Three dimensional mapping of forest canopy equivalent water thickness using dual-wavelength terrestrial laser scanning

•Dual-wavelength TLS reflectance data is highly correlated to leaf EWT.•3D estimates of forest canopy EWT were generated with low errors.•Leaves in upper canopy had higher water content than leaves in bottom canopy.•There was a gradual transition between sun and shade leaves in forest canopy. Global...

Full description

Saved in:
Bibliographic Details
Published inAgricultural and forest meteorology Vol. 276-277; p. 107627
Main Authors Elsherif, Ahmed, Gaulton, Rachel, Shenkin, Alexander, Malhi, Yadvinder, Mills, Jon
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Dual-wavelength TLS reflectance data is highly correlated to leaf EWT.•3D estimates of forest canopy EWT were generated with low errors.•Leaves in upper canopy had higher water content than leaves in bottom canopy.•There was a gradual transition between sun and shade leaves in forest canopy. Globally, forests are being subjected to numerous threats, including climate change, wildfires, and insect and disease outbreaks, among others. Satellite optical remote sensing data have been widely utilized in early detection of tree and forest stress by estimating water status metrics such as the leaf Equivalent Water Thickness (EWT). This estimate, however, is affected by soil characteristics and understory vegetation and often ignores the effects of the fine-scale heterogeneity of canopy structure and leaf water content. Such effects can be better understood by studying the EWT distribution in three dimensions. In this study, Terrestrial Laser Scanning (TLS) intensity data from the commercially-available Leica P20 and P40 instruments (808 nm and 1550 nm respectively) were combined in a Normalized Difference Index (NDI). NDI was used to map EWT of 12 trees in three dimensions from floor to canopy in a mixed broadleaf forest plot (Wytham Woods, UK). The average error in EWT estimates across three species was less than 8%. The three dimensional point clouds revealed that, in this snapshot, EWT changes vertically, usually increasing towards canopy top. The proposed method has the potential to provide predawn EWT measurements, is independent of solar illumination, and can lead to a better understanding of the factors affecting satellite estimation of EWT.
AbstractList •Dual-wavelength TLS reflectance data is highly correlated to leaf EWT.•3D estimates of forest canopy EWT were generated with low errors.•Leaves in upper canopy had higher water content than leaves in bottom canopy.•There was a gradual transition between sun and shade leaves in forest canopy. Globally, forests are being subjected to numerous threats, including climate change, wildfires, and insect and disease outbreaks, among others. Satellite optical remote sensing data have been widely utilized in early detection of tree and forest stress by estimating water status metrics such as the leaf Equivalent Water Thickness (EWT). This estimate, however, is affected by soil characteristics and understory vegetation and often ignores the effects of the fine-scale heterogeneity of canopy structure and leaf water content. Such effects can be better understood by studying the EWT distribution in three dimensions. In this study, Terrestrial Laser Scanning (TLS) intensity data from the commercially-available Leica P20 and P40 instruments (808 nm and 1550 nm respectively) were combined in a Normalized Difference Index (NDI). NDI was used to map EWT of 12 trees in three dimensions from floor to canopy in a mixed broadleaf forest plot (Wytham Woods, UK). The average error in EWT estimates across three species was less than 8%. The three dimensional point clouds revealed that, in this snapshot, EWT changes vertically, usually increasing towards canopy top. The proposed method has the potential to provide predawn EWT measurements, is independent of solar illumination, and can lead to a better understanding of the factors affecting satellite estimation of EWT.
Globally, forests are being subjected to numerous threats, including climate change, wildfires, and insect and disease outbreaks, among others. Satellite optical remote sensing data have been widely utilized in early detection of tree and forest stress by estimating water status metrics such as the leaf Equivalent Water Thickness (EWT). This estimate, however, is affected by soil characteristics and understory vegetation and often ignores the effects of the fine-scale heterogeneity of canopy structure and leaf water content. Such effects can be better understood by studying the EWT distribution in three dimensions. In this study, Terrestrial Laser Scanning (TLS) intensity data from the commercially-available Leica P20 and P40 instruments (808 nm and 1550 nm respectively) were combined in a Normalized Difference Index (NDI). NDI was used to map EWT of 12 trees in three dimensions from floor to canopy in a mixed broadleaf forest plot (Wytham Woods, UK). The average error in EWT estimates across three species was less than 8%. The three dimensional point clouds revealed that, in this snapshot, EWT changes vertically, usually increasing towards canopy top. The proposed method has the potential to provide predawn EWT measurements, is independent of solar illumination, and can lead to a better understanding of the factors affecting satellite estimation of EWT.
ArticleNumber 107627
Author Shenkin, Alexander
Elsherif, Ahmed
Malhi, Yadvinder
Gaulton, Rachel
Mills, Jon
Author_xml – sequence: 1
  givenname: Ahmed
  orcidid: 0000-0002-5575-2678
  surname: Elsherif
  fullname: Elsherif, Ahmed
