (10.1016/j.csite.2021.101229_bib4) 2016; 17 Chamkha (10.1016/j.csite.2021.101229_bib21) 2018; 8 Dogonchi (10.1016/j.csite.2021.101229_bib26) 2019; 29 Krishna (10.1016/j.csite.2021.101229_bib32) 2020; 49 Toghraie (10.1016/j.csite.2021.101229_bib6) 2016; 125 Hayat (10.1016/j.csite.2021.101229_bib7) 2017; 7 Molana (10.1016/j.csite.2021.101229_bib19) 2021; 145 Jamshed (10.1016/j.csite.2021.101229_bib8) 2018; 9 Seyyedi (10.1016/j.csite.2021.101229_bib25) 2020; 110 Seth (10.1016/j.csite.2021.101229_bib46) 2011; 47 Rasoola (10.1016/j.csite.2021.101229_bib16) 2020; 9 Ghosh (10.1016/j.csite.2021.101229_bib13) 2017; 14 Dogonchi (10.1016/j.csite.2021.101229_bib23) 2020; 111 Mondal (10.1016/j.csite.2021.101229_bib24) 2020; 42 Minea (10.1016/j.csite.2021.101229_bib5) 2017; 71 Rashad (10.1016/j.csite.2021.101229_bib18) 2018; 56 Casson (10.1016/j.csite.2021.101229_bib12) 1959 Devi (10.1016/j.csite.2021.101229_bib41) 2016; 94 Khan (10.1016/j.csite.2021.101229_bib14) 2017; 498 Khaled (10.1016/j.csite.2021.101229_bib39) 2004; 39 Seyyedi (10.1016/j.csite.2021.101229_bib29) 2019; 130 Nabil (10.1016/j.csite.2021.101229_bib44) 2017; 86 Krishna (10.1016/j.csite.2021.101229_bib33) 2020; 113 |
References_xml | – volume: 71 start-page: 426 year: 2017 end-page: 434 ident: bib5 article-title: Challenges in hybrid nanofluids behavior in turbulent flow: recent research and numerical comparison publication-title: Renew. Sustain. Energy Rev. – volume: 17 start-page: 249 year: 2016 end-page: 257 ident: bib4 article-title: Numerical investigation of hydromagnetic hybrid Cu-Al publication-title: Int. J. Nonlinear Sci. Numer. Stimul. – volume: 112 year: 2020 ident: bib31 article-title: CVFEM simulation for Fe3O4-H2O nanofluid in an annulus between two triangular enclosures subjected to magnetic field and thermal radiation publication-title: Int. Commun. Heat Mass Tran. – volume: 49 start-page: 1374 year: 2020 end-page: 1385 ident: bib32 article-title: Heat transport on steady MHD flow of copper and alumina nanofluids past a stretching porous surface publication-title: Heat Transfer – volume: 390 start-page: 83 year: 2019 end-page: 90 ident: bib43 article-title: Casson model of MHD flow of SA-based hybrid nanofluid using Caputo time-fractional models publication-title: Defect Diffusion Forum – volume: 186 year: 2020 ident: bib15 article-title: Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: a combined approach to good absorber of solar energy and intensification of heat transport publication-title: Comput. Methods Progr. Biomed. – volume: 9 start-page: 159 year: 2020 end-page: 168 ident: bib16 article-title: Darcy-Forchheimer relation in Casson type MHD nanofluid flow over non-linear stretching surface publication-title: Propolsion and Power Res. – volume: 47 start-page: 551 year: 2011 end-page: 561 ident: bib46 article-title: MHD natural convection flow with radiative heat transfer past an impulsively moving plate with ramped wall temperature publication-title: Heat Mass Tran. – volume: 14 start-page: 4785 year: 2017 end-page: 4804 ident: bib13 article-title: MHD slip flow and heat transfer of Casson nanofluid over an exponentially stretching permeable sheet publication-title: Int. J. Automot. Mech. Eng. – volume: 56 start-page: 193 year: 2018 end-page: 211 ident: bib18 article-title: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location publication-title: Chin. J. Phys. – volume: 29 start-page: 4430 year: 2019 end-page: 4444 ident: bib26 article-title: Simulation of Fe publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 8 start-page: 587 year: 2018 ident: bib45 article-title: Preparation techniques of TiO publication-title: Appl. Sci – year: 1995 ident: bib1 article-title: Enhancing Thermal Conductivity of Fluids with Nanoparticles, No. ANL/MSD/CP-84938 – volume: 8 start-page: 2396 year: 2018 ident: bib21 article-title: Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impacts: a numerical study using CVFEM publication-title: Appl. Sci. – volume: 7 start-page: 2317 year: 2017 end-page: 2324 ident: bib7 article-title: Heat transfer enhancement with Ag–CuO/water hybrid nanofluid publication-title: Results Phys – volume: 125 start-page: 527 year: 2016 end-page: 535 ident: bib6 article-title: Measurement of thermal conductivity of ZnO–TiO publication-title: J. Therm. Anal. Calorim. – volume: 8 start-page: 192 year: 2018 ident: bib9 article-title: Special issue on recent developments of nanofluids publication-title: Appl. Sci. – volume: 139 start-page: 974 year: 2019 end-page: 981 ident: bib27 article-title: Simulation of the dynamic behavior of a rectangular single-phase natural circulation vertical loop with asymmetric heater publication-title: Int. J. Heat Mass Tran. – year: 2007 ident: bib40 article-title: Microfluidics: the No-Slip Boundary Condition – volume: 119 year: 2020 ident: bib34 article-title: Hall and ion slip impacts on unsteady MHD free convective rotating flow of Jeffreys fluid with ramped wall temperature publication-title: Int. Commun. Heat Mass Tran. – volume: 110 start-page: 137 year: 1988 end-page: 143 ident: bib37 article-title: Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis publication-title: ASME J. Biomech. Eng. – volume: 68 start-page: 185 year: 2017 end-page: 198 ident: bib2 article-title: Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – a review publication-title: Renew. Sustain. Energy Rev. – year: 1959 ident: bib12 article-title: A Flow Equation for Pigment Oil Suspensions of the Printing Ink Type – volume: 498 start-page: 85 year: 2017 end-page: 90 ident: bib14 article-title: A comparative study of Casson fluid with homogeneous-heterogeneous reactions publication-title: J. Colloid Interface Sci. – volume: 126 year: 2021 ident: bib36 article-title: Hall and ion slip effects on radiative MHD rotating flow of Jeffreys fluid past an infinite vertical flat porous surface with ramped wall velocity and temperature publication-title: Int. Commun. Heat Mass Tran. – volume: 7 start-page: 3037 year: 2017 end-page: 3048 ident: bib17 article-title: A numerical study of magnetohydrodynamics flow in Casson nanofluid combined with Joule heating and slip boundary conditions publication-title: Res. Phys. – volume: 94 start-page: 490 year: 2016 end-page: 496 ident: bib41 article-title: Numerical investigation of three-dimensional hybrid Cu-Al publication-title: Can. J. Phys. – volume: 6 start-page: 40 year: 2015 end-page: 51 ident: bib22 article-title: Investigation of heat transfer for cooling turbine disks with a non-Newtonian fluid flow using DRA publication-title: Case Studies in Thermal Eng. – volume: 31 year: 2020 ident: bib30 article-title: Magneto-fluid dynamic and second law analysis in a hot porous cavity filled by nanofluid and nano-encapsulated phase change material suspension with different layout of cooling channels publication-title: J. Energy Storage – volume: 26 year: 2021 ident: bib20 article-title: Hydrothermal and entropy production analyses of magneto-cross nanoliquid under rectified Fourier viewpoint: a robust approach to industrial applications publication-title: Case Studies in Thermal Eng. – volume: 130 start-page: 1343 year: 2019 end-page: 1357 ident: bib29 article-title: Numerical and experimental analysis of a rectangular single-phase natural circulation loop with asymmetric heater position publication-title: Int. J. Heat Mass Tran. – volume: 43 start-page: 164 year: 2015 end-page: 177 ident: bib3 article-title: A review on hybrid nanofluids: recent research, development and applications publication-title: Renew. Sustain. Energy Rev. – volume: 9 start-page: 195 year: 2018 end-page: 205 ident: bib8 article-title: A comparative entropy based analysis of Cu and Fe publication-title: Results Phys – volume: 110 year: 2020 ident: bib25 article-title: Investigation of entropy generation in a square inclined cavity using control volume finite element method with aided quadratic Lagrange interpolation functions publication-title: Int. Commun. Heat Mass Tran. – volume: 126 start-page: 1347 year: 2018 end-page: 1356 ident: bib11 article-title: Cu-Al publication-title: Int. J. Heat Mass Tran. – volume: 31 start-page: 1 year: 2021 end-page: 13 ident: bib35 article-title: Radiation-absorption, chemical reaction, Hall and ion slip impacts on magnetohydrodynamic free convective flow over semi-infinite moving absorbent surface publication-title: Chin. J. Chem. Eng. – volume: 134 start-page: 268 year: 2019 ident: bib28 article-title: Numerical analysis of entropy generation of a nanofluid in a semi-annulus porous enclosure with different nanoparticle shapes in the presence of a magnetic field publication-title: Euro. Phys. J. Plus – volume: 14 start-page: 216 year: 2018 end-page: 235 ident: bib38 article-title: Unsteady natural convection flow of a rotating fluid past an exponential accelerated vertical plate with Hall current, ion-slip and magnetic effect publication-title: Multidiscip. Model. Mater. Struct. – volume: 26 start-page: 1283 year: 2019 end-page: 1293 ident: bib42 article-title: Multiple solutions of Cu-C publication-title: J. Cent. South Univ. – volume: 145 start-page: 1 year: 2021 end-page: 14 ident: bib19 article-title: A different look at the effect of temperature on the nanofluids thermal conductivity: focus on the experimental-based models publication-title: J. Therm. Anal. Calorim. – volume: 111 year: 2020 ident: bib23 article-title: A modified Fourier approach for analysis of nanofluid heat generation within a semi-circular enclosure subjected to MFD viscosity publication-title: Int. Commun. Heat Mass Tran. – volume: 86 start-page: 181 year: 2017 end-page: 189 ident: bib44 article-title: An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: ethylene glycol mixture publication-title: Int. Commun. Heat Mass Tran. – volume: 113 year: 2020 ident: bib33 article-title: Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium publication-title: Int. Commun. Heat Mass Tran. – volume: 44 start-page: 131 year: 2018 end-page: 139 ident: bib10 article-title: Effect of MHD and porosity on exact solutions and flow of a hybrid Casson-nanofluid publication-title: J. Adv. Res. Fluid Mech. Therm. Sci. – volume: 39 start-page: 795 year: 2004 ident: bib39 article-title: The effect of slip condition on Stokes and Couette flows due to an oscillating wall: exact solutions publication-title: Int. J. Non Lin. Mech. – volume: 42 year: 2020 ident: bib24 article-title: A theoretical nanofluid analysis exhibiting hydromagnetics characteristics employing CVFEM publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 26 start-page: 1283 year: 2019 ident: 10.1016/j.csite.2021.101229_bib42 article-title: Multiple solutions of Cu-C6H9NaO7 and Ag-C6H9NaO7 nanofluids flow over nonlinear shrinking surface publication-title: J. Cent. South Univ. doi: 10.1007/s11771-019-4087-6 – volume: 110 start-page: 137 year: 1988 ident: 10.1016/j.csite.2021.101229_bib37 article-title: Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis publication-title: ASME J. Biomech. Eng. doi: 10.1115/1.3108418 – volume: 113 year: 2020 ident: 10.1016/j.csite.2021.101229_bib33 article-title: Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2020.104494 – year: 2007 ident: 10.1016/j.csite.2021.101229_bib40 – volume: 111 year: 2020 ident: 10.1016/j.csite.2021.101229_bib23 article-title: A modified Fourier approach for analysis of nanofluid heat generation within a semi-circular enclosure subjected to MFD viscosity publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2019.104430 – volume: 139 start-page: 974 year: 2019 ident: 10.1016/j.csite.2021.101229_bib27 article-title: Simulation of the dynamic behavior of a rectangular single-phase natural circulation vertical loop with asymmetric heater publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.05.076 – volume: 134 start-page: 268 year: 2019 ident: 10.1016/j.csite.2021.101229_bib28 article-title: Numerical analysis of entropy generation of a nanofluid in a semi-annulus porous enclosure with different nanoparticle shapes in the presence of a magnetic field publication-title: Euro. Phys. J. Plus doi: 10.1140/epjp/i2019-12623-1 – volume: 31 year: 2020 ident: 10.1016/j.csite.2021.101229_bib30 article-title: Magneto-fluid dynamic and second law analysis in a hot porous cavity filled by nanofluid and nano-encapsulated phase change material suspension with different layout of cooling channels publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101720 – volume: 86 start-page: 181 year: 2017 ident: 10.1016/j.csite.2021.101229_bib44 article-title: An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: ethylene glycol mixture publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2017.05.024 – volume: 8 start-page: 192 year: 2018 ident: 10.1016/j.csite.2021.101229_bib9 article-title: Special issue on recent developments of nanofluids publication-title: Appl. Sci. doi: 10.3390/app8020192 – volume: 47 start-page: 551 issue: 5 year: 2011 ident: 10.1016/j.csite.2021.101229_bib46 article-title: MHD natural convection flow with radiative heat transfer past an impulsively moving plate with ramped wall temperature publication-title: Heat Mass Tran. doi: 10.1007/s00231-010-0740-1 – volume: 9 start-page: 195 year: 2018 ident: 10.1016/j.csite.2021.101229_bib8 article-title: A comparative entropy based analysis of Cu and Fe3O4/methanol Powell-Eyering nanofluid in solar thermal collectors subjected to thermal radiation, variable thermal conductivity and impact of different nanoparticles shape publication-title: Results Phys doi: 10.1016/j.rinp.2018.01.063 – volume: 94 start-page: 490 issue: 5 year: 2016 ident: 10.1016/j.csite.2021.101229_bib41 article-title: Numerical investigation of three-dimensional hybrid Cu-Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating publication-title: Can. J. Phys. doi: 10.1139/cjp-2015-0799 – volume: 112 year: 2020 ident: 10.1016/j.csite.2021.101229_bib31 article-title: CVFEM simulation for Fe3O4-H2O nanofluid in an annulus between two triangular enclosures subjected to magnetic field and thermal radiation publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2019.104449 – volume: 14 start-page: 216 issue: 2 year: 2018 ident: 10.1016/j.csite.2021.101229_bib38 article-title: Unsteady natural convection flow of a rotating fluid past an exponential accelerated vertical plate with Hall current, ion-slip and magnetic effect publication-title: Multidiscip. Model. Mater. Struct. doi: 10.1108/MMMS-06-2017-0045 – volume: 8 start-page: 2396 issue: 12 year: 2018 ident: 10.1016/j.csite.2021.101229_bib21 article-title: Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impacts: a numerical study using CVFEM publication-title: Appl. Sci. doi: 10.3390/app8122396 – volume: 31 start-page: 1 year: 2021 ident: 10.1016/j.csite.2021.101229_bib35 article-title: Radiation-absorption, chemical reaction, Hall and ion slip impacts on magnetohydrodynamic free convective flow over semi-infinite moving absorbent surface publication-title: Chin. J. Chem. Eng. – volume: 6 start-page: 40 year: 2015 ident: 10.1016/j.csite.2021.101229_bib22 article-title: Investigation of heat transfer for cooling turbine disks with a non-Newtonian fluid flow using DRA publication-title: Case Studies in Thermal Eng. doi: 10.1016/j.csite.2015.06.002 – volume: 39 start-page: 795 year: 2004 ident: 10.1016/j.csite.2021.101229_bib39 article-title: The effect of slip condition on Stokes and Couette flows due to an oscillating wall: exact solutions publication-title: Int. J. Non Lin. Mech. doi: 10.1016/S0020-7462(03)00043-X – volume: 9 start-page: 159 issue: 2 year: 2020 ident: 10.1016/j.csite.2021.101229_bib16 article-title: Darcy-Forchheimer relation in Casson type MHD nanofluid flow over non-linear stretching surface publication-title: Propolsion and Power Res. doi: 10.1016/j.jppr.2020.04.003 – volume: 119 year: 2020 ident: 10.1016/j.csite.2021.101229_bib34 article-title: Hall and ion slip impacts on unsteady MHD free convective rotating flow of Jeffreys fluid with ramped wall temperature publication-title: Int. Commun. Heat Mass Tran. – volume: 29 start-page: 4430 issue: 11 year: 2019 ident: 10.1016/j.csite.2021.101229_bib26 article-title: Simulation of Fe3O4-H2O nanoliquid in a triangular enclosure subjected to Cattaneo–Christov theory of heat conduction publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-01-2019-0031 – volume: 56 start-page: 193 issue: 1 year: 2018 ident: 10.1016/j.csite.2021.101229_bib18 article-title: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2017.11.026 – volume: 43 start-page: 164 year: 2015 ident: 10.1016/j.csite.2021.101229_bib3 article-title: A review on hybrid nanofluids: recent research, development and applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.11.023 – volume: 7 start-page: 2317 year: 2017 ident: 10.1016/j.csite.2021.101229_bib7 article-title: Heat transfer enhancement with Ag–CuO/water hybrid nanofluid publication-title: Results Phys doi: 10.1016/j.rinp.2017.06.034 – volume: 125 start-page: 527 year: 2016 ident: 10.1016/j.csite.2021.101229_bib6 article-title: Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-016-5436-4 – volume: 17 start-page: 249 year: 2016 ident: 10.1016/j.csite.2021.101229_bib4 article-title: Numerical investigation of hydromagnetic hybrid Cu-Al2O3/water nanofluid flow over a permeable stretching sheet with suction publication-title: Int. J. Nonlinear Sci. Numer. Stimul. doi: 10.1515/ijnsns-2016-0037 – volume: 8 start-page: 587 year: 2018 ident: 10.1016/j.csite.2021.101229_bib45 article-title: Preparation techniques of TiO2 nanofluids and challenges: a review publication-title: Appl. Sci. doi: 10.3390/app8040587 – volume: 498 start-page: 85 year: 2017 ident: 10.1016/j.csite.2021.101229_bib14 article-title: A comparative study of Casson fluid with homogeneous-heterogeneous reactions publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.03.024 – volume: 26 year: 2021 ident: 10.1016/j.csite.2021.101229_bib20 article-title: Hydrothermal and entropy production analyses of magneto-cross nanoliquid under rectified Fourier viewpoint: a robust approach to industrial applications publication-title: Case Studies in Thermal Eng. doi: 10.1016/j.csite.2021.100974 – volume: 42 issue: 19 year: 2020 ident: 10.1016/j.csite.2021.101229_bib24 article-title: A theoretical nanofluid analysis exhibiting hydromagnetics characteristics employing CVFEM publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 110 year: 2020 ident: 10.1016/j.csite.2021.101229_bib25 article-title: Investigation of entropy generation in a square inclined cavity using control volume finite element method with aided quadratic Lagrange interpolation functions publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2019.104398 – volume: 126 start-page: 1347 year: 2018 ident: 10.1016/j.csite.2021.101229_bib11 article-title: Cu-Al2O3/water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.06.005 – volume: 14 start-page: 4785 issue: 4 year: 2017 ident: 10.1016/j.csite.2021.101229_bib13 article-title: MHD slip flow and heat transfer of Casson nanofluid over an exponentially stretching permeable sheet publication-title: Int. J. Automot. Mech. Eng. doi: 10.15282/ijame.14.4.2017.14.0375 – volume: 186 year: 2020 ident: 10.1016/j.csite.2021.101229_bib15 article-title: Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: a combined approach to good absorber of solar energy and intensification of heat transport publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2019.105131 – volume: 7 start-page: 3037 year: 2017 ident: 10.1016/j.csite.2021.101229_bib17 article-title: A numerical study of magnetohydrodynamics flow in Casson nanofluid combined with Joule heating and slip boundary conditions publication-title: Res. Phys. – volume: 130 start-page: 1343 year: 2019 ident: 10.1016/j.csite.2021.101229_bib29 article-title: Numerical and experimental analysis of a rectangular single-phase natural circulation loop with asymmetric heater position publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.11.030 – volume: 390 start-page: 83 year: 2019 ident: 10.1016/j.csite.2021.101229_bib43 article-title: Casson model of MHD flow of SA-based hybrid nanofluid using Caputo time-fractional models publication-title: Defect Diffusion Forum doi: 10.4028/www.scientific.net/DDF.390.83 – volume: 44 start-page: 131 year: 2018 ident: 10.1016/j.csite.2021.101229_bib10 article-title: Effect of MHD and porosity on exact solutions and flow of a hybrid Casson-nanofluid publication-title: J. Adv. Res. Fluid Mech. Therm. Sci. – volume: 145 start-page: 1 year: 2021 ident: 10.1016/j.csite.2021.101229_bib19 article-title: A different look at the effect of temperature on the nanofluids thermal conductivity: focus on the experimental-based models publication-title: J. Therm. Anal. Calorim. – volume: 68 start-page: 185 year: 2017 ident: 10.1016/j.csite.2021.101229_bib2 article-title: Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.09.108 – volume: 71 start-page: 426 year: 2017 ident: 10.1016/j.csite.2021.101229_bib5 article-title: Challenges in hybrid nanofluids behavior in turbulent flow: recent research and numerical comparison publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.12.072 – year: 1995 ident: 10.1016/j.csite.2021.101229_bib1 – volume: 126 year: 2021 ident: 10.1016/j.csite.2021.101229_bib36 article-title: Hall and ion slip effects on radiative MHD rotating flow of Jeffreys fluid past an infinite vertical flat porous surface with ramped wall velocity and temperature publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2021.105399 – volume: 49 start-page: 1374 issue: 3 year: 2020 ident: 10.1016/j.csite.2021.101229_bib32 article-title: Heat transport on steady MHD flow of copper and alumina nanofluids past a stretching porous surface publication-title: Heat Transfer doi: 10.1002/htj.21667 – year: 1959 ident: 10.1016/j.csite.2021.101229_bib12 |
SSID | ssj0001738144 |
Score | 2.6203175 |
Snippet | The radiative unsteady magnetohydrodynamic (MHD) flow of an incompressible viscous electrically conducting non-Newtonian Casson hybrid nanofluid over an... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 101229 |
SubjectTerms | Casson fluid MHD flows Nanofluids Porous medium |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnuihojzUpYB86JEI_IqdIy1UK6RyQFTaW-TxQxRFyardVdt_z4yTLTmVC7fISmxrPPF8k3z-hrFTiAaysKKCpDBBaUBVjbZQBSVNBu-FgsK2-F4vr_S3lVnNSn0RJ2yUBx4N99GrOgaJmZRQToOoHdjGYRpus7NO-Ei7L8a8WTJVvq5YjESlkquUQlfC2NVOcqiQu0L5NYuJv6AWWQDm37BU1Ptn0WkWcS6es8MJKvLP4xSP2F7qX7CDmYDgS7b-QdICtGPxy-UXnrvhjg-ZnyMiHnr-64GOY_He90PutnhFdE3ue45edU1Yk6f79dATX8h33QP3IWAQIu2IyEuZZlw_jvh82N7y2-1N9iG9YlcXX3-eL6uphkIVtNAbNLw3VnmrjMrC-BpikwydRDbRZXyfk4t1I2XwIQcqNy5AuMboqEB4sADqNdvvcSbHjGMgT7rxAUA0WqYA3iWVEJ2baCKYTwsmdyZswyQwTnUuunbHJPvdFru3ZPd2tPuCfXh8aD3qazx9-xmtzeOtJI5dGtBl2sll2n-5zILVu5VtJ5wx4gfs6vqp0d_8j9FP2DPqciQEvmX7m5tteofAZgPviw__Ad3b86E priority: 102 providerName: Directory of Open Access Journals |
Title | Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface |
URI | https://dx.doi.org/10.1016/j.csite.2021.101229 https://doaj.org/article/a36dc21331384b168b7980937f8781ad |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWe4ID4inKwsoHjkSt7Th2jmxhVSHBAVipt8jjBxRFSdVtBfvvmXGS3XLZA7fEshNrZjLfjDMPxt5C0JCEEQVEhQ5KDaqoSwOFV1IncE4oyNEWX6rVVflprdcnbDnlwlBY5aj7B52etfU4Mh-pOd9uNvNvUgpEH7NGp2WBKE9-uyptTuJbX9ydsxjEpNzTleYXtGAqPpTDvHz-SSsR6mhEZlPzDqByHf8jnDrCnsvH7NFoNPL3w76esJPYPWUPj0oJPmPbr1RkgHQX_7z6wFPb_-Z94ku0jfuO_7yhxCzeua5P7QGvKHCTu46jfG3I6uTxz7bvKHLIte0Nd94jHFEVicBzw2bkJEdLvT9c8-vDLjkfn7Ory4_fl6ti7KZQ-FKUe2SB00Y5o7RKQrsKQh015STrYBN-2dGGqpbSO588NR4XIGyty6BAODAA6gU77XAnLxlHSI9l7TyAqEsZPTgbVUQ7XQcdQC9mTE4kbPxYapw6XrTNFFP2q8l0b4juzUD3GXt3u2g7VNq4f_oF8eZ2KpXJzgP97kczyknjVBW8RDdcKFuCqCyY2i7QIkvWWOHCjFUTZ5t_pA4ftbnv7a_-d-EZe0B3Qzjga3a63x3iGzRr9nCejwPOs_T-BdZ59qc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMsTx_gRrRrO46TAwfaUu3SxwFaaW_B40dZFCWrfajs7-IPMnaSdrn0gNRb5NiONZ7M900yniHkPVgJnimWgBPooBQgkiJVkBjBpQetmYAYbXGajc_Tr1M53SF_-rMwIayys_2tTY_WumsZdtIczmez4XfOGaKPmqLTMkKUH3WRlUduc4l-2_LT5AA3-QPnh1_O9sdJV1ogMSlLV7geLZXQSkjhmdQZ2MLJcEBX2tyjmrvcZgXnRhtvQhVuBiwvZGoFMA0KQOC8d8hdZB8qWIPJdO_6w45CEIxFZMMCk7DCPttRjCsz8a8wR2wNLTxy22tEjIUDtoBxC-wOH5GHHUuln1tBPCY7rn5CHmzlLnxK5t9CVoNgLOnJ-ID6qrmkjaf7SMabmv7chJNgtNZ146s1XoVIUaprigo9CzSXut_zpg6hSrqqNlQbg_gX0lZYGitEo-pQdA2a9ZIu1wuvjXtGzm9Fxs_Jbo0reUEocgiXFtoAsCLlzoDOnXDoGEgrLcjRgPBehKXpcpuHEhtV2Qex_Sqj3Msg97KV-4B8vBo0b1N73Nx9L-zNVdeQlzs2NIuLslPMUovMGo5-PxN5CizLQRX5CCmgz1XOtB2QrN_Z8h81x6lmNz395f8OfEfujc9OjsvjyenRK3I_3GljEV-T3dVi7d4gp1rB26jDlPy47ZfmL8aHMlM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiative+MHD+flow+of+Casson+hybrid+nanofluid+over+an+infinite+exponentially+accelerated+vertical+porous+surface&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Krishna%2C+M.+Veera&rft.au=Ahammad%2C+N.+Ameer&rft.au=Chamkha%2C+Ali+J.&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=27&rft_id=info:doi/10.1016%2Fj.csite.2021.101229&rft.externalDocID=S2214157X21003920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |