A moving model rig with a scale ratio of 1/8 for high speed train aerodynamics
To achieve an accurate aerodynamic optimization of the outline of a high speed train and an experimental simulation of the meeting of two trains, especially in a tunnel, a train model in a moving model rig (MMR) should feature a large scale ratio and be capable of accelerating to the real Mach numbe...
Saved in:
Published in | Journal of wind engineering and industrial aerodynamics Vol. 152; pp. 50 - 58 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To achieve an accurate aerodynamic optimization of the outline of a high speed train and an experimental simulation of the meeting of two trains, especially in a tunnel, a train model in a moving model rig (MMR) should feature a large scale ratio and be capable of accelerating to the real Mach number. For this purpose, an MMR is developed for the acceleration, testing, and deceleration of a train model along opposite directions. To meet the railway standards of China, the distance between the centers of the two tracks is set to 625mm for the scale ratio of 1/8. The powers of the train models originate from compressed air and the brake force from the motion of the permanent magnets relative to the motionless steel plates along the tracks. The compressed air from an air gun with an air chamber pushes a set of pistons in an accelerating tube forward. These pistons tow a trailer through a towrope, and this trailer drives the train model up to a certain speed. The initial pressure of the compressed air determines the speed of the train model, and the brake distance depends on the kinetic energy of the model and the weight of magnets on the bottom of the model. The corresponding experimental measurements are presented in this work. Two train models weighing 265 and 106kg can be accelerated to speeds of 401 and 507km/h, respectively, within a brake distance of 70m. Thus, the train model with one or several cars can have a scale ratio of at least 1/8. Additional experimental results on the evolution of the pressure wave on the tunnel wall are introduced to demonstrate the repeatability of the experiment on the train model passing through the tunnel model.
•A moving model rig with a scale ratio of 1/8 for high speed train aerodynamics along two opposite directions was developed.•The pistons in the acceleration tube are pushed by the compressed air and pulls the trailer and train model with a towrope.•The brake forces of the train model and trailer are from the motion of the permanent magnets relative to the steel plates. |
---|---|
AbstractList | To achieve an accurate aerodynamic optimization of the outline of a high speed train and an experimental simulation of the meeting of two trains, especially in a tunnel, a train model in a moving model rig (MMR) should feature a large scale ratio and be capable of accelerating to the real Mach number. For this purpose, an MMR is developed for the acceleration, testing, and deceleration of a train model along opposite directions. To meet the railway standards of China, the distance between the centers of the two tracks is set to 625mm for the scale ratio of 1/8. The powers of the train models originate from compressed air and the brake force from the motion of the permanent magnets relative to the motionless steel plates along the tracks. The compressed air from an air gun with an air chamber pushes a set of pistons in an accelerating tube forward. These pistons tow a trailer through a towrope, and this trailer drives the train model up to a certain speed. The initial pressure of the compressed air determines the speed of the train model, and the brake distance depends on the kinetic energy of the model and the weight of magnets on the bottom of the model. The corresponding experimental measurements are presented in this work. Two train models weighing 265 and 106kg can be accelerated to speeds of 401 and 507km/h, respectively, within a brake distance of 70m. Thus, the train model with one or several cars can have a scale ratio of at least 1/8. Additional experimental results on the evolution of the pressure wave on the tunnel wall are introduced to demonstrate the repeatability of the experiment on the train model passing through the tunnel model.
