Thermal effect on bioconvection flow of Sutterby nanofluid between two rotating disks with motile microorganisms
The main objective of the recent article is to investigate the flow of Sutterby nanofluid with applied magnetic field and convective boundary aspects referred to as two coaxially rotating stretching disks. Nanofluids are a combination of simple fluids and small particles, the particles are evenly di...
Saved in:
Published in | Case studies in thermal engineering Vol. 26; p. 101136 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2214-157X 2214-157X |
DOI | 10.1016/j.csite.2021.101136 |
Cover
Loading…
Abstract | The main objective of the recent article is to investigate the flow of Sutterby nanofluid with applied magnetic field and convective boundary aspects referred to as two coaxially rotating stretching disks. Nanofluids are a combination of simple fluids and small particles, the particles are evenly distributed in the base fluid and have impressive uses in thermal transport sources. Nanofluids play a significant role in enhancing the heat transfer coefficient in fluids via the suspension of nanomaterials in the base fluids. This study is specific to involve non-Newtonian base fluid namely the Sutterby model. In addition, non-uniform thermal conductivity, non-linear thermal radiation, and bioconvection of motile microorganism's characteristics are taken into consideration. Bioconvection is a process in which the motion of motile microorganisms is addressed which may be helpful to avoid the probable settling of nano entities. PDEs such as momentum, boundary conditions, temperature, volume fraction, and motile microorganism density are upgraded into a model of non-linear ordinary differential equations employing appropriate similarity transformation. Transmuted dimensionless ODEs are tackled with shooting techniques and outcomes of prominent physical parameters are attained with a built-in bvp4c solver via MATLAB (Lobatto-IIIa) computational software. Inspirations of interesting physical parameters against the velocity field, temperature field, the solutal field of species, and microorganisms' profile are elaborated and briefly investigated numerically and graphically. The flow speed becomes faster directly with mixed convection parameter but it retards against magnetic field parameter and bioconvection Rayleigh number. The fluid temperature enhances in direct response to the parameters of thermal conductivity, thermophoresis, temperature ratio, and Biot number. |
---|---|
AbstractList | The main objective of the recent article is to investigate the flow of Sutterby nanofluid with applied magnetic field and convective boundary aspects referred to as two coaxially rotating stretching disks. Nanofluids are a combination of simple fluids and small particles, the particles are evenly distributed in the base fluid and have impressive uses in thermal transport sources. Nanofluids play a significant role in enhancing the heat transfer coefficient in fluids via the suspension of nanomaterials in the base fluids. This study is specific to involve non-Newtonian base fluid namely the Sutterby model. In addition, non-uniform thermal conductivity, non-linear thermal radiation, and bioconvection of motile microorganism's characteristics are taken into consideration. Bioconvection is a process in which the motion of motile microorganisms is addressed which may be helpful to avoid the probable settling of nano entities. PDEs such as momentum, boundary conditions, temperature, volume fraction, and motile microorganism density are upgraded into a model of non-linear ordinary differential equations employing appropriate similarity transformation. Transmuted dimensionless ODEs are tackled with shooting techniques and outcomes of prominent physical parameters are attained with a built-in bvp4c solver via MATLAB (Lobatto-IIIa) computational software. Inspirations of interesting physical parameters against the velocity field, temperature field, the solutal field of species, and microorganisms' profile are elaborated and briefly investigated numerically and graphically. The flow speed becomes faster directly with mixed convection parameter but it retards against magnetic field parameter and bioconvection Rayleigh number. The fluid temperature enhances in direct response to the parameters of thermal conductivity, thermophoresis, temperature ratio, and Biot number. |
ArticleNumber | 101136 |
Author | Khan, Ilyas Farooq, Umar Waqas, Hassan Muhammad, Taseer Hussain, Sajjad |
Author_xml | – sequence: 1 givenname: Hassan orcidid: 0000-0002-0388-8506 surname: Waqas fullname: Waqas, Hassan email: syedhasanwaqas@hotmail.com organization: Department of Mathematics, Government College University Faisalabad, Layyah Campus, 31200, Pakistan – sequence: 2 givenname: Umar surname: Farooq fullname: Farooq, Umar organization: Department of Mathematics, Government College University Faisalabad, Layyah Campus, 31200, Pakistan – sequence: 3 givenname: Taseer surname: Muhammad fullname: Muhammad, Taseer organization: Department of Mathematics, College of Sciences, King Khalid University, Abha, 61413, Saudi Arabia – sequence: 4 givenname: Sajjad surname: Hussain fullname: Hussain, Sajjad organization: Department of Mathematics, Government College University Faisalabad, Layyah Campus, 31200, Pakistan – sequence: 5 givenname: Ilyas surname: Khan fullname: Khan, Ilyas organization: Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia |
BookMark | eNqFkU1rVTEQhoNUsNb-Ajf5A_c6Ocn5yMKFFD8KBRdWcBdykkk713OSkqS99N83t1dEXOgqMwPPS2ae1-wkpoiMvRWwFSCGd7utK1Rx20EnDhMhhxfstOuE2oh-_HHyR_2KnZeyAwAxykkodcrurm8xr3bhGAK6ylPkMyWX4kPrqHVhSXueAv92Xyvm-ZFHG1NY7snzGeseMfK6TzynaivFG-6p_Cx8T_WWr6nSgnwll1PKNzZSWcsb9jLYpeD5r_eMff_08friy-bq6-fLiw9XG6eEqptJz6MWOLtgsR9Bi9HrSc4WwjgNXqLq9OiV9OBRDwizRuhASQFTZxUOTp6xy2OuT3Zn7jKtNj-aZMk8D9p_jM2V3ILGQd_1zvXCWqE0aKsGLedJ9AhTGFG2LHnMaouUkjH8zhNgDg7Mzjw7MAcH5uigUfovytHhSCnWbGn5D_v-yGI70QNhNsURRoeechPTdqB_8k8tqadd |
CitedBy_id | crossref_primary_10_1063_5_0137447 crossref_primary_10_1007_s12668_024_01417_w crossref_primary_10_1038_s41598_022_15094_w crossref_primary_10_1142_S021797922250028X crossref_primary_10_1002_zamm_202100414 crossref_primary_10_1016_j_aej_2023_03_077 crossref_primary_10_1016_j_ijft_2023_100363 crossref_primary_10_1080_10407782_2023_2241186 crossref_primary_10_1142_S0217984924504293 crossref_primary_10_1080_10407790_2023_2241632 crossref_primary_10_1016_j_csite_2023_102736 crossref_primary_10_1177_16878132221125060 crossref_primary_10_1016_j_chaos_2024_115758 crossref_primary_10_1016_j_icheatmasstransfer_2022_106348 crossref_primary_10_1038_s41598_022_06728_0 crossref_primary_10_1080_17455030_2022_2135794 crossref_primary_10_1016_j_jppr_2025_02_002 crossref_primary_10_1088_1402_4896_ad6642 crossref_primary_10_1016_j_asej_2024_102959 crossref_primary_10_1080_10407790_2023_2186549 crossref_primary_10_1016_j_csite_2023_102905 crossref_primary_10_1038_s41598_023_32902_z crossref_primary_10_1166_jon_2023_2021 crossref_primary_10_1615_JPorMedia_2022043529 crossref_primary_10_3390_mi13091497 crossref_primary_10_1016_j_csite_2024_104695 crossref_primary_10_1016_j_csite_2024_104179 crossref_primary_10_1016_j_rinp_2023_106498 crossref_primary_10_1002_adts_202401345 crossref_primary_10_1166_jon_2023_1994 crossref_primary_10_1016_j_cjph_2021_11_009 crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2023046440 crossref_primary_10_1080_10407782_2024_2361479 crossref_primary_10_1080_10407790_2023_2300678 crossref_primary_10_1016_j_csite_2021_101664 crossref_primary_10_1142_S0217979224502230 crossref_primary_10_1007_s10973_024_13792_3 crossref_primary_10_1016_j_csite_2021_101504 crossref_primary_10_1016_j_csite_2021_101228 crossref_primary_10_1016_j_csite_2025_105796 crossref_primary_10_1166_jon_2024_2180 crossref_primary_10_1080_17455030_2022_2154868 crossref_primary_10_1002_htj_22529 crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2023046194 crossref_primary_10_3390_math9172139 crossref_primary_10_1515_ijcre_2021_0117 crossref_primary_10_1016_j_csite_2021_101431 crossref_primary_10_1038_s41598_022_15685_7 crossref_primary_10_1615_JPorMedia_2023044143 crossref_primary_10_1007_s13369_021_06412_x crossref_primary_10_3390_math10173157 crossref_primary_10_1016_j_nanoso_2025_101446 crossref_primary_10_1038_s41598_023_45513_5 crossref_primary_10_1080_10407782_2023_2240507 |
Cites_doi | 10.1088/0253-6102/69/5/569 10.1007/s13204-019-01198-9 10.1002/9783527344758.ch5 10.1016/j.icheatmasstransfer.2011.02.006 10.1016/j.jcde.2019.04.001 10.1007/s00521-018-3625-8 10.1002/aic.690120114 10.1016/j.physa.2019.124088 10.1016/j.rinp.2017.07.024 10.18280/ijht.370209 10.1142/S021798492150202X 10.1016/j.aej.2021.01.050 10.1016/j.physa.2019.123968 10.1016/j.csite.2021.101011 10.1016/j.molliq.2018.09.101 10.1088/1402-4896/ab2ddc 10.1088/1402-4896/abeba2 10.1002/htj.21451 10.3390/pr7110859 10.3390/app10010168 10.1088/1402-4896/ac0272 10.1007/s10973-020-09580-4 10.1016/j.molliq.2020.113476 10.1016/j.aej.2021.03.056 10.1177/0954406219867985 10.1016/j.cjph.2018.09.001 10.1002/htj.21539 10.17576/jsm-2019-4805-23 10.3390/sym12020309 10.1093/ijlct/ctz030 10.1016/j.csite.2018.04.005 10.1016/j.molliq.2019.111231 10.1115/1.2150834 10.1016/j.csite.2021.101015 10.1016/j.mechrescom.2008.11.003 10.1007/s42452-020-03262-4 10.1016/j.physa.2019.123439 10.1016/j.icheatmasstransfer.2017.12.006 10.1140/epjp/i2019-12563-8 10.1122/1.549276 10.3390/sym12030393 10.1515/jnet-2019-0049 10.1007/s10483-020-2581-5 10.1016/j.molliq.2016.12.039 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2021.101136 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_c0525cc51aa14909a4693b815e08f7e3 10_1016_j_csite_2021_101136 S2214157X21002999 |
GroupedDBID | 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c414t-89b791ebcfae570917d983ba0f786d3e4297d43d0de96e0b9e020431082a4e6c3 |
IEDL.DBID | DOA |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:21:55 EDT 2025 Thu Apr 24 23:06:21 EDT 2025 Tue Jul 01 02:28:28 EDT 2025 Tue Jul 25 20:58:37 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Motile microorganisms Bioconvection Sutterby nanofluid Thermal radiation Shooting technique Variable thermal conductivity |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-89b791ebcfae570917d983ba0f786d3e4297d43d0de96e0b9e020431082a4e6c3 |
ORCID | 0000-0002-0388-8506 |
OpenAccessLink | https://doaj.org/article/c0525cc51aa14909a4693b815e08f7e3 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c0525cc51aa14909a4693b815e08f7e3 crossref_primary_10_1016_j_csite_2021_101136 crossref_citationtrail_10_1016_j_csite_2021_101136 elsevier_sciencedirect_doi_10_1016_j_csite_2021_101136 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Waqas, Farooq, Naseem, Hussain, Alghamdi (bib19) 2021 Anwar Bég (bib38) 2018 Waqas, Khan, Hassan, Bhatti, Imran (bib41) 2019; 291 Uddin, Kabir, Alginahi, Bég (bib35) 2019; 233 Hayat, Masood, Qayyum, Alsaedi (bib18) 2020; 544 Khan, Waqas, Bhatti, Imran (bib45) 2020; 45 Kuznetsov (bib26) 2011; 38 Al-Mubaddel, Farooq, Al-Khaled, Hussain, Khan, Aijaz, Waqas (bib49) 2021 Ghalandari, Maleki, Haghighi, Shadloo, Nazari, Tlili (bib24) 2020 Irfan, Khan, Khan, Rafiq (bib6) 2020 Hayat, Ahmad, Khan, Alsaedi (bib4) 2018; 69 Muhammad, Rafique, Asma, Alghamdi (bib52) 2020; 556 Cattaneo (bib10) 1948; 3 Alwatban, Khan, Waqas, Tlili (bib46) 2019; 7 Waqas, Khan, Bhatti, Imran (bib29) 2020 Usman, Hamid, Rashidi (bib33) 2019; 31 Ansari, Otegbeye, Trivedi, Goqo (bib28) 2020; 6 Alhuyi Nazari, Ghasempour, Ahmadi, Heydarian, Shafii (bib22) 2018 Ramzan, Riasat, Kadry, Long, Nam, Lu (bib3) 2020; 10 Sohail, Naz (bib21) 2020 Khan, Nadeem (bib34) 2019 Nadeem, Khan, Muhammad, Ahmad (bib37) 2019; 6 Mansour, Rashad, Mallikarjuna, Hussein, Aichouni, Kolsi (bib32) 2019; 37 Farooq, Waqas, Khan, Khan, Chu, Kadry (bib51) 2021; 60 Waqas, Khan, Shehzad, Imran (bib43) 2019; 48 Li, Waqas, Imran, Farooq, Mallawi, Tlili (bib44) 2020; 12 Muhammad, Alamri, Waqas, Habib, Ellahi (bib48) 2021; 143 Khan, Waqas, Naqvi, Alghamdi, Al-Mdallal (bib55) 2021 Christov (bib11) 2009; 36 Waqas, Khan, Shehzad, Imran (bib47) 2019; 48 Khan, Irfan, Khan, Alshomrani (bib8) 2017; 7 Basir, Uddin, Ismail (bib39) 2018 Khan, Tlili, Waqas, Imran (bib12) 2020 Choi, Eastman (bib1) 1995 Khan, Abro, Mirbhar, Tlili (bib54) 2018; 12 Waqas, Khan, Imran, Bhatti (bib42) 2019; 94 Sutterby (bib15) 1966; 12 Buongiorno (bib2) 2006; 128 Khan, Salahuddin, Malik, Khan (bib27) 2019; 134 Shehzad, Khan, Abbas, Rauf (bib13) 2020; 41 Ullah, Ali, Hayat, Abbas (bib14) 2019; 23 Mosayebidorcheh, Tahavori, Mosayebidorcheh, Ganji (bib36) 2017; 227 Song, Waqas, Al-Khaled, Farooq, Khan, Khan, Qayyum (bib17) 2021; 60 Ramezanizadeh, Nazari, Ahmadi, Açıkkalp (bib23) 2018; 272 Waqas, Khan, Farooq, Khan, Alotaibi, Khan (bib53) 2021 Carreau (bib7) 1972; 16 Hashim (bib9) 2020; 10 Ramezanizadeh, Alhuyi Nazari (bib25) 2019; 14 Muhammad, Ullah, Waqas, Alghamdi, Riaz (bib50) 2020 Amirsom, Uddin, Basir, Ismail, Beg, Kadir (bib31) 2019; 48 Faisal, Ahmad, Javed (bib5) 2020; 2 Waqas, Farooq, Alghamdi, Muhammad, Alshomrani (bib20) 2021 Abdelmalek, Ullah Khan, Waqas, A Nabwey, Tlili (bib30) 2020; 12 Saini, Sharma (bib40) 2018; 56 Khan, Waqas, Farooq, Khan, Chu, Kadry (bib16) 2021 Ramezanizadeh (10.1016/j.csite.2021.101136_bib23) 2018; 272 Kuznetsov (10.1016/j.csite.2021.101136_bib26) 2011; 38 Farooq (10.1016/j.csite.2021.101136_bib51) 2021; 60 Sohail (10.1016/j.csite.2021.101136_bib21) 2020 Anwar Bég (10.1016/j.csite.2021.101136_bib38) 2018 Khan (10.1016/j.csite.2021.101136_bib55) 2021 Ghalandari (10.1016/j.csite.2021.101136_bib24) 2020 Song (10.1016/j.csite.2021.101136_bib17) 2021; 60 Khan (10.1016/j.csite.2021.101136_bib27) 2019; 134 Ullah (10.1016/j.csite.2021.101136_bib14) 2019; 23 Saini (10.1016/j.csite.2021.101136_bib40) 2018; 56 Uddin (10.1016/j.csite.2021.101136_bib35) 2019; 233 Khan (10.1016/j.csite.2021.101136_bib34) 2019 Muhammad (10.1016/j.csite.2021.101136_bib50) 2020 Usman (10.1016/j.csite.2021.101136_bib33) 2019; 31 Waqas (10.1016/j.csite.2021.101136_bib20) 2021 Alhuyi Nazari (10.1016/j.csite.2021.101136_bib22) 2018 Ansari (10.1016/j.csite.2021.101136_bib28) 2020; 6 Khan (10.1016/j.csite.2021.101136_bib12) 2020 Basir (10.1016/j.csite.2021.101136_bib39) 2018 Khan (10.1016/j.csite.2021.101136_bib8) 2017; 7 Choi (10.1016/j.csite.2021.101136_bib1) 1995 Nadeem (10.1016/j.csite.2021.101136_bib37) 2019; 6 Mansour (10.1016/j.csite.2021.101136_bib32) 2019; 37 Waqas (10.1016/j.csite.2021.101136_bib41) 2019; 291 Khan (10.1016/j.csite.2021.101136_bib54) 2018; 12 Hayat (10.1016/j.csite.2021.101136_bib4) 2018; 69 Mosayebidorcheh (10.1016/j.csite.2021.101136_bib36) 2017; 227 Khan (10.1016/j.csite.2021.101136_bib16) 2021 Abdelmalek (10.1016/j.csite.2021.101136_bib30) 2020; 12 Li (10.1016/j.csite.2021.101136_bib44) 2020; 12 Carreau (10.1016/j.csite.2021.101136_bib7) 1972; 16 Waqas (10.1016/j.csite.2021.101136_bib29) 2020 Shehzad (10.1016/j.csite.2021.101136_bib13) 2020; 41 Hayat (10.1016/j.csite.2021.101136_bib18) 2020; 544 Cattaneo (10.1016/j.csite.2021.101136_bib10) 1948; 3 Hashim (10.1016/j.csite.2021.101136_bib9) 2020; 10 Khan (10.1016/j.csite.2021.101136_bib45) 2020; 45 Sutterby (10.1016/j.csite.2021.101136_bib15) 1966; 12 Waqas (10.1016/j.csite.2021.101136_bib47) 2019; 48 Muhammad (10.1016/j.csite.2021.101136_bib48) 2021; 143 Irfan (10.1016/j.csite.2021.101136_bib6) 2020 Al-Mubaddel (10.1016/j.csite.2021.101136_bib49) 2021 Buongiorno (10.1016/j.csite.2021.101136_bib2) 2006; 128 Ramezanizadeh (10.1016/j.csite.2021.101136_bib25) 2019; 14 Waqas (10.1016/j.csite.2021.101136_bib53) 2021 Waqas (10.1016/j.csite.2021.101136_bib42) 2019; 94 Faisal (10.1016/j.csite.2021.101136_bib5) 2020; 2 Amirsom (10.1016/j.csite.2021.101136_bib31) 2019; 48 Muhammad (10.1016/j.csite.2021.101136_bib52) 2020; 556 Christov (10.1016/j.csite.2021.101136_bib11) 2009; 36 Waqas (10.1016/j.csite.2021.101136_bib43) 2019; 48 Alwatban (10.1016/j.csite.2021.101136_bib46) 2019; 7 Ramzan (10.1016/j.csite.2021.101136_bib3) 2020; 10 Waqas (10.1016/j.csite.2021.101136_bib19) 2021 |