  email: a.m.a.elsherif2@newcastle.ac.uk
  organization: School of Engineering, Newcastle University, Newcastle, NE1 7RU, United Kingdom
– sequence: 2
  givenname: Rachel
  surname: Gaulton
  fullname: Gaulton, Rachel
  organization: School of Engineering, Newcastle University, Newcastle, NE1 7RU, United Kingdom
– sequence: 3
  givenname: Alexander
  orcidid: 0000-0003-2358-9367
  surname: Shenkin
  fullname: Shenkin, Alexander
  organization: Environmental Change Institute, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom
– sequence: 4
  givenname: Yadvinder
  surname: Malhi
  fullname: Malhi, Yadvinder
  organization: Environmental Change Institute, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom
– sequence: 5
  givenname: Jon
  surname: Mills
  fullname: Mills, Jon
  organization: School of Engineering, Newcastle University, Newcastle, NE1 7RU, United Kingdom
BookMark eNqNkM1qGzEURkVJoY7bZ6iW2YwraX4kLbIIoU0LgWzStbjW3LHlzkgTSeOQt4-MSxfdJCvB5ZwPcS7JhQ8eCfnK2YYz3n07bGAXhxAnzBvBuC5X2Qn5gay4knUlRMMuyKqQquJa1J_IZUoHxriQUq_I8XEfEWnvJvTJBQ8jnWCend_RMNAyiylTCz7MLxSfFneEEX2mz5Ax0rx39o_HlOiSTka_wFg9wxELs8t7WpiTH11ZHSEVI5UpX9DP5OMAY8Ivf981-f3j--Ptz-r-4e7X7c19ZRve5EpBX1uOLRMSpWS663RXTq3WrWiG7bZvt0oLBVxz3ugapMR6W4teWIvQqbpek6vz7hzD01L-YiaXLI4jeAxLMkKoTrWq5V1Br8-ojSGliIOxLkMuTXIENxrOzKm3OZh_vc2ptzn3Lr78z5-jmyC-vMO8OZtYShwdRpOsQ2-xdxFtNn1wb268AnVzpTY
CitedBy_id crossref_primary_10_1016_j_rse_2020_112102
crossref_primary_10_1016_j_compag_2022_106982
crossref_primary_10_1111_gcb_15605
crossref_primary_10_1093_aob_mcab111
crossref_primary_10_3390_rs11192311
crossref_primary_10_3390_f15111878
crossref_primary_10_1111_gcb_15007
crossref_primary_10_1111_1365_2745_13944
crossref_primary_10_3390_rs13112088
crossref_primary_10_3390_rs15061482
crossref_primary_10_1016_j_rse_2020_112274
crossref_primary_10_1016_j_rse_2024_114244
crossref_primary_10_3390_ma15238533
crossref_primary_10_3390_plants11182369
Cites_doi 10.1016/j.isprsjprs.2014.04.003
10.5194/isprsarchives-XL-5-107-2014
10.1029/2009WR008318
10.1016/S0034-4257(00)00147-4
10.1023/A:1005748702893
10.1016/j.agrformet.2012.10.004
10.1016/j.ecolecon.2013.12.009
10.3390/rs9010008
10.1016/S0034-4257(01)00191-2
10.2135/cropsci2004.8270
10.1038/nmeth.2089
10.1111/j.1469-8137.2009.02830.x
10.5194/isprsannals-II-5-W2-145-2013
10.1364/JOSAA.33.000771
10.1109/TGRS.2003.813555
10.1016/j.rse.2007.09.005
10.3390/rs3102207
10.1023/A:1026415302759
10.1080/01431169208904049
10.1016/j.rse.2013.01.001
10.1016/j.rse.2007.11.014
10.1016/j.rse.2004.03.017
10.1093/forestry/74.3.251
10.3390/rs10020346
10.1016/j.isprsjprs.2007.05.008
10.1016/0034-4257(90)90100-Z
10.1093/jxb/erj014
10.1016/j.jag.2018.01.002
10.1016/j.agrformet.2016.08.016
10.1002/j.1537-2197.1993.tb13796.x
10.2134/agronj2007.0322
10.1109/TGRS.2015.2481492
10.1007/BF00028752
10.1016/0034-4257(91)90009-U
10.1016/j.rse.2008.02.012
10.3389/fpls.2018.00299
10.1126/science.1155121
10.1016/j.foreco.2014.08.039
10.1016/S0034-4257(02)00197-9
10.1126/science.aac6759
10.1109/TGRS.2012.2205003
10.1016/j.jag.2010.01.007
10.1098/rsfs.2017.0041
10.1126/science.aaa9932
10.1890/07-1150.1
10.1126/science.aaa9933
10.1016/j.coldregions.2015.10.005
10.1109/JSTARS.2015.2450762
10.3390/rs70404626
10.1016/0034-4257(94)90136-8
10.1016/j.isprsjprs.2015.10.001
10.1016/j.isprsjprs.2017.07.007
10.1016/j.rse.2010.04.025
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.agrformet.2019.107627
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Agriculture
EISSN 1873-2240
ExternalDocumentID 10_1016_j_agrformet_2019_107627
S0168192319302357
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABGRD
ABJNI
ABLJU
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
WH7
Y6R
ZMT
~02
~G-
~KM
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLV
HMA
HVGLF
HZ~
R2-
SEP
SEW
SSH
WUQ
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c414t-8ad3c1e5027e77096696ad3599524fbbd5b8928a1911493a77e3b32d2ccea6833
IEDL.DBID .~1
ISSN 0168-1923
IngestDate Mon Jul 21 11:46:40 EDT 2025
Tue Jul 01 04:35:17 EDT 2025
Thu Apr 24 22:57:32 EDT 2025
Fri Feb 23 02:34:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Leaf water content
Forest health
Ground-Based LiDAR
Forest wildfire
Water stress
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-8ad3c1e5027e77096696ad3599524fbbd5b8928a1911493a77e3b32d2ccea6833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5575-2678
0000-0003-2358-9367
PQID 2286858516
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2286858516
crossref_citationtrail_10_1016_j_agrformet_2019_107627
crossref_primary_10_1016_j_agrformet_2019_107627
elsevier_sciencedirect_doi_10_1016_j_agrformet_2019_107627
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-15
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-15
  day: 15
PublicationDecade 2010
PublicationTitle Agricultural and forest meteorology
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Li (bib0250) 2013; 169
Penasa, Franceschi, Preto, Teza, Polito (bib0200) 2014; 93
Meentemeyer, Anacker, Mark, Rizzo (bib0175) 2008; 18
Lisar, Motafakkerazad, Hossain, Rahman (bib0160) 2012
Serrano, Ustin, Roberts, Gamon, Penuelas (bib0225) 2000; 74
Zheng, Ma, He, Eitel, Moskal, Zhang (bib0275) 2016; 54
Baret, Guyot (bib0025) 1991; 35
Jutzi, Gross (bib0135) 2009; 38
Anttila, Hakala, Kaasalainen, Kaartinen, Nevalainen, Krooks, Kukko, Jaakkola (bib0020) 2016; 121
Yao, Scarpa, Turner, Barnard, Rose, Palma, Harrison (bib0255) 2014; 98
Junttila, Sugano, Vastaranta, Linnakoski, Kaartinen, Kukko, Holopainen, Hyyppä, Hyyppä (bib0125) 2018; 9
Yilmaz, Hunt, Jackson (bib0260) 2008; 112
Elsherif, Gaulton, Mills (bib0085) 2018; 8