•A moving model rig with a scale ratio of 1/8 for high speed train aerodynamics along two opposite directions was developed.•The pistons in the acceleration tube are pushed by the compressed air and pulls the trailer and train model with a towrope.•The brake forces of the train model and trailer are from the motion of the permanent magnets relative to the steel plates. To achieve an accurate aerodynamic optimization of the outline of a high speed train and an experimental simulation of the meeting of two trains, especially in a tunnel, a train model in a moving model rig (MMR) should feature a large scale ratio and be capable of accelerating to the real Mach number. For this purpose, an MMR is developed for the acceleration, testing, and deceleration of a train model along opposite directions. To meet the railway standards of China, the distance between the centers of the two tracks is set to 625mm for the scale ratio of 1/8. The powers of the train models originate from compressed air and the brake force from the motion of the permanent magnets relative to the motionless steel plates along the tracks. The compressed air from an air gun with an air chamber pushes a set of pistons in an accelerating tube forward. These pistons tow a trailer through a towrope, and this trailer drives the train model up to a certain speed. The initial pressure of the compressed air determines the speed of the train model, and the brake distance depends on the kinetic energy of the model and the weight of magnets on the bottom of the model. The corresponding experimental measurements are presented in this work. Two train models weighing 265 and 106kg can be accelerated to speeds of 401 and 507km/h, respectively, within a brake distance of 70m. Thus, the train model with one or several cars can have a scale ratio of at least 1/8. Additional experimental results on the evolution of the pressure wave on the tunnel wall are introduced to demonstrate the repeatability of the experiment on the train model passing through the tunnel model. |
Author | Song, Jun-Hao Yang, Guo-Wei Yang, Qian-Suo |
Author_xml | – sequence: 1 givenname: Qian-Suo surname: Yang fullname: Yang, Qian-Suo email: qsyang@imech.ac.cn – sequence: 2 givenname: Jun-Hao surname: Song fullname: Song, Jun-Hao – sequence: 3 givenname: Guo-Wei surname: Yang fullname: Yang, Guo-Wei |
BookMark | eNqNkD9PwzAQxS0EEm3hE7B4ZEl6jpPYGRiqin9SBQvMlmWfW1dpXOy0qN-etGVGTE-n-707vTcml13okJA7BjkDVk_X-fobvc6LYciB5wDFBRkxKYpMskZcktGwEFnNoLom45TWACBKwUfkbUY3Ye-75SAWWxr9kn77fkU1TUa3SKPufaDBUTaV1IVIV365ommLaGkfte-oxhjsodMbb9INuXK6TXj7qxPy-fT4MX_JFu_Pr_PZIjMlK_tMSueQW8ZdXZXCVlZY2aCGotSlY4YLaYVrXMNB87pqrGhAa4aSg9SW15ZPyP357jaGrx2mXm18Mti2usOwS2qILmTBBBT_QEFCXdVMDig_oyaGlCI6tY1-o-NBMVDHotVanYpWx6IVcAWnBw9nFw6B9x6jSsZjZ9D6iKZXNvg__T-XfYea |
CitedBy_id | crossref_primary_10_1016_j_jweia_2017_12_013 crossref_primary_10_1016_j_jweia_2017_04_018 crossref_primary_10_1007_s10494_020_00162_w crossref_primary_10_1016_j_jweia_2016_07_006 crossref_primary_10_1016_j_jweia_2022_105063 crossref_primary_10_1177_09544097231153697 crossref_primary_10_3390_en14020464 crossref_primary_10_1007_s12205_021_0670_0 crossref_primary_10_3390_app10113664 crossref_primary_10_1002_eng2_12447 crossref_primary_10_1016_j_tust_2022_104540 crossref_primary_10_1016_j_jweia_2018_05_012 crossref_primary_10_1093_tse_tdz014 crossref_primary_10_1016_j_tust_2018_07_031 crossref_primary_10_3390_sym14030479 crossref_primary_10_3390_app12126244 crossref_primary_10_1016_j_jweia_2018_09_011 crossref_primary_10_1016_j_jweia_2022_105083 crossref_primary_10_1016_j_jweia_2024_105759 crossref_primary_10_1142_S0219455424500123 crossref_primary_10_1016_j_jweia_2024_105716 crossref_primary_10_1016_j_jweia_2017_09_005 crossref_primary_10_1080_23248378_2023_2165182 crossref_primary_10_1016_j_jsv_2019_01_016 crossref_primary_10_1016_j_jweia_2020_104444 crossref_primary_10_1016_j_jweia_2020_104267 crossref_primary_10_1016_j_measurement_2022_111205 crossref_primary_10_3390_app10207189 crossref_primary_10_1016_j_jfluidstructs_2023_103836 crossref_primary_10_1109_TASC_2022_3143474 crossref_primary_10_1016_j_jsv_2018_05_039 crossref_primary_10_1016_j_jweia_2021_104786 crossref_primary_10_1016_j_jweia_2023_105458 crossref_primary_10_1142_S0219455423400345 crossref_primary_10_15802_stp2017_113192 crossref_primary_10_1016_j_jweia_2019_05_006 crossref_primary_10_3390_app12031545 crossref_primary_10_1007_s10494_018_9962_y crossref_primary_10_1016_j_jweia_2018_05_003 crossref_primary_10_1016_j_compfluid_2024_106202 crossref_primary_10_1371_journal_pone_0222151 crossref_primary_10_1299_mej_18_00478 crossref_primary_10_1631_jzus_A2300339 crossref_primary_10_1016_j_jweia_2019_04_003 |
Cites_doi | 10.1146/annurev.fluid.33.1.371 10.1134/S1560354709060057 10.1016/j.jweia.2014.09.006 10.1016/S0376-0421(02)00029-5 10.1007/s11431-012-5101-5 10.1007/BF01435520 10.1016/j.jmmm.2006.01.149 10.1119/1.17356 10.1016/j.jweia.2009.09.002 10.4203/ijrt.3.1.4 10.1007/s001930050108 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7SU 7TB 8FD C1K FR3 H8D KR7 L7M 7ST SOI |
DOI | 10.1016/j.jweia.2016.03.002 |
DatabaseName | CrossRef Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitleList | Environment Abstracts Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-8197 |
EndPage | 58 |
ExternalDocumentID | 10_1016_j_jweia_2016_03_002 S0167610516301222 |
GeographicLocations | China, People's Rep |
GeographicLocations_xml | – name: China, People's Rep |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACKIV ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSR SST SSZ T5K VH1 WUQ XPP ZMT ZY4 ~02 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7SU 7TB 8FD C1K FR3 H8D KR7 L7M 7ST SOI |
ID | FETCH-LOGICAL-c414t-88ffe3d13f6547d5d7d89ea024a4f1c378d7f9f930a3659d790aa1e8308ad36d3 |
IEDL.DBID | .~1 |
ISSN | 0167-6105 |
IngestDate | Sat Oct 26 01:34:16 EDT 2024 Fri Oct 25 00:48:46 EDT 2024 Thu Sep 26 15:54:59 EDT 2024 Fri Feb 23 02:23:56 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Magnetic brake Air gun Moving model rig Compressed air Acceleration Deceleration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-88ffe3d13f6547d5d7d89ea024a4f1c378d7f9f930a3659d790aa1e8308ad36d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dspace.imech.ac.cn/bitstream/311007/60701/1/1-s2.0-S0167610516301222-main.pdf |
PQID | 1808065618 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1877821702 proquest_miscellaneous_1808065618 crossref_primary_10_1016_j_jweia_2016_03_002 elsevier_sciencedirect_doi_10_1016_j_jweia_2016_03_002 |
PublicationCentury | 2000 |
PublicationDate | May 2016 2016-05-00 20160501 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: May 2016 |
PublicationDecade | 2010 |
PublicationTitle | Journal of wind engineering and industrial aerodynamics |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhou, Tian, Zhang, Yang (bib18) 2014; 135 Doi, Ogawa, Masubuchi, Kaku (bib2) 2010; 98 Demmenie E., De Bruin A., Klaver E., 1998. Experimental pressure wave research at NLR for high-speed rail tunnels, National Aerospace Laboratory Nlr, Technical Publication TP98375 Sasoh, Matsuoka, Nakashio (bib12) 1998; 8 Johnson, Dalley (bib5) 2002 Raghunathan, Kim, Setoguchi (bib11) 2002; 38 Tian (bib15) 2007; 99–114 Ma, Shiau (bib7) 2010; 3 Jou, Shiau, Sun (bib6) 2006; 304 Jirout, Mack, Lugner (bib4) 2009; 14 Yang, Song, Li, Zhang, Yang (bib17) 2013; 56 Takayama, Sasoh, Onodera, Kaneko, Matsui (bib14) 1995; 5 Peters (bib10) 1983 Schetz (bib13) 2001; 33 Endo, Meguro, Ota, Maeno (bib3) 2014; 14 Ozawa S., Maeda T., 1988. Model experiment on reduction of micro-pressure wave radiated from exit. In: Proceedings of the International Symposium on Scale Modeling, The Japan Society of Mechanical Engineers, Tokyo, July, pp. 18–22 Wagner, Horstmann, Herzog, Jakubek, Rutschmann (bib16) 2014; 3 Maclatchy, Backman, Bogan (bib8) 1993; 60 10.1016/j.jweia.2016.03.002_bib1 Raghunathan (10.1016/j.jweia.2016.03.002_bib11) 2002; 38 Takayama (10.1016/j.jweia.2016.03.002_bib14) 1995; 5 Johnson (10.1016/j.jweia.2016.03.002_bib5) 2002 Sasoh (10.1016/j.jweia.2016.03.002_bib12) 1998; 8 Tian (10.1016/j.jweia.2016.03.002_bib15) 2007; 99–114 Yang (10.1016/j.jweia.2016.03.002_bib17) 2013; 56 10.1016/j.jweia.2016.03.002_bib9 Endo (10.1016/j.jweia.2016.03.002_bib3) 2014; 14 Ma (10.1016/j.jweia.2016.03.002_bib7) 2010; 3 Zhou (10.1016/j.jweia.2016.03.002_bib18) 2014; 135 Doi (10.1016/j.jweia.2016.03.002_bib2) 2010; 98 Jou (10.1016/j.jweia.2016.03.002_bib6) 2006; 304 Wagner (10.1016/j.jweia.2016.03.002_bib16) 2014; 3 Schetz (10.1016/j.jweia.2016.03.002_bib13) 2001; 33 Jirout (10.1016/j.jweia.2016.03.002_bib4) 2009; 14 Maclatchy (10.1016/j.jweia.2016.03.002_bib8) 1993; 60 Peters (10.1016/j.jweia.2016.03.002_bib10) 1983 |
References_xml | – volume: 99–114 start-page: 268 year: 2007 end-page: 286 ident: bib15 publication-title: Train Aerodynamics contributor: fullname: Tian – volume: 3 start-page: 83 year: 2014 end-page: 104 ident: bib16 article-title: Shape optimization of train heads with respect to the aerodynamic loads on track side objects publication-title: Int. J. Railw. Technol. contributor: fullname: Rutschmann – start-page: 123 year: 2002 end-page: 135 ident: bib5 article-title: TRANSAERO – A European Initiative on Transient Aerodynamics for Railway System Optimisation contributor: fullname: Dalley – start-page: 308 year: 1983 end-page: 341 ident: bib10 article-title: Aerodynamics of high speed trains and Maglev vehicles publication-title: Impact of Aerodynamics on Vehicle Design contributor: fullname: Peters – volume: 135 start-page: 1 year: 2014 end-page: 9 ident: bib18 article-title: Pressure transients induced by a high speed train passing through a station publication-title: J. Wind Eng. Ind. Aerodyn. contributor: fullname: Yang – volume: 60 start-page: 1096 year: 1993 end-page: 1101 ident: bib8 article-title: A quantitative magnetic braking experiment publication-title: Am. J. Phys. contributor: fullname: Bogan – volume: 98 year: 2010 ident: bib2 article-title: Development of an experimental facility for measuring pressure waves generated by high-speed trains publication-title: J. Wind Eng. Ind. Aerodyn. contributor: fullname: Kaku – volume: 3 start-page: 19 year: 2010 end-page: 37 ident: bib7 article-title: The design of eddy-current magnet brakes publication-title: Trans. Can. Soc. Mech. Eng. contributor: fullname: Shiau – volume: 304 start-page: e234 year: 2006 end-page: e236 ident: bib6 article-title: Design of a magnetic braking system publication-title: J. Magn. Magn. Mater. contributor: fullname: Sun – volume: 33 start-page: 371 year: 2001 end-page: 414 ident: bib13 article-title: Aerodynamics of high speed trains publication-title: Annu. Rev. Fluid Mech. contributor: fullname: Schetz – volume: 56 start-page: 642 year: 2013 end-page: 647 ident: bib17 article-title: Train model acceleration and deceleration publication-title: Sci. China Tech. Sci. contributor: fullname: Yang – volume: 38 start-page: 469 year: 2002 end-page: 514 ident: bib11 article-title: Aerodynamics of high-speed railway train publication-title: Prog. Aerosp. Sci. contributor: fullname: Setoguchi – volume: 5 start-page: 127 year: 1995 end-page: 138 ident: bib14 article-title: Experimental investigation on tunnel sonic boom publication-title: Shock Waves contributor: fullname: Matsui – volume: 14 start-page: s42 year: 2014 end-page: s47 ident: bib3 article-title: Small model experiment on the gradient of pressure wave by entering the tunnel of a conventional limited express publication-title: J. JSEM contributor: fullname: Maeno – volume: 14 start-page: 673 year: 2009 end-page: 681 ident: bib4 article-title: Non-smooth dynamics of a magnetic track brake publication-title: Regul. Chaotic Dyn. contributor: fullname: Lugner – volume: 8 start-page: 149 year: 1998 end-page: 159 ident: bib12 article-title: Attenuation of weak shock waves along pseudo perforated walls publication-title: Shock Waves contributor: fullname: Nakashio – ident: 10.1016/j.jweia.2016.03.002_bib9 – volume: 33 start-page: 371 year: 2001 ident: 10.1016/j.jweia.2016.03.002_bib13 article-title: Aerodynamics of high speed trains publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.33.1.371 contributor: fullname: Schetz – volume: 14 start-page: 673 year: 2009 ident: 10.1016/j.jweia.2016.03.002_bib4 article-title: Non-smooth dynamics of a magnetic track brake publication-title: Regul. Chaotic Dyn. doi: 10.1134/S1560354709060057 contributor: fullname: Jirout – volume: 99–114 start-page: 268 year: 2007 ident: 10.1016/j.jweia.2016.03.002_bib15 contributor: fullname: Tian – volume: 135 start-page: 1 year: 2014 ident: 10.1016/j.jweia.2016.03.002_bib18 article-title: Pressure transients induced by a high speed train passing through a station publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2014.09.006 contributor: fullname: Zhou – volume: 38 start-page: 469 year: 2002 ident: 10.1016/j.jweia.2016.03.002_bib11 article-title: Aerodynamics of high-speed railway train publication-title: Prog. Aerosp. Sci. doi: 10.1016/S0376-0421(02)00029-5 contributor: fullname: Raghunathan – volume: 14 start-page: s42 year: 2014 ident: 10.1016/j.jweia.2016.03.002_bib3 article-title: Small model experiment on the gradient of pressure wave by entering the tunnel of a conventional limited express publication-title: J. JSEM contributor: fullname: Endo – ident: 10.1016/j.jweia.2016.03.002_bib1 – volume: 56 start-page: 642 year: 2013 ident: 10.1016/j.jweia.2016.03.002_bib17 article-title: Train model acceleration and deceleration publication-title: Sci. China Tech. Sci. doi: 10.1007/s11431-012-5101-5 contributor: fullname: Yang – start-page: 123 year: 2002 ident: 10.1016/j.jweia.2016.03.002_bib5 contributor: fullname: Johnson – volume: 3 start-page: 19 year: 2010 ident: 10.1016/j.jweia.2016.03.002_bib7 article-title: The design of eddy-current magnet brakes publication-title: Trans. Can. Soc. Mech. Eng. contributor: fullname: Ma – start-page: 308 year: 1983 ident: 10.1016/j.jweia.2016.03.002_bib10 article-title: Aerodynamics of high speed trains and Maglev vehicles contributor: fullname: Peters – volume: 5 start-page: 127 year: 1995 ident: 10.1016/j.jweia.2016.03.002_bib14 article-title: Experimental investigation on tunnel sonic boom publication-title: Shock Waves doi: 10.1007/BF01435520 contributor: fullname: Takayama – volume: 304 start-page: e234 year: 2006 ident: 10.1016/j.jweia.2016.03.002_bib6 article-title: Design of a magnetic braking system publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.01.149 contributor: fullname: Jou – volume: 60 start-page: 1096 year: 1993 ident: 10.1016/j.jweia.2016.03.002_bib8 article-title: A quantitative magnetic braking experiment publication-title: Am. J. Phys. doi: 10.1119/1.17356 contributor: fullname: Maclatchy – volume: 98 year: 2010 ident: 10.1016/j.jweia.2016.03.002_bib2 article-title: Development of an experimental facility for measuring pressure waves generated by high-speed trains publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2009.09.002 contributor: fullname: Doi – volume: 3 start-page: 83 year: 2014 ident: 10.1016/j.jweia.2016.03.002_bib16 article-title: Shape optimization of train heads with respect to the aerodynamic loads on track side objects publication-title: Int. J. Railw. Technol. doi: 10.4203/ijrt.3.1.4 contributor: fullname: Wagner – volume: 8 start-page: 149 year: 1998 ident: 10.1016/j.jweia.2016.03.002_bib12 article-title: Attenuation of weak shock waves along pseudo perforated walls publication-title: Shock Waves doi: 10.1007/s001930050108 contributor: fullname: Sasoh |
SSID | ssj0007473 |
Score | 2.4149988 |
Snippet | To achieve an accurate aerodynamic optimization of the outline of a high speed train and an experimental simulation of the meeting of two trains, especially in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 50 |
SubjectTerms | Acceleration Aerodynamics Air gun Brakes Compressed air Deceleration High speed trains Magnetic brake Moving model rig Railway tracks Railway tunnels Scale (ratio) Trains |
Title | A moving model rig with a scale ratio of 1/8 for high speed train aerodynamics |
URI | https://dx.doi.org/10.1016/j.jweia.2016.03.002 https://search.proquest.com/docview/1808065618 https://search.proquest.com/docview/1877821702 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GBE8Wts0bZMehzim4i462C2kywtsYDfchjf_dl_SFj_AHTy2pPD45fX3XpKX3yPkyghIYx0XAU8MLlBkJIMiZhAwyAop7SSHwl1wfhpmg1HyME7HLXLb3IVxZZU191ec7tm6fhPWaIaL6TR8dgX0GPxTzCjc-ZDj4QTDH_r0zcdXmQemy7zR93ajG-UhX-M1e4epEx9iWaV0Gv8VnX7xtA8-_T2yW2eNtFcZtk9aUB6QnW9agodk2KOvfneA-uY2FFfd1G2yUk2XOA9A_VTTuaUslBRTVeqUiulygeGL-kYRVAOyadWhfnlERv27l9tBUDdLCCYJS1YBAmuBG8ataydsUiOMzEFjCNaJZRMupBE2tzmPNM_S3Ig80pqB5JHUhmeGH5N2OS_hhFBto0KnQuPvKp2cWp6aWBsLAnD1llvbIdcNSGpRaWKoplhspjymymGqIq4Q0w7JGiDVj6lVyNqbP7xsYFfo9O4kQ5cwXy8Vc2qYaBmTm8YIzH6YiOLT_xpwRrbdU1XfeE7aq7c1XGAOsiq63sm6ZKt3_zgYfgKjD9p8 |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA3DPagP4ifOzwg-WtY0bZM8juHo3NYXN9hbSJcENrAbbsO_700_RAX34GvbQDhJzj1Jb85F6FEzEwUqyDwaatigcJ97WUCMR0yccW5nwmTugvMojZNJ-DKNpg3Ure_CuLTKivtLTi_YunrSrtBsr-bz9qtLoIfgH4GicP-HgIeboAYErM5mpz9I0i9CBsVMa4tv16A2HyrSvBYfZu78h0hcmp0GfwWoX1RdxJ_eMTqqhCPulH07QQ2Tn6LDb3aCZyjt4LfigAAX9W0wbLyxO2fFCq9hKAwuRhsvLSZtjkGtYmdWjNcriGC4qBWBlQFCLYvUr8_RpPc87iZeVS_Bm4Uk3HiArTVUE2pdRWEdaaa5MAqisAotmVHGNbPCCuorGkdCM-ErRQynPleaxppeoL18mZtLhJX1MxUxBSuWO0c1EelAaWuYgQ2csLaFnmqQ5Kq0xZB1vthCFphKh6n0qQRMWyiugZQ_RlcCce9u-FDDLmHeu58ZKjfL7VoSZ4gJPSN81zcMBBBhfnD13w7co_1kPBrKYT8dXKMD96ZMd7xBe5v3rbkFSbLJ7qop9wk2qt0w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+moving+model+rig+with+a+scale+ratio+of+1%2F8+for+high+speed+train+aerodynamics&rft.jtitle=Journal+of+wind+engineering+and+industrial+aerodynamics&rft.au=Yang%2C+Qian-Suo&rft.au=Song%2C+Jun-Hao&rft.au=Yang%2C+Guo-Wei&rft.date=2016-05-01&rft.issn=0167-6105&rft.volume=152&rft.spage=50&rft.epage=58&rft_id=info:doi/10.1016%2Fj.jweia.2016.03.002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6105&client=summon |