References_xml | – volume: 6 year: 2020 ident: bib28 article-title: Magnetohydrodynamic bioconvective Casson nanofluid flow: a numerical simulation by paired quasilinearisation publication-title: Journal Archive – volume: 7 year: 2019 ident: bib46 article-title: Interaction of Wu's slip features in bioconvection of Eyring Powell nanoparticles with activation energy publication-title: Processes – volume: 37 start-page: 433 year: 2019 end-page: 445 ident: bib32 article-title: MHD mixed bioconvection in a square porous cavity filled by gyrotactic microorganisms publication-title: International Journal of Heat and Technology – year: 2018 ident: bib39 article-title: Scaling Group Analysis of Mixed Bioconvective Flow in Nanofluid with Presence of Slips, MHD, and Chemical Reactions – volume: 41 start-page: 521 year: 2020 end-page: 532 ident: bib13 article-title: A revised Cattaneo-Christov micropolar viscoelastic nanofluid model with combined porosity and magnetic effects publication-title: Appl. Math. Mech. – year: 2020 ident: bib50 article-title: Thermo-bioconvection in stagnation point flow of third-grade nanofluid towards a stretching cylinder involving motile microorganisms publication-title: Phys. Scripta – volume: 12 start-page: 63 year: 1966 end-page: 68 ident: bib15 article-title: The laminar converging flow of dilute polymer solutions in conical sections: Part I. Viscosity data, new viscosity model, tube flow solution publication-title: AIChE J. – year: 2020 ident: bib24 article-title: Applications of nanofluids containing carbon nanotubes in solar energy systems: a review publication-title: J. Mol. Liq. – volume: 3 start-page: 83 year: 1948 end-page: 101 ident: bib10 article-title: Sulla conduzionedelcalore publication-title: Atti del SeminarioMatematico e Fisico dell Universita di Modena e Reggio Emilia – volume: 10 start-page: 3305 year: 2020 end-page: 3314 ident: bib9 article-title: Multiple nature analysis of Carreau nanomaterial flow due to shrinking geometry with heat transfer publication-title: Appl. Nanosci. – volume: 48 start-page: 1663 year: 2019 end-page: 1687 ident: bib43 article-title: The radiative flow of Maxwell nanofluid containing gyrotactic microorganisms and energy activation with convective Nield conditions publication-title: Heat Tran. Asian Res. – year: 2021 ident: bib55 article-title: Cattaneo-Christov double diffusions theories with bio-convection in nanofluid flow to enhance the efficiency of nanoparticle diffusion publication-title: Case Studies in Thermal Engineering – year: 2021 ident: bib16 article-title: Assessment of bioconvection in magnetized Sutterby nanofluid configured by a rotating disk: a numerical approach publication-title: Mod. Phys. Lett. B – volume: 233 start-page: 6910 year: 2019 end-page: 6927 ident: bib35 article-title: Numerical solution of bio-nano-convection transport from a horizontal plate with blowing and multiple slip effects publication-title: Proc. IME C J. Mech. Eng. Sci. – volume: 60 start-page: 4663 year: 2021 end-page: 4675 ident: bib17 article-title: Bioconvection analysis for Sutterby nanofluid over an axially stretched cylinder with melting heat transfer and variable thermal features: a Marangoni and solutal model publication-title: Alexandria Engineering Journal – start-page: 90 year: 2018 end-page: 94 ident: bib22 article-title: Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe publication-title: Int. Commun. Heat Mass Tran. – volume: 128 start-page: 240 year: 2006 end-page: 250 ident: bib2 article-title: Convective transport in nanofluids ASME publication-title: J. Heat Tran. – volume: 227 start-page: 356 year: 2017 end-page: 365 ident: bib36 article-title: Analysis of nano-bioconvection flow containing both nanoparticles and gyrotactic microorganisms in a horizontal channel using a modified least square method (MLSM) publication-title: J. Mol. Liq. – year: 1995 ident: bib1 article-title: Enhancing Thermal Conductivity of Fluids with Nanoparticles – volume: 12 year: 2020 ident: bib44 article-title: A numerical exploration of modified second-grade nanofluid with motile microorganisms, thermal radiation, and Wu's slip publication-title: Symmetry – volume: 36 start-page: 481 year: 2009 end-page: 486 ident: bib11 article-title: On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction publication-title: Mech. Res. Commun. – start-page: 1 year: 2020 end-page: 14 ident: bib29 article-title: Aspects of bioconvection in the chemical reactive flow of magnetized Carreau–Yasuda nanofluid with thermal radiation and second-order slip publication-title: J. Therm. Anal. Calorim. – volume: 12 year: 2020 ident: bib30 article-title: Utilization of second-order slip, activation energy, and viscous dissipation consequences in thermally developed flow of third grade nanofluid with gyrotactic microorganisms publication-title: Symmetry – volume: 56 start-page: 2031 year: 2018 end-page: 2038 ident: bib40 article-title: Analysis of onset of bio-thermal convection in a fluid containing gravitactic microorganisms by the energy method publication-title: Chin. J. Phys. – year: 2021 ident: bib49 article-title: Double stratified analysis for bioconvection radiative flow of Sisko nanofluid with generalized heat/mass fluxes publication-title: Phys. Scripta – volume: 38 start-page: 548 year: 2011 end-page: 553 ident: bib26 article-title: Bio-thermal convection induced by two different species of microorganisms publication-title: Int. Commun. Heat Mass Tran. – volume: 10 year: 2020 ident: bib3 article-title: Numerical simulation of 3D condensation nanofluid film flow with Carbon nanotubes on an inclined rotating disk publication-title: Appl. Sci. – year: 2021 ident: bib53 article-title: Melting phenomenon of non-linear radiative generalized second-grade nano liquid publication-title: Case Studies in Thermal Engineering – volume: 31 start-page: 8003 year: 2019 end-page: 8019 ident: bib33 article-title: Gegenbauer wavelets collocation-based scheme to explore the solution of free bio-convection of nanofluid in 3D nearby stagnation point publication-title: Neural Comput. Appl. – volume: 143 start-page: 945 year: 2021 end-page: 957 ident: bib48 article-title: Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms publication-title: J. Therm. Anal. Calorim. – start-page: 1 year: 2020 end-page: 13 ident: bib6 article-title: Physical aspects of shear-thinning/thickening behavior in the radiative flow of magnetite Carreau nanofluid with nanoparticle mass flux conditions publication-title: Appl. Nanosci. – volume: 45 start-page: 81 year: 2020 end-page: 95 ident: bib45 article-title: Bioconvection in the rheology of magnetized couple stress nanofluid featuring activation energy and Wu's slip publication-title: J. Non-Equilibrium Thermodyn. – volume: 272 start-page: 395 year: 2018 end-page: 402 ident: bib23 article-title: Application of nanofluids in thermosyphons: a review publication-title: J. Mol. Liq. – volume: 69 year: 2018 ident: bib4 article-title: Modeling the chemically reactive flow of sutterby nanofluid by a rotating disk in presence of heat generation/absorption publication-title: Commun. Theor. Phys. – volume: 556 year: 2020 ident: bib52 article-title: Darcy–Forchheimer flow over an exponentially stretching curved surface with Cattaneo–Christov double diffusion publication-title: Phys. Stat. Mech. Appl. – volume: 134 year: 2019 ident: bib27 article-title: Arrhenius activation in MHD radiative Maxwell nanoliquid flow along with transformed internal energy publication-title: The European Physical Journal Plus – volume: 48 start-page: 1137 year: 2019 end-page: 1149 ident: bib31 article-title: Three-dimensional bioconvection nanofluid flow from a bi-axial stretching sheet with anisotropic slip publication-title: Sains Malays. – volume: 16 start-page: 99 year: 1972 end-page: 127 ident: bib7 article-title: Rheological equations from molecular network theories publication-title: Trans. Soc. Rheol. – volume: 2 start-page: 1 year: 2020 end-page: 15 ident: bib5 article-title: Aspects of prescribed heat sources on magneto Casson nanofluid flow due to unsteady bi-directionally stretchable surface in a porous medium publication-title: SN Applied Sciences – start-page: 1 year: 2020 end-page: 12 ident: bib12 article-title: Effects of nonlinear thermal radiation and activation energy on modified second-grade nanofluid with Cattaneo–Christov expressions publication-title: J. Therm. Anal. Calorim. – volume: 23 start-page: 443 year: 2019 end-page: 455 ident: bib14 article-title: Heat transfer analysis is based on the Cattaneo-Christov heat flux model and convective boundary conditions for flow over an oscillatory stretching surface publication-title: Therm. Sci. – year: 2021 ident: bib19 article-title: Impact of MHD radiative flow of hybrid nanofluid over a rotating disk publication-title: Case Studies in Thermal Engineering – volume: 94 year: 2019 ident: bib42 article-title: Thermally developed Falkner–Skan bioconvection flow of a magnetized nanofluid in the presence of a motile gyrotactic microorganism: buongiorno's nanofluid model publication-title: Phys. Scripta – volume: 60 start-page: 3073 year: 2021 end-page: 3086 ident: bib51 article-title: Thermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo-Christov expressions and exponential space-based heat source publication-title: Alexandria Engineering Journal – volume: 7 start-page: 2692 year: 2017 end-page: 2704 ident: bib8 article-title: A new modeling for 3D Carreau fluid flow considering nonlinear thermal radiation publication-title: Results in Phy – volume: 14 start-page: 468 year: 2019 end-page: 474 ident: bib25 article-title: Modeling thermal conductivity of Ag/water nanofluid by applying a mathematical correlation and artificial neural network publication-title: Int. J. Low Carbon Technol. – volume: 291 year: 2019 ident: bib41 article-title: Analysis of the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles publication-title: J. Mol. Liq. – volume: 12 start-page: 271 year: 2018 end-page: 275 ident: bib54 article-title: Thermal analysis in Stokes' second problem of nanofluid: applications in thermal engineering publication-title: Case studies in thermal engineering – start-page: 113 year: 2018 end-page: 145 ident: bib38 article-title: Nonlinear multi-physical laminar nanofluid bioconvection flows Models and computation publication-title: Computational approaches in biomedical nano‐engineering – year: 2020 ident: bib21 article-title: Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in a stretching cylinder publication-title: Phys. Stat. Mech. Appl. – year: 2021 ident: bib20 article-title: On the magnetized 3D flow of hybrid nanofluids utilizing nonlinear radiative heat transfer publication-title: Phys. Scripta – volume: 544 year: 2020 ident: bib18 article-title: Sutterby fluid flow subject to homogeneous–heterogeneous reactions and nonlinear radiation publication-title: Phys. Stat. Mech. Appl. – volume: 6 start-page: 233 year: 2019 end-page: 242 ident: bib37 article-title: Mathematical analysis of bio-convective micropolar nanofluid publication-title: Journal of Computational Design and Engineering – volume: 48 start-page: 3230 year: 2019 end-page: 3256 ident: bib47 article-title: Aspects of the nonlinear radiative flow of micropolar nanoparticles over porous surface with a gyrotactic microorganism, activation energy, and Nield's condition publication-title: Heat Tran. Asian Res. – year: 2019 ident: bib34 article-title: Theoretical treatment of bio-convective Maxwell nanofluid over an exponentially stretching sheet publication-title: Can. J. Phys. – volume: 69 issue: 5 year: 2018 ident: 10.1016/j.csite.2021.101136_bib4 article-title: Modeling the chemically reactive flow of sutterby nanofluid by a rotating disk in presence of heat generation/absorption publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/69/5/569 – volume: 10 start-page: 3305 issue: 8 year: 2020 ident: 10.1016/j.csite.2021.101136_bib9 article-title: Multiple nature analysis of Carreau nanomaterial flow due to shrinking geometry with heat transfer publication-title: Appl. Nanosci. doi: 10.1007/s13204-019-01198-9 – start-page: 113 year: 2018 ident: 10.1016/j.csite.2021.101136_bib38 article-title: Nonlinear multi-physical laminar nanofluid bioconvection flows Models and computation publication-title: Computational approaches in biomedical nano‐engineering doi: 10.1002/9783527344758.ch5 – start-page: 1 year: 2020 ident: 10.1016/j.csite.2021.101136_bib6 article-title: Physical aspects of shear-thinning/thickening behavior in the radiative flow of magnetite Carreau nanofluid with nanoparticle mass flux conditions publication-title: Appl. Nanosci. – volume: 38 start-page: 548 year: 2011 ident: 10.1016/j.csite.2021.101136_bib26 article-title: Bio-thermal convection induced by two different species of microorganisms publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2011.02.006 – volume: 6 start-page: 233 issue: 3 year: 2019 ident: 10.1016/j.csite.2021.101136_bib37 article-title: Mathematical analysis of bio-convective micropolar nanofluid publication-title: Journal of Computational Design and Engineering doi: 10.1016/j.jcde.2019.04.001 – volume: 31 start-page: 8003 issue: 11 year: 2019 ident: 10.1016/j.csite.2021.101136_bib33 article-title: Gegenbauer wavelets collocation-based scheme to explore the solution of free bio-convection of nanofluid in 3D nearby stagnation point publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3625-8 – volume: 12 start-page: 63 issue: 1 year: 1966 ident: 10.1016/j.csite.2021.101136_bib15 article-title: The laminar converging flow of dilute polymer solutions in conical sections: Part I. Viscosity data, new viscosity model, tube flow solution publication-title: AIChE J. doi: 10.1002/aic.690120114 – year: 2020 ident: 10.1016/j.csite.2021.101136_bib21 article-title: Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in a stretching cylinder publication-title: Phys. Stat. Mech. Appl. doi: 10.1016/j.physa.2019.124088 – year: 2018 ident: 10.1016/j.csite.2021.101136_bib39 – volume: 7 start-page: 2692 year: 2017 ident: 10.1016/j.csite.2021.101136_bib8 article-title: A new modeling for 3D Carreau fluid flow considering nonlinear thermal radiation publication-title: Results in Phy doi: 10.1016/j.rinp.2017.07.024 – volume: 37 start-page: 433 issue: 2 year: 2019 ident: 10.1016/j.csite.2021.101136_bib32 article-title: MHD mixed bioconvection in a square porous cavity filled by gyrotactic microorganisms publication-title: International Journal of Heat and Technology doi: 10.18280/ijht.370209 – year: 2021 ident: 10.1016/j.csite.2021.101136_bib16 article-title: Assessment of bioconvection in magnetized Sutterby nanofluid configured by a rotating disk: a numerical approach publication-title: Mod. Phys. Lett. B doi: 10.1142/S021798492150202X – year: 2020 ident: 10.1016/j.csite.2021.101136_bib50 article-title: Thermo-bioconvection in stagnation point flow of third-grade nanofluid towards a stretching cylinder involving motile microorganisms publication-title: Phys. Scripta – volume: 60 start-page: 3073 issue: 3 year: 2021 ident: 10.1016/j.csite.2021.101136_bib51 article-title: Thermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo-Christov expressions and exponential space-based heat source publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2021.01.050 – volume: 556 year: 2020 ident: 10.1016/j.csite.2021.101136_bib52 article-title: Darcy–Forchheimer flow over an exponentially stretching curved surface with Cattaneo–Christov double diffusion publication-title: Phys. Stat. Mech. Appl. doi: 10.1016/j.physa.2019.123968 – year: 2021 ident: 10.1016/j.csite.2021.101136_bib53 article-title: Melting phenomenon of non-linear radiative generalized second-grade nano liquid publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2021.101011 – volume: 272 start-page: 395 year: 2018 ident: 10.1016/j.csite.2021.101136_bib23 article-title: Application of nanofluids in thermosyphons: a review publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.09.101 – volume: 94 issue: 11 year: 2019 ident: 10.1016/j.csite.2021.101136_bib42 article-title: Thermally developed Falkner–Skan bioconvection flow of a magnetized nanofluid in the presence of a motile gyrotactic microorganism: buongiorno's nanofluid model publication-title: Phys. Scripta doi: 10.1088/1402-4896/ab2ddc – year: 2021 ident: 10.1016/j.csite.2021.101136_bib49 article-title: Double stratified analysis for bioconvection radiative flow of Sisko nanofluid with generalized heat/mass fluxes publication-title: Phys. Scripta doi: 10.1088/1402-4896/abeba2 – volume: 48 start-page: 1663 issue: 5 year: 2019 ident: 10.1016/j.csite.2021.101136_bib43 article-title: The radiative flow of Maxwell nanofluid containing gyrotactic microorganisms and energy activation with convective Nield conditions publication-title: Heat Tran. Asian Res. doi: 10.1002/htj.21451 – volume: 7 issue: 11 year: 2019 ident: 10.1016/j.csite.2021.101136_bib46 article-title: Interaction of Wu's slip features in bioconvection of Eyring Powell nanoparticles with activation energy publication-title: Processes doi: 10.3390/pr7110859 – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.csite.2021.101136_bib3 article-title: Numerical simulation of 3D condensation nanofluid film flow with Carbon nanotubes on an inclined rotating disk publication-title: Appl. Sci. doi: 10.3390/app10010168 – volume: 6 year: 2020 ident: 10.1016/j.csite.2021.101136_bib28 article-title: Magnetohydrodynamic bioconvective Casson nanofluid flow: a numerical simulation by paired quasilinearisation publication-title: Journal Archive – volume: 3 start-page: 83 year: 1948 ident: 10.1016/j.csite.2021.101136_bib10 article-title: Sulla conduzionedelcalore publication-title: Atti del SeminarioMatematico e Fisico dell Universita di Modena e Reggio Emilia – year: 2021 ident: 10.1016/j.csite.2021.101136_bib20 article-title: On the magnetized 3D flow of hybrid nanofluids utilizing nonlinear radiative heat transfer publication-title: Phys. Scripta doi: 10.1088/1402-4896/ac0272 – volume: 143 start-page: 945 issue: 2 year: 2021 ident: 10.1016/j.csite.2021.101136_bib48 article-title: Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09580-4 – year: 2020 ident: 10.1016/j.csite.2021.101136_bib24 article-title: Applications of nanofluids containing carbon nanotubes in solar energy systems: a review publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113476 – year: 1995 ident: 10.1016/j.csite.2021.101136_bib1 – volume: 60 start-page: 4663 issue: 5 year: 2021 ident: 10.1016/j.csite.2021.101136_bib17 article-title: Bioconvection analysis for Sutterby nanofluid over an axially stretched cylinder with melting heat transfer and variable thermal features: a Marangoni and solutal model publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2021.03.056 – volume: 233 start-page: 6910 issue: 19–20 year: 2019 ident: 10.1016/j.csite.2021.101136_bib35 article-title: Numerical solution of bio-nano-convection transport from a horizontal plate with blowing and multiple slip effects publication-title: Proc. IME C J. Mech. Eng. Sci. doi: 10.1177/0954406219867985 – volume: 56 start-page: 2031 issue: 5 year: 2018 ident: 10.1016/j.csite.2021.101136_bib40 article-title: Analysis of onset of bio-thermal convection in a fluid containing gravitactic microorganisms by the energy method publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2018.09.001 – volume: 48 start-page: 3230 issue: 7 year: 2019 ident: 10.1016/j.csite.2021.101136_bib47 article-title: Aspects of the nonlinear radiative flow of micropolar nanoparticles over porous surface with a gyrotactic microorganism, activation energy, and Nield's condition publication-title: Heat Tran. Asian Res. doi: 10.1002/htj.21539 – volume: 48 start-page: 1137 issue: 5 year: 2019 ident: 10.1016/j.csite.2021.101136_bib31 article-title: Three-dimensional bioconvection nanofluid flow from a bi-axial stretching sheet with anisotropic slip publication-title: Sains Malays. doi: 10.17576/jsm-2019-4805-23 – volume: 12 issue: 2 year: 2020 ident: 10.1016/j.csite.2021.101136_bib30 article-title: Utilization of second-order slip, activation energy, and viscous dissipation consequences in thermally developed flow of third grade nanofluid with gyrotactic microorganisms publication-title: Symmetry doi: 10.3390/sym12020309 – volume: 14 start-page: 468 issue: 4 year: 2019 ident: 10.1016/j.csite.2021.101136_bib25 article-title: Modeling thermal conductivity of Ag/water nanofluid by applying a mathematical correlation and artificial neural network publication-title: Int. J. Low Carbon Technol. doi: 10.1093/ijlct/ctz030 – volume: 12 start-page: 271 year: 2018 ident: 10.1016/j.csite.2021.101136_bib54 article-title: Thermal analysis in Stokes' second problem of nanofluid: applications in thermal engineering publication-title: Case studies in thermal engineering doi: 10.1016/j.csite.2018.04.005 – year: 2019 ident: 10.1016/j.csite.2021.101136_bib34 article-title: Theoretical treatment of bio-convective Maxwell nanofluid over an exponentially stretching sheet publication-title: Can. J. Phys. – volume: 291 year: 2019 ident: 10.1016/j.csite.2021.101136_bib41 article-title: Analysis of the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.111231 – volume: 23 start-page: 443 issue: 2 Part A year: 2019 ident: 10.1016/j.csite.2021.101136_bib14 article-title: Heat transfer analysis is based on the Cattaneo-Christov heat flux model and convective boundary conditions for flow over an oscillatory stretching surface publication-title: Therm. Sci. – volume: 128 start-page: 240 year: 2006 ident: 10.1016/j.csite.2021.101136_bib2 article-title: Convective transport in nanofluids ASME publication-title: J. Heat Tran. doi: 10.1115/1.2150834 – year: 2021 ident: 10.1016/j.csite.2021.101136_bib55 article-title: Cattaneo-Christov double diffusions theories with bio-convection in nanofluid flow to enhance the efficiency of nanoparticle diffusion publication-title: Case Studies in Thermal Engineering – year: 2021 ident: 10.1016/j.csite.2021.101136_bib19 article-title: Impact of MHD radiative flow of hybrid nanofluid over a rotating disk publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2021.101015 – volume: 36 start-page: 481 year: 2009 ident: 10.1016/j.csite.2021.101136_bib11 article-title: On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2008.11.003 – volume: 2 start-page: 1 issue: 9 year: 2020 ident: 10.1016/j.csite.2021.101136_bib5 article-title: Aspects of prescribed heat sources on magneto Casson nanofluid flow due to unsteady bi-directionally stretchable surface in a porous medium publication-title: SN Applied Sciences doi: 10.1007/s42452-020-03262-4 – volume: 544 year: 2020 ident: 10.1016/j.csite.2021.101136_bib18 article-title: Sutterby fluid flow subject to homogeneous–heterogeneous reactions and nonlinear radiation publication-title: Phys. Stat. Mech. Appl. doi: 10.1016/j.physa.2019.123439 – start-page: 1 year: 2020 ident: 10.1016/j.csite.2021.101136_bib29 article-title: Aspects of bioconvection in the chemical reactive flow of magnetized Carreau–Yasuda nanofluid with thermal radiation and second-order slip publication-title: J. Therm. Anal. Calorim. – start-page: 90 year: 2018 ident: 10.1016/j.csite.2021.101136_bib22 article-title: Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2017.12.006 – volume: 134 issue: 5 year: 2019 ident: 10.1016/j.csite.2021.101136_bib27 article-title: Arrhenius activation in MHD radiative Maxwell nanoliquid flow along with transformed internal energy publication-title: The European Physical Journal Plus doi: 10.1140/epjp/i2019-12563-8 – volume: 16 start-page: 99 issue: 1 year: 1972 ident: 10.1016/j.csite.2021.101136_bib7 article-title: Rheological equations from molecular network theories publication-title: Trans. Soc. Rheol. doi: 10.1122/1.549276 – volume: 12 issue: 3 year: 2020 ident: 10.1016/j.csite.2021.101136_bib44 article-title: A numerical exploration of modified second-grade nanofluid with motile microorganisms, thermal radiation, and Wu's slip publication-title: Symmetry doi: 10.3390/sym12030393 – start-page: 1 year: 2020 ident: 10.1016/j.csite.2021.101136_bib12 article-title: Effects of nonlinear thermal radiation and activation energy on modified second-grade nanofluid with Cattaneo–Christov expressions publication-title: J. Therm. Anal. Calorim. – volume: 45 start-page: 81 issue: 1 year: 2020 ident: 10.1016/j.csite.2021.101136_bib45 article-title: Bioconvection in the rheology of magnetized couple stress nanofluid featuring activation energy and Wu's slip publication-title: J. Non-Equilibrium Thermodyn. doi: 10.1515/jnet-2019-0049 – volume: 41 start-page: 521 issue: 3 year: 2020 ident: 10.1016/j.csite.2021.101136_bib13 article-title: A revised Cattaneo-Christov micropolar viscoelastic nanofluid model with combined porosity and magnetic effects publication-title: Appl. Math. Mech. doi: 10.1007/s10483-020-2581-5 – volume: 227 start-page: 356 year: 2017 ident: 10.1016/j.csite.2021.101136_bib36 article-title: Analysis of nano-bioconvection flow containing both nanoparticles and gyrotactic microorganisms in a horizontal channel using a modified least square method (MLSM) publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.12.039 |
SSID | ssj0001738144 |
Score | 2.4465926 |
Snippet | The main objective of the recent article is to investigate the flow of Sutterby nanofluid with applied magnetic field and convective boundary aspects referred... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 101136 |
SubjectTerms | Bioconvection Motile microorganisms Shooting technique Sutterby nanofluid Thermal radiation Variable thermal conductivity |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ_iE9cXOXi0bB9pkxxVFBH0osLeSh4TqdZ22V0R_72TtNX14sFjQyYtM2FmmnzzDSGnWllMUzMXSRB5xEyqImEYjww3NoPEaSh8cfLdfXHzxG4n-WSFXA61MB5W2fv-zqcHb92PjHttjqdVNX5I0wSjD5-knkUU8xz0wxkToYhvcvFzzsIxJoWern5-5AUG8qEA8zLhkjbFUOdHkkDV_BOgAo__Upxaij3Xm2SjTxrpefddW2QFmm2yvkQluEOmaG_0sTXtABq0baiu2oApD5UL1NXtB20dfQidqfUnbVTTuvq9srTHatHFR0tnrb-bb56preavc-qPaanH69VA3zx2r-sCNX-b75Kn66vHy5uo76YQGZawRSSk5jIBbZyCnGOawK0UmVax46JAu2Bg4pZlNrYgC4i1hFA3m2COoBhaLNsjq03bwD6hEHOpU2dzcJKBAIWrKHRXyqB_cIUckXRQYWl6qnHf8aIuB0zZSxn0Xnq9l53eR-TsW2jaMW38Pf3C2-Z7qqfJDgOoh7LfJ6XxXfqMyROl8E8wlooVMtMiySEWjkM2IsVg2fLXrsOlqr_efvBfwUOy5p86COERWV3M3uEY05qFPgn79gshefej priority: 102 providerName: Elsevier |
Title | Thermal effect on bioconvection flow of Sutterby nanofluid between two rotating disks with motile microorganisms |
URI | https://dx.doi.org/10.1016/j.csite.2021.101136 https://doaj.org/article/c0525cc51aa14909a4693b815e08f7e3 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXi02LRp0xxVFBX0osLeSh4TWa2tuCviv3eSdLUnvXjpIeRRZkLmS_LlG0IOtbIIU3OXSKiKhJtMJZXhIjHC2ByY01D6x8k3t-XlA78eF-NBqi_PCYvywNFwx8YnWjOmYEohmE-lwv1critWQFo5AUHnE2PeYDMVTlcERqKQyTXLGE9YIcZzyaFA7jLhahY3_syXsCDQ_BOWgnr_IDoNIs7FKlnpoSI9ib-4RhagXSfLAwHBDfKKXsaVtaGRlkG7lupJF5jk4b0CdU33QTtH70I-av1JW9V2rnmfWNoztOjso6Nvnb-Rbx-pnUyfp9QfzlLP0muAvnjGXsz9NH2ZbpKHi_P7s8ukz6GQGM74LKmkFpKBNk5BIdBQwsoq1yp1oirRGxiOhOW5TS3IElItIbyWZYgMFEc_5Vtkse1a2CYUUiF15mwBTnKoQGEvChcpZXBVcKUckWxuwtr0AuM-z0VTz5lkT3Wwe-3tXke7j8jRd6PXqK_xe_VT75vvql4cOxSgHep-ytR_TZkRKeeerXucEfEDdjX5bfSd_xh9lyz5LiOJcI8szt7eYR-BzUwfhDmM36vx6Reavfcu |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9wwDCbSdGg7FH2i16eGjjXOD9myxiRocGmTLEmA2wQ9qMKtYx9yFwT996FkO7kuGbrKomyQAklLHz8CfDXaUZpa-ERiXSbc5jqpLReJFdYVmHmDVShOPjmtFhf8x7Jc7sDBVAsTYJWj7x98evTW48h81OZ81TTzszzPKPqIZR5YRCnPeQSPKRuowtY-Wu7fH7QICkqxqWsQSILExD4UcV423tLmFOvCSBa5mu8jVCTy3wpUW8Hn8AU8H7NGtjd82EvYwe4VPNviEnwNKzI4OdmWDQgN1nfMNH0ElcfSBebb_ob1np3F1tTmL-t01_v2unFsBGuxzU3PrvpwOd_9Yq5Z_1mzcE7LAmCvRXYZwHtDG6j15foNXBx-Pz9YJGM7hcTyjG-SWhohMzTWaywF5QnCybowOvWirsgwFJmE44VLHcoKUyMxFs5mlCRoTiYr3sJu13f4DhimQprcuxK95FijplU0-SttyUH4Ss4gn1So7Mg1HlpetGoClf1WUe8q6F0Nep_Btzuh1UC18fD0_WCbu6mBJzsOkB7UuFGUDW36rC0zrelXMJWaV7IwdVZiWnuBxQyqybLqn21HSzUPvf39_wp-gSeL85NjdXx0-vMDPA1PBjzhR9jdXF3jJ8pxNuZz3MO3rcH6yg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+effect+on+bioconvection+flow+of+Sutterby+nanofluid+between+two+rotating+disks+with+motile+microorganisms&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Waqas%2C+Hassan&rft.au=Farooq%2C+Umar&rft.au=Muhammad%2C+Taseer&rft.au=Hussain%2C+Sajjad&rft.date=2021-08-01&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=26&rft.spage=101136&rft_id=info:doi/10.1016%2Fj.csite.2021.101136&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csite_2021_101136 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |