Construction of multi-factor identification model for real-time monitoring and early warning of mine water inrush

As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning, the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years. Due to the many factors affecting water inrush and the complicated water inrush me...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mining science and technology Vol. 31; no. 5; pp. 853 - 866
Main Authors Wang, Xin, Xu, Zhimin, Sun, Yajun, Zheng, Jieming, Zhang, Chenghang, Duan, Zhongwen
Format Journal Article
LanguageEnglish
Published Elsevier 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning, the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years. Due to the many factors affecting water inrush and the complicated water inrush mechanism, many factors close to water inrush may have precursory abnormal changes. At present, the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level, water influx, and temperature, and performs water inrush early warning through the abnormal change of a single factor. However, there are relatively few multi-factor comprehensive early warning identification models. Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases, 11 measurable and effective indicators including groundwater flow field, hydrochemical field and temperature field are proposed. Finally, taking Hengyuan coal mine as an example, 6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model, a multi-factor linear recognition model, and a comprehensive intelligent early-warning recognition model. The results show that the correct rate of early warning can reach 95.2%.
AbstractList As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning, the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years. Due to the many factors affecting water inrush and the complicated water inrush mechanism, many factors close to water inrush may have precursory abnormal changes. At present, the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level, water influx, and temperature, and performs water inrush early warning through the abnormal change of a single factor. However, there are relatively few multi-factor comprehensive early warning identification models. Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases, 11 measurable and effective indicators including groundwater flow field, hydrochemical field and temperature field are proposed. Finally, taking Hengyuan coal mine as an example, 6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model, a multi-factor linear recognition model, and a comprehensive intelligent early-warning recognition model. The results show that the correct rate of early warning can reach 95.2%.
Author Zhang, Chenghang
Sun, Yajun
Wang, Xin
Xu, Zhimin
Zheng, Jieming
Duan, Zhongwen
Author_xml – sequence: 1
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
– sequence: 2
  givenname: Zhimin
  surname: Xu
  fullname: Xu, Zhimin
– sequence: 3
  givenname: Yajun
  surname: Sun
  fullname: Sun, Yajun
– sequence: 4
  givenname: Jieming
  surname: Zheng
  fullname: Zheng, Jieming
– sequence: 5
  givenname: Chenghang
  orcidid: 0000-0002-5620-7751
  surname: Zhang
  fullname: Zhang, Chenghang
– sequence: 6
  givenname: Zhongwen
  surname: Duan
  fullname: Duan, Zhongwen
BookMark eNp9kMtOxCAUhllooo7zBG76Aq1Ay6VLM_GWmLiZPQF6GGlaUMrE-PYyM8aFC9nA-Q__t_iu0FmIARC6IbghmPDbsfHjvOSGYkoaLBpM6Bm6pLhnNeWSX6D1soy4HC47yegl-tjEsOS0t9nHUEVXzfsp-9ppm2Oq_AAhe-etPq7nOMBUubJIoKc6-xlKFnz56sOu0mGoQKfpq_rUKRySA88HKHOGQgtpv7xdo3OnpwXWP_cKbR_ut5un-uX18Xlz91LbjnS5lhw7BuXJBTBnOzlwMbRGYNdT6PkgMMPQdxSIcb0skaGOa8k7x1sQtl2h5xN2iHpU78nPOn2pqL06BjHtlE7Z2wmUaSljjJgC5p0xTEvTMiOYkBSD4VBY7YllU1yWBO6XR7A6eFejOnpXB-8KC1W8l1b_p2V9PorMSfvp3-43tBqRGQ
CitedBy_id crossref_primary_10_1016_j_compind_2022_103783
crossref_primary_10_1016_j_procs_2023_11_084
crossref_primary_10_1007_s11227_025_07033_z
crossref_primary_10_1155_2022_1671859
crossref_primary_10_1155_2023_2201870
crossref_primary_10_3390_app13159043
crossref_primary_10_1016_j_jhydrol_2022_127731
crossref_primary_10_1007_s12517_022_09501_9
crossref_primary_10_1155_2022_7958712
crossref_primary_10_3389_feart_2024_1436970
crossref_primary_10_3390_su151310262
crossref_primary_10_3390_w14244093
crossref_primary_10_1016_j_tust_2023_105034
crossref_primary_10_1016_j_fuel_2022_124553
crossref_primary_10_1109_JIOT_2023_3267828
crossref_primary_10_1007_s11069_023_06036_4
crossref_primary_10_1155_2022_3067983
crossref_primary_10_3390_en15093278
crossref_primary_10_1007_s11082_023_06254_x
crossref_primary_10_1007_s00603_024_03929_z
crossref_primary_10_1038_s41598_024_83710_y
crossref_primary_10_1080_19475705_2024_2420652
crossref_primary_10_3390_w17060790
crossref_primary_10_1016_j_ijmst_2022_01_005
crossref_primary_10_3390_w16213047
crossref_primary_10_1016_j_energy_2025_135312
crossref_primary_10_1016_j_jiph_2024_01_019
crossref_primary_10_1016_j_cageo_2024_105544
crossref_primary_10_1016_j_ijmst_2023_09_003
crossref_primary_10_1109_TGRS_2024_3384990
crossref_primary_10_1016_j_eng_2022_05_016
crossref_primary_10_3390_w15223910
crossref_primary_10_1007_s40571_024_00827_7
crossref_primary_10_1155_2022_9447145
crossref_primary_10_1016_j_ijmst_2023_10_006
crossref_primary_10_1144_qjegh2021_128
crossref_primary_10_1007_s11053_022_10131_x
Cites_doi 10.1007/s10230-018-0512-6
10.1016/j.ijrmms.2004.11.010
10.1007/s10230-018-00575-0
10.1007/s10706-018-0673-x
10.1016/0022-2496(77)90033-5
10.1016/j.ijmst.2021.01.007
10.1016/j.ijmst.2020.05.020
10.1007/s00603-016-1007-z
10.1007/s00521-016-2809-3
10.1007/s10230-018-0521-5
10.1007/s11069-019-03767-1
10.1007/s12517-018-3651-y
10.1016/j.ijmst.2017.07.010
10.1007/s13369-017-2858-7
10.1007/s12665-015-4132-1
10.1007/s00366-016-0497-3
10.1007/s00254-007-1160-5
10.1007/s00603-016-1037-6
10.1016/j.ijmst.2019.02.001
10.1007/s12517-018-4181-3
10.1016/0270-0255(87)90473-8
10.1108/EC-06-2018-0253
10.1007/s10230-010-0125-1
10.1007/s00603-016-1036-7
10.1007/s10040-017-1614-0
10.1007/s10230-017-0443-7
10.1016/j.ijmst.2019.12.001
10.1016/j.ijmst.2019.06.009
10.1007/s12665-012-1602-6
10.1016/S1006-1266(08)60034-6
10.1016/j.proeng.2011.11.2190
10.3233/IFS-151998
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.ijmst.2021.07.012
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 866
ExternalDocumentID oai_doaj_org_article_b325551b92e64bb5a8b35b757820eb6e
10_1016_j_ijmst_2021_07_012
GroupedDBID -SB
-S~
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VR
7-5
8P~
92H
92I
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
AAYXX
ABWVN
ACGFS
ACLVX
ACNNM
ACRPL
ACSBN
ACVFH
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
ADVLN
AECPX
AEKER
AEUPX
AFPUW
AFTJW
AFUIB
AGHFR
AGYEJ
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BJAXD
BLXMC
CAJEB
CCEZO
CDRFL
CHBEP
CITATION
CW9
EBS
EJD
EP3
FA0
FDB
FIRID
FNPLU
GBLVA
GROUPED_DOAJ
HZ~
IMUCA
J1W
JJJVA
M41
MO0
O-L
O9-
OAUVE
OK1
P-8
P-9
PC.
Q--
Q38
ROL
SDF
SES
SPC
SST
SSZ
TCJ
TGT
U1G
U5L
ID FETCH-LOGICAL-c414t-860f5e41467e5fc48d67d3b70f92e96d7050e942e1bf982e9b2f6a864f63e7c3
IEDL.DBID DOA
ISSN 2095-2686
IngestDate Wed Aug 27 01:25:54 EDT 2025
Tue Jul 01 04:19:59 EDT 2025
Thu Apr 24 23:11:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-860f5e41467e5fc48d67d3b70f92e96d7050e942e1bf982e9b2f6a864f63e7c3
ORCID 0000-0002-5620-7751
OpenAccessLink https://doaj.org/article/b325551b92e64bb5a8b35b757820eb6e
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_b325551b92e64bb5a8b35b757820eb6e
crossref_primary_10_1016_j_ijmst_2021_07_012
crossref_citationtrail_10_1016_j_ijmst_2021_07_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-00
2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-00
PublicationDecade 2020
PublicationTitle International journal of mining science and technology
PublicationYear 2021
Publisher Elsevier
Publisher_xml – name: Elsevier
References Hebblewhite (10.1016/j.ijmst.2021.07.012_b0005) 2020; 30
Ruan (10.1016/j.ijmst.2021.07.012_b0125) 2019; 38
Wu (10.1016/j.ijmst.2021.07.012_b0155) 2017; 25
Haas (10.1016/j.ijmst.2021.07.012_b0100) 2019; 29
Sun (10.1016/j.ijmst.2021.07.012_b0120) 2019; 37
Cao (10.1016/j.ijmst.2021.07.012_b0080) 2016; 49
Guo (10.1016/j.ijmst.2021.07.012_b0135) 2018; 37
Li (10.1016/j.ijmst.2021.07.012_b0075) 2016; 49
Garvey (10.1016/j.ijmst.2021.07.012_b0170) 1998; 22
Zhang (10.1016/j.ijmst.2021.07.012_b0085) 2016; 49
Chitsazan (10.1016/j.ijmst.2021.07.012_b0090) 2012; 67
Wu (10.1016/j.ijmst.2021.07.012_b0070) 2015; 74
Zhang (10.1016/j.ijmst.2021.07.012_b0030) 2005; 42
Temeng (10.1016/j.ijmst.2021.07.012_b0105) 2020; 30
Yang (10.1016/j.ijmst.2021.07.012_b0150) 2016; 30
Zhu (10.1016/j.ijmst.2021.07.012_b0040) 2008; 18
Yi (10.1016/j.ijmst.2021.07.012_b0050) 2011; 52
Jian (10.1016/j.ijmst.2021.07.012_b0045) 2011; 21
Sun (10.1016/j.ijmst.2021.07.012_b0015) 2017; 36
Wu (10.1016/j.ijmst.2021.07.012_b0060) 2008; 56
Xu (10.1016/j.ijmst.2021.07.012_b0095) 2018; 37
Qiang (10.1016/j.ijmst.2021.07.012_b0065) 2011; 30
Zhu (10.1016/j.ijmst.2021.07.012_b0160) 2014; 45
Chen (10.1016/j.ijmst.2021.07.012_b0145) 2019; 99
10.1016/j.ijmst.2021.07.012_b0165
Yang (10.1016/j.ijmst.2021.07.012_b0190) 2018; 11
Rezaei (10.1016/j.ijmst.2021.07.012_b0130) 2018; 30
Liu (10.1016/j.ijmst.2021.07.012_b0020) 2018; 43
Saaty (10.1016/j.ijmst.2021.07.012_b0180) 1987; 9
Xiang (10.1016/j.ijmst.2021.07.012_b0055) 2011; 26
Sayevand (10.1016/j.ijmst.2021.07.012_b0200) 2019; 36
Wei (10.1016/j.ijmst.2021.07.012_b0035) 2010; 20
Lawal (10.1016/j.ijmst.2021.07.012_b0115) 2021; 31
Wu (10.1016/j.ijmst.2021.07.012_b0185) 2016; 75
Saaty (10.1016/j.ijmst.2021.07.012_b0175) 1977; 15
Pu (10.1016/j.ijmst.2021.07.012_b0110) 2019; 29
Sun (10.1016/j.ijmst.2021.07.012_b0010) 2017; 27
Liu (10.1016/j.ijmst.2021.07.012_b0025) 2019; 12
Chen (10.1016/j.ijmst.2021.07.012_b0140) 2020; 2020
Taheri (10.1016/j.ijmst.2021.07.012_b0195) 2017; 33
References_xml – volume: 37
  start-page: 385
  issue: 2
  year: 2018
  ident: 10.1016/j.ijmst.2021.07.012_b0095
  article-title: Groundwater Source Discrimination and Proportion Determination of Mine Inflow Using Ion Analyses: A Case Study from the Longmen Coal Mine, Henan Province
  publication-title: China. Mine Water and the Environment
  doi: 10.1007/s10230-018-0512-6
– volume: 42
  start-page: 350
  issue: 3
  year: 2005
  ident: 10.1016/j.ijmst.2021.07.012_b0030
  article-title: Investigations of water inrushes from aquifers under coal seams
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2004.11.010
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.ijmst.2021.07.012_b0140
  article-title: Quantitative Evaluation for the Threat Degree of a Thermal Reservoir to Deep Coal Mining
  publication-title: Geofluids
– volume: 38
  start-page: 488
  issue: 3
  year: 2019
  ident: 10.1016/j.ijmst.2021.07.012_b0125
  article-title: A new risk assessment model for underground mine water inrush based on AHP and D-S evidence theory
  publication-title: Mine Water and the Environment
  doi: 10.1007/s10230-018-00575-0
– volume: 22
  start-page: 18
  issue: 1
  year: 1998
  ident: 10.1016/j.ijmst.2021.07.012_b0170
  article-title: Risk matrix: an approach for identifying, assessing, and ranking program risks
  publication-title: Air Force Journal of Logistics
– volume: 37
  start-page: 1135
  issue: 3
  year: 2019
  ident: 10.1016/j.ijmst.2021.07.012_b0120
  article-title: An improved fuzzy comprehensive evaluation system and application for risk assessment of floor water inrush in deep mining
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-018-0673-x
– volume: 15
  start-page: 234
  issue: 3
  year: 1977
  ident: 10.1016/j.ijmst.2021.07.012_b0175
  article-title: A scaling method for priorities in hierarchical structures
  publication-title: J Math Psychol
  doi: 10.1016/0022-2496(77)90033-5
– volume: 31
  start-page: 265
  issue: 2
  year: 2021
  ident: 10.1016/j.ijmst.2021.07.012_b0115
  article-title: Blast-induced ground vibration prediction in granite quarries: An application of gene expression programming, ANFIS, and sine cosine algorithm optimized ANN. International Journal of
  publication-title: Mining Science and Technology
  doi: 10.1016/j.ijmst.2021.01.007
– volume: 30
  start-page: 683
  issue: 5
  year: 2020
  ident: 10.1016/j.ijmst.2021.07.012_b0105
  article-title: A novel artificial intelligent model for predicting air overpressure using brain inspired emotional neural network
  publication-title: International Journal of Mining Science and Technology
  doi: 10.1016/j.ijmst.2020.05.020
– volume: 49
  start-page: 3699
  issue: 9
  year: 2016
  ident: 10.1016/j.ijmst.2021.07.012_b0085
  article-title: Study of a seepage channel formation using the combination of microseismic monitoring technique and numerical method in Zhangmatun iron mine
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-1007-z
– volume: 30
  start-page: 2145
  issue: 7
  year: 2018
  ident: 10.1016/j.ijmst.2021.07.012_b0130
  article-title: Development of an intelligent model to estimate the height of caving–fracturing zone over the longwall gobs
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2809-3
– volume: 37
  start-page: 703
  issue: 4
  year: 2018
  ident: 10.1016/j.ijmst.2021.07.012_b0135
  article-title: The feasibility of mining under a water body based on a fuzzy neural network
  publication-title: Mine Water and the Environment
  doi: 10.1007/s10230-018-0521-5
– volume: 99
  start-page: 689
  issue: 2
  year: 2019
  ident: 10.1016/j.ijmst.2021.07.012_b0145
  article-title: Discussion on controlling factors of hydrogeochemistry and hydraulic connections of groundwater in different mining districts
  publication-title: Nat Hazards
  doi: 10.1007/s11069-019-03767-1
– volume: 52
  start-page: 50
  year: 2011
  ident: 10.1016/j.ijmst.2021.07.012_b0050
  article-title: Risk assessment of floor water inrush in coal mines based on secondary fuzzy comprehensive evaluation
  publication-title: Int J Rock Mech Min Sci
– volume: 75
  start-page: 1
  issue: 9
  year: 2016
  ident: 10.1016/j.ijmst.2021.07.012_b0185
  article-title: Assessment of groundwater inrush from underlying aquifers in Tunbai coal mine, Shanxi province
  publication-title: China. Environmental Earth Sciences
– volume: 11
  start-page: 299
  issue: 12
  year: 2018
  ident: 10.1016/j.ijmst.2021.07.012_b0190
  article-title: Risk assessment of coal mining above confined aquifer based on maximizing deviation in a gis environment
  publication-title: Arabian J Geosci
  doi: 10.1007/s12517-018-3651-y
– volume: 27
  start-page: 873
  issue: 5
  year: 2017
  ident: 10.1016/j.ijmst.2021.07.012_b0010
  article-title: Relationship between water inrush from coal seam floors and main roof weighting
  publication-title: International Journal of Mining Science and Technology
  doi: 10.1016/j.ijmst.2017.07.010
– volume: 43
  start-page: 321
  issue: 1
  year: 2018
  ident: 10.1016/j.ijmst.2021.07.012_b0020
  article-title: Water inrush risk zoning and water conservation mining technology in the Shennan mining area, Shaanxi, China
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-017-2858-7
– volume: 74
  start-page: 1429
  issue: 2
  year: 2015
  ident: 10.1016/j.ijmst.2021.07.012_b0070
  article-title: Quantitative evaluation and prediction of water inrush vulnerability from aquifers overlying coal seams in Donghuantuo Coal Mine
  publication-title: China. Environmental Earth Sciences
  doi: 10.1007/s12665-015-4132-1
– ident: 10.1016/j.ijmst.2021.07.012_b0165
– volume: 33
  start-page: 689
  issue: 3
  year: 2017
  ident: 10.1016/j.ijmst.2021.07.012_b0195
  article-title: A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-016-0497-3
– volume: 56
  start-page: 245
  issue: 2
  year: 2008
  ident: 10.1016/j.ijmst.2021.07.012_b0060
  article-title: Prediction of groundwater inrush into coal mines from aquifers underlying the coal seams in China: vulnerability index method and its construction
  publication-title: Environ Geol
  doi: 10.1007/s00254-007-1160-5
– volume: 49
  start-page: 4393
  issue: 11
  year: 2016
  ident: 10.1016/j.ijmst.2021.07.012_b0075
  article-title: Rock burst monitoring by integrated microseismic and electromagnetic radiation methods
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-1037-6
– volume: 29
  start-page: 371
  issue: 3
  year: 2019
  ident: 10.1016/j.ijmst.2021.07.012_b0100
  article-title: Using self-determination theory to identify organizational interventions to support coal mineworkers’ dust-reducing practices
  publication-title: International Journal of Mining Science and Technology
  doi: 10.1016/j.ijmst.2019.02.001
– volume: 12
  start-page: 30
  issue: 2
  year: 2019
  ident: 10.1016/j.ijmst.2021.07.012_b0025
  article-title: Early warning information evolution characteristics of water inrush from floor in underground coal mining
  publication-title: Arabian J Geosci
  doi: 10.1007/s12517-018-4181-3
– volume: 9
  start-page: 161
  issue: 3-5
  year: 1987
  ident: 10.1016/j.ijmst.2021.07.012_b0180
  article-title: The analytic hierarchy process-what it is and how it is used
  publication-title: Mathematical modelling
  doi: 10.1016/0270-0255(87)90473-8
– volume: 36
  start-page: 533
  issue: 2
  year: 2019
  ident: 10.1016/j.ijmst.2021.07.012_b0200
  article-title: A fresh view on particle swarm optimization to develop a precise model for predicting rock fragmentation
  publication-title: Engineering with Computers
  doi: 10.1108/EC-06-2018-0253
– volume: 30
  start-page: 54
  issue: 1
  year: 2011
  ident: 10.1016/j.ijmst.2021.07.012_b0065
  article-title: Using the vulnerable index method to assess the likelihood of a water inrush through the floor of a multi-seam coal mine in China
  publication-title: Mine water and the environment
  doi: 10.1007/s10230-010-0125-1
– volume: 49
  start-page: 4407
  issue: 11
  year: 2016
  ident: 10.1016/j.ijmst.2021.07.012_b0080
  article-title: Microseismic precursory characteristics of rock burst hazard in mining areas near a large residual coal pillar: a case study from Xuzhuang coal mine, Xuzhou
  publication-title: China. Rock Mechanics and Rock Engineering
  doi: 10.1007/s00603-016-1036-7
– volume: 25
  start-page: 2089
  issue: 7
  year: 2017
  ident: 10.1016/j.ijmst.2021.07.012_b0155
  article-title: Method for assessing coal-floor water-inrush risk based on the variable-weight model and unascertained measure theory
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-017-1614-0
– volume: 36
  start-page: 542
  issue: 4
  year: 2017
  ident: 10.1016/j.ijmst.2021.07.012_b0015
  article-title: Physical simulation of high-pressure water inrush through the floor of a deep mine
  publication-title: Mine Water Environ
  doi: 10.1007/s10230-017-0443-7
– volume: 30
  start-page: 49
  issue: 1
  year: 2020
  ident: 10.1016/j.ijmst.2021.07.012_b0005
  article-title: Fracturing, caving propagation and influence of mining on groundwater above longwall panels—a review of predictive models
  publication-title: International Journal of Mining Science and Technology
  doi: 10.1016/j.ijmst.2019.12.001
– volume: 45
  start-page: 170
  issue: 1
  year: 2014
  ident: 10.1016/j.ijmst.2021.07.012_b0160
  article-title: Critical water inrush monitoring index and early-warning model of mine water disaster
  publication-title: Safety in Coal Mines
– volume: 21
  start-page: 165
  issue: 2
  year: 2011
  ident: 10.1016/j.ijmst.2021.07.012_b0045
  article-title: Determining areas in an inclined coal seam floor prone to water-inrush by micro-seismic monitoring
  publication-title: Mining Science and Technology
– volume: 29
  start-page: 565
  issue: 4
  year: 2019
  ident: 10.1016/j.ijmst.2021.07.012_b0110
  article-title: Machine learning methods for rockburst prediction-state-of-the-art review
  publication-title: International Journal of Mining Science and Technology
  doi: 10.1016/j.ijmst.2019.06.009
– volume: 20
  start-page: 121
  issue: 1
  year: 2010
  ident: 10.1016/j.ijmst.2021.07.012_b0035
  article-title: Comprehensive evaluation of water-inrush risk from coal floors
  publication-title: Mining Science and Technology
– volume: 67
  start-page: 1605
  issue: 6
  year: 2012
  ident: 10.1016/j.ijmst.2021.07.012_b0090
  article-title: The study of the hydrogeological setting of the Chamshir Dam site with special emphasis on the cause of water salinity in the Zohreh River downstream from the Chamshir Dam (southwest of Iran)
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-012-1602-6
– volume: 18
  start-page: 159
  issue: 2
  year: 2008
  ident: 10.1016/j.ijmst.2021.07.012_b0040
  article-title: Numerical analysis of water inrush from working-face floor during mining
  publication-title: Journal of China University of Mining and Technology
  doi: 10.1016/S1006-1266(08)60034-6
– volume: 26
  start-page: 441
  year: 2011
  ident: 10.1016/j.ijmst.2021.07.012_b0055
  article-title: Assessment method of water-inrush risk induced by fault activation and its application research
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2011.11.2190
– volume: 30
  start-page: 2289
  issue: 4
  year: 2016
  ident: 10.1016/j.ijmst.2021.07.012_b0150
  article-title: The fuzzy comprehensive evaluation of water and sand inrush risk during underground mining
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/IFS-151998
SSID ssj0000684852
Score 2.4310136
Snippet As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning, the automatic monitoring and early warning of...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 853
SubjectTerms Automatic monitoring
Mine water inrush
Real-time warning
Recognition model
Title Construction of multi-factor identification model for real-time monitoring and early warning of mine water inrush
URI https://doaj.org/article/b325551b92e64bb5a8b35b757820eb6e
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwyIT1E-Kg-MBGLHdpwREKhCgqlI3SI7PotWJQVaxMZv5-ykVVlgYYyTONbz5XyOXt4j5EyBLji3OjHOOtygAOZBbkxiNcsBdKYMCz8nPzyq_pO4H8rhitVX4IQ18sANcJc2w6JXMltwUMJaabTNpI0q7ClYBSH74pq3splqcrAWOtrt4MlA49JqITkUyV2j8cssMCk5i9KdjP9YllbU--Myc7dNttr6kF4149oha1Dvks0V1cA98hZMNheyr3TqaSQFJo1zDh25lv8TIafR6YZiZUqxOpwkwUoe28J7HDqjpnYUgsYx_Ww-kcT-8Fl4jIjTUf3-MXveJ4O728FNP2mdE5JKMDFPtEq9BBGyIEhfCe1U7jKbpx5hLJTLU5lCITgw6wuNTZZ7ZbQSXmWQV9kB6dTTGg4JrThOsS_AGQbCZ6aQYIwSoG3FpKugS_gCt7JqVcWDucWkXNDHxmUEuwxgl2leIthdcr686bUR1fj98uswIctLgyJ2bMA4Kds4Kf-Kk6P_6OSYbIRxNRyzE9LBuYZTLErmtkfWL75YL0bhN4Vp4gQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+multi-factor+identification+model+for+real-time+monitoring+and+early+warning+of+mine+water+inrush&rft.jtitle=International+journal+of+mining+science+and+technology&rft.au=Xin+Wang&rft.au=Zhimin+Xu&rft.au=Yajun+Sun&rft.au=Jieming+Zheng&rft.date=2021-09-01&rft.pub=Elsevier&rft.issn=2095-2686&rft.volume=31&rft.issue=5&rft.spage=853&rft.epage=866&rft_id=info:doi/10.1016%2Fj.ijmst.2021.07.012&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b325551b92e64bb5a8b35b757820eb6e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2686&client=summon