Kaasalainen, Jaakkola, Kaasalainen, Krooks, Kukko (bib0140) 2011; 3
Eitel, Vierling, Long (bib0080) 2010; 114
McMahon, Bebber, Butt, Crockatt, Kirby, Parker, Riutta, Slade (bib0170) 2015; 335
Ferretti (bib0095) 1997; 48
Feret, François, Asner, Gitelson, Martin, Bidel, Ustin, Le Maire, Jacquemoud (bib0090) 2008; 112
Blaskow, Schneider (bib0030) 2014; 40
Peñuelas, Gamon, Fredeen, Merino, Field (bib0205) 1994; 48
Zhu, Wang, Darvishzadeh, Skidmore, Niemann (bib0285) 2015; 110
Junttila, Vastaranta, Liang, Kaartinen, Kukko, Kaasalainen, Holopainen, Hyyppä, Hyyppä (bib0130) 2016; 9
Zhao, Wang, Yao, Du, Zhang, Li, Zhao (bib0270) 2016; 18
Lewis, Edwards, Galbraith (bib0150) 2015; 349
Liu, Peng, Wei, Le, Li (bib0165) 2015; 7
Dash, Watt, Pearse, Heaphy, Dungey (bib0075) 2017; 131
Trumbore, Brando, Hartmann (bib0240) 2015; 349
Bonan (bib0035) 2008; 320
Terashima, Hanba, Tazoe, Vyas, Yano (bib0235) 2005; 57
Valentinuz, Tollenaar (bib0245) 2004; 44
Carter (bib0040) 1993; 80
Ciganda, Gitelson, Schepers (bib0050) 2008; 100
Ceccato, Flasse, Tarantola, Jacquemoud, Grégoire (bib0045) 2001; 77
Améglio, Archer, Cohen, Valancogne, Daudet, Dayau, Cruiziat (bib0010) 1999; 207
Zarco-Tejada, Rueda, Ustin (bib0265) 2003; 85
Krooks, Kaasalainen, Hakala, Nevalainen (bib0145) 2013
Danson, Bowyer (bib0065) 2004; 92
Ali, Darvishzadeh, Skidmore, Duren (bib0005) 2016; 9
Tan, Cheng (bib0230) 2016; 33
Danson, Steven, Malthus, Clark (bib0070) 1992; 13
Millar, Stephenson (bib0180) 2015; 349
Jacquemoud, Baret (bib0120) 1990; 34
Höfle, Pfeifer (bib0115) 2007; 62
Schneider, Rasband, Eliceiri (bib0220) 2012; 9
Gaulton, Danson, Ramirez, Gunawan (bib0105) 2013; 132
Hancock, Gaulton, Danson (bib0110) 2017; 55
Morecroft, Taylor, Ellwood, Quinn (bib0185) 2001; 74
Antonarakis, Richards, Brasington, Muller (bib0015) 2010; 46
Pan, Birdsey, Fang, Houghton, Kauppi, Kurz, Phillips, Shvidenko, Lewis, Canadell (bib0190) 2011
Poorter, Niinemets, Poorter, Wright, Villar (bib0210) 2009; 182
Pasqualotto, Delegido, Van Wittenberghe, Verrelst, Rivera, Moreno (bib0195) 2018; 67
Zheng, Moskal, Kim (bib0280) 2013; 51
Lichtenthaler, Buschmann, Döll, Fietz, Bach, Kozel, Meier, Rahmsdorf (bib0155) 1981; 2
Pu, Gong, Biging, Larrieu (bib0215) 2003; 41
Gara, Darvishzadeh, Skidmore, Wang (bib0100) 2018; 10
Zhu, Wang, Skidmore, Darvishzadeh, Niemann, Liu (bib0290) 2017; 232
Clevers, Kooistra, Schaepman (bib0055) 2010; 12
Colombo, Meroni, Marchesi, Busetto, Rossini, Giardino, Panigada (bib0060) 2008; 112
Antonarakis (10.1016/j.agrformet.2019.107627_bib0015) 2010; 46
Junttila (10.1016/j.agrformet.2019.107627_bib0130) 2016; 9
Pu (10.1016/j.agrformet.2019.107627_bib0215) 2003; 41
Blaskow (10.1016/j.agrformet.2019.107627_bib0030) 2014; 40
Millar (10.1016/j.agrformet.2019.107627_bib0180) 2015; 349
Zarco-Tejada (10.1016/j.agrformet.2019.107627_bib0265) 2003; 85
Krooks (10.1016/j.agrformet.2019.107627_bib0145) 2013
Junttila (10.1016/j.agrformet.2019.107627_bib0125) 2018; 9
Kaasalainen (10.1016/j.agrformet.2019.107627_bib0140) 2011; 3
Lisar (10.1016/j.agrformet.2019.107627_bib0160) 2012
Bonan (10.1016/j.agrformet.2019.107627_bib0035) 2008; 320
Yao (10.1016/j.agrformet.2019.107627_bib0255) 2014; 98
Jacquemoud (10.1016/j.agrformet.2019.107627_bib0120) 1990; 34
Lichtenthaler (10.1016/j.agrformet.2019.107627_bib0155) 1981; 2
Danson (10.1016/j.agrformet.2019.107627_bib0065) 2004; 92
Dash (10.1016/j.agrformet.2019.107627_bib0075) 2017; 131
Höfle (10.1016/j.agrformet.2019.107627_bib0115) 2007; 62
Wang (10.1016/j.agrformet.2019.107627_bib0250) 2013; 169
Ciganda (10.1016/j.agrformet.2019.107627_bib0050) 2008; 100
Hancock (10.1016/j.agrformet.2019.107627_bib0110) 2017; 55
Zheng (10.1016/j.agrformet.2019.107627_bib0280) 2013; 51
Elsherif (10.1016/j.agrformet.2019.107627_bib0085) 2018; 8
Améglio (10.1016/j.agrformet.2019.107627_bib0010) 1999; 207
Anttila (10.1016/j.agrformet.2019.107627_bib0020) 2016; 121
Tan (10.1016/j.agrformet.2019.107627_bib0230) 2016; 33
Meentemeyer (10.1016/j.agrformet.2019.107627_bib0175) 2008; 18
Carter (10.1016/j.agrformet.2019.107627_bib0040) 1993; 80
Penasa (10.1016/j.agrformet.2019.107627_bib0200) 2014; 93
Yilmaz (10.1016/j.agrformet.2019.107627_bib0260) 2008; 112
Colombo (10.1016/j.agrformet.2019.107627_bib0060) 2008; 112
Clevers (10.1016/j.agrformet.2019.107627_bib0055) 2010; 12
Jutzi (10.1016/j.agrformet.2019.107627_bib0135) 2009; 38
Zhu (10.1016/j.agrformet.2019.107627_bib0285) 2015; 110
Serrano (10.1016/j.agrformet.2019.107627_bib0225) 2000; 74
Pan (10.1016/j.agrformet.2019.107627_bib0190) 2011
Zhu (10.1016/j.agrformet.2019.107627_bib0290) 2017; 232
Ferretti (10.1016/j.agrformet.2019.107627_bib0095) 1997; 48
Gaulton (10.1016/j.agrformet.2019.107627_bib0105) 2013; 132
Morecroft (10.1016/j.agrformet.2019.107627_bib0185) 2001; 74
Lewis (10.1016/j.agrformet.2019.107627_bib0150) 2015; 349
Valentinuz (10.1016/j.agrformet.2019.107627_bib0245) 2004; 44
Zhao (10.1016/j.agrformet.2019.107627_bib0270) 2016; 18
Feret (10.1016/j.agrformet.2019.107627_bib0090) 2008; 112
Trumbore (10.1016/j.agrformet.2019.107627_bib0240) 2015; 349
Zheng (10.1016/j.agrformet.2019.107627_bib0275) 2016; 54
Danson (10.1016/j.agrformet.2019.107627_bib0070) 1992; 13
Gara (10.1016/j.agrformet.2019.107627_bib0100) 2018; 10
Eitel (10.1016/j.agrformet.2019.107627_bib0080) 2010; 114
Poorter (10.1016/j.agrformet.2019.107627_bib0210) 2009; 182
Ali (10.1016/j.agrformet.2019.107627_bib0005) 2016; 9
McMahon (10.1016/j.agrformet.2019.107627_bib0170) 2015; 335
Terashima (10.1016/j.agrformet.2019.107627_bib0235) 2005; 57
Baret (10.1016/j.agrformet.2019.107627_bib0025) 1991; 35
Pasqualotto (10.1016/j.agrformet.2019.107627_bib0195) 2018; 67
Schneider (10.1016/j.agrformet.2019.107627_bib0220) 2012; 9
Ceccato (10.1016/j.agrformet.2019.107627_bib0045) 2001; 77
Liu (10.1016/j.agrformet.2019.107627_bib0165) 2015; 7
Peñuelas (10.1016/j.agrformet.2019.107627_bib0205) 1994; 48
References_xml – volume: 112
  start-page: 2514
  year: 2008
  end-page: 2522
  ident: bib0260
  article-title: Remote sensing of vegetation water content from equivalent water thickness using satellite imagery
  publication-title: Remote Sens. Environ.
– volume: 74
  start-page: 570
  year: 2000
  end-page: 581
  ident: bib0225
  article-title: Deriving water content of chaparral vegetation from AVIRIS data
  publication-title: Remote Sens. Environ.
– start-page: 1201609
  year: 2011
  ident: bib0190
  article-title: A large and persistent carbon sink in the world’s forests
  publication-title: Science
– volume: 112
  start-page: 3030
  year: 2008
  end-page: 3043
  ident: bib0090
  article-title: PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments
  publication-title: Remote Sens. Environ.
– volume: 62
  start-page: 415
  year: 2007
  end-page: 433
  ident: bib0115
  article-title: Correction of laser scanning intensity data: data and model-driven approaches
  publication-title: Isprs J. Photogramm. Remote. Sens.
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: bib0220
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
– volume: 7
  start-page: 4626
  year: 2015
  end-page: 4650
  ident: bib0165
  article-title: Remote estimation of leaf and canopy water content in winter wheat with different vertical distribution of water-related properties
  publication-title: Remote Sens. (Basel)
– volume: 2
  start-page: 115
  year: 1981
  end-page: 141
  ident: bib0155
  article-title: Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves
  publication-title: Photosyn. Res.
– volume: 67
  start-page: 69
  year: 2018
  end-page: 78
  ident: bib0195
  article-title: Retrieval of canopy water content of different crop types with two new hyperspectral indices: water Absorption Area Index and Depth Water Index
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 44
  start-page: 827
  year: 2004
  end-page: 834
  ident: bib0245
  article-title: Vertical profile of leaf senescence during the grain-filling period in older and newer maize hybrids
  publication-title: Crop Sci.
– year: 2012
  ident: bib0160
  article-title: Water stress in plants: causes, effects and responses
  publication-title: Water stress: InTech
– volume: 51
  start-page: 777
  year: 2013
  end-page: 786
  ident: bib0280
  article-title: Retrieval of effective leaf area index in heterogeneous forests with terrestrial laser scanning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 38
  start-page: 213
  year: 2009
  end-page: 218
  ident: bib0135
  article-title: Normalization of LiDAR intensity data based on range and surface incidence angle
  publication-title: ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
– volume: 3
  start-page: 2207
  year: 2011
  end-page: 2221
  ident: bib0140
  article-title: Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods
  publication-title: Remote Sens. (Basel)
– volume: 57
  start-page: 343
  year: 2005
  end-page: 354
  ident: bib0235
  article-title: Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion
  publication-title: J. Exp. Bot.
– volume: 349
  start-page: 814
  year: 2015
  end-page: 818
  ident: bib0240
  article-title: Forest health and global change
  publication-title: Science
– volume: 34
  start-page: 75
  year: 1990
  end-page: 91
  ident: bib0120
  article-title: PROSPECT—a model of leaf optical-properties spectra
  publication-title: Remote Sens. Environ.
– volume: 18
  start-page: 387
  year: 2016
  end-page: 398
  ident: bib0270
  article-title: Estimating and validating wheat leaf water content with three MODIS spectral indexes: a case study in Ningxia Plain
  publication-title: China. Journal of Agricultural Science and Technology
– volume: 12
  start-page: 119
  year: 2010
  end-page: 125
  ident: bib0055
  article-title: Estimating canopy water content using hyperspectral remote sensing data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 145
  year: 2013
  end-page: 150
  ident: bib0145
  article-title: Correction of intensity incidence angle effect in terrestrial laser scanning
  publication-title: Isprs Ann. Photogramm. Remote. Sens. Spat. Inf. Sci.
– volume: 121
  start-page: 52
  year: 2016
  end-page: 59
  ident: bib0020
  article-title: Calibrating laser scanner data from snow surfaces: correction of intensity effects
  publication-title: Cold Reg. Sci. Technol.
– volume: 46
  year: 2010
  ident: bib0015
  article-title: Determining leaf area index and leafy tree roughness using terrestrial laser scanning
  publication-title: Water Resour. Res.
– volume: 18
  start-page: 377
  year: 2008
  end-page: 390
  ident: bib0175
  article-title: Early detection of emerging forest disease using dispersal estimation and ecological niche modeling
  publication-title: Ecol. Appl.
– volume: 9
  start-page: 8
  year: 2016
  ident: bib0130
  article-title: Measuring leaf water content with dual-wavelength intensity data from terrestrial laser scanners
  publication-title: Remote Sens. (Basel)
– volume: 10
  start-page: 346
  year: 2018
  ident: bib0100
  article-title: Impact of vertical canopy position on leaf spectral properties and traits across multiple species
  publication-title: Remote Sens. (Basel)
– volume: 48
  start-page: 45
  year: 1997
  end-page: 72
  ident: bib0095
  article-title: Forest health assessment and monitoring–issues for consideration
  publication-title: Environ. Monit. Assess.
– volume: 98
  start-page: 90
  year: 2014
  end-page: 101
  ident: bib0255
  article-title: Valuing biodiversity enhancement in New Zealand’s planted forests: socioeconomic and spatial determinants of willingness-to-pay
  publication-title: Ecol. Econ.
– volume: 169
  start-page: 111
  year: 2013
  end-page: 121
  ident: bib0250
  article-title: Canopy vertical heterogeneity plays a critical role in reflectance simulation
  publication-title: Agric. For. Meteorol.
– volume: 320
  start-page: 1444
  year: 2008
  end-page: 1449
  ident: bib0035
  article-title: Forests and climate change: forcings, feedbacks, and the climate benefits of forests
  publication-title: Science
– volume: 93
  start-page: 88
  year: 2014
  end-page: 97
  ident: bib0200
  article-title: Integration of intensity textures and local geometry descriptors from Terrestrial Laser Scanning to map chert in outcrops
  publication-title: Isprs J. Photogramm. Remote. Sens.
– volume: 74
  start-page: 251
  year: 2001
  end-page: 257
  ident: bib0185
  article-title: Impacts of deer herbivory on ground vegetation at Wytham Woods, central England
  publication-title: Forestry
– volume: 13
  start-page: 461
  year: 1992
  end-page: 470
  ident: bib0070
  article-title: High-spectral resolution data for determining leaf water content
  publication-title: Int. J. Remote Sens.
– volume: 182
  start-page: 565
  year: 2009
  end-page: 588
  ident: bib0210
  article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis
  publication-title: New Phytol.
– volume: 9
  start-page: 299
  year: 2018
  ident: bib0125
  article-title: Can leaf water content Be estimated using multispectral terrestrial laser scanning? A case study with Norway spruce seedlings
  publication-title: Front. Plant Sci.
– volume: 85
  start-page: 109
  year: 2003
  end-page: 124
  ident: bib0265
  article-title: Water content estimation in vegetation with MODIS reflectance data and model inversion methods
  publication-title: Remote Sens. Environ.
– volume: 110
  start-page: 14
  year: 2015
  end-page: 23
  ident: bib0285
  article-title: 3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction
  publication-title: Isprs J. Photogramm. Remote. Sens.
– volume: 41
  start-page: 916
  year: 2003
  end-page: 921
  ident: bib0215
  article-title: Extraction of red edge optical parameters from hyperion data for estimation of forest leaf area index
  publication-title: Ieee Trans. Geosci. Remote. Sens.
– volume: 48
  start-page: 135
  year: 1994
  end-page: 146
  ident: bib0205
  article-title: Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves
  publication-title: Remote Sens. Environ.
– volume: 100
  start-page: 1409
  year: 2008
  end-page: 1417
  ident: bib0050
  article-title: Vertical profile and temporal variation of chlorophyll in maize canopy: quantitative crop vigor indicator by means of reflectance-based techniques
  publication-title: Agron. J.
– volume: 112
  start-page: 1820
  year: 2008
  end-page: 1834
  ident: bib0060
  article-title: Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modelling
  publication-title: Remote Sens. Environ.
– volume: 80
  start-page: 239
  year: 1993
  end-page: 243
  ident: bib0040
  article-title: Responses of leaf spectral reflectance to plant stress
  publication-title: Am. J. Bot.
– volume: 349
  start-page: 823
  year: 2015
  end-page: 826
  ident: bib0180
  article-title: Temperate forest health in an era of emerging megadisturbance
  publication-title: Science
– volume: 131
  start-page: 1
  year: 2017
  end-page: 14
  ident: bib0075
  article-title: Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak
  publication-title: Isprs J. Photogramm. Remote. Sens.
– volume: 132
  start-page: 32
  year: 2013
  end-page: 39
  ident: bib0105
  article-title: The potential of dual-wavelength laser scanning for estimating vegetation moisture content
  publication-title: Remote Sens. Environ.
– volume: 77
  start-page: 22
  year: 2001
  end-page: 33
  ident: bib0045
  article-title: Detecting vegetation leaf water content using reflectance in the optical domain
  publication-title: Remote Sens. Environ.
– volume: 40
  start-page: 107
  year: 2014
  end-page: 112
  ident: bib0030
  article-title: Analysis and correction of the dependency between laser scanner intensity values and range
  publication-title: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences
– volume: 54
  start-page: 1475
  year: 2016
  end-page: 1487
  ident: bib0275
  article-title: Assessing the contribution of woody materials to forest angular gap fraction and effective leaf area index using terrestrial laser scanning data
  publication-title: Ieee Trans. Geosci. Remote. Sens.
– volume: 335
  start-page: 255
  year: 2015
  end-page: 260
  ident: bib0170
  article-title: Ground based LiDAR demonstrates the legacy of management history to canopy structure and composition across a fragmented temperate woodland
  publication-title: For. Ecol. Manage.
– volume: 35
  start-page: 161
  year: 1991
  end-page: 173
  ident: bib0025
  article-title: Potentials and limits of vegetation indices for LAI and APAR assessment
  publication-title: Remote Sens. Environ.
– volume: 92
  start-page: 309
  year: 2004
  end-page: 321
  ident: bib0065
  article-title: Estimating live fuel moisture content from remotely sensed reflectance
  publication-title: Remote Sens. Environ.
– volume: 33
  start-page: 771
  year: 2016
  end-page: 778
  ident: bib0230
  article-title: Surface reflectance retrieval from the intensity data of a terrestrial laser scanner
  publication-title: JOSA A
– volume: 207
  start-page: 155
  year: 1999
  end-page: 167
  ident: bib0010
  article-title: Significance and limits in the use of predawn leaf water potential for tree irrigation
  publication-title: Plant Soil
– volume: 232
  start-page: 152
  year: 2017
  end-page: 162
  ident: bib0290
  article-title: Canopy leaf water content estimated using terrestrial LiDAR
  publication-title: Agric. For. Meteorol.
