Thermal effect on bioconvection flow of Sutterby nanofluid between two rotating disks with motile microorganisms

The main objective of the recent article is to investigate the flow of Sutterby nanofluid with applied magnetic field and convective boundary aspects referred to as two coaxially rotating stretching disks. Nanofluids are a combination of simple fluids and small particles, the particles are evenly di...

Full description

Saved in:
Bibliographic Details
Published inCase studies in thermal engineering Vol. 26; p. 101136
Main Authors Waqas, Hassan, Farooq, Umar, Muhammad, Taseer, Hussain, Sajjad, Khan, Ilyas
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2214-157X
2214-157X
DOI10.1016/j.csite.2021.101136

Cover

Loading…
Abstract The main objective of the recent article is to investigate the flow of Sutterby nanofluid with applied magnetic field and convective boundary aspects referred to as two coaxially rotating stretching disks. Nanofluids are a combination of simple fluids and small particles, the particles are evenly distributed in the base fluid and have impressive uses in thermal transport sources. Nanofluids play a significant role in enhancing the heat transfer coefficient in fluids via the suspension of nanomaterials in the base fluids. This study is specific to involve non-Newtonian base fluid namely the Sutterby model. In addition, non-uniform thermal conductivity, non-linear thermal radiation, and bioconvection of motile microorganism's characteristics are taken into consideration. Bioconvection is a process in which the motion of motile microorganisms is addressed which may be helpful to avoid the probable settling of nano entities. PDEs such as momentum, boundary conditions, temperature, volume fraction, and motile microorganism density are upgraded into a model of non-linear ordinary differential equations employing appropriate similarity transformation. Transmuted dimensionless ODEs are tackled with shooting techniques and outcomes of prominent physical parameters are attained with a built-in bvp4c solver via MATLAB (Lobatto-IIIa) computational software. Inspirations of interesting physical parameters against the velocity field, temperature field, the solutal field of species, and microorganisms' profile are elaborated and briefly investigated numerically and graphically. The flow speed becomes faster directly with mixed convection parameter but it retards against magnetic field parameter and bioconvection Rayleigh number. The fluid temperature enhances in direct response to the parameters of thermal conductivity, thermophoresis, temperature ratio, and Biot number.
AbstractList The main objective of the recent article is to investigate the flow of Sutterby nanofluid with applied magnetic field and convective boundary aspects referred to as two coaxially rotating stretching disks. Nanofluids are a combination of simple fluids and small particles, the particles are evenly distributed in the base fluid and have impressive uses in thermal transport sources. Nanofluids play a significant role in enhancing the heat transfer coefficient in fluids via the suspension of nanomaterials in the base fluids. This study is specific to involve non-Newtonian base fluid namely the Sutterby model. In addition, non-uniform thermal conductivity, non-linear thermal radiation, and bioconvection of motile microorganism's characteristics are taken into consideration. Bioconvection is a process in which the motion of motile microorganisms is addressed which may be helpful to avoid the probable settling of nano entities. PDEs such as momentum, boundary conditions, temperature, volume fraction, and motile microorganism density are upgraded into a model of non-linear ordinary differential equations employing appropriate similarity transformation. Transmuted dimensionless ODEs are tackled with shooting techniques and outcomes of prominent physical parameters are attained with a built-in bvp4c solver via MATLAB (Lobatto-IIIa) computational software. Inspirations of interesting physical parameters against the velocity field, temperature field, the solutal field of species, and microorganisms' profile are elaborated and briefly investigated numerically and graphically. The flow speed becomes faster directly with mixed convection parameter but it retards against magnetic field parameter and bioconvection Rayleigh number. The fluid temperature enhances in direct response to the parameters of thermal conductivity, thermophoresis, temperature ratio, and Biot number.
ArticleNumber 101136
Author Khan, Ilyas
Farooq, Umar
Waqas, Hassan
Muhammad, Taseer
Hussain, Sajjad
Author_xml – sequence: 1
  givenname: Hassan
  orcidid: 0000-0002-0388-8506
  surname: Waqas
  fullname: Waqas, Hassan
  email: syedhasanwaqas@hotmail.com
  organization: Department of Mathematics, Government College University Faisalabad, Layyah Campus, 31200, Pakistan
– sequence: 2
  givenname: Umar
  surname: Farooq
  fullname: Farooq, Umar
  organization: Department of Mathematics, Government College University Faisalabad, Layyah Campus, 31200, Pakistan
– sequence: 3
  givenname: Taseer
  surname: Muhammad
  fullname: Muhammad, Taseer
  organization: Department of Mathematics, College of Sciences, King Khalid University, Abha, 61413, Saudi Arabia
– sequence: 4
  givenname: Sajjad
  surname: Hussain
  fullname: Hussain, Sajjad
  organization: Department of Mathematics, Government College University Faisalabad, Layyah Campus, 31200, Pakistan
– sequence: 5
  givenname: Ilyas
  surname: Khan
  fullname: Khan, Ilyas
  organization: Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
