A moving model rig with a scale ratio of 1/8 for high speed train aerodynamics

To achieve an accurate aerodynamic optimization of the outline of a high speed train and an experimental simulation of the meeting of two trains, especially in a tunnel, a train model in a moving model rig (MMR) should feature a large scale ratio and be capable of accelerating to the real Mach numbe...

Full description

Saved in:
Bibliographic Details
Published inJournal of wind engineering and industrial aerodynamics Vol. 152; pp. 50 - 58
Main Authors Yang, Qian-Suo, Song, Jun-Hao, Yang, Guo-Wei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To achieve an accurate aerodynamic optimization of the outline of a high speed train and an experimental simulation of the meeting of two trains, especially in a tunnel, a train model in a moving model rig (MMR) should feature a large scale ratio and be capable of accelerating to the real Mach number. For this purpose, an MMR is developed for the acceleration, testing, and deceleration of a train model along opposite directions. To meet the railway standards of China, the distance between the centers of the two tracks is set to 625mm for the scale ratio of 1/8. The powers of the train models originate from compressed air and the brake force from the motion of the permanent magnets relative to the motionless steel plates along the tracks. The compressed air from an air gun with an air chamber pushes a set of pistons in an accelerating tube forward. These pistons tow a trailer through a towrope, and this trailer drives the train model up to a certain speed. The initial pressure of the compressed air determines the speed of the train model, and the brake distance depends on the kinetic energy of the model and the weight of magnets on the bottom of the model. The corresponding experimental measurements are presented in this work. Two train models weighing 265 and 106kg can be accelerated to speeds of 401 and 507km/h, respectively, within a brake distance of 70m. Thus, the train model with one or several cars can have a scale ratio of at least 1/8. Additional experimental results on the evolution of the pressure wave on the tunnel wall are introduced to demonstrate the repeatability of the experiment on the train model passing through the tunnel model. •A moving model rig with a scale ratio of 1/8 for high speed train aerodynamics along two opposite directions was developed.•The pistons in the acceleration tube are pushed by the compressed air and pulls the trailer and train model with a towrope.•The brake forces of the train model and trailer are from the motion of the permanent magnets relative to the steel plates.
AbstractList To achieve an accurate aerodynamic optimization of the outline of a high speed train and an experimental simulation of the meeting of two trains, especially in a tunnel, a train model in a moving model rig (MMR) should feature a large scale ratio and be capable of accelerating to the real Mach number. For this purpose, an MMR is developed for the acceleration, testing, and deceleration of a train model along opposite directions. To meet the railway standards of China, the distance between the centers of the two tracks is set to 625mm for the scale ratio of 1/8. The powers of the train models originate from compressed air and the brake force from the motion of the permanent magnets relative to the motionless steel plates along the tracks. The compressed air from an air gun with an air chamber pushes a set of pistons in an accelerating tube forward. These pistons tow a trailer through a towrope, and this trailer drives the train model up to a certain speed. The initial pressure of the compressed air determines the speed of the train model, and the brake distance depends on the kinetic energy of the model and the weight of magnets on the bottom of the model. The corresponding experimental measurements are presented in this work. Two train models weighing 265 and 106kg can be accelerated to speeds of 401 and 507km/h, respectively, within a brake distance of 70m. Thus, the train model with one or several cars can have a scale ratio of at least 1/8. Additional experimental results on the evolution of the pressure wave on the tunnel wall are introduced to demonstrate the repeatability of the experiment on the train model passing through the tunnel model. •A moving model rig with a scale ratio of 1/8 for high speed train aerodynamics along two opposite directions was developed.•The pistons in the acceleration tube are pushed by the compressed air and pulls the trailer and train model with a towrope.•The brake forces of the train model and trailer are from the motion of the permanent magnets relative to the steel plates.
To achieve an accurate aerodynamic optimization of the outline of a high speed train and an experimental simulation of the meeting of two trains, especially in a tunnel, a train model in a moving model rig (MMR) should feature a large scale ratio and be capable of accelerating to the real Mach number. For this purpose, an MMR is developed for the acceleration, testing, and deceleration of a train model along opposite directions. To meet the railway standards of China, the distance between the centers of the two tracks is set to 625mm for the scale ratio of 1/8. The powers of the train models originate from compressed air and the brake force from the motion of the permanent magnets relative to the motionless steel plates along the tracks. The compressed air from an air gun with an air chamber pushes a set of pistons in an accelerating tube forward. These pistons tow a trailer through a towrope, and this trailer drives the train model up to a certain speed. The initial pressure of the compressed air determines the speed of the train model, and the brake distance depends on the kinetic energy of the model and the weight of magnets on the bottom of the model. The corresponding experimental measurements are presented in this work. Two train models weighing 265 and 106kg can be accelerated to speeds of 401 and 507km/h, respectively, within a brake distance of 70m. Thus, the train model with one or several cars can have a scale ratio of at least 1/8. Additional experimental results on the evolution of the pressure wave on the tunnel wall are introduced to demonstrate the repeatability of the experiment on the train model passing through the tunnel model.
Author Song, Jun-Hao
Yang, Guo-Wei
Yang, Qian-Suo
Author_xml – sequence: 1
  givenname: Qian-Suo
  surname: Yang
  fullname: Yang, Qian-Suo
  email: qsyang@imech.ac.cn
– sequence: 2
  givenname: Jun-Hao
  surname: Song
  fullname: Song, Jun-Hao
– sequence: 3
  givenname: Guo-Wei
  surname: Yang
  fullname: Yang, Guo-Wei
BookMark eNqNkD9PwzAQxS0EEm3hE7B4ZEl6jpPYGRiqin9SBQvMlmWfW1dpXOy0qN-etGVGTE-n-707vTcml13okJA7BjkDVk_X-fobvc6LYciB5wDFBRkxKYpMskZcktGwEFnNoLom45TWACBKwUfkbUY3Ye-75SAWWxr9kn77fkU1TUa3SKPufaDBUTaV1IVIV365ommLaGkfte-oxhjsodMbb9INuXK6TXj7qxPy-fT4MX_JFu_Pr_PZIjMlK_tMSueQW8ZdXZXCVlZY2aCGotSlY4YLaYVrXMNB87pqrGhAa4aSg9SW15ZPyP357jaGrx2mXm18Mti2usOwS2qILmTBBBT_QEFCXdVMDig_oyaGlCI6tY1-o-NBMVDHotVanYpWx6IVcAWnBw9nFw6B9x6jSsZjZ9D6iKZXNvg__T-XfYea
CitedBy_id crossref_primary_10_1016_j_jweia_2017_12_013
crossref_primary_10_1016_j_jweia_2017_04_018
crossref_primary_10_1007_s10494_020_00162_w
crossref_primary_10_1016_j_jweia_2016_07_006
crossref_primary_10_1016_j_jweia_2022_105063
crossref_primary_10_1177_09544097231153697
crossref_primary_10_3390_en14020464
crossref_primary_10_1007_s12205_021_0670_0
crossref_primary_10_3390_app10113664
crossref_primary_10_1002_eng2_12447
crossref_primary_10_1016_j_tust_2022_104540
crossref_primary_10_1016_j_jweia_2018_05_012
crossref_primary_10_1093_tse_tdz014
crossref_primary_10_1016_j_tust_2018_07_031
crossref_primary_10_3390_sym14030479
crossref_primary_10_3390_app12126244
crossref_primary_10_1016_j_jweia_2018_09_011
crossref_primary_10_1016_j_jweia_2022_105083
crossref_primary_10_1016_j_jweia_2024_105759
crossref_primary_10_1142_S0219455424500123
crossref_primary_10_1016_j_jweia_2024_105716
crossref_primary_10_1016_j_jweia_2017_09_005
crossref_primary_10_1080_23248378_2023_2165182
crossref_primary_10_1016_j_jsv_2019_01_016
crossref_primary_10_1016_j_jweia_2020_104444
crossref_primary_10_1016_j_jweia_2020_104267
crossref_primary_10_1016_j_measurement_2022_111205
crossref_primary_10_3390_app10207189
crossref_primary_10_1016_j_jfluidstructs_2023_103836
crossref_primary_10_1109_TASC_2022_3143474
crossref_primary_10_1016_j_jsv_2018_05_039
crossref_primary_10_1016_j_jweia_2021_104786
crossref_primary_10_1016_j_jweia_2023_105458
crossref_primary_10_1142_S0219455423400345
crossref_primary_10_15802_stp2017_113192
crossref_primary_10_1016_j_jweia_2019_05_006
crossref_primary_10_3390_app12031545
crossref_primary_10_1007_s10494_018_9962_y
crossref_primary_10_1016_j_jweia_2018_05_003
crossref_primary_10_1016_j_compfluid_2024_106202
crossref_primary_10_1371_journal_pone_0222151
crossref_primary_10_1299_mej_18_00478
crossref_primary_10_1631_jzus_A2300339
crossref_primary_10_1016_j_jweia_2019_04_003
Cites_doi 10.1146/annurev.fluid.33.1.371
10.1134/S1560354709060057
10.1016/j.jweia.2014.09.006
10.1016/S0376-0421(02)00029-5
10.1007/s11431-012-5101-5
10.1007/BF01435520
10.1016/j.jmmm.2006.01.149
10.1119/1.17356
10.1016/j.jweia.2009.09.002
10.4203/ijrt.3.1.4
10.1007/s001930050108
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7SU
7TB
8FD
C1K
FR3
H8D
KR7
L7M
7ST
SOI
DOI 10.1016/j.jweia.2016.03.002
DatabaseName CrossRef
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitleList
Environment Abstracts
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-8197
EndPage 58
ExternalDocumentID 10_1016_j_jweia_2016_03_002
S0167610516301222
GeographicLocations China, People's Rep
GeographicLocations_xml – name: China, People's Rep
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACKIV
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSR
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SU
7TB
8FD
C1K
FR3
H8D
KR7
L7M
7ST
SOI
ID FETCH-LOGICAL-c414t-88ffe3d13f6547d5d7d89ea024a4f1c378d7f9f930a3659d790aa1e8308ad36d3
IEDL.DBID .~1
ISSN 0167-6105
IngestDate Sat Oct 26 01:34:16 EDT 2024
Fri Oct 25 00:48:46 EDT 2024
Thu Sep 26 15:54:59 EDT 2024
Fri Feb 23 02:23:56 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Magnetic brake
Air gun
Moving model rig
Compressed air
Acceleration
Deceleration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-88ffe3d13f6547d5d7d89ea024a4f1c378d7f9f930a3659d790aa1e8308ad36d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dspace.imech.ac.cn/bitstream/311007/60701/1/1-s2.0-S0167610516301222-main.pdf
PQID 1808065618
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1877821702
proquest_miscellaneous_1808065618
crossref_primary_10_1016_j_jweia_2016_03_002
elsevier_sciencedirect_doi_10_1016_j_jweia_2016_03_002
PublicationCentury 2000
PublicationDate May 2016
2016-05-00
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: May 2016
PublicationDecade 2010
PublicationTitle Journal of wind engineering and industrial aerodynamics
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhou, Tian, Zhang, Yang (bib18) 2014; 135
Doi, Ogawa, Masubuchi, Kaku (bib2) 2010; 98
Demmenie E., De Bruin A., Klaver E., 1998. Experimental pressure wave research at NLR for high-speed rail tunnels, National Aerospace Laboratory Nlr, Technical Publication TP98375
Sasoh, Matsuoka, Nakashio (bib12) 1998; 8
Johnson, Dalley (bib5) 2002
Raghunathan, Kim, Setoguchi (bib11) 2002; 38
Tian (bib15) 2007; 99–114
Ma, Shiau (bib7) 2010; 3
Jou, Shiau, Sun (bib6) 2006; 304
Jirout, Mack, Lugner (bib4) 2009; 14
Yang, Song, Li, Zhang, Yang (bib17) 2013; 56
Takayama, Sasoh, Onodera, Kaneko, Matsui (bib14) 1995; 5
Peters (bib10) 1983
Schetz (bib13) 2001; 33
Endo, Meguro, Ota, Maeno (bib3) 2014; 14
Ozawa S., Maeda T., 1988. Model experiment on reduction of micro-pressure wave radiated from exit. In: Proceedings of the International Symposium on Scale Modeling, The Japan Society of Mechanical Engineers, Tokyo, July, pp. 18–22
Wagner, Horstmann, Herzog, Jakubek, Rutschmann (bib16) 2014; 3
Maclatchy, Backman, Bogan (bib8) 1993; 60
10.1016/j.jweia.2016.03.002_bib1
Raghunathan (10.1016/j.jweia.2016.03.002_bib11) 2002; 38
Takayama (10.1016/j.jweia.2016.03.002_bib14) 1995; 5
Johnson (10.1016/j.jweia.2016.03.002_bib5) 2002
Sasoh (10.1016/j.jweia.2016.03.002_bib12) 1998; 8
Tian (10.1016/j.jweia.2016.03.002_bib15) 2007; 99–114
Yang (10.1016/j.jweia.2016.03.002_bib17) 2013; 56
10.1016/j.jweia.2016.03.002_bib9
Endo (10.1016/j.jweia.2016.03.002_bib3) 2014; 14
Ma (10.1016/j.jweia.2016.03.002_bib7) 2010; 3
Zhou (10.1016/j.jweia.2016.03.002_bib18) 2014; 135
Doi (10.1016/j.jweia.2016.03.002_bib2) 2010; 98
Jou (10.1016/j.jweia.2016.03.002_bib6) 2006; 304
Wagner (10.1016/j.jweia.2016.03.002_bib16) 2014; 3
Schetz (10.1016/j.jweia.2016.03.002_bib13) 2001; 33
Jirout (10.1016/j.jweia.2016.03.002_bib4) 2009; 14
Maclatchy (10.1016/j.jweia.2016.03.002_bib8) 1993; 60
Peters (10.1016/j.jweia.2016.03.002_bib10) 1983
References_xml – volume: 99–114
  start-page: 268
  year: 2007
  end-page: 286
  ident: bib15
  publication-title: Train Aerodynamics
  contributor:
    fullname: Tian
– volume: 3
  start-page: 83
  year: 2014
  end-page: 104
  ident: bib16
  article-title: Shape optimization of train heads with respect to the aerodynamic loads on track side objects
  publication-title: Int. J. Railw. Technol.
  contributor:
    fullname: Rutschmann
– start-page: 123
  year: 2002
  end-page: 135
  ident: bib5
  article-title: TRANSAERO – A European Initiative on Transient Aerodynamics for Railway System Optimisation
  contributor:
    fullname: Dalley
– start-page: 308
  year: 1983
  end-page: 341
  ident: bib10
  article-title: Aerodynamics of high speed trains and Maglev vehicles
  publication-title: Impact of Aerodynamics on Vehicle Design
  contributor:
    fullname: Peters
– volume: 135
  start-page: 1
  year: 2014
  end-page: 9
  ident: bib18
  article-title: Pressure transients induced by a high speed train passing through a station
  publication-title: J. Wind Eng. Ind. Aerodyn.
  contributor:
    fullname: Yang
– volume: 60
  start-page: 1096
  year: 1993
  end-page: 1101
  ident: bib8
  article-title: A quantitative magnetic braking experiment
  publication-title: Am. J. Phys.
  contributor:
    fullname: Bogan
– volume: 98
  year: 2010
  ident: bib2
  article-title: Development of an experimental facility for measuring pressure waves generated by high-speed trains
  publication-title: J. Wind Eng. Ind. Aerodyn.
  contributor:
    fullname: Kaku
– volume: 3
  start-page: 19
  year: 2010
  end-page: 37
  ident: bib7
  article-title: The design of eddy-current magnet brakes
  publication-title: Trans. Can. Soc. Mech. Eng.
  contributor:
    fullname: Shiau
– volume: 304
  start-page: e234
  year: 2006
  end-page: e236
  ident: bib6
  article-title: Design of a magnetic braking system
  publication-title: J. Magn. Magn. Mater.
  contributor:
    fullname: Sun
– volume: 33
  start-page: 371
  year: 2001
  end-page: 414
  ident: bib13
  article-title: Aerodynamics of high speed trains
  publication-title: Annu. Rev. Fluid Mech.
  contributor:
    fullname: Schetz
– volume: 56
  start-page: 642
  year: 2013
  end-page: 647
  ident: bib17
  article-title: Train model acceleration and deceleration
  publication-title: Sci. China Tech. Sci.
  contributor:
    fullname: Yang
– volume: 38
  start-page: 469
  year: 2002
  end-page: 514
  ident: bib11
  article-title: Aerodynamics of high-speed railway train
  publication-title: Prog. Aerosp. Sci.
  contributor:
    fullname: Setoguchi
– volume: 5
  start-page: 127
  year: 1995
  end-page: 138
  ident: bib14
  article-title: Experimental investigation on tunnel sonic boom
  publication-title: Shock Waves
  contributor:
    fullname: Matsui
– volume: 14
  start-page: s42
  year: 2014
  end-page: s47
  ident: bib3
  article-title: Small model experiment on the gradient of pressure wave by entering the tunnel of a conventional limited express
  publication-title: J. JSEM
  contributor:
    fullname: Maeno
– volume: 14
  start-page: 673
  year: 2009
  end-page: 681
  ident: bib4
  article-title: Non-smooth dynamics of a magnetic track brake
  publication-title: Regul. Chaotic Dyn.
  contributor:
    fullname: Lugner
– volume: 8
  start-page: 149
  year: 1998
  end-page: 159
  ident: bib12
  article-title: Attenuation of weak shock waves along pseudo perforated walls
  publication-title: Shock Waves
  contributor:
    fullname: Nakashio
– ident: 10.1016/j.jweia.2016.03.002_bib9
– volume: 33
  start-page: 371
  year: 2001
  ident: 10.1016/j.jweia.2016.03.002_bib13
  article-title: Aerodynamics of high speed trains
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.33.1.371
  contributor:
    fullname: Schetz
– volume: 14
  start-page: 673
  year: 2009
  ident: 10.1016/j.jweia.2016.03.002_bib4
  article-title: Non-smooth dynamics of a magnetic track brake
  publication-title: Regul. Chaotic Dyn.
  doi: 10.1134/S1560354709060057
  contributor:
    fullname: Jirout
– volume: 99–114
  start-page: 268
  year: 2007
  ident: 10.1016/j.jweia.2016.03.002_bib15
  contributor:
    fullname: Tian
– volume: 135
  start-page: 1
  year: 2014
  ident: 10.1016/j.jweia.2016.03.002_bib18
  article-title: Pressure transients induced by a high speed train passing through a station
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2014.09.006
  contributor:
    fullname: Zhou
– volume: 38
  start-page: 469
  year: 2002
  ident: 10.1016/j.jweia.2016.03.002_bib11
  article-title: Aerodynamics of high-speed railway train
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/S0376-0421(02)00029-5
  contributor:
    fullname: Raghunathan
– volume: 14
  start-page: s42
  year: 2014
  ident: 10.1016/j.jweia.2016.03.002_bib3
  article-title: Small model experiment on the gradient of pressure wave by entering the tunnel of a conventional limited express
  publication-title: J. JSEM
  contributor:
    fullname: Endo
– ident: 10.1016/j.jweia.2016.03.002_bib1
– volume: 56
  start-page: 642
  year: 2013
  ident: 10.1016/j.jweia.2016.03.002_bib17
  article-title: Train model acceleration and deceleration
  publication-title: Sci. China Tech. Sci.
  doi: 10.1007/s11431-012-5101-5
  contributor:
    fullname: Yang
– start-page: 123
  year: 2002
  ident: 10.1016/j.jweia.2016.03.002_bib5
  contributor:
    fullname: Johnson
– volume: 3
  start-page: 19
  year: 2010
  ident: 10.1016/j.jweia.2016.03.002_bib7
  article-title: The design of eddy-current magnet brakes
  publication-title: Trans. Can. Soc. Mech. Eng.
  contributor:
    fullname: Ma
– start-page: 308
  year: 1983
  ident: 10.1016/j.jweia.2016.03.002_bib10
  article-title: Aerodynamics of high speed trains and Maglev vehicles
  contributor:
    fullname: Peters
– volume: 5
  start-page: 127
  year: 1995
  ident: 10.1016/j.jweia.2016.03.002_bib14
  article-title: Experimental investigation on tunnel sonic boom
  publication-title: Shock Waves
  doi: 10.1007/BF01435520
  contributor:
    fullname: Takayama
– volume: 304
  start-page: e234
  year: 2006
  ident: 10.1016/j.jweia.2016.03.002_bib6
  article-title: Design of a magnetic braking system
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.01.149
  contributor:
    fullname: Jou
– volume: 60
  start-page: 1096
  year: 1993
  ident: 10.1016/j.jweia.2016.03.002_bib8
  article-title: A quantitative magnetic braking experiment
  publication-title: Am. J. Phys.
  doi: 10.1119/1.17356
  contributor:
    fullname: Maclatchy
– volume: 98
  year: 2010
  ident: 10.1016/j.jweia.2016.03.002_bib2
  article-title: Development of an experimental facility for measuring pressure waves generated by high-speed trains
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2009.09.002
  contributor:
    fullname: Doi
– volume: 3
  start-page: 83
  year: 2014
  ident: 10.1016/j.jweia.2016.03.002_bib16
  article-title: Shape optimization of train heads with respect to the aerodynamic loads on track side objects
  publication-title: Int. J. Railw. Technol.
  doi: 10.4203/ijrt.3.1.4
  contributor:
    fullname: Wagner
– volume: 8
  start-page: 149
  year: 1998
  ident: 10.1016/j.jweia.2016.03.002_bib12
  article-title: Attenuation of weak shock waves along pseudo perforated walls
  publication-title: Shock Waves
  doi: 10.1007/s001930050108
  contributor:
    fullname: Sasoh
SSID ssj0007473
Score 2.4149988
Snippet To achieve an accurate aerodynamic optimization of the outline of a high speed train and an experimental simulation of the meeting of two trains, especially in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 50
SubjectTerms Acceleration
Aerodynamics
Air gun
Brakes
Compressed air
Deceleration
High speed trains
Magnetic brake
Moving model rig
Railway tracks
Railway tunnels
Scale (ratio)
Trains
Title A moving model rig with a scale ratio of 1/8 for high speed train aerodynamics
URI https://dx.doi.org/10.1016/j.jweia.2016.03.002
https://search.proquest.com/docview/1808065618
https://search.proquest.com/docview/1877821702
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GBE8Wts0bZMehzim4i462C2kywtsYDfchjf_dl_SFj_AHTy2pPD45fX3XpKX3yPkyghIYx0XAU8MLlBkJIMiZhAwyAop7SSHwl1wfhpmg1HyME7HLXLb3IVxZZU191ec7tm6fhPWaIaL6TR8dgX0GPxTzCjc-ZDj4QTDH_r0zcdXmQemy7zR93ajG-UhX-M1e4epEx9iWaV0Gv8VnX7xtA8-_T2yW2eNtFcZtk9aUB6QnW9agodk2KOvfneA-uY2FFfd1G2yUk2XOA9A_VTTuaUslBRTVeqUiulygeGL-kYRVAOyadWhfnlERv27l9tBUDdLCCYJS1YBAmuBG8ataydsUiOMzEFjCNaJZRMupBE2tzmPNM_S3Ig80pqB5JHUhmeGH5N2OS_hhFBto0KnQuPvKp2cWp6aWBsLAnD1llvbIdcNSGpRaWKoplhspjymymGqIq4Q0w7JGiDVj6lVyNqbP7xsYFfo9O4kQ5cwXy8Vc2qYaBmTm8YIzH6YiOLT_xpwRrbdU1XfeE7aq7c1XGAOsiq63sm6ZKt3_zgYfgKjD9p8
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA3DPagP4ifOzwg-WtY0bZM8juHo3NYXN9hbSJcENrAbbsO_700_RAX34GvbQDhJzj1Jb85F6FEzEwUqyDwaatigcJ97WUCMR0yccW5nwmTugvMojZNJ-DKNpg3Ure_CuLTKivtLTi_YunrSrtBsr-bz9qtLoIfgH4GicP-HgIeboAYErM5mpz9I0i9CBsVMa4tv16A2HyrSvBYfZu78h0hcmp0GfwWoX1RdxJ_eMTqqhCPulH07QQ2Tn6LDb3aCZyjt4LfigAAX9W0wbLyxO2fFCq9hKAwuRhsvLSZtjkGtYmdWjNcriGC4qBWBlQFCLYvUr8_RpPc87iZeVS_Bm4Uk3HiArTVUE2pdRWEdaaa5MAqisAotmVHGNbPCCuorGkdCM-ErRQynPleaxppeoL18mZtLhJX1MxUxBSuWO0c1EelAaWuYgQ2csLaFnmqQ5Kq0xZB1vthCFphKh6n0qQRMWyiugZQ_RlcCce9u-FDDLmHeu58ZKjfL7VoSZ4gJPSN81zcMBBBhfnD13w7co_1kPBrKYT8dXKMD96ZMd7xBe5v3rbkFSbLJ7qop9wk2qt0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+moving+model+rig+with+a+scale+ratio+of+1%2F8+for+high+speed+train+aerodynamics&rft.jtitle=Journal+of+wind+engineering+and+industrial+aerodynamics&rft.au=Yang%2C+Qian-Suo&rft.au=Song%2C+Jun-Hao&rft.au=Yang%2C+Guo-Wei&rft.date=2016-05-01&rft.issn=0167-6105&rft.volume=152&rft.spage=50&rft.epage=58&rft_id=info:doi/10.1016%2Fj.jweia.2016.03.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6105&client=summon