– volume: 9
  start-page: 898
  year: 2016
  end-page: 909
  ident: bib0005
  article-title: Effects of canopy structural variables on retrieval of leaf dry matter content and specific leaf area from remotely sensed data
  publication-title: Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 349
  start-page: 827
  year: 2015
  end-page: 832
  ident: bib0150
  article-title: Increasing human dominance of tropical forests
  publication-title: Science
– volume: 8
  year: 2018
  ident: bib0085
  article-title: Estimation of vegetation water content at leaf and canopy level using dual-wavelength commercial terrestrial laser scanners
  publication-title: Interface Focus
– volume: 114
  start-page: 2229
  year: 2010
  end-page: 2237
  ident: bib0080
  article-title: Simultaneous measurements of plant structure and chlorophyll content in broadleaf saplings with a terrestrial laser scanner
  publication-title: Remote Sens. Environ.
– volume: 55
  year: 2017
  ident: bib0110
  article-title: Angular reflectance of leaves with a dual-wavelength terrestrial lidar and its implications for leaf-bark separation and leaf moisture estimation
  publication-title: Ieee Trans. Geosci. Remote. Sens.
– volume: 18
  start-page: 387
  year: 2016
  ident: 10.1016/j.agrformet.2019.107627_bib0270
  article-title: Estimating and validating wheat leaf water content with three MODIS spectral indexes: a case study in Ningxia Plain
  publication-title: China. Journal of Agricultural Science and Technology
– volume: 93
  start-page: 88
  year: 2014
  ident: 10.1016/j.agrformet.2019.107627_bib0200
  article-title: Integration of intensity textures and local geometry descriptors from Terrestrial Laser Scanning to map chert in outcrops
  publication-title: Isprs J. Photogramm. Remote. Sens.
  doi: 10.1016/j.isprsjprs.2014.04.003
– volume: 40
  start-page: 107
  year: 2014
  ident: 10.1016/j.agrformet.2019.107627_bib0030
  article-title: Analysis and correction of the dependency between laser scanner intensity values and range
  publication-title: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences
  doi: 10.5194/isprsarchives-XL-5-107-2014
– volume: 46
  year: 2010
  ident: 10.1016/j.agrformet.2019.107627_bib0015
  article-title: Determining leaf area index and leafy tree roughness using terrestrial laser scanning
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008318
– volume: 74
  start-page: 570
  year: 2000
  ident: 10.1016/j.agrformet.2019.107627_bib0225
  article-title: Deriving water content of chaparral vegetation from AVIRIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00147-4
– volume: 48
  start-page: 45
  year: 1997
  ident: 10.1016/j.agrformet.2019.107627_bib0095
  article-title: Forest health assessment and monitoring–issues for consideration
  publication-title: Environ. Monit. Assess.
  doi: 10.1023/A:1005748702893
– volume: 169
  start-page: 111
  year: 2013
  ident: 10.1016/j.agrformet.2019.107627_bib0250
  article-title: Canopy vertical heterogeneity plays a critical role in reflectance simulation
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.10.004
– volume: 98
  start-page: 90
  year: 2014
  ident: 10.1016/j.agrformet.2019.107627_bib0255
  article-title: Valuing biodiversity enhancement in New Zealand’s planted forests: socioeconomic and spatial determinants of willingness-to-pay
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2013.12.009
– volume: 9
  start-page: 8
  year: 2016
  ident: 10.1016/j.agrformet.2019.107627_bib0130
  article-title: Measuring leaf water content with dual-wavelength intensity data from terrestrial laser scanners
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs9010008
– volume: 77
  start-page: 22
  year: 2001
  ident: 10.1016/j.agrformet.2019.107627_bib0045
  article-title: Detecting vegetation leaf water content using reflectance in the optical domain
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00191-2
– volume: 55
  issue: 3084
  year: 2017
  ident: 10.1016/j.agrformet.2019.107627_bib0110
  article-title: Angular reflectance of leaves with a dual-wavelength terrestrial lidar and its implications for leaf-bark separation and leaf moisture estimation
  publication-title: Ieee Trans. Geosci. Remote. Sens.
– volume: 44
  start-page: 827
  year: 2004
  ident: 10.1016/j.agrformet.2019.107627_bib0245
  article-title: Vertical profile of leaf senescence during the grain-filling period in older and newer maize hybrids
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2004.8270
– volume: 9
  start-page: 671
  year: 2012
  ident: 10.1016/j.agrformet.2019.107627_bib0220
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 182
  start-page: 565
  year: 2009
  ident: 10.1016/j.agrformet.2019.107627_bib0210
  article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.02830.x
– start-page: 145
  year: 2013
  ident: 10.1016/j.agrformet.2019.107627_bib0145
  article-title: Correction of intensity incidence angle effect in terrestrial laser scanning
  publication-title: Isprs Ann. Photogramm. Remote. Sens. Spat. Inf. Sci.
  doi: 10.5194/isprsannals-II-5-W2-145-2013
– volume: 33
  start-page: 771
  year: 2016
  ident: 10.1016/j.agrformet.2019.107627_bib0230
  article-title: Surface reflectance retrieval from the intensity data of a terrestrial laser scanner
  publication-title: JOSA A
  doi: 10.1364/JOSAA.33.000771
– volume: 41
  start-page: 916
  issue: 4
  year: 2003
  ident: 10.1016/j.agrformet.2019.107627_bib0215
  article-title: Extraction of red edge optical parameters from hyperion data for estimation of forest leaf area index
  publication-title: Ieee Trans. Geosci. Remote. Sens.
  doi: 10.1109/TGRS.2003.813555
– volume: 112
  start-page: 1820
  issue: 4
  year: 2008
  ident: 10.1016/j.agrformet.2019.107627_bib0060
  article-title: Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modelling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.09.005
– start-page: 1201609
  year: 2011
  ident: 10.1016/j.agrformet.2019.107627_bib0190
  article-title: A large and persistent carbon sink in the world’s forests
  publication-title: Science
– volume: 3
  start-page: 2207
  year: 2011
  ident: 10.1016/j.agrformet.2019.107627_bib0140
  article-title: Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs3102207
– volume: 207
  start-page: 155
  year: 1999
  ident: 10.1016/j.agrformet.2019.107627_bib0010
  article-title: Significance and limits in the use of predawn leaf water potential for tree irrigation
  publication-title: Plant Soil
  doi: 10.1023/A:1026415302759
– volume: 13
  start-page: 461
  year: 1992
  ident: 10.1016/j.agrformet.2019.107627_bib0070
  article-title: High-spectral resolution data for determining leaf water content
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169208904049
– year: 2012
  ident: 10.1016/j.agrformet.2019.107627_bib0160
  article-title: Water stress in plants: causes, effects and responses
– volume: 132
  start-page: 32
  year: 2013
  ident: 10.1016/j.agrformet.2019.107627_bib0105
  article-title: The potential of dual-wavelength laser scanning for estimating vegetation moisture content
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.01.001
– volume: 112
  start-page: 2514
  year: 2008
  ident: 10.1016/j.agrformet.2019.107627_bib0260
  article-title: Remote sensing of vegetation water content from equivalent water thickness using satellite imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.11.014
– volume: 92
  start-page: 309
  year: 2004
  ident: 10.1016/j.agrformet.2019.107627_bib0065
  article-title: Estimating live fuel moisture content from remotely sensed reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.03.017
– volume: 74
  start-page: 251
  year: 2001
  ident: 10.1016/j.agrformet.2019.107627_bib0185
  article-title: Impacts of deer herbivory on ground vegetation at Wytham Woods, central England
  publication-title: Forestry
  doi: 10.1093/forestry/74.3.251
– volume: 10
  start-page: 346
  year: 2018
  ident: 10.1016/j.agrformet.2019.107627_bib0100
  article-title: Impact of vertical canopy position on leaf spectral properties and traits across multiple species
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs10020346
– volume: 62
  start-page: 415
  year: 2007
  ident: 10.1016/j.agrformet.2019.107627_bib0115
  article-title: Correction of laser scanning intensity data: data and model-driven approaches
  publication-title: Isprs J. Photogramm. Remote. Sens.
  doi: 10.1016/j.isprsjprs.2007.05.008
– volume: 34
  start-page: 75
  year: 1990
  ident: 10.1016/j.agrformet.2019.107627_bib0120
  article-title: PROSPECT—a model of leaf optical-properties spectra
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(90)90100-Z
– volume: 57
  start-page: 343
  year: 2005
  ident: 10.1016/j.agrformet.2019.107627_bib0235
  article-title: Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erj014
– volume: 67
  start-page: 69
  year: 2018
  ident: 10.1016/j.agrformet.2019.107627_bib0195
  article-title: Retrieval of canopy water content of different crop types with two new hyperspectral indices: water Absorption Area Index and Depth Water Index
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2018.01.002
– volume: 232
  start-page: 152
  year: 2017
  ident: 10.1016/j.agrformet.2019.107627_bib0290
  article-title: Canopy leaf water content estimated using terrestrial LiDAR
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.08.016
– volume: 80
  start-page: 239
  year: 1993
  ident: 10.1016/j.agrformet.2019.107627_bib0040
  article-title: Responses of leaf spectral reflectance to plant stress
  publication-title: Am. J. Bot.
  doi: 10.1002/j.1537-2197.1993.tb13796.x
– volume: 100
  start-page: 1409
  year: 2008
  ident: 10.1016/j.agrformet.2019.107627_bib0050
  article-title: Vertical profile and temporal variation of chlorophyll in maize canopy: quantitative crop vigor indicator by means of reflectance-based techniques
  publication-title: Agron. J.
  doi: 10.2134/agronj2007.0322
– volume: 54
  start-page: 1475
  year: 2016
  ident: 10.1016/j.agrformet.2019.107627_bib0275
  article-title: Assessing the contribution of woody materials to forest angular gap fraction and effective leaf area index using terrestrial laser scanning data
  publication-title: Ieee Trans. Geosci. Remote. Sens.
  doi: 10.1109/TGRS.2015.2481492
– volume: 2
  start-page: 115
  year: 1981
  ident: 10.1016/j.agrformet.2019.107627_bib0155
  article-title: Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves
  publication-title: Photosyn. Res.
  doi: 10.1007/BF00028752
– volume: 35
  start-page: 161
  year: 1991
  ident: 10.1016/j.agrformet.2019.107627_bib0025
  article-title: Potentials and limits of vegetation indices for LAI and APAR assessment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(91)90009-U
– volume: 112
  start-page: 3030
  year: 2008
  ident: 10.1016/j.agrformet.2019.107627_bib0090
  article-title: PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.02.012
– volume: 9
  start-page: 299
  year: 2018
  ident: 10.1016/j.agrformet.2019.107627_bib0125
  article-title: Can leaf water content Be estimated using multispectral terrestrial laser scanning? A case study with Norway spruce seedlings
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00299
– volume: 320
  start-page: 1444
  year: 2008
  ident: 10.1016/j.agrformet.2019.107627_bib0035
  article-title: Forests and climate change: forcings, feedbacks, and the climate benefits of forests
  publication-title: Science
  doi: 10.1126/science.1155121
– volume: 335
  start-page: 255
  year: 2015
  ident: 10.1016/j.agrformet.2019.107627_bib0170
  article-title: Ground based LiDAR demonstrates the legacy of management history to canopy structure and composition across a fragmented temperate woodland
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2014.08.039
– volume: 85
  start-page: 109
  year: 2003
  ident: 10.1016/j.agrformet.2019.107627_bib0265
  article-title: Water content estimation in vegetation with MODIS reflectance data and model inversion methods
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00197-9
– volume: 349
  start-page: 814
  year: 2015
  ident: 10.1016/j.agrformet.2019.107627_bib0240
  article-title: Forest health and global change
  publication-title: Science
  doi: 10.1126/science.aac6759
– volume: 51
  start-page: 777
  year: 2013
  ident: 10.1016/j.agrformet.2019.107627_bib0280
  article-title: Retrieval of effective leaf area index in heterogeneous forests with terrestrial laser scanning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2205003
– volume: 12
  start-page: 119
  year: 2010
  ident: 10.1016/j.agrformet.2019.107627_bib0055
  article-title: Estimating canopy water content using hyperspectral remote sensing data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2010.01.007
– volume: 8
  year: 2018
  ident: 10.1016/j.agrformet.2019.107627_bib0085
  article-title: Estimation of vegetation water content at leaf and canopy level using dual-wavelength commercial terrestrial laser scanners
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2017.0041
– volume: 349
  start-page: 827
  year: 2015
  ident: 10.1016/j.agrformet.2019.107627_bib0150
  article-title: Increasing human dominance of tropical forests
  publication-title: Science
  doi: 10.1126/science.aaa9932
– volume: 18
  start-page: 377
  year: 2008
  ident: 10.1016/j.agrformet.2019.107627_bib0175
  article-title: Early detection of emerging forest disease using dispersal estimation and ecological niche modeling
  publication-title: Ecol. Appl.
  doi: 10.1890/07-1150.1
– volume: 349
  start-page: 823
  year: 2015
  ident: 10.1016/j.agrformet.2019.107627_bib0180
  article-title: Temperate forest health in an era of emerging megadisturbance
  publication-title: Science
  doi: 10.1126/science.aaa9933
– volume: 121
  start-page: 52
  year: 2016
  ident: 10.1016/j.agrformet.2019.107627_bib0020
  article-title: Calibrating laser scanner data from snow surfaces: correction of intensity effects
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2015.10.005
– volume: 9
  start-page: 898
  year: 2016
  ident: 10.1016/j.agrformet.2019.107627_bib0005
  article-title: Effects of canopy structural variables on retrieval of leaf dry matter content and specific leaf area from remotely sensed data
  publication-title: Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2015.2450762
– volume: 7
  start-page: 4626
  year: 2015
  ident: 10.1016/j.agrformet.2019.107627_bib0165
  article-title: Remote estimation of leaf and canopy water content in winter wheat with different vertical distribution of water-related properties
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs70404626
– volume: 48
  start-page: 135
  year: 1994
  ident: 10.1016/j.agrformet.2019.107627_bib0205
  article-title: Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90136-8
– volume: 110
  start-page: 14
  year: 2015
  ident: 10.1016/j.agrformet.2019.107627_bib0285
  article-title: 3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction
  publication-title: Isprs J. Photogramm. Remote. Sens.
  doi: 10.1016/j.isprsjprs.2015.10.001
– volume: 131
  start-page: 1
  year: 2017
  ident: 10.1016/j.agrformet.2019.107627_bib0075
  article-title: Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak
  publication-title: Isprs J. Photogramm. Remote. Sens.
  doi: 10.1016/j.isprsjprs.2017.07.007
– volume: 114
  start-page: 2229
  year: 2010
  ident: 10.1016/j.agrformet.2019.107627_bib0080
  article-title: Simultaneous measurements of plant structure and chlorophyll content in broadleaf saplings with a terrestrial laser scanner
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.04.025
– volume: 38
  start-page: 213
  year: 2009
  ident: 10.1016/j.agrformet.2019.107627_bib0135
  article-title: Normalization of LiDAR intensity data based on range and surface incidence angle
  publication-title: ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
SSID ssj0012779
Score 2.3970022
Snippet •Dual-wavelength TLS reflectance data is highly correlated to leaf EWT.•3D estimates of forest canopy EWT were generated with low errors.•Leaves in upper...
Globally, forests are being subjected to numerous threats, including climate change, wildfires, and insect and disease outbreaks, among others. Satellite...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107627
SubjectTerms climate change
data collection
deciduous forests
disease outbreaks
forest canopy
Forest health
Forest wildfire
Ground-Based LiDAR
insects
Leaf water content
leaves
lighting
satellites
soil properties
spatial data
trees
understory
United Kingdom
water content
Water stress
wildfires
Title Three dimensional mapping of forest canopy equivalent water thickness using dual-wavelength terrestrial laser scanning
URI https://dx.doi.org/10.1016/j.agrformet.2019.107627
https://www.proquest.com/docview/2286858516
Volume 276-277
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4muMABwQAxHlOQELeyNX2k5TZNTAO0XRgSt6hN01IY7SgbiAu_HTttJw0JceCYKFaj2LU_t85nQs5Y14kirjzD9WVs2DKEVwoTV7drsRjJV_wI7zuPxu7w3r55cB4apF_fhcGyysr3lz5de-tqplOdZmeWpp07ACuexie-pUlb8Aa7zdHKL76WZR4m4yXfHiw2cPVKjVeQ6OJ8hUWVpg-z4Br4bxHqh6_WAWiwTbYq5Eh75eZ2SENlTbLZS4qKPUM1SWsEEDgv9Jdyek770xTwqB7tkvcJaE3RCNn8SyYO-hIgOUNC85jC_uCRFM45n31S9bpIwQIhHtEPwKIFxaL4Z3SKFOvkE4oXuIyPAJtWZMn8kcIalEdjpgDHQeJNls2Q9sj94GrSHxpV0wVD2qY9N7wgsqSpHEhXFeeQ4Li-C1PIS8bsOAwjJ_R85gWQ50FyZQWcKyu0WMSkVIHrWdY-WcvyTB0QClFRhT6XJlgDKMYDLBFJAHCxo3xsfdYibn3QQlaM5NgYYyrq0rMnsdSQQA2JUkMt0l0KzkpSjr9FLmtNihX7EhA6_hY-rXUv4O3DXypBpvLFm2DM0wT-pnv4nwcckQ0cYUw0nWOyNi8W6gTAzjxsa2tuk_Xe9e1w_A21hQJJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HIAD4inGM0iIW9mavrmhCTRg48Im7Ra1aVrGox1jA3Hht2On7aQhIQ4cm8ZqFTv259b5DHDCG04ce8o33EAmhi0j3FKUuLoNiydEvhLEdN65c-e2evZN3-nPQbM6C0NllaXvL3y69tblSL1czfpwMKjfI1jxNT4JLE3aMg-LNm5famNw9jWt8zC5VxDu4WyDps8UeYWprs5XVFVpBjiKvsH7LUT9cNY6Al2twWoJHdlF8XbrMKeyDVi5SEclfYbagFoHMXA-0p_K2SlrPg8QkOqrTXjvotoUi4nOv6DiYC8hsTOkLE8Yvh8-kuFC58NPpl4nAzRBDEjsA8HoiFFV_BN5RUaF8imjE1zGR0hdK7J0_MBwDsmTNTPE4yjxJotuSFvQu7rsNltG2XXBkLZpjw0_jC1pKgfzVeV5mOG4gYtDREzG7SSKYifyA-6HmOhhdmWFnqesyOIxl1KFrm9Z27CQ5ZnaAYZhUUWBJ000BxvzGgQTsUQElzgqoN5nNXCrhRaypCSnzhjPoqo9exRTDQnSkCg0VIPGVHBYsHL8LXJeaVLMGJjA2PG38HGle4Hbj_6phJnKJ2-Cc18z-Jvu7n8ecARLrW6nLdrXd7d7sEx3KECazj4sjEcTdYDIZxwdasv-BoeRA9c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+dimensional+mapping+of+forest+canopy+equivalent+water+thickness+using+dual-wavelength+terrestrial+laser+scanning&rft.jtitle=Agricultural+and+forest+meteorology&rft.au=Elsherif%2C+Ahmed&rft.au=Gaulton%2C+Rachel&rft.au=Shenkin%2C+Alexander&rft.au=Malhi%2C+Y&rft.date=2019-10-15&rft.issn=0168-1923&rft.volume=276-277+p.107627-&rft_id=info:doi/10.1016%2Fj.agrformet.2019.107627&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1923&client=summon