BookMark eNqFkU1rVTEQhoNUsNb-Ajf5A_c6Ocn5yMKFFD8KBRdWcBdykkk713OSkqS99N83t1dEXOgqMwPPS2ae1-wkpoiMvRWwFSCGd7utK1Rx20EnDhMhhxfstOuE2oh-_HHyR_2KnZeyAwAxykkodcrurm8xr3bhGAK6ylPkMyWX4kPrqHVhSXueAv92Xyvm-ZFHG1NY7snzGeseMfK6TzynaivFG-6p_Cx8T_WWr6nSgnwll1PKNzZSWcsb9jLYpeD5r_eMff_08friy-bq6-fLiw9XG6eEqptJz6MWOLtgsR9Bi9HrSc4WwjgNXqLq9OiV9OBRDwizRuhASQFTZxUOTp6xy2OuT3Zn7jKtNj-aZMk8D9p_jM2V3ILGQd_1zvXCWqE0aKsGLedJ9AhTGFG2LHnMaouUkjH8zhNgDg7Mzjw7MAcH5uigUfovytHhSCnWbGn5D_v-yGI70QNhNsURRoeechPTdqB_8k8tqadd
CitedBy_id crossref_primary_10_1063_5_0137447
crossref_primary_10_1007_s12668_024_01417_w
crossref_primary_10_1038_s41598_022_15094_w
crossref_primary_10_1142_S021797922250028X
crossref_primary_10_1002_zamm_202100414
crossref_primary_10_1016_j_aej_2023_03_077
crossref_primary_10_1016_j_ijft_2023_100363
crossref_primary_10_1080_10407782_2023_2241186
crossref_primary_10_1142_S0217984924504293
crossref_primary_10_1080_10407790_2023_2241632
crossref_primary_10_1016_j_csite_2023_102736
crossref_primary_10_1177_16878132221125060
crossref_primary_10_1016_j_chaos_2024_115758
crossref_primary_10_1016_j_icheatmasstransfer_2022_106348
crossref_primary_10_1038_s41598_022_06728_0
crossref_primary_10_1080_17455030_2022_2135794
crossref_primary_10_1016_j_jppr_2025_02_002
crossref_primary_10_1088_1402_4896_ad6642
crossref_primary_10_1016_j_asej_2024_102959
crossref_primary_10_1080_10407790_2023_2186549
crossref_primary_10_1016_j_csite_2023_102905
crossref_primary_10_1038_s41598_023_32902_z
crossref_primary_10_1166_jon_2023_2021
crossref_primary_10_1615_JPorMedia_2022043529
crossref_primary_10_3390_mi13091497
crossref_primary_10_1016_j_csite_2024_104695
crossref_primary_10_1016_j_csite_2024_104179
crossref_primary_10_1016_j_rinp_2023_106498
crossref_primary_10_1002_adts_202401345
crossref_primary_10_1166_jon_2023_1994
crossref_primary_10_1016_j_cjph_2021_11_009
crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2023046440
crossref_primary_10_1080_10407782_2024_2361479
crossref_primary_10_1080_10407790_2023_2300678
crossref_primary_10_1016_j_csite_2021_101664
crossref_primary_10_1142_S0217979224502230
crossref_primary_10_1007_s10973_024_13792_3
crossref_primary_10_1016_j_csite_2021_101504
crossref_primary_10_1016_j_csite_2021_101228
crossref_primary_10_1016_j_csite_2025_105796
crossref_primary_10_1166_jon_2024_2180
crossref_primary_10_1080_17455030_2022_2154868
crossref_primary_10_1002_htj_22529
crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2023046194
crossref_primary_10_3390_math9172139
crossref_primary_10_1515_ijcre_2021_0117
crossref_primary_10_1016_j_csite_2021_101431
crossref_primary_10_1038_s41598_022_15685_7
crossref_primary_10_1615_JPorMedia_2023044143
crossref_primary_10_1007_s13369_021_06412_x
crossref_primary_10_3390_math10173157
crossref_primary_10_1016_j_nanoso_2025_101446
crossref_primary_10_1038_s41598_023_45513_5
crossref_primary_10_1080_10407782_2023_2240507
Cites_doi 10.1088/0253-6102/69/5/569
10.1007/s13204-019-01198-9
10.1002/9783527344758.ch5
10.1016/j.icheatmasstransfer.2011.02.006
10.1016/j.jcde.2019.04.001
10.1007/s00521-018-3625-8
10.1002/aic.690120114
10.1016/j.physa.2019.124088
10.1016/j.rinp.2017.07.024
10.18280/ijht.370209
10.1142/S021798492150202X
10.1016/j.aej.2021.01.050
10.1016/j.physa.2019.123968
10.1016/j.csite.2021.101011
10.1016/j.molliq.2018.09.101
10.1088/1402-4896/ab2ddc
10.1088/1402-4896/abeba2
10.1002/htj.21451
10.3390/pr7110859
10.3390/app10010168
10.1088/1402-4896/ac0272
10.1007/s10973-020-09580-4
10.1016/j.molliq.2020.113476
10.1016/j.aej.2021.03.056
10.1177/0954406219867985
10.1016/j.cjph.2018.09.001
10.1002/htj.21539
10.17576/jsm-2019-4805-23
10.3390/sym12020309
10.1093/ijlct/ctz030
10.1016/j.csite.2018.04.005
10.1016/j.molliq.2019.111231
10.1115/1.2150834
10.1016/j.csite.2021.101015
10.1016/j.mechrescom.2008.11.003
10.1007/s42452-020-03262-4
10.1016/j.physa.2019.123439
10.1016/j.icheatmasstransfer.2017.12.006
10.1140/epjp/i2019-12563-8
10.1122/1.549276
10.3390/sym12030393
10.1515/jnet-2019-0049
10.1007/s10483-020-2581-5
10.1016/j.molliq.2016.12.039
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2021.101136
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_c0525cc51aa14909a4693b815e08f7e3
10_1016_j_csite_2021_101136
S2214157X21002999
GroupedDBID 0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-89b791ebcfae570917d983ba0f786d3e4297d43d0de96e0b9e020431082a4e6c3
IEDL.DBID DOA
ISSN 2214-157X
IngestDate Wed Aug 27 01:21:55 EDT 2025
Thu Apr 24 23:06:21 EDT 2025
Tue Jul 01 02:28:28 EDT 2025
Tue Jul 25 20:58:37 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Motile microorganisms
Bioconvection
Sutterby nanofluid
Thermal radiation
Shooting technique
Variable thermal conductivity
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-89b791ebcfae570917d983ba0f786d3e4297d43d0de96e0b9e020431082a4e6c3
ORCID 0000-0002-0388-8506
OpenAccessLink https://doaj.org/article/c0525cc51aa14909a4693b815e08f7e3
ParticipantIDs doaj_primary_oai_doaj_org_article_c0525cc51aa14909a4693b815e08f7e3
crossref_primary_10_1016_j_csite_2021_101136
crossref_citationtrail_10_1016_j_csite_2021_101136
elsevier_sciencedirect_doi_10_1016_j_csite_2021_101136
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Waqas, Farooq, Naseem, Hussain, Alghamdi (bib19) 2021
Anwar Bég (bib38) 2018
Waqas, Khan, Hassan, Bhatti, Imran (bib41) 2019; 291
Uddin, Kabir, Alginahi, Bég (bib35) 2019; 233
Hayat, Masood, Qayyum, Alsaedi (bib18) 2020; 544
Khan, Waqas, Bhatti, Imran (bib45) 2020; 45
Kuznetsov (bib26) 2011; 38
Al-Mubaddel, Farooq, Al-Khaled, Hussain, Khan, Aijaz, Waqas (bib49) 2021
Ghalandari, Maleki, Haghighi, Shadloo, Nazari, Tlili (bib24) 2020
Irfan, Khan, Khan, Rafiq (bib6) 2020
Hayat, Ahmad, Khan, Alsaedi (bib4) 2018; 69
Muhammad, Rafique, Asma, Alghamdi (bib52) 2020; 556
Cattaneo (bib10) 1948; 3
Alwatban, Khan, Waqas, Tlili (bib46) 2019; 7
