Three dimensional mapping of forest canopy equivalent water thickness using dual-wavelength terrestrial laser scanning
•Dual-wavelength TLS reflectance data is highly correlated to leaf EWT.•3D estimates of forest canopy EWT were generated with low errors.•Leaves in upper canopy had higher water content than leaves in bottom canopy.•There was a gradual transition between sun and shade leaves in forest canopy. Global...
Saved in:
Published in | Agricultural and forest meteorology Vol. 276-277; p. 107627 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Dual-wavelength TLS reflectance data is highly correlated to leaf EWT.•3D estimates of forest canopy EWT were generated with low errors.•Leaves in upper canopy had higher water content than leaves in bottom canopy.•There was a gradual transition between sun and shade leaves in forest canopy.
Globally, forests are being subjected to numerous threats, including climate change, wildfires, and insect and disease outbreaks, among others. Satellite optical remote sensing data have been widely utilized in early detection of tree and forest stress by estimating water status metrics such as the leaf Equivalent Water Thickness (EWT). This estimate, however, is affected by soil characteristics and understory vegetation and often ignores the effects of the fine-scale heterogeneity of canopy structure and leaf water content. Such effects can be better understood by studying the EWT distribution in three dimensions. In this study, Terrestrial Laser Scanning (TLS) intensity data from the commercially-available Leica P20 and P40 instruments (808 nm and 1550 nm respectively) were combined in a Normalized Difference Index (NDI). NDI was used to map EWT of 12 trees in three dimensions from floor to canopy in a mixed broadleaf forest plot (Wytham Woods, UK). The average error in EWT estimates across three species was less than 8%. The three dimensional point clouds revealed that, in this snapshot, EWT changes vertically, usually increasing towards canopy top. The proposed method has the potential to provide predawn EWT measurements, is independent of solar illumination, and can lead to a better understanding of the factors affecting satellite estimation of EWT. |
---|---|
AbstractList | •Dual-wavelength TLS reflectance data is highly correlated to leaf EWT.•3D estimates of forest canopy EWT were generated with low errors.•Leaves in upper canopy had higher water content than leaves in bottom canopy.•There was a gradual transition between sun and shade leaves in forest canopy.
Globally, forests are being subjected to numerous threats, including climate change, wildfires, and insect and disease outbreaks, among others. Satellite optical remote sensing data have been widely utilized in early detection of tree and forest stress by estimating water status metrics such as the leaf Equivalent Water Thickness (EWT). This estimate, however, is affected by soil characteristics and understory vegetation and often ignores the effects of the fine-scale heterogeneity of canopy structure and leaf water content. Such effects can be better understood by studying the EWT distribution in three dimensions. In this study, Terrestrial Laser Scanning (TLS) intensity data from the commercially-available Leica P20 and P40 instruments (808 nm and 1550 nm respectively) were combined in a Normalized Difference Index (NDI). NDI was used to map EWT of 12 trees in three dimensions from floor to canopy in a mixed broadleaf forest plot (Wytham Woods, UK). The average error in EWT estimates across three species was less than 8%. The three dimensional point clouds revealed that, in this snapshot, EWT changes vertically, usually increasing towards canopy top. The proposed method has the potential to provide predawn EWT measurements, is independent of solar illumination, and can lead to a better understanding of the factors affecting satellite estimation of EWT. Globally, forests are being subjected to numerous threats, including climate change, wildfires, and insect and disease outbreaks, among others. Satellite optical remote sensing data have been widely utilized in early detection of tree and forest stress by estimating water status metrics such as the leaf Equivalent Water Thickness (EWT). This estimate, however, is affected by soil characteristics and understory vegetation and often ignores the effects of the fine-scale heterogeneity of canopy structure and leaf water content. Such effects can be better understood by studying the EWT distribution in three dimensions. In this study, Terrestrial Laser Scanning (TLS) intensity data from the commercially-available Leica P20 and P40 instruments (808 nm and 1550 nm respectively) were combined in a Normalized Difference Index (NDI). NDI was used to map EWT of 12 trees in three dimensions from floor to canopy in a mixed broadleaf forest plot (Wytham Woods, UK). The average error in EWT estimates across three species was less than 8%. The three dimensional point clouds revealed that, in this snapshot, EWT changes vertically, usually increasing towards canopy top. The proposed method has the potential to provide predawn EWT measurements, is independent of solar illumination, and can lead to a better understanding of the factors affecting satellite estimation of EWT. |
ArticleNumber | 107627 |
Author | Shenkin, Alexander Elsherif, Ahmed Malhi, Yadvinder Gaulton, Rachel Mills, Jon |
Author_xml | – sequence: 1 givenname: Ahmed orcidid: 0000-0002-5575-2678 surname: Elsherif fullname: Elsherif, Ahmed email: a.m.a.elsherif2@newcastle.ac.uk organization: School of Engineering, Newcastle University, Newcastle, NE1 7RU, United Kingdom – sequence: 2 givenname: Rachel surname: Gaulton fullname: Gaulton, Rachel organization: School of Engineering, Newcastle University, Newcastle, NE1 7RU, United Kingdom – sequence: 3 givenname: Alexander orcidid: 0000-0003-2358-9367 surname: Shenkin fullname: Shenkin, Alexander organization: Environmental Change Institute, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom – sequence: 4 givenname: Yadvinder surname: Malhi fullname: Malhi, Yadvinder organization: Environmental Change Institute, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom – sequence: 5 givenname: Jon surname: Mills fullname: Mills, Jon organization: School of Engineering, Newcastle University, Newcastle, NE1 7RU, United Kingdom |
BookMark | eNqNkM1qGzEURkVJoY7bZ6iW2YwraX4kLbIIoU0LgWzStbjW3LHlzkgTSeOQt4-MSxfdJCvB5ZwPcS7JhQ8eCfnK2YYz3n07bGAXhxAnzBvBuC5X2Qn5gay4knUlRMMuyKqQquJa1J_IZUoHxriQUq_I8XEfEWnvJvTJBQ8jnWCend_RMNAyiylTCz7MLxSfFneEEX2mz5Ax0rx39o_HlOiSTka_wFg9wxELs8t7WpiTH11ZHSEVI5UpX9DP5OMAY8Ivf981-f3j--Ptz-r-4e7X7c19ZRve5EpBX1uOLRMSpWS663RXTq3WrWiG7bZvt0oLBVxz3ugapMR6W4teWIvQqbpek6vz7hzD01L-YiaXLI4jeAxLMkKoTrWq5V1Br8-ojSGliIOxLkMuTXIENxrOzKm3OZh_vc2ptzn3Lr78z5-jmyC-vMO8OZtYShwdRpOsQ2-xdxFtNn1wb268AnVzpTY |
CitedBy_id | crossref_primary_10_1016_j_rse_2020_112102 crossref_primary_10_1016_j_compag_2022_106982 crossref_primary_10_1111_gcb_15605 crossref_primary_10_1093_aob_mcab111 crossref_primary_10_3390_rs11192311 crossref_primary_10_3390_f15111878 crossref_primary_10_1111_gcb_15007 crossref_primary_10_1111_1365_2745_13944 crossref_primary_10_3390_rs13112088 crossref_primary_10_3390_rs15061482 crossref_primary_10_1016_j_rse_2020_112274 crossref_primary_10_1016_j_rse_2024_114244 crossref_primary_10_3390_ma15238533 crossref_primary_10_3390_plants11182369 |
Cites_doi | 10.1016/j.isprsjprs.2014.04.003 10.5194/isprsarchives-XL-5-107-2014 10.1029/2009WR008318 10.1016/S0034-4257(00)00147-4 10.1023/A:1005748702893 10.1016/j.agrformet.2012.10.004 10.1016/j.ecolecon.2013.12.009 10.3390/rs9010008 10.1016/S0034-4257(01)00191-2 10.2135/cropsci2004.8270 10.1038/nmeth.2089 10.1111/j.1469-8137.2009.02830.x 10.5194/isprsannals-II-5-W2-145-2013 10.1364/JOSAA.33.000771 10.1109/TGRS.2003.813555 10.1016/j.rse.2007.09.005 10.3390/rs3102207 10.1023/A:1026415302759 10.1080/01431169208904049 10.1016/j.rse.2013.01.001 10.1016/j.rse.2007.11.014 10.1016/j.rse.2004.03.017 10.1093/forestry/74.3.251 10.3390/rs10020346 10.1016/j.isprsjprs.2007.05.008 10.1016/0034-4257(90)90100-Z 10.1093/jxb/erj014 10.1016/j.jag.2018.01.002 10.1016/j.agrformet.2016.08.016 10.1002/j.1537-2197.1993.tb13796.x 10.2134/agronj2007.0322 10.1109/TGRS.2015.2481492 10.1007/BF00028752 10.1016/0034-4257(91)90009-U 10.1016/j.rse.2008.02.012 10.3389/fpls.2018.00299 10.1126/science.1155121 10.1016/j.foreco.2014.08.039 10.1016/S0034-4257(02)00197-9 10.1126/science.aac6759 10.1109/TGRS.2012.2205003 10.1016/j.jag.2010.01.007 10.1098/rsfs.2017.0041 10.1126/science.aaa9932 10.1890/07-1150.1 10.1126/science.aaa9933 10.1016/j.coldregions.2015.10.005 10.1109/JSTARS.2015.2450762 10.3390/rs70404626 10.1016/0034-4257(94)90136-8 10.1016/j.isprsjprs.2015.10.001 10.1016/j.isprsjprs.2017.07.007 10.1016/j.rse.2010.04.025 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.agrformet.2019.107627 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Agriculture |
EISSN | 1873-2240 |
ExternalDocumentID | 10_1016_j_agrformet_2019_107627 S0168192319302357 |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABGRD ABJNI ABLJU ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SDP SES SPC SPCBC SSA SSE SSZ T5K WH7 Y6R ZMT ~02 ~G- ~KM AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLV HMA HVGLF HZ~ R2- SEP SEW SSH WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c414t-8ad3c1e5027e77096696ad3599524fbbd5b8928a1911493a77e3b32d2ccea6833 |
IEDL.DBID | .~1 |
ISSN | 0168-1923 |
IngestDate | Mon Jul 21 11:46:40 EDT 2025 Tue Jul 01 04:35:17 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 Fri Feb 23 02:34:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Leaf water content Forest health Ground-Based LiDAR Forest wildfire Water stress |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-8ad3c1e5027e77096696ad3599524fbbd5b8928a1911493a77e3b32d2ccea6833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5575-2678 0000-0003-2358-9367 |
PQID | 2286858516 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2286858516 crossref_citationtrail_10_1016_j_agrformet_2019_107627 crossref_primary_10_1016_j_agrformet_2019_107627 elsevier_sciencedirect_doi_10_1016_j_agrformet_2019_107627 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-15 |
PublicationDateYYYYMMDD | 2019-10-15 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Agricultural and forest meteorology |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Li (bib0250) 2013; 169 Penasa, Franceschi, Preto, Teza, Polito (bib0200) 2014; 93 Meentemeyer, Anacker, Mark, Rizzo (bib0175) 2008; 18 Lisar, Motafakkerazad, Hossain, Rahman (bib0160) 2012 Serrano, Ustin, Roberts, Gamon, Penuelas (bib0225) 2000; 74 Zheng, Ma, He, Eitel, Moskal, Zhang (bib0275) 2016; 54 Baret, Guyot (bib0025) 1991; 35 Jutzi, Gross (bib0135) 2009; 38 Anttila, Hakala, Kaasalainen, Kaartinen, Nevalainen, Krooks, Kukko, Jaakkola (bib0020) 2016; 121 Yao, Scarpa, Turner, Barnard, Rose, Palma, Harrison (bib0255) 2014; 98 Junttila, Sugano, Vastaranta, Linnakoski, Kaartinen, Kukko, Holopainen, Hyyppä, Hyyppä (bib0125) 2018; 9 Yilmaz, Hunt, Jackson (bib0260) 2008; 112 Elsherif, Gaulton, Mills (bib0085) 2018; 8 Kaasalainen, Jaakkola, Kaasalainen, Krooks, Kukko (bib0140) 2011; 3 Eitel, Vierling, Long (bib0080) 2010; 114 McMahon, Bebber, Butt, Crockatt, Kirby, Parker, Riutta, Slade (bib0170) 2015; 335 Ferretti (bib0095) 1997; 48 Feret, François, Asner, Gitelson, Martin, Bidel, Ustin, Le Maire, Jacquemoud (bib0090) 2008; 112 Blaskow, Schneider (bib0030) 2014; 40 Peñuelas, Gamon, Fredeen, Merino, Field (bib0205) 1994; 48 Zhu, Wang, Darvishzadeh, Skidmore, Niemann (bib0285) 2015; 110 Junttila, Vastaranta, Liang, Kaartinen, Kukko, Kaasalainen, Holopainen, Hyyppä, Hyyppä (bib0130) 2016; 9 Zhao, Wang, Yao, Du, Zhang, Li, Zhao (bib0270) 2016; 18 Lewis, Edwards, Galbraith (bib0150) 2015; 349 Liu, Peng, Wei, Le, Li (bib0165) 2015; 7 Dash, Watt, Pearse, Heaphy, Dungey (bib0075) 2017; 131 Trumbore, Brando, Hartmann (bib0240) 2015; 349 Bonan (bib0035) 2008; 320 Terashima, Hanba, Tazoe, Vyas, Yano (bib0235) 2005; 57 Valentinuz, Tollenaar (bib0245) 2004; 44 Carter (bib0040) 1993; 80 Ciganda, Gitelson, Schepers (bib0050) 2008; 100 Ceccato, Flasse, Tarantola, Jacquemoud, Grégoire (bib0045) 2001; 77 Améglio, Archer, Cohen, Valancogne, Daudet, Dayau, Cruiziat (bib0010) 1999; 207 Zarco-Tejada, Rueda, Ustin (bib0265) 2003; 85 Krooks, Kaasalainen, Hakala, Nevalainen (bib0145) 2013 Danson, Bowyer (bib0065) 2004; 92 Ali, Darvishzadeh, Skidmore, Duren (bib0005) 2016; 9 Tan, Cheng (bib0230) 2016; 33 Danson, Steven, Malthus, Clark (bib0070) 1992; 13 Millar, Stephenson (bib0180) 2015; 349 Jacquemoud, Baret (bib0120) 1990; 34 Höfle, Pfeifer (bib0115) 2007; 62 Schneider, Rasband, Eliceiri (bib0220) 2012; 9 Gaulton, Danson, Ramirez, Gunawan (bib0105) 2013; 132 Hancock, Gaulton, Danson (bib0110) 2017; 55 Morecroft, Taylor, Ellwood, Quinn (bib0185) 2001; 74 Antonarakis, Richards, Brasington, Muller (bib0015) 2010; 46 Pan, Birdsey, Fang, Houghton, Kauppi, Kurz, Phillips, Shvidenko, Lewis, Canadell (bib0190) 2011 Poorter, Niinemets, Poorter, Wright, Villar (bib0210) 2009; 182 Pasqualotto, Delegido, Van Wittenberghe, Verrelst, Rivera, Moreno (bib0195) 2018; 67 Zheng, Moskal, Kim (bib0280) 2013; 51 Lichtenthaler, Buschmann, Döll, Fietz, Bach, Kozel, Meier, Rahmsdorf (bib0155) 1981; 2 Pu, Gong, Biging, Larrieu (bib0215) 2003; 41 Gara, Darvishzadeh, Skidmore, Wang (bib0100) 2018; 10 Zhu, Wang, Skidmore, Darvishzadeh, Niemann, Liu (bib0290) 2017; 232 Clevers, Kooistra, Schaepman (bib0055) 2010; 12 Colombo, Meroni, Marchesi, Busetto, Rossini, Giardino, Panigada (bib0060) 2008; 112 Antonarakis (10.1016/j.agrformet.2019.107627_bib0015) 2010; 46 Junttila (10.1016/j.agrformet.2019.107627_bib0130) 2016; 9 Pu (10.1016/j.agrformet.2019.107627_bib0215) 2003; 41 Blaskow (10.1016/j.agrformet.2019.107627_bib0030) 2014; 40 Millar (10.1016/j.agrformet.2019.107627_bib0180) 2015; 349 Zarco-Tejada (10.1016/j.agrformet.2019.107627_bib0265) 2003; 85 Krooks (10.1016/j.agrformet.2019.107627_bib0145) 2013 Junttila (10.1016/j.agrformet.2019.107627_bib0125) 2018; 9 Kaasalainen (10.1016/j.agrformet.2019.107627_bib0140) 2011; 3 Lisar (10.1016/j.agrformet.2019.107627_bib0160) 2012 Bonan (10.1016/j.agrformet.2019.107627_bib0035) 2008; 320 Yao (10.1016/j.agrformet.2019.107627_bib0255) 2014; 98 Jacquemoud (10.1016/j.agrformet.2019.107627_bib0120) 1990; 34 Lichtenthaler (10.1016/j.agrformet.2019.107627_bib0155) 1981; 2 Danson (10.1016/j.agrformet.2019.107627_bib0065) 2004; 92 Dash (10.1016/j.agrformet.2019.107627_bib0075) 2017; 131 Höfle (10.1016/j.agrformet.2019.107627_bib0115) 2007; 62 Wang (10.1016/j.agrformet.2019.107627_bib0250) 2013; 169 Ciganda (10.1016/j.agrformet.2019.107627_bib0050) 2008; 100 Hancock (10.1016/j.agrformet.2019.107627_bib0110) 2017; 55 Zheng (10.1016/j.agrformet.2019.107627_bib0280) 2013; 51 Elsherif (10.1016/j.agrformet.2019.107627_bib0085) 2018; 8 Améglio (10.1016/j.agrformet.2019.107627_bib0010) 1999; 207 Anttila (10.1016/j.agrformet.2019.107627_bib0020) 2016; 121 Tan (10.1016/j.agrformet.2019.107627_bib0230) 2016; 33 Meentemeyer (10.1016/j.agrformet.2019.107627_bib0175) 2008; 18 Carter (10.1016/j.agrformet.2019.107627_bib0040) 1993; 80 Penasa (10.1016/j.agrformet.2019.107627_bib0200) 2014; 93 Yilmaz (10.1016/j.agrformet.2019.107627_bib0260) 2008; 112 Colombo (10.1016/j.agrformet.2019.107627_bib0060) 2008; 112 Clevers (10.1016/j.agrformet.2019.107627_bib0055) 2010; 12 Jutzi (10.1016/j.agrformet.2019.107627_bib0135) 2009; 38 Zhu (10.1016/j.agrformet.2019.107627_bib0285) 2015; 110 Serrano (10.1016/j.agrformet.2019.107627_bib0225) 2000; 74 Pan (10.1016/j.agrformet.2019.107627_bib0190) 2011 Zhu (10.1016/j.agrformet.2019.107627_bib0290) 2017; 232 Ferretti (10.1016/j.agrformet.2019.107627_bib0095) 1997; 48 Gaulton (10.1016/j.agrformet.2019.107627_bib0105) 2013; 132 Morecroft (10.1016/j.agrformet.2019.107627_bib0185) 2001; 74 Lewis (10.1016/j.agrformet.2019.107627_bib0150) 2015; 349 Valentinuz (10.1016/j.agrformet.2019.107627_bib0245) 2004; 44 Zhao (10.1016/j.agrformet.2019.107627_bib0270) 2016; 18 Feret (10.1016/j.agrformet.2019.107627_bib0090) 2008; 112 Trumbore (10.1016/j.agrformet.2019.107627_bib0240) 2015; 349 Zheng (10.1016/j.agrformet.2019.107627_bib0275) 2016; 54 Danson (10.1016/j.agrformet.2019.107627_bib0070) 1992; 13 Gara (10.1016/j.agrformet.2019.107627_bib0100) 2018; 10 Eitel (10.1016/j.agrformet.2019.107627_bib0080) 2010; 114 Poorter (10.1016/j.agrformet.2019.107627_bib0210) 2009; 182 Ali (10.1016/j.agrformet.2019.107627_bib0005) 2016; 9 McMahon (10.1016/j.agrformet.2019.107627_bib0170) 2015; 335 Terashima (10.1016/j.agrformet.2019.107627_bib0235) 2005; 57 Baret (10.1016/j.agrformet.2019.107627_bib0025) 1991; 35 Pasqualotto (10.1016/j.agrformet.2019.107627_bib0195) 2018; 67 Schneider (10.1016/j.agrformet.2019.107627_bib0220) 2012; 9 Ceccato (10.1016/j.agrformet.2019.107627_bib0045) 2001; 77 Liu (10.1016/j.agrformet.2019.107627_bib0165) 2015; 7 Peñuelas (10.1016/j.agrformet.2019.107627_bib0205) 1994; 48 |
References_xml | – volume: 112 start-page: 2514 year: 2008 end-page: 2522 ident: bib0260 article-title: Remote sensing of vegetation water content from equivalent water thickness using satellite imagery publication-title: Remote Sens. Environ. – volume: 74 start-page: 570 year: 2000 end-page: 581 ident: bib0225 article-title: Deriving water content of chaparral vegetation from AVIRIS data publication-title: Remote Sens. Environ. – start-page: 1201609 year: 2011 ident: bib0190 article-title: A large and persistent carbon sink in the world’s forests publication-title: Science – volume: 112 start-page: 3030 year: 2008 end-page: 3043 ident: bib0090 article-title: PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments publication-title: Remote Sens. Environ. – volume: 62 start-page: 415 year: 2007 end-page: 433 ident: bib0115 article-title: Correction of laser scanning intensity data: data and model-driven approaches publication-title: Isprs J. Photogramm. Remote. Sens. – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: bib0220 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – volume: 7 start-page: 4626 year: 2015 end-page: 4650 ident: bib0165 article-title: Remote estimation of leaf and canopy water content in winter wheat with different vertical distribution of water-related properties publication-title: Remote Sens. (Basel) – volume: 2 start-page: 115 year: 1981 end-page: 141 ident: bib0155 article-title: Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves publication-title: Photosyn. Res. – volume: 67 start-page: 69 year: 2018 end-page: 78 ident: bib0195 article-title: Retrieval of canopy water content of different crop types with two new hyperspectral indices: water Absorption Area Index and Depth Water Index publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 44 start-page: 827 year: 2004 end-page: 834 ident: bib0245 article-title: Vertical profile of leaf senescence during the grain-filling period in older and newer maize hybrids publication-title: Crop Sci. – year: 2012 ident: bib0160 article-title: Water stress in plants: causes, effects and responses publication-title: Water stress: InTech – volume: 51 start-page: 777 year: 2013 end-page: 786 ident: bib0280 article-title: Retrieval of effective leaf area index in heterogeneous forests with terrestrial laser scanning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 38 start-page: 213 year: 2009 end-page: 218 ident: bib0135 article-title: Normalization of LiDAR intensity data based on range and surface incidence angle publication-title: ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – volume: 3 start-page: 2207 year: 2011 end-page: 2221 ident: bib0140 article-title: Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods publication-title: Remote Sens. (Basel) – volume: 57 start-page: 343 year: 2005 end-page: 354 ident: bib0235 article-title: Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion publication-title: J. Exp. Bot. – volume: 349 start-page: 814 year: 2015 end-page: 818 ident: bib0240 article-title: Forest health and global change publication-title: Science – volume: 34 start-page: 75 year: 1990 end-page: 91 ident: bib0120 article-title: PROSPECT—a model of leaf optical-properties spectra publication-title: Remote Sens. Environ. – volume: 18 start-page: 387 year: 2016 end-page: 398 ident: bib0270 article-title: Estimating and validating wheat leaf water content with three MODIS spectral indexes: a case study in Ningxia Plain publication-title: China. Journal of Agricultural Science and Technology – volume: 12 start-page: 119 year: 2010 end-page: 125 ident: bib0055 article-title: Estimating canopy water content using hyperspectral remote sensing data publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 145 year: 2013 end-page: 150 ident: bib0145 article-title: Correction of intensity incidence angle effect in terrestrial laser scanning publication-title: Isprs Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. – volume: 121 start-page: 52 year: 2016 end-page: 59 ident: bib0020 article-title: Calibrating laser scanner data from snow surfaces: correction of intensity effects publication-title: Cold Reg. Sci. Technol. – volume: 46 year: 2010 ident: bib0015 article-title: Determining leaf area index and leafy tree roughness using terrestrial laser scanning publication-title: Water Resour. Res. – volume: 18 start-page: 377 year: 2008 end-page: 390 ident: bib0175 article-title: Early detection of emerging forest disease using dispersal estimation and ecological niche modeling publication-title: Ecol. Appl. – volume: 9 start-page: 8 year: 2016 ident: bib0130 article-title: Measuring leaf water content with dual-wavelength intensity data from terrestrial laser scanners publication-title: Remote Sens. (Basel) – volume: 10 start-page: 346 year: 2018 ident: bib0100 article-title: Impact of vertical canopy position on leaf spectral properties and traits across multiple species publication-title: Remote Sens. (Basel) – volume: 48 start-page: 45 year: 1997 end-page: 72 ident: bib0095 article-title: Forest health assessment and monitoring–issues for consideration publication-title: Environ. Monit. Assess. – volume: 98 start-page: 90 year: 2014 end-page: 101 ident: bib0255 article-title: Valuing biodiversity enhancement in New Zealand’s planted forests: socioeconomic and spatial determinants of willingness-to-pay publication-title: Ecol. Econ. – volume: 169 start-page: 111 year: 2013 end-page: 121 ident: bib0250 article-title: Canopy vertical heterogeneity plays a critical role in reflectance simulation publication-title: Agric. For. Meteorol. – volume: 320 start-page: 1444 year: 2008 end-page: 1449 ident: bib0035 article-title: Forests and climate change: forcings, feedbacks, and the climate benefits of forests publication-title: Science – volume: 93 start-page: 88 year: 2014 end-page: 97 ident: bib0200 article-title: Integration of intensity textures and local geometry descriptors from Terrestrial Laser Scanning to map chert in outcrops publication-title: Isprs J. Photogramm. Remote. Sens. – volume: 74 start-page: 251 year: 2001 end-page: 257 ident: bib0185 article-title: Impacts of deer herbivory on ground vegetation at Wytham Woods, central England publication-title: Forestry – volume: 13 start-page: 461 year: 1992 end-page: 470 ident: bib0070 article-title: High-spectral resolution data for determining leaf water content publication-title: Int. J. Remote Sens. – volume: 182 start-page: 565 year: 2009 end-page: 588 ident: bib0210 article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis publication-title: New Phytol. – volume: 9 start-page: 299 year: 2018 ident: bib0125 article-title: Can leaf water content Be estimated using multispectral terrestrial laser scanning? A case study with Norway spruce seedlings publication-title: Front. Plant Sci. – volume: 85 start-page: 109 year: 2003 end-page: 124 ident: bib0265 article-title: Water content estimation in vegetation with MODIS reflectance data and model inversion methods publication-title: Remote Sens. Environ. – volume: 110 start-page: 14 year: 2015 end-page: 23 ident: bib0285 article-title: 3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction publication-title: Isprs J. Photogramm. Remote. Sens. – volume: 41 start-page: 916 year: 2003 end-page: 921 ident: bib0215 article-title: Extraction of red edge optical parameters from hyperion data for estimation of forest leaf area index publication-title: Ieee Trans. Geosci. Remote. Sens. – volume: 48 start-page: 135 year: 1994 end-page: 146 ident: bib0205 article-title: Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves publication-title: Remote Sens. Environ. – volume: 100 start-page: 1409 year: 2008 end-page: 1417 ident: bib0050 article-title: Vertical profile and temporal variation of chlorophyll in maize canopy: quantitative crop vigor indicator by means of reflectance-based techniques publication-title: Agron. J. – volume: 112 start-page: 1820 year: 2008 end-page: 1834 ident: bib0060 article-title: Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modelling publication-title: Remote Sens. Environ. – volume: 80 start-page: 239 year: 1993 end-page: 243 ident: bib0040 article-title: Responses of leaf spectral reflectance to plant stress publication-title: Am. J. Bot. – volume: 349 start-page: 823 year: 2015 end-page: 826 ident: bib0180 article-title: Temperate forest health in an era of emerging megadisturbance publication-title: Science – volume: 131 start-page: 1 year: 2017 end-page: 14 ident: bib0075 article-title: Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak publication-title: Isprs J. Photogramm. Remote. Sens. – volume: 132 start-page: 32 year: 2013 end-page: 39 ident: bib0105 article-title: The potential of dual-wavelength laser scanning for estimating vegetation moisture content publication-title: Remote Sens. Environ. – volume: 77 start-page: 22 year: 2001 end-page: 33 ident: bib0045 article-title: Detecting vegetation leaf water content using reflectance in the optical domain publication-title: Remote Sens. Environ. – volume: 40 start-page: 107 year: 2014 end-page: 112 ident: bib0030 article-title: Analysis and correction of the dependency between laser scanner intensity values and range publication-title: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences – volume: 54 start-page: 1475 year: 2016 end-page: 1487 ident: bib0275 article-title: Assessing the contribution of woody materials to forest angular gap fraction and effective leaf area index using terrestrial laser scanning data publication-title: Ieee Trans. Geosci. Remote. Sens. – volume: 335 start-page: 255 year: 2015 end-page: 260 ident: bib0170 article-title: Ground based LiDAR demonstrates the legacy of management history to canopy structure and composition across a fragmented temperate woodland publication-title: For. Ecol. Manage. – volume: 35 start-page: 161 year: 1991 end-page: 173 ident: bib0025 article-title: Potentials and limits of vegetation indices for LAI and APAR assessment publication-title: Remote Sens. Environ. – volume: 92 start-page: 309 year: 2004 end-page: 321 ident: bib0065 article-title: Estimating live fuel moisture content from remotely sensed reflectance publication-title: Remote Sens. Environ. – volume: 33 start-page: 771 year: 2016 end-page: 778 ident: bib0230 article-title: Surface reflectance retrieval from the intensity data of a terrestrial laser scanner publication-title: JOSA A – volume: 207 start-page: 155 year: 1999 end-page: 167 ident: bib0010 article-title: Significance and limits in the use of predawn leaf water potential for tree irrigation publication-title: Plant Soil – volume: 232 start-page: 152 year: 2017 end-page: 162 ident: bib0290 article-title: Canopy leaf water content estimated using terrestrial LiDAR publication-title: Agric. For. Meteorol. – volume: 9 start-page: 898 year: 2016 end-page: 909 ident: bib0005 article-title: Effects of canopy structural variables on retrieval of leaf dry matter content and specific leaf area from remotely sensed data publication-title: Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 349 start-page: 827 year: 2015 end-page: 832 ident: bib0150 article-title: Increasing human dominance of tropical forests publication-title: Science – volume: 8 year: 2018 ident: bib0085 article-title: Estimation of vegetation water content at leaf and canopy level using dual-wavelength commercial terrestrial laser scanners publication-title: Interface Focus – volume: 114 start-page: 2229 year: 2010 end-page: 2237 ident: bib0080 article-title: Simultaneous measurements of plant structure and chlorophyll content in broadleaf saplings with a terrestrial laser scanner publication-title: Remote Sens. Environ. – volume: 55 year: 2017 ident: bib0110 article-title: Angular reflectance of leaves with a dual-wavelength terrestrial lidar and its implications for leaf-bark separation and leaf moisture estimation publication-title: Ieee Trans. Geosci. Remote. Sens. – volume: 18 start-page: 387 year: 2016 ident: 10.1016/j.agrformet.2019.107627_bib0270 article-title: Estimating and validating wheat leaf water content with three MODIS spectral indexes: a case study in Ningxia Plain publication-title: China. Journal of Agricultural Science and Technology – volume: 93 start-page: 88 year: 2014 ident: 10.1016/j.agrformet.2019.107627_bib0200 article-title: Integration of intensity textures and local geometry descriptors from Terrestrial Laser Scanning to map chert in outcrops publication-title: Isprs J. Photogramm. Remote. Sens. doi: 10.1016/j.isprsjprs.2014.04.003 – volume: 40 start-page: 107 year: 2014 ident: 10.1016/j.agrformet.2019.107627_bib0030 article-title: Analysis and correction of the dependency between laser scanner intensity values and range publication-title: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences doi: 10.5194/isprsarchives-XL-5-107-2014 – volume: 46 year: 2010 ident: 10.1016/j.agrformet.2019.107627_bib0015 article-title: Determining leaf area index and leafy tree roughness using terrestrial laser scanning publication-title: Water Resour. Res. doi: 10.1029/2009WR008318 – volume: 74 start-page: 570 year: 2000 ident: 10.1016/j.agrformet.2019.107627_bib0225 article-title: Deriving water content of chaparral vegetation from AVIRIS data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00147-4 – volume: 48 start-page: 45 year: 1997 ident: 10.1016/j.agrformet.2019.107627_bib0095 article-title: Forest health assessment and monitoring–issues for consideration publication-title: Environ. Monit. Assess. doi: 10.1023/A:1005748702893 – volume: 169 start-page: 111 year: 2013 ident: 10.1016/j.agrformet.2019.107627_bib0250 article-title: Canopy vertical heterogeneity plays a critical role in reflectance simulation publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.10.004 – volume: 98 start-page: 90 year: 2014 ident: 10.1016/j.agrformet.2019.107627_bib0255 article-title: Valuing biodiversity enhancement in New Zealand’s planted forests: socioeconomic and spatial determinants of willingness-to-pay publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2013.12.009 – volume: 9 start-page: 8 year: 2016 ident: 10.1016/j.agrformet.2019.107627_bib0130 article-title: Measuring leaf water content with dual-wavelength intensity data from terrestrial laser scanners publication-title: Remote Sens. (Basel) doi: 10.3390/rs9010008 – volume: 77 start-page: 22 year: 2001 ident: 10.1016/j.agrformet.2019.107627_bib0045 article-title: Detecting vegetation leaf water content using reflectance in the optical domain publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00191-2 – volume: 55 issue: 3084 year: 2017 ident: 10.1016/j.agrformet.2019.107627_bib0110 article-title: Angular reflectance of leaves with a dual-wavelength terrestrial lidar and its implications for leaf-bark separation and leaf moisture estimation publication-title: Ieee Trans. Geosci. Remote. Sens. – volume: 44 start-page: 827 year: 2004 ident: 10.1016/j.agrformet.2019.107627_bib0245 article-title: Vertical profile of leaf senescence during the grain-filling period in older and newer maize hybrids publication-title: Crop Sci. doi: 10.2135/cropsci2004.8270 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.agrformet.2019.107627_bib0220 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 182 start-page: 565 year: 2009 ident: 10.1016/j.agrformet.2019.107627_bib0210 article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis publication-title: New Phytol. doi: 10.1111/j.1469-8137.2009.02830.x – start-page: 145 year: 2013 ident: 10.1016/j.agrformet.2019.107627_bib0145 article-title: Correction of intensity incidence angle effect in terrestrial laser scanning publication-title: Isprs Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. doi: 10.5194/isprsannals-II-5-W2-145-2013 – volume: 33 start-page: 771 year: 2016 ident: 10.1016/j.agrformet.2019.107627_bib0230 article-title: Surface reflectance retrieval from the intensity data of a terrestrial laser scanner publication-title: JOSA A doi: 10.1364/JOSAA.33.000771 – volume: 41 start-page: 916 issue: 4 year: 2003 ident: 10.1016/j.agrformet.2019.107627_bib0215 article-title: Extraction of red edge optical parameters from hyperion data for estimation of forest leaf area index publication-title: Ieee Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2003.813555 – volume: 112 start-page: 1820 issue: 4 year: 2008 ident: 10.1016/j.agrformet.2019.107627_bib0060 article-title: Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modelling publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.09.005 – start-page: 1201609 year: 2011 ident: 10.1016/j.agrformet.2019.107627_bib0190 article-title: A large and persistent carbon sink in the world’s forests publication-title: Science – volume: 3 start-page: 2207 year: 2011 ident: 10.1016/j.agrformet.2019.107627_bib0140 article-title: Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods publication-title: Remote Sens. (Basel) doi: 10.3390/rs3102207 – volume: 207 start-page: 155 year: 1999 ident: 10.1016/j.agrformet.2019.107627_bib0010 article-title: Significance and limits in the use of predawn leaf water potential for tree irrigation publication-title: Plant Soil doi: 10.1023/A:1026415302759 – volume: 13 start-page: 461 year: 1992 ident: 10.1016/j.agrformet.2019.107627_bib0070 article-title: High-spectral resolution data for determining leaf water content publication-title: Int. J. Remote Sens. doi: 10.1080/01431169208904049 – year: 2012 ident: 10.1016/j.agrformet.2019.107627_bib0160 article-title: Water stress in plants: causes, effects and responses – volume: 132 start-page: 32 year: 2013 ident: 10.1016/j.agrformet.2019.107627_bib0105 article-title: The potential of dual-wavelength laser scanning for estimating vegetation moisture content publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.001 – volume: 112 start-page: 2514 year: 2008 ident: 10.1016/j.agrformet.2019.107627_bib0260 article-title: Remote sensing of vegetation water content from equivalent water thickness using satellite imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.11.014 – volume: 92 start-page: 309 year: 2004 ident: 10.1016/j.agrformet.2019.107627_bib0065 article-title: Estimating live fuel moisture content from remotely sensed reflectance publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.03.017 – volume: 74 start-page: 251 year: 2001 ident: 10.1016/j.agrformet.2019.107627_bib0185 article-title: Impacts of deer herbivory on ground vegetation at Wytham Woods, central England publication-title: Forestry doi: 10.1093/forestry/74.3.251 – volume: 10 start-page: 346 year: 2018 ident: 10.1016/j.agrformet.2019.107627_bib0100 article-title: Impact of vertical canopy position on leaf spectral properties and traits across multiple species publication-title: Remote Sens. (Basel) doi: 10.3390/rs10020346 – volume: 62 start-page: 415 year: 2007 ident: 10.1016/j.agrformet.2019.107627_bib0115 article-title: Correction of laser scanning intensity data: data and model-driven approaches publication-title: Isprs J. Photogramm. Remote. Sens. doi: 10.1016/j.isprsjprs.2007.05.008 – volume: 34 start-page: 75 year: 1990 ident: 10.1016/j.agrformet.2019.107627_bib0120 article-title: PROSPECT—a model of leaf optical-properties spectra publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(90)90100-Z – volume: 57 start-page: 343 year: 2005 ident: 10.1016/j.agrformet.2019.107627_bib0235 article-title: Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion publication-title: J. Exp. Bot. doi: 10.1093/jxb/erj014 – volume: 67 start-page: 69 year: 2018 ident: 10.1016/j.agrformet.2019.107627_bib0195 article-title: Retrieval of canopy water content of different crop types with two new hyperspectral indices: water Absorption Area Index and Depth Water Index publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2018.01.002 – volume: 232 start-page: 152 year: 2017 ident: 10.1016/j.agrformet.2019.107627_bib0290 article-title: Canopy leaf water content estimated using terrestrial LiDAR publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2016.08.016 – volume: 80 start-page: 239 year: 1993 ident: 10.1016/j.agrformet.2019.107627_bib0040 article-title: Responses of leaf spectral reflectance to plant stress publication-title: Am. J. Bot. doi: 10.1002/j.1537-2197.1993.tb13796.x – volume: 100 start-page: 1409 year: 2008 ident: 10.1016/j.agrformet.2019.107627_bib0050 article-title: Vertical profile and temporal variation of chlorophyll in maize canopy: quantitative crop vigor indicator by means of reflectance-based techniques publication-title: Agron. J. doi: 10.2134/agronj2007.0322 – volume: 54 start-page: 1475 year: 2016 ident: 10.1016/j.agrformet.2019.107627_bib0275 article-title: Assessing the contribution of woody materials to forest angular gap fraction and effective leaf area index using terrestrial laser scanning data publication-title: Ieee Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2015.2481492 – volume: 2 start-page: 115 year: 1981 ident: 10.1016/j.agrformet.2019.107627_bib0155 article-title: Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves publication-title: Photosyn. Res. doi: 10.1007/BF00028752 – volume: 35 start-page: 161 year: 1991 ident: 10.1016/j.agrformet.2019.107627_bib0025 article-title: Potentials and limits of vegetation indices for LAI and APAR assessment publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(91)90009-U – volume: 112 start-page: 3030 year: 2008 ident: 10.1016/j.agrformet.2019.107627_bib0090 article-title: PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.02.012 – volume: 9 start-page: 299 year: 2018 ident: 10.1016/j.agrformet.2019.107627_bib0125 article-title: Can leaf water content Be estimated using multispectral terrestrial laser scanning? A case study with Norway spruce seedlings publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00299 – volume: 320 start-page: 1444 year: 2008 ident: 10.1016/j.agrformet.2019.107627_bib0035 article-title: Forests and climate change: forcings, feedbacks, and the climate benefits of forests publication-title: Science doi: 10.1126/science.1155121 – volume: 335 start-page: 255 year: 2015 ident: 10.1016/j.agrformet.2019.107627_bib0170 article-title: Ground based LiDAR demonstrates the legacy of management history to canopy structure and composition across a fragmented temperate woodland publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2014.08.039 – volume: 85 start-page: 109 year: 2003 ident: 10.1016/j.agrformet.2019.107627_bib0265 article-title: Water content estimation in vegetation with MODIS reflectance data and model inversion methods publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00197-9 – volume: 349 start-page: 814 year: 2015 ident: 10.1016/j.agrformet.2019.107627_bib0240 article-title: Forest health and global change publication-title: Science doi: 10.1126/science.aac6759 – volume: 51 start-page: 777 year: 2013 ident: 10.1016/j.agrformet.2019.107627_bib0280 article-title: Retrieval of effective leaf area index in heterogeneous forests with terrestrial laser scanning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2205003 – volume: 12 start-page: 119 year: 2010 ident: 10.1016/j.agrformet.2019.107627_bib0055 article-title: Estimating canopy water content using hyperspectral remote sensing data publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2010.01.007 – volume: 8 year: 2018 ident: 10.1016/j.agrformet.2019.107627_bib0085 article-title: Estimation of vegetation water content at leaf and canopy level using dual-wavelength commercial terrestrial laser scanners publication-title: Interface Focus doi: 10.1098/rsfs.2017.0041 – volume: 349 start-page: 827 year: 2015 ident: 10.1016/j.agrformet.2019.107627_bib0150 article-title: Increasing human dominance of tropical forests publication-title: Science doi: 10.1126/science.aaa9932 – volume: 18 start-page: 377 year: 2008 ident: 10.1016/j.agrformet.2019.107627_bib0175 article-title: Early detection of emerging forest disease using dispersal estimation and ecological niche modeling publication-title: Ecol. Appl. doi: 10.1890/07-1150.1 – volume: 349 start-page: 823 year: 2015 ident: 10.1016/j.agrformet.2019.107627_bib0180 article-title: Temperate forest health in an era of emerging megadisturbance publication-title: Science doi: 10.1126/science.aaa9933 – volume: 121 start-page: 52 year: 2016 ident: 10.1016/j.agrformet.2019.107627_bib0020 article-title: Calibrating laser scanner data from snow surfaces: correction of intensity effects publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2015.10.005 – volume: 9 start-page: 898 year: 2016 ident: 10.1016/j.agrformet.2019.107627_bib0005 article-title: Effects of canopy structural variables on retrieval of leaf dry matter content and specific leaf area from remotely sensed data publication-title: Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2015.2450762 – volume: 7 start-page: 4626 year: 2015 ident: 10.1016/j.agrformet.2019.107627_bib0165 article-title: Remote estimation of leaf and canopy water content in winter wheat with different vertical distribution of water-related properties publication-title: Remote Sens. (Basel) doi: 10.3390/rs70404626 – volume: 48 start-page: 135 year: 1994 ident: 10.1016/j.agrformet.2019.107627_bib0205 article-title: Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)90136-8 – volume: 110 start-page: 14 year: 2015 ident: 10.1016/j.agrformet.2019.107627_bib0285 article-title: 3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction publication-title: Isprs J. Photogramm. Remote. Sens. doi: 10.1016/j.isprsjprs.2015.10.001 – volume: 131 start-page: 1 year: 2017 ident: 10.1016/j.agrformet.2019.107627_bib0075 article-title: Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak publication-title: Isprs J. Photogramm. Remote. Sens. doi: 10.1016/j.isprsjprs.2017.07.007 – volume: 114 start-page: 2229 year: 2010 ident: 10.1016/j.agrformet.2019.107627_bib0080 article-title: Simultaneous measurements of plant structure and chlorophyll content in broadleaf saplings with a terrestrial laser scanner publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.04.025 – volume: 38 start-page: 213 year: 2009 ident: 10.1016/j.agrformet.2019.107627_bib0135 article-title: Normalization of LiDAR intensity data based on range and surface incidence angle publication-title: ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
SSID | ssj0012779 |
Score | 2.3970022 |
Snippet | •Dual-wavelength TLS reflectance data is highly correlated to leaf EWT.•3D estimates of forest canopy EWT were generated with low errors.•Leaves in upper... Globally, forests are being subjected to numerous threats, including climate change, wildfires, and insect and disease outbreaks, among others. Satellite... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107627 |
SubjectTerms | climate change data collection deciduous forests disease outbreaks forest canopy Forest health Forest wildfire Ground-Based LiDAR insects Leaf water content leaves lighting satellites soil properties spatial data trees understory United Kingdom water content Water stress wildfires |
Title | Three dimensional mapping of forest canopy equivalent water thickness using dual-wavelength terrestrial laser scanning |
URI | https://dx.doi.org/10.1016/j.agrformet.2019.107627 https://www.proquest.com/docview/2286858516 |
Volume | 276-277 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4muMABwQAxHlOQELeyNX2k5TZNTAO0XRgSt6hN01IY7SgbiAu_HTttJw0JceCYKFaj2LU_t85nQs5Y14kirjzD9WVs2DKEVwoTV7drsRjJV_wI7zuPxu7w3r55cB4apF_fhcGyysr3lz5de-tqplOdZmeWpp07ACuexie-pUlb8Aa7zdHKL76WZR4m4yXfHiw2cPVKjVeQ6OJ8hUWVpg-z4Br4bxHqh6_WAWiwTbYq5Eh75eZ2SENlTbLZS4qKPUM1SWsEEDgv9Jdyek770xTwqB7tkvcJaE3RCNn8SyYO-hIgOUNC85jC_uCRFM45n31S9bpIwQIhHtEPwKIFxaL4Z3SKFOvkE4oXuIyPAJtWZMn8kcIalEdjpgDHQeJNls2Q9sj94GrSHxpV0wVD2qY9N7wgsqSpHEhXFeeQ4Li-C1PIS8bsOAwjJ_R85gWQ50FyZQWcKyu0WMSkVIHrWdY-WcvyTB0QClFRhT6XJlgDKMYDLBFJAHCxo3xsfdYibn3QQlaM5NgYYyrq0rMnsdSQQA2JUkMt0l0KzkpSjr9FLmtNihX7EhA6_hY-rXUv4O3DXypBpvLFm2DM0wT-pnv4nwcckQ0cYUw0nWOyNi8W6gTAzjxsa2tuk_Xe9e1w_A21hQJJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HIAD4inGM0iIW9mavrmhCTRg48Im7Ra1aVrGox1jA3Hht2On7aQhIQ4cm8ZqFTv259b5DHDCG04ce8o33EAmhi0j3FKUuLoNiydEvhLEdN65c-e2evZN3-nPQbM6C0NllaXvL3y69tblSL1czfpwMKjfI1jxNT4JLE3aMg-LNm5famNw9jWt8zC5VxDu4WyDps8UeYWprs5XVFVpBjiKvsH7LUT9cNY6Al2twWoJHdlF8XbrMKeyDVi5SEclfYbagFoHMXA-0p_K2SlrPg8QkOqrTXjvotoUi4nOv6DiYC8hsTOkLE8Yvh8-kuFC58NPpl4nAzRBDEjsA8HoiFFV_BN5RUaF8imjE1zGR0hdK7J0_MBwDsmTNTPE4yjxJotuSFvQu7rsNltG2XXBkLZpjw0_jC1pKgfzVeV5mOG4gYtDREzG7SSKYifyA-6HmOhhdmWFnqesyOIxl1KFrm9Z27CQ5ZnaAYZhUUWBJ000BxvzGgQTsUQElzgqoN5nNXCrhRaypCSnzhjPoqo9exRTDQnSkCg0VIPGVHBYsHL8LXJeaVLMGJjA2PG38HGle4Hbj_6phJnKJ2-Cc18z-Jvu7n8ecARLrW6nLdrXd7d7sEx3KECazj4sjEcTdYDIZxwdasv-BoeRA9c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+dimensional+mapping+of+forest+canopy+equivalent+water+thickness+using+dual-wavelength+terrestrial+laser+scanning&rft.jtitle=Agricultural+and+forest+meteorology&rft.au=Elsherif%2C+Ahmed&rft.au=Gaulton%2C+Rachel&rft.au=Shenkin%2C+Alexander&rft.au=Malhi%2C+Y&rft.date=2019-10-15&rft.issn=0168-1923&rft.volume=276-277+p.107627-&rft_id=info:doi/10.1016%2Fj.agrformet.2019.107627&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1923&client=summon |