Techno-economic assessment of long-distance supply chains of energy carriers: Comparing hydrogen and iron for carbon-free electricity generation

The effective usage of renewable energy sources requires ways of storage and delivery to balance energy demand and availability divergences. Carbon-free chemical energy carriers are proposed solutions, converting clean electricity into stable media for storage, long-distance energy trade and on-dema...

Full description

Saved in:
Bibliographic Details
Published inApplications in energy and combustion science Vol. 14; p. 100128
Main Authors Neumann, Jannik, da Rocha, Rodolfo Cavaliere, Debiagi, Paulo, Scholtissek, Arne, Dammel, Frank, Stephan, Peter, Hasse, Christian
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2023
Elsevier
Subjects
Online AccessGet full text
ISSN2666-352X
2666-352X
DOI10.1016/j.jaecs.2023.100128

Cover

Loading…
Abstract The effective usage of renewable energy sources requires ways of storage and delivery to balance energy demand and availability divergences. Carbon-free chemical energy carriers are proposed solutions, converting clean electricity into stable media for storage, long-distance energy trade and on-demand electricity generation. Among them, hydrogen (H2) is noteworthy, being the subject of significant investment and research. Metal fuels, such as iron (Fe), represent another promising solution for a clean energy supply, but establishing an interconnected ecosystem still requires considerable research and development. This work proposes a model to assess the supply chain characteristics of hydrogen and iron as clean, carbon-free energy carriers and then examines case studies of possible trade routes between the potential energy exporters Morocco, Saudi Arabia, and Australia and the energy importers Germany and Japan. The work comprises the assessment of economic (levelized cost of electricity - LCOE), energetic (thermodynamic efficiency) and environmental (CO2 emissions) aspects, which are quantified by the comprehensive model accounting for the most critical processes in the supply chain. The assessment is complemented by sensitivity and uncertainty analyses to identify the main cost drivers. Iron is shown to be lower-cost and more efficient to transport in longer routes and for long-term storage, but potentially more expensive and less efficient than H2 to produce and convert. Uncertainties related to the supply chain specifications and the sensitivity to the used variables indicate that the path to viable energy carriers fundamentally depends on efficient synthesis, conversion, storage, and transport. A break-even analysis demonstrated that clean energy carriers could be competitive with conventional energy carriers at low renewable energy prices, while carbon taxes might be needed to level the playing field. Thereby, green iron shows potential to become an important energy carrier for long-distance trade in a globalized clean energy market. •H2 and iron are promising energy carriers, adoption depends on viable ecosystems.•Techno-economic assessment of long-distance supply chains (efficiency, cost, CO2).•Good production location with access to cheap renewable energy of vital importance.•Additional production steps for iron overcompensated by more favorable transport.•Cost-competitiveness of H2/iron to fossil fuels likely depends on CO2 taxation.
AbstractList The effective usage of renewable energy sources requires ways of storage and delivery to balance energy demand and availability divergences. Carbon-free chemical energy carriers are proposed solutions, converting clean electricity into stable media for storage, long-distance energy trade and on-demand electricity generation. Among them, hydrogen (H2) is noteworthy, being the subject of significant investment and research. Metal fuels, such as iron (Fe), represent another promising solution for a clean energy supply, but establishing an interconnected ecosystem still requires considerable research and development. This work proposes a model to assess the supply chain characteristics of hydrogen and iron as clean, carbon-free energy carriers and then examines case studies of possible trade routes between the potential energy exporters Morocco, Saudi Arabia, and Australia and the energy importers Germany and Japan. The work comprises the assessment of economic (levelized cost of electricity - LCOE), energetic (thermodynamic efficiency) and environmental (CO2 emissions) aspects, which are quantified by the comprehensive model accounting for the most critical processes in the supply chain. The assessment is complemented by sensitivity and uncertainty analyses to identify the main cost drivers. Iron is shown to be lower-cost and more efficient to transport in longer routes and for long-term storage, but potentially more expensive and less efficient than H2 to produce and convert. Uncertainties related to the supply chain specifications and the sensitivity to the used variables indicate that the path to viable energy carriers fundamentally depends on efficient synthesis, conversion, storage, and transport. A break-even analysis demonstrated that clean energy carriers could be competitive with conventional energy carriers at low renewable energy prices, while carbon taxes might be needed to level the playing field. Thereby, green iron shows potential to become an important energy carrier for long-distance trade in a globalized clean energy market.
The effective usage of renewable energy sources requires ways of storage and delivery to balance energy demand and availability divergences. Carbon-free chemical energy carriers are proposed solutions, converting clean electricity into stable media for storage, long-distance energy trade and on-demand electricity generation. Among them, hydrogen (H2) is noteworthy, being the subject of significant investment and research. Metal fuels, such as iron (Fe), represent another promising solution for a clean energy supply, but establishing an interconnected ecosystem still requires considerable research and development. This work proposes a model to assess the supply chain characteristics of hydrogen and iron as clean, carbon-free energy carriers and then examines case studies of possible trade routes between the potential energy exporters Morocco, Saudi Arabia, and Australia and the energy importers Germany and Japan. The work comprises the assessment of economic (levelized cost of electricity - LCOE), energetic (thermodynamic efficiency) and environmental (CO2 emissions) aspects, which are quantified by the comprehensive model accounting for the most critical processes in the supply chain. The assessment is complemented by sensitivity and uncertainty analyses to identify the main cost drivers. Iron is shown to be lower-cost and more efficient to transport in longer routes and for long-term storage, but potentially more expensive and less efficient than H2 to produce and convert. Uncertainties related to the supply chain specifications and the sensitivity to the used variables indicate that the path to viable energy carriers fundamentally depends on efficient synthesis, conversion, storage, and transport. A break-even analysis demonstrated that clean energy carriers could be competitive with conventional energy carriers at low renewable energy prices, while carbon taxes might be needed to level the playing field. Thereby, green iron shows potential to become an important energy carrier for long-distance trade in a globalized clean energy market. •H2 and iron are promising energy carriers, adoption depends on viable ecosystems.•Techno-economic assessment of long-distance supply chains (efficiency, cost, CO2).•Good production location with access to cheap renewable energy of vital importance.•Additional production steps for iron overcompensated by more favorable transport.•Cost-competitiveness of H2/iron to fossil fuels likely depends on CO2 taxation.
ArticleNumber 100128
Author Hasse, Christian
Dammel, Frank
Neumann, Jannik
Stephan, Peter
Debiagi, Paulo
Scholtissek, Arne
da Rocha, Rodolfo Cavaliere
Author_xml – sequence: 1
  givenname: Jannik
  surname: Neumann
  fullname: Neumann, Jannik
  organization: Technical University of Darmstadt, Department of Mechanical Engineering, Institute for Technical Thermodynamics, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
– sequence: 2
  givenname: Rodolfo Cavaliere
  surname: da Rocha
  fullname: da Rocha, Rodolfo Cavaliere
  organization: Technical University of Darmstadt, Department of Mechanical Engineering, Simulation of Reactive Thermo-Fluid Systems, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
– sequence: 3
  givenname: Paulo
  orcidid: 0000-0002-7678-824X
  surname: Debiagi
  fullname: Debiagi, Paulo
  organization: Technical University of Darmstadt, Department of Mechanical Engineering, Simulation of Reactive Thermo-Fluid Systems, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
– sequence: 4
  givenname: Arne
  surname: Scholtissek
  fullname: Scholtissek, Arne
  email: scholtissek@stfs.tu-darmstadt.de
  organization: Technical University of Darmstadt, Department of Mechanical Engineering, Simulation of Reactive Thermo-Fluid Systems, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
– sequence: 5
  givenname: Frank
  surname: Dammel
  fullname: Dammel, Frank
  organization: Technical University of Darmstadt, Department of Mechanical Engineering, Institute for Technical Thermodynamics, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
– sequence: 6
  givenname: Peter
  surname: Stephan
  fullname: Stephan, Peter
  organization: Technical University of Darmstadt, Department of Mechanical Engineering, Institute for Technical Thermodynamics, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
– sequence: 7
  givenname: Christian
  surname: Hasse
  fullname: Hasse, Christian
  organization: Technical University of Darmstadt, Department of Mechanical Engineering, Simulation of Reactive Thermo-Fluid Systems, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
BookMark eNp9Uc2KFDEYDLKC67pP4CUv0GP-OpMWPMig68LCXnbBW_g6-bonTU8yJK0wb-Ejm55REA-byxcqXxWpqrfkKqaIhLznbMMZ1x-mzQToykYwISvCuDCvyLXQWjeyFd-v_rm_IbelTIwxYTiXsrsmv57Q7WNq0KWYDsFRKAVLOWBcaBronOLY-FAWiA5p-XE8zifq9hBiWZ8xYh4rADkHzOUj3aXDEXKII92ffE4jRgrR05BTpEPK62afYjNkRIozuiUHF5YTHVclWEKK78jrAeaCt3_mDXn--uVp9615eLy7331-aJziammMbo3p1rNlivPOtz3ybe85AhiQApQzxisAJtvtFqAHZaQEpQepYTC9vCH3F12fYLLHHA6QTzZBsGcg5dFCXoKb0XoYmOfgW69BMdOD6Pqe914L3rVaqqrVXbRcTqVkHGw1dXazZAiz5cyuTdnJnpuya1P20lTlyv-4f__yMuvThYU1op81e1tcwNqRD7mmWj2EF_m_ARS4s4I
CitedBy_id crossref_primary_10_1016_j_apenergy_2023_120950
crossref_primary_10_1016_j_ijhydene_2024_10_163
crossref_primary_10_1016_j_ijhydene_2023_06_180
Cites_doi 10.1016/j.ijhydene.2010.02.109
10.3390/jmse7050130
10.1016/j.pecs.2018.07.001
10.3390/en13030758
10.1021/acs.est.5b03052
10.1016/j.jclepro.2019.118466
10.3390/en14217395
10.1016/j.pecs.2018.05.001
10.1016/j.apenergy.2015.09.037
10.1039/C7SE00004A
10.1016/j.ijhydene.2019.03.277
10.1016/j.ijhydene.2018.12.156
10.1016/j.ijhydene.2020.04.181
10.1021/acs.energyfuels.0c03685
10.1016/j.proci.2020.07.058
10.1016/j.rser.2018.09.027
10.1039/D0SE00067A
10.1039/D2EE00099G
10.1016/j.ijhydene.2009.04.062
10.1057/mel.2008.8
10.1016/j.jclepro.2018.08.279
10.1371/journal.pone.0281380
10.1016/j.proci.2018.09.029
10.1016/j.apenergy.2023.120950
10.1016/j.ijhydene.2007.06.032
10.1016/j.egypro.2011.02.122
10.1016/j.ijhydene.2022.04.156
10.1002/ese3.850
10.1016/j.rser.2022.112579
10.1016/j.combustflame.2021.111801
10.1016/S0360-3199(97)00032-3
10.1016/j.applthermaleng.2019.114736
10.1016/j.ijhydene.2019.04.112
10.1016/j.ijhydene.2020.09.017
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jaecs.2023.100128
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2666-352X
ExternalDocumentID oai_doaj_org_article_daf0d1ad5d6a408ba29bb1bd62195634
10_1016_j_jaecs_2023_100128
S2666352X23000171
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
AEXQZ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-8658899999704119d5be17bd1eaa8a32a4c88d4aa03577aaba4833a46f36af8b3
IEDL.DBID DOA
ISSN 2666-352X
IngestDate Wed Aug 27 01:25:53 EDT 2025
Tue Jul 01 03:47:12 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Fri Feb 23 02:38:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Carbon-free
Energy transport
Energy carriers
Hydrogen
Metal fuel
Energy storage
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-8658899999704119d5be17bd1eaa8a32a4c88d4aa03577aaba4833a46f36af8b3
ORCID 0000-0002-7678-824X
OpenAccessLink https://doaj.org/article/daf0d1ad5d6a408ba29bb1bd62195634
ParticipantIDs doaj_primary_oai_doaj_org_article_daf0d1ad5d6a408ba29bb1bd62195634
crossref_citationtrail_10_1016_j_jaecs_2023_100128
crossref_primary_10_1016_j_jaecs_2023_100128
elsevier_sciencedirect_doi_10_1016_j_jaecs_2023_100128
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Applications in energy and combustion science
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References NCE Maritime CleanTech (b106) 2016
Gillespie (b94) 2022
Ember (b39) 2022
Abrahamse (b120) 2021
ETN GLOBAL (b49) 2020
Mignard, Pritchard (b59) 2007; 32
Investing.com (b43) 2022
European Parliament (b122) 2022
Fikri, Hendrarsakti, Sambodho, Felayati, Octaviani, Giranza (b121) 2018
IEA (b46) 2021
Ohlig, Decker (b67) 2014
Al Ghafri, Munro, Cardella, Funke, Notardonato, Trusler (b65) 2022; 15
Janicka, Debiagi, Scholtissek, Dreizler, Epple, Pawellek (b20) 2023
Masson-Delmotte, Zhai, Pirani, Connors, Péan, Berger (b3) 2021
.
IRENA (b95) 2022
Mulligan (b110) 2008; 10
US DRIVE (b115) 2013
Alkhaledi, Sampath, Pilidis (b118) 2021
Jadhav (b116) 2010
Reassessing the efficiency penalty from carbon capture in coal-fired power plants. Environ Sci Technol 2015;49:12576–84.
Thyssenkrupp (b57) 2021
Facchini, Mossa, Mummolo, Vitti (b99) 2021; 14
HYBRIT (b56) 2020
Commonwealth of Australia (b52) 2019
ArcelorMittal (b55) 2019
Vogl, Åhman, Nilsson (b61) 2018; 203
IEA (b19) 2020
Kobayashi, Hayakawa, Somarathne, Okafor (b54) 2019; 37
Raj, Suman, Ghandehariun, Kumar, Tiwari (b103) 2016; 18
URL
Office for the Safety of Nuclear Waste Management (b87) 2022
Majid, Mehdi (b68) 2022
Royaume du Maroc (b89) 2021
Kawasaki Heavy Industries, Ltd. (b69) 2019
Hazenberg, van Oijen (b14) 2021; 38
Eindhoven University of Technology, Metalot, Pometon, EM Group, RISE ETC, Shell (b31) 2022
Dietrich, Dammel, Stephan (b85) 2021; 9
Bhaskar, Assadi, Nikpey Somehsaraei (b62) 2020; 13
MAN Diesel & Turbo (b114) 2014
National Institute of Standards and Technology. 2021. Eds. P. J. Linstrom and W. G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Gaithersburg MD, 20899
European Commission (b37) 2022
Proactiveinvestors U. K. (b73) 2022
Investing.com (b41) 2023
FCH JU (b45) 2019
Lorente, Cai, Peña, Herguido, Brandon (b60) 2009; 34
IGU – International Gas Union Uniona (b63) 2022
Krasae-in, Stang, Neksa (b66) 2010; 35
BP (b2) 2021
General Electrics (b51) 2022
Global Energy Monitor (b90) 2022
Clifford Chance (b53) 2022
van der Meulen, Leeuwen, Zondag (b30) 2022
Zhang, Meerman, Benders, Faaij (b64) 2020; 166
European Commission (b36) 2021
Dreizler, Hasse, Keuth (b58) 2022
Valera-Medina, Xiao, Owen-Jones, David, Bowen (b10) 2018; 69
IEA (b88) 2021
Swanger (b81) 2022
MAN Diesel & Turbo (b108) 2014
National Minerals Information Center (b92) 2022
Baird Maritime (b70) 2021
Bergthorson (b8) 2018; 68
Crandall, Brix, Weber, Jiao (b22) 2022
Fasihi, Breyer (b98) 2020; 243
IEA (b1) 2021
World Bank (b38) 2020
Ship & Bunker (b109) 2022
Petitpas (b82) 2018
Valera-Medina, Amer-Hatem, Azad, Dedoussi, de Joannon, Fernandes (b11) 2021; 35
IEA (b34) 2021
Gathmann (b74) 2022
Air Liquide (b77) 2016
UNFCCC (b4) 2021
IEA (b47) 2021
Bank (b96) 2022
Debiagi, Rocha, Scholtissek, Janicka, Hasse (b15) 2022; 165
Umwelt Bundesamt (b111) 2016
Ember (b35) 2022
Department of Industry, Science, Energy and Resources, Australian Government (b102) 2021
Heuser, Ryberg, Grube, Robinius, Stolten (b21) 2019; 44
Kim, Park, Roh, Chun (b78) 2019; 7
Bergthorson, Goroshin, Soo, Julien, Palecka, Frost (b12) 2015; 160
Ishimoto, Voldsund, Nekså, Roussanaly, Berstad, Gardarsdottir (b26) 2020; 45
Popa, Edwards, Aandi (b124) 2011; 4
Johnston, Ali Khan, Amal, Daiyan, MacGill (b18) 2022
IRENA (b40) 2020
Kawasaki Heavy Industries, Ltd. (b71) 2022
Ning, Shoshin, van Stiphout, van Oijen, Finotello, de Goey (b16) 2022; 236
European External Action Service (b91) 2021
IEA (b9) 2019
Investing.com (b42) 2023
Kolaczkowski (b6) 2022
Martin, Schuler, Voigt, Schmidt (b101) 2013
Wijayanta, Oda, Purnomo, Kashiwagi, Aziz (b25) 2019; 44
Bejan, Tsatsaronis, Moran (b84) 1996
Christoph Kost (b97) 2021
Lee, Shao, Lee, Roh, Chun, Kang (b83) 2019; 44
IEA Greenhouse Gas R&D Programme (b125) 2012
Dirven, Deen, Golombok (b29) 2018; 30
Fesmire, Swanger (b80) 2021
Connelly, Penev, Elgowainy, Hunter (b105) 2019
Pospíšil, Charvát, Arsenyeva, Klimeš, Špiláček, Klemeš (b76) 2019; 99
World Bank Group (b86) 2020
ABE (b117) 1998; 23
IEA- Energy Technology Network (b100) 2010
Wang, Jens, Mavins, Moultak, Schimmel, van der Leun (b119) 2021
Al-Breiki, Bicer (b27) 2020; 45
Import options for chemical energy carriers from renewable sources to Germany. PLoS One 2023;18:e0262340.
C-Job Naval Architects (b72) 2022
Investing.com (b44) 2023
Fesmire (b79) 2021
Mitsubishi Power (b50) 2018
Smith (b5) 2022
Hank, Sternberg, Köppel, Holst, Smolinka, Schaadt (b23) 2020; 4
Hyundai Heavy Industries Co., Ltd. (b112) 2022
Julien, Bergthorson (b13) 2017; 1
BHP (b93) 2022
IRENA (b24) 2022
Kuhn, Düll, Rohlfs, Tischer, Börnhorst, Deutschmann (b28) 2022; 12
United States Department of Energy (b48) 2015
SRU (b7) 2021
Lett, Ruppel (b33) 2004
Ernst, Krishnamoorthy, Sier, Marquez (b75) 2008
Vos, Douma, van den Noort (b104) 2020
Genco Shipping & Trading (b113) 2017
Midrex Technologies, Inc. (b107) 2020
(Retrieved 28 September 2021).
FCH JU (10.1016/j.jaecs.2023.100128_b45) 2019
Valera-Medina (10.1016/j.jaecs.2023.100128_b11) 2021; 35
10.1016/j.jaecs.2023.100128_b123
European External Action Service (10.1016/j.jaecs.2023.100128_b91) 2021
Debiagi (10.1016/j.jaecs.2023.100128_b15) 2022; 165
ABE (10.1016/j.jaecs.2023.100128_b117) 1998; 23
Alkhaledi (10.1016/j.jaecs.2023.100128_b118) 2021
IRENA (10.1016/j.jaecs.2023.100128_b40) 2020
SRU (10.1016/j.jaecs.2023.100128_b7) 2021
Hank (10.1016/j.jaecs.2023.100128_b23) 2020; 4
Investing.com (10.1016/j.jaecs.2023.100128_b42) 2023
Bejan (10.1016/j.jaecs.2023.100128_b84) 1996
United States Department of Energy (10.1016/j.jaecs.2023.100128_b48) 2015
IEA (10.1016/j.jaecs.2023.100128_b46) 2021
ArcelorMittal (10.1016/j.jaecs.2023.100128_b55) 2019
Mulligan (10.1016/j.jaecs.2023.100128_b110) 2008; 10
Johnston (10.1016/j.jaecs.2023.100128_b18) 2022
Martin (10.1016/j.jaecs.2023.100128_b101) 2013
Christoph Kost (10.1016/j.jaecs.2023.100128_b97) 2021
General Electrics (10.1016/j.jaecs.2023.100128_b51) 2022
IEA (10.1016/j.jaecs.2023.100128_b19) 2020
Julien (10.1016/j.jaecs.2023.100128_b13) 2017; 1
Eindhoven University of Technology (10.1016/j.jaecs.2023.100128_b31) 2022
Ernst (10.1016/j.jaecs.2023.100128_b75) 2008
Global Energy Monitor (10.1016/j.jaecs.2023.100128_b90) 2022
Mignard (10.1016/j.jaecs.2023.100128_b59) 2007; 32
Vogl (10.1016/j.jaecs.2023.100128_b61) 2018; 203
MAN Diesel & Turbo (10.1016/j.jaecs.2023.100128_b108) 2014
Ohlig (10.1016/j.jaecs.2023.100128_b67) 2014
Krasae-in (10.1016/j.jaecs.2023.100128_b66) 2010; 35
Hazenberg (10.1016/j.jaecs.2023.100128_b14) 2021; 38
Kawasaki Heavy Industries, Ltd. (10.1016/j.jaecs.2023.100128_b69) 2019
Petitpas (10.1016/j.jaecs.2023.100128_b82) 2018
Fasihi (10.1016/j.jaecs.2023.100128_b98) 2020; 243
US DRIVE (10.1016/j.jaecs.2023.100128_b115) 2013
IEA (10.1016/j.jaecs.2023.100128_b9) 2019
IGU – International Gas Union Uniona (10.1016/j.jaecs.2023.100128_b63) 2022
European Commission (10.1016/j.jaecs.2023.100128_b37) 2022
Gathmann (10.1016/j.jaecs.2023.100128_b74) 2022
World Bank (10.1016/j.jaecs.2023.100128_b38) 2020
Investing.com (10.1016/j.jaecs.2023.100128_b41) 2023
European Parliament (10.1016/j.jaecs.2023.100128_b122) 2022
Lett (10.1016/j.jaecs.2023.100128_b33) 2004
Ning (10.1016/j.jaecs.2023.100128_b16) 2022; 236
Al-Breiki (10.1016/j.jaecs.2023.100128_b27) 2020; 45
Bhaskar (10.1016/j.jaecs.2023.100128_b62) 2020; 13
Office for the Safety of Nuclear Waste Management (10.1016/j.jaecs.2023.100128_b87) 2022
IEA (10.1016/j.jaecs.2023.100128_b1) 2021
Raj (10.1016/j.jaecs.2023.100128_b103) 2016; 18
HYBRIT (10.1016/j.jaecs.2023.100128_b56) 2020
Dietrich (10.1016/j.jaecs.2023.100128_b85) 2021; 9
Zhang (10.1016/j.jaecs.2023.100128_b64) 2020; 166
Lorente (10.1016/j.jaecs.2023.100128_b60) 2009; 34
Ember (10.1016/j.jaecs.2023.100128_b35) 2022
World Bank Group (10.1016/j.jaecs.2023.100128_b86) 2020
IEA (10.1016/j.jaecs.2023.100128_b34) 2021
Dreizler (10.1016/j.jaecs.2023.100128_b58) 2022
National Minerals Information Center (10.1016/j.jaecs.2023.100128_b92) 2022
Kim (10.1016/j.jaecs.2023.100128_b78) 2019; 7
Swanger (10.1016/j.jaecs.2023.100128_b81) 2022
Facchini (10.1016/j.jaecs.2023.100128_b99) 2021; 14
Wijayanta (10.1016/j.jaecs.2023.100128_b25) 2019; 44
Umwelt Bundesamt (10.1016/j.jaecs.2023.100128_b111) 2016
MAN Diesel & Turbo (10.1016/j.jaecs.2023.100128_b114) 2014
Clifford Chance (10.1016/j.jaecs.2023.100128_b53) 2022
Baird Maritime (10.1016/j.jaecs.2023.100128_b70) 2021
Connelly (10.1016/j.jaecs.2023.100128_b105) 2019
Fesmire (10.1016/j.jaecs.2023.100128_b80) 2021
Majid (10.1016/j.jaecs.2023.100128_b68) 2022
Genco Shipping & Trading (10.1016/j.jaecs.2023.100128_b113) 2017
Fikri (10.1016/j.jaecs.2023.100128_b121) 2018
Vos (10.1016/j.jaecs.2023.100128_b104) 2020
Kuhn (10.1016/j.jaecs.2023.100128_b28) 2022; 12
Hyundai Heavy Industries Co., Ltd. (10.1016/j.jaecs.2023.100128_b112) 2022
Bergthorson (10.1016/j.jaecs.2023.100128_b8) 2018; 68
Bank (10.1016/j.jaecs.2023.100128_b96) 2022
10.1016/j.jaecs.2023.100128_b17
Ember (10.1016/j.jaecs.2023.100128_b39) 2022
Commonwealth of Australia (10.1016/j.jaecs.2023.100128_b52) 2019
Fesmire (10.1016/j.jaecs.2023.100128_b79) 2021
Bergthorson (10.1016/j.jaecs.2023.100128_b12) 2015; 160
Air Liquide (10.1016/j.jaecs.2023.100128_b77) 2016
Ishimoto (10.1016/j.jaecs.2023.100128_b26) 2020; 45
Mitsubishi Power (10.1016/j.jaecs.2023.100128_b50) 2018
van der Meulen (10.1016/j.jaecs.2023.100128_b30) 2022
NCE Maritime CleanTech (10.1016/j.jaecs.2023.100128_b106) 2016
IRENA (10.1016/j.jaecs.2023.100128_b24) 2022
European Commission (10.1016/j.jaecs.2023.100128_b36) 2021
IEA- Energy Technology Network (10.1016/j.jaecs.2023.100128_b100) 2010
Ship & Bunker (10.1016/j.jaecs.2023.100128_b109) 2022
Wang (10.1016/j.jaecs.2023.100128_b119) 2021
BP (10.1016/j.jaecs.2023.100128_b2) 2021
Investing.com (10.1016/j.jaecs.2023.100128_b43) 2022
UNFCCC (10.1016/j.jaecs.2023.100128_b4) 2021
IEA (10.1016/j.jaecs.2023.100128_b47) 2021
Janicka (10.1016/j.jaecs.2023.100128_b20) 2023
Investing.com (10.1016/j.jaecs.2023.100128_b44) 2023
Dirven (10.1016/j.jaecs.2023.100128_b29) 2018; 30
ETN GLOBAL (10.1016/j.jaecs.2023.100128_b49) 2020
Valera-Medina (10.1016/j.jaecs.2023.100128_b10) 2018; 69
Masson-Delmotte (10.1016/j.jaecs.2023.100128_b3) 2021
Abrahamse (10.1016/j.jaecs.2023.100128_b120) 2021
10.1016/j.jaecs.2023.100128_b32
IRENA (10.1016/j.jaecs.2023.100128_b95) 2022
Gillespie (10.1016/j.jaecs.2023.100128_b94) 2022
Kawasaki Heavy Industries, Ltd. (10.1016/j.jaecs.2023.100128_b71) 2022
IEA (10.1016/j.jaecs.2023.100128_b88) 2021
Popa (10.1016/j.jaecs.2023.100128_b124) 2011; 4
Kolaczkowski (10.1016/j.jaecs.2023.100128_b6) 2022
Kobayashi (10.1016/j.jaecs.2023.100128_b54) 2019; 37
Proactiveinvestors U. K. (10.1016/j.jaecs.2023.100128_b73) 2022
Crandall (10.1016/j.jaecs.2023.100128_b22) 2022
Royaume du Maroc (10.1016/j.jaecs.2023.100128_b89) 2021
Department of Industry, Science, Energy and Resources, Australian Government (10.1016/j.jaecs.2023.100128_b102) 2021
Lee (10.1016/j.jaecs.2023.100128_b83) 2019; 44
C-Job Naval Architects (10.1016/j.jaecs.2023.100128_b72) 2022
Midrex Technologies, Inc. (10.1016/j.jaecs.2023.100128_b107) 2020
Jadhav (10.1016/j.jaecs.2023.100128_b116) 2010
Heuser (10.1016/j.jaecs.2023.100128_b21) 2019; 44
Smith (10.1016/j.jaecs.2023.100128_b5) 2022
Pospíšil (10.1016/j.jaecs.2023.100128_b76) 2019; 99
BHP (10.1016/j.jaecs.2023.100128_b93) 2022
IEA Greenhouse Gas R&D Programme (10.1016/j.jaecs.2023.100128_b125) 2012
Thyssenkrupp (10.1016/j.jaecs.2023.100128_b57) 2021
Al Ghafri (10.1016/j.jaecs.2023.100128_b65) 2022; 15
References_xml – reference: Reassessing the efficiency penalty from carbon capture in coal-fired power plants. Environ Sci Technol 2015;49:12576–84.
– volume: 4
  start-page: 2256
  year: 2020
  end-page: 2273
  ident: b23
  article-title: Energy efficiency and economic assessment of imported energy carriers based on renewable electricity
  publication-title: Sustain Energy Fuels
– volume: 4
  start-page: 2315
  year: 2011
  end-page: 2323
  ident: b124
  article-title: Carbon capture considerations for combined cycle gas turbine
  publication-title: Energy Procedia
– year: 2022
  ident: b68
  article-title: Large-scale liquid hydrogen production methods and approaches: A review
  publication-title: Appl Energy
– year: 2022
  ident: b112
  article-title: Hyundai heavy industries shipbuilding group performance record
– year: 2020
  ident: b49
  article-title: Hydrogen gas turbines: The path towards a zero-carbon gas turbine
– year: 2021
  ident: b1
  article-title: Electricity generation by source
– year: 2020
  ident: b19
  article-title: Iron and steel technology roadmap
– volume: 166
  year: 2020
  ident: b64
  article-title: Comprehensive review of current natural gas liquefaction processes on technical and economic performance
  publication-title: Appl Therm Eng
– year: 2022
  ident: b81
  article-title: World’s largest liquid hydrogen tank nears completion
– year: 2020
  ident: b104
  article-title: Study on the import of liquid renewable energy: Technology cost assessment
– year: 2016
  ident: b106
  article-title: Norwegian future value chains for liquid hydrogen
– year: 2019
  ident: b52
  article-title: Australia’s national hydrogen strategy
– volume: 1
  start-page: 615
  year: 2017
  end-page: 625
  ident: b13
  article-title: Enabling the metal fuel economy: Green recycling of metal fuels
  publication-title: Sustain Energy Fuels
– year: 2018
  ident: b82
  article-title: Boil-off losses along LH2 pathway
– year: 2023
  ident: b42
  article-title: Natural gas futures historical prices - Investing.com
– year: 2021
  ident: b97
  article-title: Levelized cost of electricity - Renewable energy technologies
– reference: National Institute of Standards and Technology. 2021. Eds. P. J. Linstrom and W. G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Gaithersburg MD, 20899,
– year: 2021
  ident: b70
  article-title: Vessel review I suiso frontier - Japanese LH2 carrier sets the pace in hydrogen transport
– volume: 30
  start-page: 52
  year: 2018
  end-page: 58
  ident: b29
  article-title: Dense energy carrier assessment of four combustible metal powders
  publication-title: Sustain Energy Technol Assess
– year: 2022
  ident: b93
  article-title: BHP signs letter of intent for Australia-East Asia iron ore Green corridor
– reference: Import options for chemical energy carriers from renewable sources to Germany. PLoS One 2023;18:e0262340.
– volume: 13
  start-page: 758
  year: 2020
  ident: b62
  article-title: Decarbonization of the iron and steel industry with direct reduction of iron ore with green hydrogen
  publication-title: Energies
– volume: 35
  start-page: 6964
  year: 2021
  end-page: 7029
  ident: b11
  article-title: Review on ammonia as a potential fuel: From synthesis to economics
  publication-title: Energy Fuels
– volume: 44
  start-page: 15026
  year: 2019
  end-page: 15044
  ident: b25
  article-title: Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review
  publication-title: Int J Hydrogen Energy
– start-page: 177
  year: 2008
  end-page: 193
  ident: b75
  article-title: Solving regional infrastructure bottlenecks: Rail allocation policies for a coal terminal
  publication-title: Australas J Regional Stud
– year: 2019
  ident: b9
  article-title: The future of hydrogen
– year: 2021
  ident: b102
  article-title: National greenhouse accounts factors
– year: 2021
  ident: b7
  article-title: Wasserstoff im Klimaschutz: Klasse statt Masse
– year: 2022
  ident: b53
  article-title: Focus on hydrogen: Japan’s energy strategy for hydrogen and ammonia
– year: 2022
  ident: b37
  article-title: EU emissions trading system (EU ETS)
– volume: 203
  start-page: 736
  year: 2018
  end-page: 745
  ident: b61
  article-title: Assessment of hydrogen direct reduction for fossil-free steelmaking
  publication-title: J Clean Prod
– year: 2022
  ident: b96
  article-title: ECB euro reference exchange rate: US dollar (USD)
– year: 2015
  ident: b48
  article-title: Fuel cells fact sheet
– year: 2021
  ident: b120
  article-title: Hydrogen Import Supply Chains: A study on the influence of various supply chain configurations on the cost price of hydrogen for different hydrogen carriers, considering the entire supply chain from export terminal to end-user
– year: 2021
  ident: b89
  article-title: Contribution déterminée AU niveau national - Actualisée
– volume: 45
  start-page: 34927
  year: 2020
  end-page: 34937
  ident: b27
  article-title: Technical assessment of liquefied natural gas, ammonia and methanol for overseas energy transport based on energy and exergy analyses
  publication-title: Int J Hydrogen Energy
– year: 2023
  ident: b41
  article-title: ICE Dutch TTF natural gas futures historical prices - Investing.com
– year: 2022
  ident: b51
  article-title: GE, DOE accelerating the path towards 100% hydrogen combustion in gas turbines — GE news
– volume: 34
  start-page: 5554
  year: 2009
  end-page: 5562
  ident: b60
  article-title: Conceptual design and modelling of the steam-iron process and fuel cell integrated system
  publication-title: Int J Hydrogen Energy
– volume: 99
  start-page: 1
  year: 2019
  end-page: 15
  ident: b76
  article-title: Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage
  publication-title: Renew Sustain Energy Rev
– volume: 236
  year: 2022
  ident: b16
  article-title: Temperature and phase transitions of laser-ignited single iron particle
  publication-title: Combust Flame
– year: 2022
  ident: b94
  article-title: Asian renewable energy hub - HyResource
– year: 2019
  ident: b55
  article-title: Hydrogen-based steelmaking to begin in Hamburg
– year: 2016
  ident: b111
  article-title: CO
– year: 2021
  ident: b4
  article-title: Decision -/CP.26: Glasgow climate pact
– year: 2021
  ident: b47
  article-title: Global hydrogen REVIEW 2021
– year: 2022
  ident: b63
  article-title: World LNG report
– year: 2021
  ident: b79
  article-title: The new LH2 sphere
– volume: 23
  start-page: 115
  year: 1998
  end-page: 121
  ident: b117
  article-title: Studies of the large-scale sea transportation of liquid hydrogen
  publication-title: Int J Hydrogen Energy
– year: 2022
  ident: b92
  article-title: Mineral commodity summaries 2022 - Iron ore
– year: 2022
  ident: b72
  article-title: New class of hydrogen ship design will revolutionize renewables market
– year: 2022
  ident: b90
  article-title: Global fossil infrastructure tracker
– year: 2022
  ident: b39
  article-title: EU carbon price tracker
– year: 2021
  ident: b119
  article-title: European hydrogen backbone: Analysing future demand, supply, and transport of hydrogen
– year: 2018
  ident: b50
  article-title: Mitsubishi power — The hydrogen gas turbine, successfully fired with a 30% fuel mix, is a major step towards a carbon-free society
– year: 2020
  ident: b56
  article-title: Fossil-free steel
– year: 2014
  ident: b114
  article-title: S70MC-C8.2-TII
– year: 2023
  ident: b20
  article-title: The potential of retrofitting existing coal power plants: A case study for operation with green iron
  publication-title: Appl Energy
– volume: 32
  start-page: 5039
  year: 2007
  end-page: 5049
  ident: b59
  article-title: A review of the sponge iron process for the storage and transmission of remotely generated marine energy
  publication-title: Int J Hydrogen Energy
– year: 2022
  ident: b95
  article-title: Global LCOE and auction values
– year: 2022
  ident: b73
  article-title: Provaris energy pursues development of world’s first commercial scale vessel for marine transport of hydrogen
– volume: 38
  start-page: 4383
  year: 2021
  end-page: 4390
  ident: b14
  article-title: Structures and burning velocities of flames in iron aerosols
  publication-title: Proc Combust Inst
– year: 2022
  ident: b18
  article-title: Shipping the sunshine: An open-source model for costing renewable hydrogen transport from Australia
  publication-title: Int J Hydrogen Energy
– year: 2021
  ident: b91
  article-title: Gulf cooperation council (GCC) and the EU: EU relations with the Gulf cooperation council
– year: 2021
  ident: b3
  article-title: Climate change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 68
  start-page: 169
  year: 2018
  end-page: 196
  ident: b8
  article-title: Recyclable metal fuels for clean and compact zero-carbon power
  publication-title: Prog Energy Combust Sci
– volume: 37
  start-page: 109
  year: 2019
  end-page: 133
  ident: b54
  article-title: Science and technology of ammonia combustion
  publication-title: Proc Combust Inst
– year: 2022
  ident: b74
  article-title: Hydrogen-powered combustion engines for the maritime sector
– volume: 15
  start-page: 2690
  year: 2022
  end-page: 2731
  ident: b65
  article-title: Hydrogen liquefaction: A review of the fundamental physics, engineering practice and future opportunities
  publication-title: Energy Environ Sci
– volume: 10
  start-page: 310
  year: 2008
  end-page: 321
  ident: b110
  article-title: A simple model for estimating newbuilding costs
  publication-title: Marit Econ Logist
– volume: 12
  year: 2022
  ident: b28
  article-title: Iron as recyclable energy carrier: Feasibility study and kinetic analysis of iron oxide reduction
  publication-title: Appl Energy Combust Sci
– volume: 44
  start-page: 15056
  year: 2019
  end-page: 15071
  ident: b83
  article-title: Analysis and assessment of partial re-liquefaction system for liquefied hydrogen tankers using liquefied natural gas (LNG) and H2 hybrid propulsion
  publication-title: Int J Hydrogen Energy
– year: 2022
  ident: b122
  article-title: Climate change: Deal on a more ambitious Emissions Trading System (ETS) — News — European Parliament: Press Releases
– year: 2022
  ident: b109
  article-title: Ship & bunker average bunker prices
– volume: 9
  start-page: 645
  year: 2021
  end-page: 660
  ident: b85
  article-title: Exergoeconomic analysis of a pumped heat electricity storage system based on a Joule/Brayton cycle
  publication-title: Energy Sci Eng
– year: 2013
  ident: b115
  article-title: US DRIVE hydrogen delivery technical team roadmap
– volume: 45
  start-page: 32865
  year: 2020
  end-page: 32883
  ident: b26
  article-title: Large-scale production and transport of hydrogen from Norway to Europe and Japan: Value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers
  publication-title: Int J Hydrogen Energy
– volume: 18
  start-page: 140
  year: 2016
  end-page: 152
  ident: b103
  article-title: A techno-economic assessment of the liquefied natural gas (LNG) production facilities in Western Canada
  publication-title: Sustain Energy Technol Assess
– year: 2020
  ident: b86
  article-title: GDP (current US dollar)
– volume: 7
  start-page: 130
  year: 2019
  ident: b78
  article-title: Case study on boil-off gas (BOG) minimization for LNG bunkering vessel using energy storage system (ESS)
  publication-title: J Mar Sci Eng
– year: 2022
  ident: b71
  article-title: News & events — Kawasaki Heavy Industries, Ltd: Kawasaki obtains AIP for large, 160,000
– reference: , URL:
– year: 2022
  ident: b30
  article-title: Cost analysis of high temperature heat supply via imported metal fuel (FE): A pre-feasibility study
– year: 2019
  ident: b105
  article-title: DOE hydrogen and fuel cells program record: Current status of hydrogen liquefaction costs
– year: 2016
  ident: b77
  article-title: Boil-off gas reliquefaction
– year: 2022
  ident: b87
  article-title: After Fukushima: Consequences for Germany
– year: 2022
  ident: b24
  article-title: Global trade hydrogen
– year: 2021
  ident: b88
  article-title: Japan 2021 energy policy review
– year: 2022
  ident: b5
  article-title: U.S. gas prices near all-time high as Ukraine war threatens energy market
  publication-title: Forbes
– volume: 69
  start-page: 63
  year: 2018
  end-page: 102
  ident: b10
  article-title: Ammonia for power
  publication-title: Prog Energy Combust Sci
– year: 2021
  ident: b34
  article-title: World energy outlook 2021
– year: 2022
  ident: b35
  article-title: Open data on global electricity
– volume: 165
  year: 2022
  ident: b15
  article-title: Iron as a sustainable chemical carrier of renewable energy: Analysis of opportunities and challenges for retrofitting coal-fired power plants
  publication-title: Renew Sustain Energy Rev
– year: 2017
  ident: b113
  article-title: Fleet of Genco Shipping & Trading Limited
– start-page: 1
  year: 2021
  end-page: 10
  ident: b118
  article-title: A hydrogen fuelled LH2 tanker ship design
  publication-title: Ships Offshore Struct
– year: 2020
  ident: b40
  article-title: Renewable power generation costs in 2020
– start-page: 225
  year: 2018
  end-page: 229
  ident: b121
  article-title: Estimating capital cost of small scale LNG carrier
  publication-title: Proceedings of the 3rd international conference on marine technology
– year: 2012
  ident: b125
  article-title: CO2 capture at gas-fired power plants
– year: 2022
  ident: b58
  article-title: Schematic of an iron reduction-oxidation cycle for energy storage, transport and use
– year: 1996
  ident: b84
  article-title: Thermal design and optimization
– year: 2010
  ident: b100
  article-title: ETSAP: Energy technology systems analysis programme: Iron and steel
– reference: . (Retrieved 28 September 2021).
– volume: 160
  start-page: 368
  year: 2015
  end-page: 382
  ident: b12
  article-title: Direct combustion of recyclable metal fuels for zero-carbon heat and power
  publication-title: Appl Energy
– year: 2021
  ident: b36
  article-title: Emissions trading – Putting a price on carbon
– year: 2022
  ident: b43
  article-title: Rotterdam coal futures historical prices - Investing.com
– year: 2020
  ident: b107
  article-title: 2020 World direct reduction statistics
– year: 2023
  ident: b44
  article-title: Newcastle coal futures historical prices - Investing.com
– volume: 44
  start-page: 12733
  year: 2019
  end-page: 12747
  ident: b21
  article-title: Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen
  publication-title: Int J Hydrogen Energy
– year: 2022
  ident: b22
  article-title: Techno-economic assessment of green H2 carrier supply chains
  publication-title: Energy Fuels
– year: 2019
  ident: b69
  article-title: World’s first liquefied hydrogen carrier SUISO FRONTIER launches building an international hydrogen energy supply chain aimed at carbon-free society
– year: 2010
  ident: b116
  article-title: Case no. TAMP/27/2009-TPT
– year: 2022
  ident: b31
  article-title: Iron power ecosystem: A clean and circular energy carrier
– year: 2013
  ident: b101
  article-title: Steel’s contribution to a low-carbon Europe 2050
– year: 2021
  ident: b2
  article-title: Statistical review of world energy 2021 - 70th edition
– start-page: 411
  year: 2004
  end-page: 423
  ident: b33
  article-title: Coal, chemical and physical properties
  publication-title: Encyclopedia of energy
– volume: 243
  year: 2020
  ident: b98
  article-title: Baseload electricity and hydrogen supply based on hybrid PV-wind power plants
  publication-title: J Clean Prod
– volume: 14
  start-page: 7395
  year: 2021
  ident: b99
  article-title: An economic model to assess profitable scenarios of EAF-based steelmaking plants under uncertain conditions
  publication-title: Energies
– year: 2022
  ident: b6
  article-title: How does the war in Ukraine affect oil prices?
– year: 2021
  ident: b80
  article-title: Economics of energy-efficient, large-scale LH2 storage using IRAS & glass bubble insulation
– year: 2020
  ident: b38
  article-title: State and trends of carbon pricing 2020
– year: 2021
  ident: b46
  article-title: Net zero by 2050 - A roadmap for the global energy sector
– reference: .
– year: 2021
  ident: b57
  article-title: With hydrogen to climate-neutral steel production
– volume: 35
  start-page: 4524
  year: 2010
  end-page: 4533
  ident: b66
  article-title: Development of large-scale hydrogen liquefaction processes from 1898 to 2009
  publication-title: Int J Hydrogen Energy
– start-page: 1311
  year: 2014
  end-page: 1317
  ident: b67
  article-title: The latest developments and outlook for hydrogen liquefaction technology
  publication-title: AIP conference proceedings 2014
– year: 2014
  ident: b108
  article-title: MAN B&W S70ME-C8.2-GI-TII: Project guide electronically controlled dual fuel two-stroke engines
– year: 2019
  ident: b45
  article-title: Hydrogen roadmap Europe: A sustainable pathway for the European Energy Transition
– volume: 35
  start-page: 4524
  year: 2010
  ident: 10.1016/j.jaecs.2023.100128_b66
  article-title: Development of large-scale hydrogen liquefaction processes from 1898 to 2009
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.02.109
– year: 2018
  ident: 10.1016/j.jaecs.2023.100128_b82
– volume: 7
  start-page: 130
  year: 2019
  ident: 10.1016/j.jaecs.2023.100128_b78
  article-title: Case study on boil-off gas (BOG) minimization for LNG bunkering vessel using energy storage system (ESS)
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse7050130
– year: 2018
  ident: 10.1016/j.jaecs.2023.100128_b50
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b7
– volume: 69
  start-page: 63
  year: 2018
  ident: 10.1016/j.jaecs.2023.100128_b10
  article-title: Ammonia for power
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2018.07.001
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b47
– volume: 13
  start-page: 758
  year: 2020
  ident: 10.1016/j.jaecs.2023.100128_b62
  article-title: Decarbonization of the iron and steel industry with direct reduction of iron ore with green hydrogen
  publication-title: Energies
  doi: 10.3390/en13030758
– start-page: 225
  year: 2018
  ident: 10.1016/j.jaecs.2023.100128_b121
  article-title: Estimating capital cost of small scale LNG carrier
– ident: 10.1016/j.jaecs.2023.100128_b123
  doi: 10.1021/acs.est.5b03052
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b112
– volume: 30
  start-page: 52
  year: 2018
  ident: 10.1016/j.jaecs.2023.100128_b29
  article-title: Dense energy carrier assessment of four combustible metal powders
  publication-title: Sustain Energy Technol Assess
– start-page: 411
  year: 2004
  ident: 10.1016/j.jaecs.2023.100128_b33
  article-title: Coal, chemical and physical properties
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b90
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b1
– volume: 243
  year: 2020
  ident: 10.1016/j.jaecs.2023.100128_b98
  article-title: Baseload electricity and hydrogen supply based on hybrid PV-wind power plants
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.118466
– year: 2020
  ident: 10.1016/j.jaecs.2023.100128_b107
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b57
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b94
– year: 2019
  ident: 10.1016/j.jaecs.2023.100128_b52
– year: 2012
  ident: 10.1016/j.jaecs.2023.100128_b125
– year: 2016
  ident: 10.1016/j.jaecs.2023.100128_b77
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b46
– volume: 14
  start-page: 7395
  year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b99
  article-title: An economic model to assess profitable scenarios of EAF-based steelmaking plants under uncertain conditions
  publication-title: Energies
  doi: 10.3390/en14217395
– year: 2013
  ident: 10.1016/j.jaecs.2023.100128_b115
– volume: 68
  start-page: 169
  year: 2018
  ident: 10.1016/j.jaecs.2023.100128_b8
  article-title: Recyclable metal fuels for clean and compact zero-carbon power
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2018.05.001
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b63
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b87
– volume: 18
  start-page: 140
  year: 2016
  ident: 10.1016/j.jaecs.2023.100128_b103
  article-title: A techno-economic assessment of the liquefied natural gas (LNG) production facilities in Western Canada
  publication-title: Sustain Energy Technol Assess
– volume: 160
  start-page: 368
  year: 2015
  ident: 10.1016/j.jaecs.2023.100128_b12
  article-title: Direct combustion of recyclable metal fuels for zero-carbon heat and power
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.09.037
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b68
  article-title: Large-scale liquid hydrogen production methods and approaches: A review
  publication-title: Appl Energy
– volume: 1
  start-page: 615
  year: 2017
  ident: 10.1016/j.jaecs.2023.100128_b13
  article-title: Enabling the metal fuel economy: Green recycling of metal fuels
  publication-title: Sustain Energy Fuels
  doi: 10.1039/C7SE00004A
– year: 2010
  ident: 10.1016/j.jaecs.2023.100128_b100
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b37
– volume: 44
  start-page: 15056
  year: 2019
  ident: 10.1016/j.jaecs.2023.100128_b83
  article-title: Analysis and assessment of partial re-liquefaction system for liquefied hydrogen tankers using liquefied natural gas (LNG) and H2 hybrid propulsion
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.03.277
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b96
– volume: 12
  year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b28
  article-title: Iron as recyclable energy carrier: Feasibility study and kinetic analysis of iron oxide reduction
  publication-title: Appl Energy Combust Sci
– year: 2015
  ident: 10.1016/j.jaecs.2023.100128_b48
– start-page: 177
  year: 2008
  ident: 10.1016/j.jaecs.2023.100128_b75
  article-title: Solving regional infrastructure bottlenecks: Rail allocation policies for a coal terminal
  publication-title: Australas J Regional Stud
– volume: 44
  start-page: 12733
  year: 2019
  ident: 10.1016/j.jaecs.2023.100128_b21
  article-title: Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.12.156
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b93
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b36
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b35
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b53
– volume: 45
  start-page: 34927
  year: 2020
  ident: 10.1016/j.jaecs.2023.100128_b27
  article-title: Technical assessment of liquefied natural gas, ammonia and methanol for overseas energy transport based on energy and exergy analyses
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.04.181
– volume: 35
  start-page: 6964
  year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b11
  article-title: Review on ammonia as a potential fuel: From synthesis to economics
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c03685
– volume: 38
  start-page: 4383
  year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b14
  article-title: Structures and burning velocities of flames in iron aerosols
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2020.07.058
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b70
– volume: 99
  start-page: 1
  year: 2019
  ident: 10.1016/j.jaecs.2023.100128_b76
  article-title: Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.09.027
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b79
– year: 2020
  ident: 10.1016/j.jaecs.2023.100128_b56
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b120
– volume: 4
  start-page: 2256
  year: 2020
  ident: 10.1016/j.jaecs.2023.100128_b23
  article-title: Energy efficiency and economic assessment of imported energy carriers based on renewable electricity
  publication-title: Sustain Energy Fuels
  doi: 10.1039/D0SE00067A
– volume: 15
  start-page: 2690
  year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b65
  article-title: Hydrogen liquefaction: A review of the fundamental physics, engineering practice and future opportunities
  publication-title: Energy Environ Sci
  doi: 10.1039/D2EE00099G
– volume: 34
  start-page: 5554
  year: 2009
  ident: 10.1016/j.jaecs.2023.100128_b60
  article-title: Conceptual design and modelling of the steam-iron process and fuel cell integrated system
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.04.062
– year: 2017
  ident: 10.1016/j.jaecs.2023.100128_b113
– year: 2019
  ident: 10.1016/j.jaecs.2023.100128_b105
– start-page: 1
  year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b118
  article-title: A hydrogen fuelled LH2 tanker ship design
  publication-title: Ships Offshore Struct
– volume: 10
  start-page: 310
  year: 2008
  ident: 10.1016/j.jaecs.2023.100128_b110
  article-title: A simple model for estimating newbuilding costs
  publication-title: Marit Econ Logist
  doi: 10.1057/mel.2008.8
– year: 2010
  ident: 10.1016/j.jaecs.2023.100128_b116
– year: 2020
  ident: 10.1016/j.jaecs.2023.100128_b40
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b22
  article-title: Techno-economic assessment of green H2 carrier supply chains
  publication-title: Energy Fuels
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b72
– year: 2016
  ident: 10.1016/j.jaecs.2023.100128_b111
– year: 2020
  ident: 10.1016/j.jaecs.2023.100128_b19
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b71
– volume: 203
  start-page: 736
  year: 2018
  ident: 10.1016/j.jaecs.2023.100128_b61
  article-title: Assessment of hydrogen direct reduction for fossil-free steelmaking
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.08.279
– year: 2019
  ident: 10.1016/j.jaecs.2023.100128_b9
– ident: 10.1016/j.jaecs.2023.100128_b17
  doi: 10.1371/journal.pone.0281380
– year: 2020
  ident: 10.1016/j.jaecs.2023.100128_b38
– year: 2020
  ident: 10.1016/j.jaecs.2023.100128_b49
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b95
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b34
– volume: 37
  start-page: 109
  year: 2019
  ident: 10.1016/j.jaecs.2023.100128_b54
  article-title: Science and technology of ammonia combustion
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2018.09.029
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b88
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b3
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b43
– year: 2023
  ident: 10.1016/j.jaecs.2023.100128_b20
  article-title: The potential of retrofitting existing coal power plants: A case study for operation with green iron
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.120950
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b2
– year: 2023
  ident: 10.1016/j.jaecs.2023.100128_b42
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b24
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b39
– year: 2014
  ident: 10.1016/j.jaecs.2023.100128_b114
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b51
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b122
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b5
  article-title: U.S. gas prices near all-time high as Ukraine war threatens energy market
  publication-title: Forbes
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b31
– year: 2019
  ident: 10.1016/j.jaecs.2023.100128_b45
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b97
– year: 2023
  ident: 10.1016/j.jaecs.2023.100128_b44
– year: 2016
  ident: 10.1016/j.jaecs.2023.100128_b106
– volume: 32
  start-page: 5039
  year: 2007
  ident: 10.1016/j.jaecs.2023.100128_b59
  article-title: A review of the sponge iron process for the storage and transmission of remotely generated marine energy
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.06.032
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b102
– volume: 4
  start-page: 2315
  year: 2011
  ident: 10.1016/j.jaecs.2023.100128_b124
  article-title: Carbon capture considerations for combined cycle gas turbine
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2011.02.122
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b80
– year: 2020
  ident: 10.1016/j.jaecs.2023.100128_b104
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b18
  article-title: Shipping the sunshine: An open-source model for costing renewable hydrogen transport from Australia
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.04.156
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b73
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b92
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b6
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b109
– volume: 9
  start-page: 645
  year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b85
  article-title: Exergoeconomic analysis of a pumped heat electricity storage system based on a Joule/Brayton cycle
  publication-title: Energy Sci Eng
  doi: 10.1002/ese3.850
– year: 2014
  ident: 10.1016/j.jaecs.2023.100128_b108
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b119
– year: 2013
  ident: 10.1016/j.jaecs.2023.100128_b101
– year: 2020
  ident: 10.1016/j.jaecs.2023.100128_b86
– year: 2019
  ident: 10.1016/j.jaecs.2023.100128_b55
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b58
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b30
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b74
– start-page: 1311
  year: 2014
  ident: 10.1016/j.jaecs.2023.100128_b67
  article-title: The latest developments and outlook for hydrogen liquefaction technology
– volume: 165
  year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b15
  article-title: Iron as a sustainable chemical carrier of renewable energy: Analysis of opportunities and challenges for retrofitting coal-fired power plants
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112579
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b89
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b91
– ident: 10.1016/j.jaecs.2023.100128_b32
– volume: 236
  year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b16
  article-title: Temperature and phase transitions of laser-ignited single iron particle
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2021.111801
– year: 2021
  ident: 10.1016/j.jaecs.2023.100128_b4
– year: 2023
  ident: 10.1016/j.jaecs.2023.100128_b41
– volume: 23
  start-page: 115
  year: 1998
  ident: 10.1016/j.jaecs.2023.100128_b117
  article-title: Studies of the large-scale sea transportation of liquid hydrogen
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/S0360-3199(97)00032-3
– volume: 166
  year: 2020
  ident: 10.1016/j.jaecs.2023.100128_b64
  article-title: Comprehensive review of current natural gas liquefaction processes on technical and economic performance
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.114736
– volume: 44
  start-page: 15026
  year: 2019
  ident: 10.1016/j.jaecs.2023.100128_b25
  article-title: Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.04.112
– volume: 45
  start-page: 32865
  year: 2020
  ident: 10.1016/j.jaecs.2023.100128_b26
  article-title: Large-scale production and transport of hydrogen from Norway to Europe and Japan: Value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.09.017
– year: 1996
  ident: 10.1016/j.jaecs.2023.100128_b84
– year: 2019
  ident: 10.1016/j.jaecs.2023.100128_b69
– year: 2022
  ident: 10.1016/j.jaecs.2023.100128_b81
SSID ssj0002811339
Score 2.3976796
Snippet The effective usage of renewable energy sources requires ways of storage and delivery to balance energy demand and availability divergences. Carbon-free...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100128
SubjectTerms Carbon-free
Energy carriers
Energy storage
Energy transport
Hydrogen
Metal fuel
Title Techno-economic assessment of long-distance supply chains of energy carriers: Comparing hydrogen and iron for carbon-free electricity generation
URI https://dx.doi.org/10.1016/j.jaecs.2023.100128
https://doaj.org/article/daf0d1ad5d6a408ba29bb1bd62195634
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swECaKTO1Q9Im6L3DoWKKiSFFUtjZIEBRIpwbwJhxfjo1AKmx3yNLf0J-cO1I2NKVLNWiQKFHgd9J9Rx2_Y-yT1RoU_RpspGqF9s7iO9dWInlP8mWd7hIFilc_zOW1_r5slrNSX5QTVuSBy8B9CZCqICE0wYCurIO6c066YGpa6aayEmjVVbNgapOnjCQGX8R90QEZgSxjeZAcysldG4iexLprlUWIqBb7zC1l9f6Zd5p5nItn7OlEFfnX8ojP2aM4vGBPZgKCL9nfMjMu4rS8mMNRaJOPid-Ow0oEYogILd9RAc877m9gPezodMzr_riHLZWt253ys1KUcFjxm7uwHdG2OAyB00o4juSWWrpxEGkbIy_1c9YeWTxfZe1qgvgVu744_3l2KaYaC8JrqffCIgPBkAu3ttJSdqFxUbYuyAhgEUXQ3tqgASrVtC2AA22VAm2SMpCsU6_ZyTAO8Q3jbQXGOYzndAq6AYQAQqopwDRth9-GBasPQ9z7SYCc6mDc9odMs02fcekJl77gsmCfjxf9KvobDzf_Rtgdm5J4dj6AJtVPJtX_y6QWzByQ7yceUvgF3mr9UO9v_0fv79hjumVJR3vPTvbb3_EDEp-9-5htHPdXf87vATeHAf4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Techno-economic+assessment+of+long-distance+supply+chains+of+energy+carriers%3A+Comparing+hydrogen+and+iron+for+carbon-free+electricity+generation&rft.jtitle=Applications+in+energy+and+combustion+science&rft.au=Jannik+Neumann&rft.au=Rodolfo+Cavaliere+da+Rocha&rft.au=Paulo+Debiagi&rft.au=Arne+Scholtissek&rft.date=2023-06-01&rft.pub=Elsevier&rft.issn=2666-352X&rft.eissn=2666-352X&rft.volume=14&rft.spage=100128&rft_id=info:doi/10.1016%2Fj.jaecs.2023.100128&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_daf0d1ad5d6a408ba29bb1bd62195634
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-352X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-352X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-352X&client=summon