Waqas, Khan, Bhatti, Imran (bib29) 2020
Usman, Hamid, Rashidi (bib33) 2019; 31
Ansari, Otegbeye, Trivedi, Goqo (bib28) 2020; 6
Alhuyi Nazari, Ghasempour, Ahmadi, Heydarian, Shafii (bib22) 2018
Ramzan, Riasat, Kadry, Long, Nam, Lu (bib3) 2020; 10
Sohail, Naz (bib21) 2020
Khan, Nadeem (bib34) 2019
Nadeem, Khan, Muhammad, Ahmad (bib37) 2019; 6
Mansour, Rashad, Mallikarjuna, Hussein, Aichouni, Kolsi (bib32) 2019; 37
Farooq, Waqas, Khan, Khan, Chu, Kadry (bib51) 2021; 60
Waqas, Khan, Shehzad, Imran (bib43) 2019; 48
Li, Waqas, Imran, Farooq, Mallawi, Tlili (bib44) 2020; 12
Muhammad, Alamri, Waqas, Habib, Ellahi (bib48) 2021; 143
Khan, Waqas, Naqvi, Alghamdi, Al-Mdallal (bib55) 2021
Christov (bib11) 2009; 36
Waqas, Khan, Shehzad, Imran (bib47) 2019; 48
Khan, Irfan, Khan, Alshomrani (bib8) 2017; 7
Basir, Uddin, Ismail (bib39) 2018
Khan, Tlili, Waqas, Imran (bib12) 2020
Choi, Eastman (bib1) 1995
Khan, Abro, Mirbhar, Tlili (bib54) 2018; 12
Waqas, Khan, Imran, Bhatti (bib42) 2019; 94
Sutterby (bib15) 1966; 12
Buongiorno (bib2) 2006; 128
Khan, Salahuddin, Malik, Khan (bib27) 2019; 134
Shehzad, Khan, Abbas, Rauf (bib13) 2020; 41
Ullah, Ali, Hayat, Abbas (bib14) 2019; 23
Mosayebidorcheh, Tahavori, Mosayebidorcheh, Ganji (bib36) 2017; 227
Song, Waqas, Al-Khaled, Farooq, Khan, Khan, Qayyum (bib17) 2021; 60
Ramezanizadeh, Nazari, Ahmadi, Açıkkalp (bib23) 2018; 272
Waqas, Khan, Farooq, Khan, Alotaibi, Khan (bib53) 2021
Carreau (bib7) 1972; 16
Hashim (bib9) 2020; 10
Ramezanizadeh, Alhuyi Nazari (bib25) 2019; 14
Muhammad, Ullah, Waqas, Alghamdi, Riaz (bib50) 2020
Amirsom, Uddin, Basir, Ismail, Beg, Kadir (bib31) 2019; 48
Faisal, Ahmad, Javed (bib5) 2020; 2
Waqas, Farooq, Alghamdi, Muhammad, Alshomrani (bib20) 2021
Abdelmalek, Ullah Khan, Waqas, A Nabwey, Tlili (bib30) 2020; 12
Saini, Sharma (bib40) 2018; 56
Khan, Waqas, Farooq, Khan, Chu, Kadry (bib16) 2021
Ramezanizadeh (10.1016/j.csite.2021.101136_bib23) 2018; 272
Kuznetsov (10.1016/j.csite.2021.101136_bib26) 2011; 38
Farooq (10.1016/j.csite.2021.101136_bib51) 2021; 60
Sohail (10.1016/j.csite.2021.101136_bib21) 2020
Anwar Bég (10.1016/j.csite.2021.101136_bib38) 2018
Khan (10.1016/j.csite.2021.101136_bib55) 2021
Ghalandari (10.1016/j.csite.2021.101136_bib24) 2020
Song (10.1016/j.csite.2021.101136_bib17) 2021; 60
Khan (10.1016/j.csite.2021.101136_bib27) 2019; 134
Ullah (10.1016/j.csite.2021.101136_bib14) 2019; 23
Saini (10.1016/j.csite.2021.101136_bib40) 2018; 56
Uddin (10.1016/j.csite.2021.101136_bib35) 2019; 233
Khan (10.1016/j.csite.2021.101136_bib34) 2019
Muhammad (10.1016/j.csite.2021.101136_bib50) 2020
Usman (10.1016/j.csite.2021.101136_bib33) 2019; 31
Waqas (10.1016/j.csite.2021.101136_bib20) 2021
Alhuyi Nazari (10.1016/j.csite.2021.101136_bib22) 2018
Ansari (10.1016/j.csite.2021.101136_bib28) 2020; 6
Khan (10.1016/j.csite.2021.101136_bib12) 2020
Basir (10.1016/j.csite.2021.101136_bib39) 2018
Khan (10.1016/j.csite.2021.101136_bib8) 2017; 7
Choi (10.1016/j.csite.2021.101136_bib1) 1995
Nadeem (10.1016/j.csite.2021.101136_bib37) 2019; 6
Mansour (10.1016/j.csite.2021.101136_bib32) 2019; 37
Waqas (10.1016/j.csite.2021.101136_bib41) 2019; 291
Khan (10.1016/j.csite.2021.101136_bib54) 2018; 12
Hayat (10.1016/j.csite.2021.101136_bib4) 2018; 69
Mosayebidorcheh (10.1016/j.csite.2021.101136_bib36) 2017; 227
Khan (10.1016/j.csite.2021.101136_bib16) 2021
Abdelmalek (10.1016/j.csite.2021.101136_bib30) 2020; 12
Li (10.1016/j.csite.2021.101136_bib44) 2020; 12
Carreau (10.1016/j.csite.2021.101136_bib7) 1972; 16
Waqas (10.1016/j.csite.2021.101136_bib29) 2020
Shehzad (10.1016/j.csite.2021.101136_bib13) 2020; 41
Hayat (10.1016/j.csite.2021.101136_bib18) 2020; 544
Cattaneo (10.1016/j.csite.2021.101136_bib10) 1948; 3
Hashim (10.1016/j.csite.2021.101136_bib9) 2020; 10
Khan (10.1016/j.csite.2021.101136_bib45) 2020; 45
Sutterby (10.1016/j.csite.2021.101136_bib15) 1966; 12
Waqas (10.1016/j.csite.2021.101136_bib47) 2019; 48
Muhammad (10.1016/j.csite.2021.101136_bib48) 2021; 143
Irfan (10.1016/j.csite.2021.101136_bib6) 2020
Al-Mubaddel (10.1016/j.csite.2021.101136_bib49) 2021
Buongiorno (10.1016/j.csite.2021.101136_bib2) 2006; 128
Ramezanizadeh (10.1016/j.csite.2021.101136_bib25) 2019; 14
Waqas (10.1016/j.csite.2021.101136_bib53) 2021
Waqas (10.1016/j.csite.2021.101136_bib42) 2019; 94
Faisal (10.1016/j.csite.2021.101136_bib5) 2020; 2
Amirsom (10.1016/j.csite.2021.101136_bib31) 2019; 48
Muhammad (10.1016/j.csite.2021.101136_bib52) 2020; 556
Christov (10.1016/j.csite.2021.101136_bib11) 2009; 36
Waqas (10.1016/j.csite.2021.101136_bib43) 2019; 48
Alwatban (10.1016/j.csite.2021.101136_bib46) 2019; 7
Ramzan (10.1016/j.csite.2021.101136_bib3) 2020; 10
Waqas (10.1016/j.csite.2021.101136_bib19) 2021
References_xml – volume: 6
  year: 2020
  ident: bib28
  article-title: Magnetohydrodynamic bioconvective Casson nanofluid flow: a numerical simulation by paired quasilinearisation
  publication-title: Journal Archive
– volume: 7
  year: 2019
  ident: bib46
  article-title: Interaction of Wu's slip features in bioconvection of Eyring Powell nanoparticles with activation energy
  publication-title: Processes
– volume: 37
  start-page: 433
  year: 2019
  end-page: 445
  ident: bib32
  article-title: MHD mixed bioconvection in a square porous cavity filled by gyrotactic microorganisms
  publication-title: International Journal of Heat and Technology
– year: 2018
  ident: bib39
  article-title: Scaling Group Analysis of Mixed Bioconvective Flow in Nanofluid with Presence of Slips, MHD, and Chemical Reactions
– volume: 41
  start-page: 521
  year: 2020
  end-page: 532
  ident: bib13
  article-title: A revised Cattaneo-Christov micropolar viscoelastic nanofluid model with combined porosity and magnetic effects
  publication-title: Appl. Math. Mech.
– year: 2020
  ident: bib50
  article-title: Thermo-bioconvection in stagnation point flow of third-grade nanofluid towards a stretching cylinder involving motile microorganisms
  publication-title: Phys. Scripta
– volume: 12
  start-page: 63
  year: 1966
  end-page: 68
  ident: bib15
  article-title: The laminar converging flow of dilute polymer solutions in conical sections: Part I. Viscosity data, new viscosity model, tube flow solution
  publication-title: AIChE J.
– year: 2020
  ident: bib24
  article-title: Applications of nanofluids containing carbon nanotubes in solar energy systems: a review
  publication-title: J. Mol. Liq.
– volume: 3
  start-page: 83
  year: 1948
  end-page: 101
  ident: bib10
  article-title: Sulla conduzionedelcalore
  publication-title: Atti del SeminarioMatematico e Fisico dell Universita di Modena e Reggio Emilia
– volume: 10
  start-page: 3305
  year: 2020
  end-page: 3314
  ident: bib9
  article-title: Multiple nature analysis of Carreau nanomaterial flow due to shrinking geometry with heat transfer
  publication-title: Appl. Nanosci.
– volume: 48
  start-page: 1663
  year: 2019
  end-page: 1687
  ident: bib43
  article-title: The radiative flow of Maxwell nanofluid containing gyrotactic microorganisms and energy activation with convective Nield conditions
  publication-title: Heat Tran. Asian Res.
– year: 2021
  ident: bib55
  article-title: Cattaneo-Christov double diffusions theories with bio-convection in nanofluid flow to enhance the efficiency of nanoparticle diffusion
  publication-title: Case Studies in Thermal Engineering
– year: 2021
  ident: bib16
  article-title: Assessment of bioconvection in magnetized Sutterby nanofluid configured by a rotating disk: a numerical approach
  publication-title: Mod. Phys. Lett. B
– volume: 233
  start-page: 6910
  year: 2019
  end-page: 6927
  ident: bib35
  article-title: Numerical solution of bio-nano-convection transport from a horizontal plate with blowing and multiple slip effects
  publication-title: Proc. IME C J. Mech. Eng. Sci.
– volume: 60
  start-page: 4663
  year: 2021
  end-page: 4675
  ident: bib17
  article-title: Bioconvection analysis for Sutterby nanofluid over an axially stretched cylinder with melting heat transfer and variable thermal features: a Marangoni and solutal model
  publication-title: Alexandria Engineering Journal
– start-page: 90
  year: 2018
  end-page: 94
  ident: bib22
  article-title: Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 128
  start-page: 240
  year: 2006
  end-page: 250
  ident: bib2
  article-title: Convective transport in nanofluids ASME
  publication-title: J. Heat Tran.
– volume: 227
  start-page: 356
  year: 2017
  end-page: 365
  ident: bib36
  article-title: Analysis of nano-bioconvection flow containing both nanoparticles and gyrotactic microorganisms in a horizontal channel using a modified least square method (MLSM)
  publication-title: J. Mol. Liq.
– year: 1995
  ident: bib1
  article-title: Enhancing Thermal Conductivity of Fluids with Nanoparticles
– volume: 12
  year: 2020
  ident: bib44
  article-title: A numerical exploration of modified second-grade nanofluid with motile microorganisms, thermal radiation, and Wu's slip
  publication-title: Symmetry
– volume: 36
  start-page: 481
  year: 2009
  end-page: 486
  ident: bib11
  article-title: On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction
  publication-title: Mech. Res. Commun.
– start-page: 1
  year: 2020
  end-page: 14
  ident: bib29
  article-title: Aspects of bioconvection in the chemical reactive flow of magnetized Carreau–Yasuda nanofluid with thermal radiation and second-order slip
  publication-title: J. Therm. Anal. Calorim.
– volume: 12
  year: 2020
  ident: bib30
  article-title: Utilization of second-order slip, activation energy, and viscous dissipation consequences in thermally developed flow of third grade nanofluid with gyrotactic microorganisms
  publication-title: Symmetry
– volume: 56
  start-page: 2031
  year: 2018
  end-page: 2038
  ident: bib40
  article-title: Analysis of onset of bio-thermal convection in a fluid containing gravitactic microorganisms by the energy method
  publication-title: Chin. J. Phys.
– year: 2021
  ident: bib49
  article-title: Double stratified analysis for bioconvection radiative flow of Sisko nanofluid with generalized heat/mass fluxes
  publication-title: Phys. Scripta
– volume: 38
  start-page: 548
  year: 2011
  end-page: 553
  ident: bib26
  article-title: Bio-thermal convection induced by two different species of microorganisms
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 10
  year: 2020
  ident: bib3
  article-title: Numerical simulation of 3D condensation nanofluid film flow with Carbon nanotubes on an inclined rotating disk
  publication-title: Appl. Sci.
– year: 2021
  ident: bib53
  article-title: Melting phenomenon of non-linear radiative generalized second-grade nano liquid
  publication-title: Case Studies in Thermal Engineering
– volume: 31
  start-page: 8003
  year: 2019
  end-page: 8019
  ident: bib33
  article-title: Gegenbauer wavelets collocation-based scheme to explore the solution of free bio-convection of nanofluid in 3D nearby stagnation point
  publication-title: Neural Comput. Appl.
– volume: 143
  start-page: 945
  year: 2021
  end-page: 957
  ident: bib48
  article-title: Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms
  publication-title: J. Therm. Anal. Calorim.
– start-page: 1
  year: 2020
  end-page: 13
  ident: bib6
  article-title: Physical aspects of shear-thinning/thickening behavior in the radiative flow of magnetite Carreau nanofluid with nanoparticle mass flux conditions
  publication-title: Appl. Nanosci.
– volume: 45
  start-page: 81
  year: 2020
  end-page: 95
  ident: bib45
  article-title: Bioconvection in the rheology of magnetized couple stress nanofluid featuring activation energy and Wu's slip
  publication-title: J. Non-Equilibrium Thermodyn.
– volume: 272
  start-page: 395
  year: 2018
  end-page: 402
  ident: bib23
  article-title: Application of nanofluids in thermosyphons: a review
  publication-title: J. Mol. Liq.
– volume: 69
  year: 2018
  ident: bib4
  article-title: Modeling the chemically reactive flow of sutterby nanofluid by a rotating disk in presence of heat generation/absorption
  publication-title: Commun. Theor. Phys.
– volume: 556
  year: 2020
  ident: bib52
  article-title: Darcy–Forchheimer flow over an exponentially stretching curved surface with Cattaneo–Christov double diffusion
  publication-title: Phys. Stat. Mech. Appl.
– volume: 134
  year: 2019
  ident: bib27
  article-title: Arrhenius activation in MHD radiative Maxwell nanoliquid flow along with transformed internal energy
  publication-title: The European Physical Journal Plus
– volume: 48
  start-page: 1137
  year: 2019
  end-page: 1149
  ident: bib31
  article-title: Three-dimensional bioconvection nanofluid flow from a bi-axial stretching sheet with anisotropic slip
  publication-title: Sains Malays.
– volume: 16
  start-page: 99
  year: 1972
  end-page: 127
  ident: bib7
  article-title: Rheological equations from molecular network theories
  publication-title: Trans. Soc. Rheol.
– volume: 2
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib5
  article-title: Aspects of prescribed heat sources on magneto Casson nanofluid flow due to unsteady bi-directionally stretchable surface in a porous medium
  publication-title: SN Applied Sciences
– start-page: 1
  year: 2020
  end-page: 12
  ident: bib12
  article-title: Effects of nonlinear thermal radiation and activation energy on modified second-grade nanofluid with Cattaneo–Christov expressions
  publication-title: J. Therm. Anal. Calorim.
– volume: 23
  start-page: 443
  year: 2019
  end-page: 455
  ident: bib14
  article-title: Heat transfer analysis is based on the Cattaneo-Christov heat flux model and convective boundary conditions for flow over an oscillatory stretching surface
  publication-title: Therm. Sci.
– year: 2021
  ident: bib19
  article-title: Impact of MHD radiative flow of hybrid nanofluid over a rotating disk
  publication-title: Case Studies in Thermal Engineering
– volume: 94
  year: 2019
  ident: bib42
  article-title: Thermally developed Falkner–Skan bioconvection flow of a magnetized nanofluid in the presence of a motile gyrotactic microorganism: buongiorno's nanofluid model
  publication-title: Phys. Scripta
– volume: 60
  start-page: 3073
  year: 2021
  end-page: 3086
  ident: bib51
  article-title: Thermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo-Christov expressions and exponential space-based heat source
  publication-title: Alexandria Engineering Journal
– volume: 7
  start-page: 2692
  year: 2017
  end-page: 2704
  ident: bib8
  article-title: A new modeling for 3D Carreau fluid flow considering nonlinear thermal radiation
  publication-title: Results in Phy
– volume: 14
  start-page: 468
  year: 2019
  end-page: 474
  ident: bib25
  article-title: Modeling thermal conductivity of Ag/water nanofluid by applying a mathematical correlation and artificial neural network
  publication-title: Int. J. Low Carbon Technol.
– volume: 291
  year: 2019
  ident: bib41
  article-title: Analysis of the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles
  publication-title: J. Mol. Liq.
– volume: 12
  start-page: 271
  year: 2018
  end-page: 275
  ident: bib54
  article-title: Thermal analysis in Stokes' second problem of nanofluid: applications in thermal engineering
  publication-title: Case studies in thermal engineering
– start-page: 113
  year: 2018
  end-page: 145
  ident: bib38
  article-title: Nonlinear multi-physical laminar nanofluid bioconvection flows Models and computation
  publication-title: Computational approaches in biomedical nano‐engineering
– year: 2020
  ident: bib21
  article-title: Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in a stretching cylinder
  publication-title: Phys. Stat. Mech. Appl.
– year: 2021
  ident: bib20
  article-title: On the magnetized 3D flow of hybrid nanofluids utilizing nonlinear radiative heat transfer
  publication-title: Phys. Scripta
– volume: 544
  year: 2020
  ident: bib18
  article-title: Sutterby fluid flow subject to homogeneous–heterogeneous reactions and nonlinear radiation
  publication-title: Phys. Stat. Mech. Appl.
– volume: 6
  start-page: 233
  year: 2019
  end-page: 242
  ident: bib37
  article-title: Mathematical analysis of bio-convective micropolar nanofluid
  publication-title: Journal of Computational Design and Engineering
– volume: 48
  start-page: 3230
  year: 2019
  end-page: 3256
  ident: bib47
  article-title: Aspects of the nonlinear radiative flow of micropolar nanoparticles over porous surface with a gyrotactic microorganism, activation energy, and Nield's condition
  publication-title: Heat Tran. Asian Res.
– year: 2019
  ident: bib34
  article-title: Theoretical treatment of bio-convective Maxwell nanofluid over an exponentially stretching sheet
  publication-title: Can. J. Phys.
– volume: 69
  issue: 5
  year: 2018
  ident: 10.1016/j.csite.2021.101136_bib4
  article-title: Modeling the chemically reactive flow of sutterby nanofluid by a rotating disk in presence of heat generation/absorption
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/69/5/569
– volume: 10
  start-page: 3305
  issue: 8
  year: 2020
  ident: 10.1016/j.csite.2021.101136_bib9
  article-title: Multiple nature analysis of Carreau nanomaterial flow due to shrinking geometry with heat transfer
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-019-01198-9
– start-page: 113
  year: 2018
  ident: 10.1016/j.csite.2021.101136_bib38
  article-title: Nonlinear multi-physical laminar nanofluid bioconvection flows Models and computation
  publication-title: Computational approaches in biomedical nano‐engineering
  doi: 10.1002/9783527344758.ch5
– start-page: 1
  year: 2020
  ident: 10.1016/j.csite.2021.101136_bib6
  article-title: Physical aspects of shear-thinning/thickening behavior in the radiative flow of magnetite Carreau nanofluid with nanoparticle mass flux conditions
  publication-title: Appl. Nanosci.
– volume: 38
  start-page: 548
  year: 2011
  ident: 10.1016/j.csite.2021.101136_bib26
  article-title: Bio-thermal convection induced by two different species of microorganisms
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2011.02.006
– volume: 6
  start-page: 233
  issue: 3
  year: 2019
  ident: 10.1016/j.csite.2021.101136_bib37
  article-title: Mathematical analysis of bio-convective micropolar nanofluid
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1016/j.jcde.2019.04.001
– volume: 31
  start-page: 8003
  issue: 11
  year: 2019
  ident: 10.1016/j.csite.2021.101136_bib33
  article-title: Gegenbauer wavelets collocation-based scheme to explore the solution of free bio-convection of nanofluid in 3D nearby stagnation point
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3625-8
– volume: 12
  start-page: 63
  issue: 1
  year: 1966
  ident: 10.1016/j.csite.2021.101136_bib15
  article-title: The laminar converging flow of dilute polymer solutions in conical sections: Part I. Viscosity data, new viscosity model, tube flow solution
  publication-title: AIChE J.
  doi: 10.1002/aic.690120114
– year: 2020
  ident: 10.1016/j.csite.2021.101136_bib21
  article-title: Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in a stretching cylinder
  publication-title: Phys. Stat. Mech. Appl.
  doi: 10.1016/j.physa.2019.124088
– year: 2018
  ident: 10.1016/j.csite.2021.101136_bib39
– volume: 7
  start-page: 2692
  year: 2017
  ident: 10.1016/j.csite.2021.101136_bib8
  article-title: A new modeling for 3D Carreau fluid flow considering nonlinear thermal radiation
  publication-title: Results in Phy
  doi: 10.1016/j.rinp.2017.07.024
– volume: 37
  start-page: 433
  issue: 2
  year: 2019
  ident: 10.1016/j.csite.2021.101136_bib32
  article-title: MHD mixed bioconvection in a square porous cavity filled by gyrotactic microorganisms
  publication-title: International Journal of Heat and Technology
  doi: 10.18280/ijht.370209
– year: 2021
  ident: 10.1016/j.csite.2021.101136_bib16
  article-title: Assessment of bioconvection in magnetized Sutterby nanofluid configured by a rotating disk: a numerical approach
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S021798492150202X
– year: 2020
  ident: 10.1016/j.csite.2021.101136_bib50
  article-title: Thermo-bioconvection in stagnation point flow of third-grade nanofluid towards a stretching cylinder involving motile microorganisms
  publication-title: Phys. Scripta
– volume: 60
  start-page: 3073
  issue: 3
  year: 2021
  ident: 10.1016/j.csite.2021.101136_bib51
  article-title: Thermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo-Christov expressions and exponential space-based heat source
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2021.01.050
– volume: 556
  year: 2020
  ident: 10.1016/j.csite.2021.101136_bib52
  article-title: Darcy–Forchheimer flow over an exponentially stretching curved surface with Cattaneo–Christov double diffusion
  publication-title: Phys. Stat. Mech. Appl.
  doi: 10.1016/j.physa.2019.123968
– year: 2021
  ident: 10.1016/j.csite.2021.101136_bib53
  article-title: Melting phenomenon of non-linear radiative generalized second-grade nano liquid
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2021.101011
– volume: 272
  start-page: 395
  year: 2018
  ident: 10.1016/j.csite.2021.101136_bib23
  article-title: Application of nanofluids in thermosyphons: a review
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.09.101
– volume: 94
  issue: 11
  year: 2019
  ident: 10.1016/j.csite.2021.101136_bib42
  article-title: Thermally developed Falkner–Skan bioconvection flow of a magnetized nanofluid in the presence of a motile gyrotactic microorganism: buongiorno's nanofluid model
  publication-title: Phys. Scripta
  doi: 10.1088/1402-4896/ab2ddc
– year: 2021
  ident: 10.1016/j.csite.2021.101136_bib49
  article-title: Double stratified analysis for bioconvection radiative flow of Sisko nanofluid with generalized heat/mass fluxes
  publication-title: Phys. Scripta
  doi: 10.1088/1402-4896/abeba2
– volume: 48
  start-page: 1663
  issue: 5
  year: 2019
  ident: 10.1016/j.csite.2021.101136_bib43
  article-title: The radiative flow of Maxwell nanofluid containing gyrotactic microorganisms and energy activation with convective Nield conditions
  publication-title: Heat Tran. Asian Res.
  doi: 10.1002/htj.21451
– volume: 7
  issue: 11
  year: 2019
  ident: 10.1016/j.csite.2021.101136_bib46
  article-title: Interaction of Wu's slip features in bioconvection of Eyring Powell nanoparticles with activation energy
  publication-title: Processes
  doi: 10.3390/pr7110859
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.csite.2021.101136_bib3
  article-title: Numerical simulation of 3D condensation nanofluid film flow with Carbon nanotubes on an inclined rotating disk
  publication-title: Appl. Sci.
  doi: 10.3390/app10010168
– volume: 6
  year: 2020
  ident: 10.1016/j.csite.2021.101136_bib28
  article-title: Magnetohydrodynamic bioconvective Casson nanofluid flow: a numerical simulation by paired quasilinearisation
  publication-title: Journal Archive
– volume: 3
  start-page: 83
  year: 1948
  ident: 10.1016/j.csite.2021.101136_bib10
  article-title: Sulla conduzionedelcalore
  publication-title: Atti del SeminarioMatematico e Fisico dell Universita di Modena e Reggio Emilia
– year: 2021
  ident: 10.1016/j.csite.2021.101136_bib20
  article-title: On the magnetized 3D flow of hybrid nanofluids utilizing nonlinear radiative heat transfer
  publication-title: Phys. Scripta
  doi: 10.1088/1402-4896/ac0272
– volume: 143
  start-page: 945
  issue: 2
  year: 2021
  ident: 10.1016/j.csite.2021.101136_bib48
  article-title: Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-09580-4
– year: 2020
  ident: 10.1016/j.csite.2021.101136_bib24
  article-title: Applications of nanofluids containing carbon nanotubes in solar energy systems: a review
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.113476
– year: 1995
  ident: 10.1016/j.csite.2021.101136_bib1
– volume: 60
  start-page: 4663
  issue: 5
  year: 2021
  ident: 10.1016/j.csite.2021.101136_bib17
  article-title: Bioconvection analysis for Sutterby nanofluid over an axially stretched cylinder with melting heat transfer and variable thermal features: a Marangoni and solutal model
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2021.03.056
– volume: 233
  start-page: 6910
  issue: 19–20
  year: 2019
  ident: 10.1016/j.csite.2021.101136_bib35
  article-title: Numerical solution of bio-nano-convection transport from a horizontal plate with blowing and multiple slip effects
  publication-title: Proc. IME C J. Mech. Eng. Sci.
  doi: 10.1177/0954406219867985
– volume: 56
  start-page: 2031
  issue: 5
  year: 2018
  ident: 10.1016/j.csite.2021.101136_bib40
  article-title: Analysis of onset of bio-thermal convection in a fluid containing gravitactic microorganisms by the energy method
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2018.09.001
– volume: 48
  start-page: 3230
  issue: 7
  year: 2019
  ident: 10.1016/j.csite.2021.101136_bib47
  article-title: Aspects of the nonlinear radiative flow of micropolar nanoparticles over porous surface with a gyrotactic microorganism, activation energy, and Nield's condition
  publication-title: Heat Tran. Asian Res.
  doi: 10.1002/htj.21539
– volume: 48
  start-page: 1137
  issue: 5
  year: 2019
  ident: 10.1016/j.csite.2021.101136_bib31
  article-title: Three-dimensional bioconvection nanofluid flow from a bi-axial stretching sheet with anisotropic slip
  publication-title: Sains Malays.
  doi: 10.17576/jsm-2019-4805-23
– volume: 12
  issue: 2
  year: 2020
  ident: 10.1016/j.csite.2021.101136_bib30
  article-title: Utilization of second-order slip, activation energy, and viscous dissipation consequences in thermally developed flow of third grade nanofluid with gyrotactic microorganisms
  publication-title: Symmetry
  doi: 10.3390/sym12020309
– volume: 14
  start-page: 468
  issue: 4
  year: 2019
  ident: 10.1016/j.csite.2021.101136_bib25
  article-title: Modeling thermal conductivity of Ag/water nanofluid by applying a mathematical correlation and artificial neural network
  publication-title: Int. J. Low Carbon Technol.
  doi: 10.1093/ijlct/ctz030
– volume: 12
  start-page: 271
  year: 2018
  ident: 10.1016/j.csite.2021.101136_bib54
  article-title: Thermal analysis in Stokes' second problem of nanofluid: applications in thermal engineering
  publication-title: Case studies in thermal engineering
  doi: 10.1016/j.csite.2018.04.005
– year: 2019
  ident: 10.1016/j.csite.2021.101136_bib34
  article-title: Theoretical treatment of bio-convective Maxwell nanofluid over an exponentially stretching sheet
  publication-title: Can. J. Phys.
– volume: 291
  year: 2019
  ident: 10.1016/j.csite.2021.101136_bib41
  article-title: Analysis of the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.111231
– volume: 23
  start-page: 443
  issue: 2 Part A
  year: 2019
  ident: 10.1016/j.csite.2021.101136_bib14
  article-title: Heat transfer analysis is based on the Cattaneo-Christov heat flux model and convective boundary conditions for flow over an oscillatory stretching surface
  publication-title: Therm. Sci.
– volume: 128
  start-page: 240
  year: 2006
  ident: 10.1016/j.csite.2021.101136_bib2
  article-title: Convective transport in nanofluids ASME
  publication-title: J. Heat Tran.
  doi: 10.1115/1.2150834
– year: 2021
  ident: 10.1016/j.csite.2021.101136_bib55
  article-title: Cattaneo-Christov double diffusions theories with bio-convection in nanofluid flow to enhance the efficiency of nanoparticle diffusion
  publication-title: Case Studies in Thermal Engineering
– year: 2021
  ident: 10.1016/j.csite.2021.101136_bib19
  article-title: Impact of MHD radiative flow of hybrid nanofluid over a rotating disk
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2021.101015
– volume: 36
  start-page: 481
  year: 2009
  ident: 10.1016/j.csite.2021.101136_bib11
  article-title: On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2008.11.003
– volume: 2
  start-page: 1
  issue: 9
  year: 2020
  ident: 10.1016/j.csite.2021.101136_bib5
  article-title: Aspects of prescribed heat sources on magneto Casson nanofluid flow due to unsteady bi-directionally stretchable surface in a porous medium
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-020-03262-4
– volume: 544
  year: 2020
  ident: 10.1016/j.csite.2021.101136_bib18
  article-title: Sutterby fluid flow subject to homogeneous–heterogeneous reactions and nonlinear radiation
  publication-title: Phys. Stat. Mech. Appl.
  doi: 10.1016/j.physa.2019.123439
– start-page: 1
  year: 2020
  ident: 10.1016/j.csite.2021.101136_bib29
  article-title: Aspects of bioconvection in the chemical reactive flow of magnetized Carreau–Yasuda nanofluid with thermal radiation and second-order slip
  publication-title: J. Therm. Anal. Calorim.
– start-page: 90
  year: 2018
  ident: 10.1016/j.csite.2021.101136_bib22
  article-title: Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2017.12.006
– volume: 134
  issue: 5
  year: 2019
  ident: 10.1016/j.csite.2021.101136_bib27
  article-title: Arrhenius activation in MHD radiative Maxwell nanoliquid flow along with transformed internal energy
  publication-title: The European Physical Journal Plus
  doi: 10.1140/epjp/i2019-12563-8
– volume: 16
  start-page: 99
  issue: 1
  year: 1972
  ident: 10.1016/j.csite.2021.101136_bib7
  article-title: Rheological equations from molecular network theories
  publication-title: Trans. Soc. Rheol.
  doi: 10.1122/1.549276
– volume: 12
  issue: 3
  year: 2020
  ident: 10.1016/j.csite.2021.101136_bib44
  article-title: A numerical exploration of modified second-grade nanofluid with motile microorganisms, thermal radiation, and Wu's slip
  publication-title: Symmetry
  doi: 10.3390/sym12030393
– start-page: 1
  year: 2020
  ident: 10.1016/j.csite.2021.101136_bib12
  article-title: Effects of nonlinear thermal radiation and activation energy on modified second-grade nanofluid with Cattaneo–Christov expressions
  publication-title: J. Therm. Anal. Calorim.
– volume: 45
  start-page: 81
  issue: 1
  year: 2020
  ident: 10.1016/j.csite.2021.101136_bib45
  article-title: Bioconvection in the rheology of magnetized couple stress nanofluid featuring activation energy and Wu's slip
  publication-title: J. Non-Equilibrium Thermodyn.
  doi: 10.1515/jnet-2019-0049
– volume: 41
  start-page: 521
  issue: 3
  year: 2020
  ident: 10.1016/j.csite.2021.101136_bib13
  article-title: A revised Cattaneo-Christov micropolar viscoelastic nanofluid model with combined porosity and magnetic effects
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-020-2581-5
– volume: 227
  start-page: 356
  year: 2017
  ident: 10.1016/j.csite.2021.101136_bib36
  article-title: Analysis of nano-bioconvection flow containing both nanoparticles and gyrotactic microorganisms in a horizontal channel using a modified least square method (MLSM)
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.12.039
SSID ssj0001738144
Score 2.4465926
Snippet The main objective of the recent article is to investigate the flow of Sutterby nanofluid with applied magnetic field and convective boundary aspects referred...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 101136
SubjectTerms Bioconvection
Motile microorganisms
Shooting technique
Sutterby nanofluid
Thermal radiation
Variable thermal conductivity
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ_iE9cXOXi0bB9pkxxVFBH0osLeSh4TqdZ22V0R_72TtNX14sFjQyYtM2FmmnzzDSGnWllMUzMXSRB5xEyqImEYjww3NoPEaSh8cfLdfXHzxG4n-WSFXA61MB5W2fv-zqcHb92PjHttjqdVNX5I0wSjD5-knkUU8xz0wxkToYhvcvFzzsIxJoWern5-5AUG8qEA8zLhkjbFUOdHkkDV_BOgAo__Upxaij3Xm2SjTxrpefddW2QFmm2yvkQluEOmaG_0sTXtABq0baiu2oApD5UL1NXtB20dfQidqfUnbVTTuvq9srTHatHFR0tnrb-bb56preavc-qPaanH69VA3zx2r-sCNX-b75Kn66vHy5uo76YQGZawRSSk5jIBbZyCnGOawK0UmVax46JAu2Bg4pZlNrYgC4i1hFA3m2COoBhaLNsjq03bwD6hEHOpU2dzcJKBAIWrKHRXyqB_cIUckXRQYWl6qnHf8aIuB0zZSxn0Xnq9l53eR-TsW2jaMW38Pf3C2-Z7qqfJDgOoh7LfJ6XxXfqMyROl8E8wlooVMtMiySEWjkM2IsVg2fLXrsOlqr_efvBfwUOy5p86COERWV3M3uEY05qFPgn79gshefej
  priority: 102
  providerName: Elsevier
Title Thermal effect on bioconvection flow of Sutterby nanofluid between two rotating disks with motile microorganisms
URI https://dx.doi.org/10.1016/j.csite.2021.101136
https://doaj.org/article/c0525cc51aa14909a4693b815e08f7e3
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXi02LRp0xxVFBX0osLeSh4TWa2tuCviv3eSdLUnvXjpIeRRZkLmS_LlG0IOtbIIU3OXSKiKhJtMJZXhIjHC2ByY01D6x8k3t-XlA78eF-NBqi_PCYvywNFwx8YnWjOmYEohmE-lwv1critWQFo5AUHnE2PeYDMVTlcERqKQyTXLGE9YIcZzyaFA7jLhahY3_syXsCDQ_BOWgnr_IDoNIs7FKlnpoSI9ib-4RhagXSfLAwHBDfKKXsaVtaGRlkG7lupJF5jk4b0CdU33QTtH70I-av1JW9V2rnmfWNoztOjso6Nvnb-Rbx-pnUyfp9QfzlLP0muAvnjGXsz9NH2ZbpKHi_P7s8ukz6GQGM74LKmkFpKBNk5BIdBQwsoq1yp1oirRGxiOhOW5TS3IElItIbyWZYgMFEc_5Vtkse1a2CYUUiF15mwBTnKoQGEvChcpZXBVcKUckWxuwtr0AuM-z0VTz5lkT3Wwe-3tXke7j8jRd6PXqK_xe_VT75vvql4cOxSgHep-ytR_TZkRKeeerXucEfEDdjX5bfSd_xh9lyz5LiOJcI8szt7eYR-BzUwfhDmM36vx6Reavfcu
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9wwDCbSdGg7FH2i16eGjjXOD9myxiRocGmTLEmA2wQ9qMKtYx9yFwT996FkO7kuGbrKomyQAklLHz8CfDXaUZpa-ERiXSbc5jqpLReJFdYVmHmDVShOPjmtFhf8x7Jc7sDBVAsTYJWj7x98evTW48h81OZ81TTzszzPKPqIZR5YRCnPeQSPKRuowtY-Wu7fH7QICkqxqWsQSILExD4UcV423tLmFOvCSBa5mu8jVCTy3wpUW8Hn8AU8H7NGtjd82EvYwe4VPNviEnwNKzI4OdmWDQgN1nfMNH0ElcfSBebb_ob1np3F1tTmL-t01_v2unFsBGuxzU3PrvpwOd_9Yq5Z_1mzcE7LAmCvRXYZwHtDG6j15foNXBx-Pz9YJGM7hcTyjG-SWhohMzTWaywF5QnCybowOvWirsgwFJmE44VLHcoKUyMxFs5mlCRoTiYr3sJu13f4DhimQprcuxK95FijplU0-SttyUH4Ss4gn1So7Mg1HlpetGoClf1WUe8q6F0Nep_Btzuh1UC18fD0_WCbu6mBJzsOkB7UuFGUDW36rC0zrelXMJWaV7IwdVZiWnuBxQyqybLqn21HSzUPvf39_wp-gSeL85NjdXx0-vMDPA1PBjzhR9jdXF3jJ8pxNuZz3MO3rcH6yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+effect+on+bioconvection+flow+of+Sutterby+nanofluid+between+two+rotating+disks+with+motile+microorganisms&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Waqas%2C+Hassan&rft.au=Farooq%2C+Umar&rft.au=Muhammad%2C+Taseer&rft.au=Hussain%2C+Sajjad&rft.date=2021-08-01&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=26&rft.spage=101136&rft_id=info:doi/10.1016%2Fj.csite.2021.101136&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csite_2021_101136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon