Construction of multi-factor identification model for real-time monitoring and early warning of mine water inrush
As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning, the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years. Due to the many factors affecting water inrush and the complicated water inrush me...
Saved in:
Published in | International journal of mining science and technology Vol. 31; no. 5; pp. 853 - 866 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning, the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years. Due to the many factors affecting water inrush and the complicated water inrush mechanism, many factors close to water inrush may have precursory abnormal changes. At present, the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level, water influx, and temperature, and performs water inrush early warning through the abnormal change of a single factor. However, there are relatively few multi-factor comprehensive early warning identification models. Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases, 11 measurable and effective indicators including groundwater flow field, hydrochemical field and temperature field are proposed. Finally, taking Hengyuan coal mine as an example, 6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model, a multi-factor linear recognition model, and a comprehensive intelligent early-warning recognition model. The results show that the correct rate of early warning can reach 95.2%. |
---|---|
AbstractList | As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning, the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years. Due to the many factors affecting water inrush and the complicated water inrush mechanism, many factors close to water inrush may have precursory abnormal changes. At present, the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level, water influx, and temperature, and performs water inrush early warning through the abnormal change of a single factor. However, there are relatively few multi-factor comprehensive early warning identification models. Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases, 11 measurable and effective indicators including groundwater flow field, hydrochemical field and temperature field are proposed. Finally, taking Hengyuan coal mine as an example, 6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model, a multi-factor linear recognition model, and a comprehensive intelligent early-warning recognition model. The results show that the correct rate of early warning can reach 95.2%. |
Author | Zhang, Chenghang Sun, Yajun Wang, Xin Xu, Zhimin Zheng, Jieming Duan, Zhongwen |
Author_xml | – sequence: 1 givenname: Xin surname: Wang fullname: Wang, Xin – sequence: 2 givenname: Zhimin surname: Xu fullname: Xu, Zhimin – sequence: 3 givenname: Yajun surname: Sun fullname: Sun, Yajun – sequence: 4 givenname: Jieming surname: Zheng fullname: Zheng, Jieming – sequence: 5 givenname: Chenghang orcidid: 0000-0002-5620-7751 surname: Zhang fullname: Zhang, Chenghang – sequence: 6 givenname: Zhongwen surname: Duan fullname: Duan, Zhongwen |
BookMark | eNp9kMtOxCAUhllooo7zBG76Aq1Ay6VLM_GWmLiZPQF6GGlaUMrE-PYyM8aFC9nA-Q__t_iu0FmIARC6IbghmPDbsfHjvOSGYkoaLBpM6Bm6pLhnNeWSX6D1soy4HC47yegl-tjEsOS0t9nHUEVXzfsp-9ppm2Oq_AAhe-etPq7nOMBUubJIoKc6-xlKFnz56sOu0mGoQKfpq_rUKRySA88HKHOGQgtpv7xdo3OnpwXWP_cKbR_ut5un-uX18Xlz91LbjnS5lhw7BuXJBTBnOzlwMbRGYNdT6PkgMMPQdxSIcb0skaGOa8k7x1sQtl2h5xN2iHpU78nPOn2pqL06BjHtlE7Z2wmUaSljjJgC5p0xTEvTMiOYkBSD4VBY7YllU1yWBO6XR7A6eFejOnpXB-8KC1W8l1b_p2V9PorMSfvp3-43tBqRGQ |
CitedBy_id | crossref_primary_10_1016_j_compind_2022_103783 crossref_primary_10_1016_j_procs_2023_11_084 crossref_primary_10_1007_s11227_025_07033_z crossref_primary_10_1155_2022_1671859 crossref_primary_10_1155_2023_2201870 crossref_primary_10_3390_app13159043 crossref_primary_10_1016_j_jhydrol_2022_127731 crossref_primary_10_1007_s12517_022_09501_9 crossref_primary_10_1155_2022_7958712 crossref_primary_10_3389_feart_2024_1436970 crossref_primary_10_3390_su151310262 crossref_primary_10_3390_w14244093 crossref_primary_10_1016_j_tust_2023_105034 crossref_primary_10_1016_j_fuel_2022_124553 crossref_primary_10_1109_JIOT_2023_3267828 crossref_primary_10_1007_s11069_023_06036_4 crossref_primary_10_1155_2022_3067983 crossref_primary_10_3390_en15093278 crossref_primary_10_1007_s11082_023_06254_x crossref_primary_10_1007_s00603_024_03929_z crossref_primary_10_1038_s41598_024_83710_y crossref_primary_10_1080_19475705_2024_2420652 crossref_primary_10_3390_w17060790 crossref_primary_10_1016_j_ijmst_2022_01_005 crossref_primary_10_3390_w16213047 crossref_primary_10_1016_j_energy_2025_135312 crossref_primary_10_1016_j_jiph_2024_01_019 crossref_primary_10_1016_j_cageo_2024_105544 crossref_primary_10_1016_j_ijmst_2023_09_003 crossref_primary_10_1109_TGRS_2024_3384990 crossref_primary_10_1016_j_eng_2022_05_016 crossref_primary_10_3390_w15223910 crossref_primary_10_1007_s40571_024_00827_7 crossref_primary_10_1155_2022_9447145 crossref_primary_10_1016_j_ijmst_2023_10_006 crossref_primary_10_1144_qjegh2021_128 crossref_primary_10_1007_s11053_022_10131_x |
Cites_doi | 10.1007/s10230-018-0512-6 10.1016/j.ijrmms.2004.11.010 10.1007/s10230-018-00575-0 10.1007/s10706-018-0673-x 10.1016/0022-2496(77)90033-5 10.1016/j.ijmst.2021.01.007 10.1016/j.ijmst.2020.05.020 10.1007/s00603-016-1007-z 10.1007/s00521-016-2809-3 10.1007/s10230-018-0521-5 10.1007/s11069-019-03767-1 10.1007/s12517-018-3651-y 10.1016/j.ijmst.2017.07.010 10.1007/s13369-017-2858-7 10.1007/s12665-015-4132-1 10.1007/s00366-016-0497-3 10.1007/s00254-007-1160-5 10.1007/s00603-016-1037-6 10.1016/j.ijmst.2019.02.001 10.1007/s12517-018-4181-3 10.1016/0270-0255(87)90473-8 10.1108/EC-06-2018-0253 10.1007/s10230-010-0125-1 10.1007/s00603-016-1036-7 10.1007/s10040-017-1614-0 10.1007/s10230-017-0443-7 10.1016/j.ijmst.2019.12.001 10.1016/j.ijmst.2019.06.009 10.1007/s12665-012-1602-6 10.1016/S1006-1266(08)60034-6 10.1016/j.proeng.2011.11.2190 10.3233/IFS-151998 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.ijmst.2021.07.012 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 866 |
ExternalDocumentID | oai_doaj_org_article_b325551b92e64bb5a8b35b757820eb6e 10_1016_j_ijmst_2021_07_012 |
GroupedDBID | -SB -S~ .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VR 7-5 8P~ 92H 92I AAEDW AAIKJ AALRI AAXUO AAYWO AAYXX ABWVN ACGFS ACLVX ACNNM ACRPL ACSBN ACVFH ADCNI ADEZE ADMUD ADNMO ADTZH ADVLN AECPX AEKER AEUPX AFPUW AFTJW AFUIB AGHFR AGYEJ AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ BJAXD BLXMC CAJEB CCEZO CDRFL CHBEP CITATION CW9 EBS EJD EP3 FA0 FDB FIRID FNPLU GBLVA GROUPED_DOAJ HZ~ IMUCA J1W JJJVA M41 MO0 O-L O9- OAUVE OK1 P-8 P-9 PC. Q-- Q38 ROL SDF SES SPC SST SSZ TCJ TGT U1G U5L |
ID | FETCH-LOGICAL-c414t-860f5e41467e5fc48d67d3b70f92e96d7050e942e1bf982e9b2f6a864f63e7c3 |
IEDL.DBID | DOA |
ISSN | 2095-2686 |
IngestDate | Wed Aug 27 01:25:54 EDT 2025 Tue Jul 01 04:19:59 EDT 2025 Thu Apr 24 23:11:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-860f5e41467e5fc48d67d3b70f92e96d7050e942e1bf982e9b2f6a864f63e7c3 |
ORCID | 0000-0002-5620-7751 |
OpenAccessLink | https://doaj.org/article/b325551b92e64bb5a8b35b757820eb6e |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b325551b92e64bb5a8b35b757820eb6e crossref_primary_10_1016_j_ijmst_2021_07_012 crossref_citationtrail_10_1016_j_ijmst_2021_07_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-00 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-00 |
PublicationDecade | 2020 |
PublicationTitle | International journal of mining science and technology |
PublicationYear | 2021 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Hebblewhite (10.1016/j.ijmst.2021.07.012_b0005) 2020; 30 Ruan (10.1016/j.ijmst.2021.07.012_b0125) 2019; 38 Wu (10.1016/j.ijmst.2021.07.012_b0155) 2017; 25 Haas (10.1016/j.ijmst.2021.07.012_b0100) 2019; 29 Sun (10.1016/j.ijmst.2021.07.012_b0120) 2019; 37 Cao (10.1016/j.ijmst.2021.07.012_b0080) 2016; 49 Guo (10.1016/j.ijmst.2021.07.012_b0135) 2018; 37 Li (10.1016/j.ijmst.2021.07.012_b0075) 2016; 49 Garvey (10.1016/j.ijmst.2021.07.012_b0170) 1998; 22 Zhang (10.1016/j.ijmst.2021.07.012_b0085) 2016; 49 Chitsazan (10.1016/j.ijmst.2021.07.012_b0090) 2012; 67 Wu (10.1016/j.ijmst.2021.07.012_b0070) 2015; 74 Zhang (10.1016/j.ijmst.2021.07.012_b0030) 2005; 42 Temeng (10.1016/j.ijmst.2021.07.012_b0105) 2020; 30 Yang (10.1016/j.ijmst.2021.07.012_b0150) 2016; 30 Zhu (10.1016/j.ijmst.2021.07.012_b0040) 2008; 18 Yi (10.1016/j.ijmst.2021.07.012_b0050) 2011; 52 Jian (10.1016/j.ijmst.2021.07.012_b0045) 2011; 21 Sun (10.1016/j.ijmst.2021.07.012_b0015) 2017; 36 Wu (10.1016/j.ijmst.2021.07.012_b0060) 2008; 56 Xu (10.1016/j.ijmst.2021.07.012_b0095) 2018; 37 Qiang (10.1016/j.ijmst.2021.07.012_b0065) 2011; 30 Zhu (10.1016/j.ijmst.2021.07.012_b0160) 2014; 45 Chen (10.1016/j.ijmst.2021.07.012_b0145) 2019; 99 10.1016/j.ijmst.2021.07.012_b0165 Yang (10.1016/j.ijmst.2021.07.012_b0190) 2018; 11 Rezaei (10.1016/j.ijmst.2021.07.012_b0130) 2018; 30 Liu (10.1016/j.ijmst.2021.07.012_b0020) 2018; 43 Saaty (10.1016/j.ijmst.2021.07.012_b0180) 1987; 9 Xiang (10.1016/j.ijmst.2021.07.012_b0055) 2011; 26 Sayevand (10.1016/j.ijmst.2021.07.012_b0200) 2019; 36 Wei (10.1016/j.ijmst.2021.07.012_b0035) 2010; 20 Lawal (10.1016/j.ijmst.2021.07.012_b0115) 2021; 31 Wu (10.1016/j.ijmst.2021.07.012_b0185) 2016; 75 Saaty (10.1016/j.ijmst.2021.07.012_b0175) 1977; 15 Pu (10.1016/j.ijmst.2021.07.012_b0110) 2019; 29 Sun (10.1016/j.ijmst.2021.07.012_b0010) 2017; 27 Liu (10.1016/j.ijmst.2021.07.012_b0025) 2019; 12 Chen (10.1016/j.ijmst.2021.07.012_b0140) 2020; 2020 Taheri (10.1016/j.ijmst.2021.07.012_b0195) 2017; 33 |
References_xml | – volume: 37 start-page: 385 issue: 2 year: 2018 ident: 10.1016/j.ijmst.2021.07.012_b0095 article-title: Groundwater Source Discrimination and Proportion Determination of Mine Inflow Using Ion Analyses: A Case Study from the Longmen Coal Mine, Henan Province publication-title: China. Mine Water and the Environment doi: 10.1007/s10230-018-0512-6 – volume: 42 start-page: 350 issue: 3 year: 2005 ident: 10.1016/j.ijmst.2021.07.012_b0030 article-title: Investigations of water inrushes from aquifers under coal seams publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2004.11.010 – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.ijmst.2021.07.012_b0140 article-title: Quantitative Evaluation for the Threat Degree of a Thermal Reservoir to Deep Coal Mining publication-title: Geofluids – volume: 38 start-page: 488 issue: 3 year: 2019 ident: 10.1016/j.ijmst.2021.07.012_b0125 article-title: A new risk assessment model for underground mine water inrush based on AHP and D-S evidence theory publication-title: Mine Water and the Environment doi: 10.1007/s10230-018-00575-0 – volume: 22 start-page: 18 issue: 1 year: 1998 ident: 10.1016/j.ijmst.2021.07.012_b0170 article-title: Risk matrix: an approach for identifying, assessing, and ranking program risks publication-title: Air Force Journal of Logistics – volume: 37 start-page: 1135 issue: 3 year: 2019 ident: 10.1016/j.ijmst.2021.07.012_b0120 article-title: An improved fuzzy comprehensive evaluation system and application for risk assessment of floor water inrush in deep mining publication-title: Geotech Geol Eng doi: 10.1007/s10706-018-0673-x – volume: 15 start-page: 234 issue: 3 year: 1977 ident: 10.1016/j.ijmst.2021.07.012_b0175 article-title: A scaling method for priorities in hierarchical structures publication-title: J Math Psychol doi: 10.1016/0022-2496(77)90033-5 – volume: 31 start-page: 265 issue: 2 year: 2021 ident: 10.1016/j.ijmst.2021.07.012_b0115 article-title: Blast-induced ground vibration prediction in granite quarries: An application of gene expression programming, ANFIS, and sine cosine algorithm optimized ANN. International Journal of publication-title: Mining Science and Technology doi: 10.1016/j.ijmst.2021.01.007 – volume: 30 start-page: 683 issue: 5 year: 2020 ident: 10.1016/j.ijmst.2021.07.012_b0105 article-title: A novel artificial intelligent model for predicting air overpressure using brain inspired emotional neural network publication-title: International Journal of Mining Science and Technology doi: 10.1016/j.ijmst.2020.05.020 – volume: 49 start-page: 3699 issue: 9 year: 2016 ident: 10.1016/j.ijmst.2021.07.012_b0085 article-title: Study of a seepage channel formation using the combination of microseismic monitoring technique and numerical method in Zhangmatun iron mine publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-1007-z – volume: 30 start-page: 2145 issue: 7 year: 2018 ident: 10.1016/j.ijmst.2021.07.012_b0130 article-title: Development of an intelligent model to estimate the height of caving–fracturing zone over the longwall gobs publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2809-3 – volume: 37 start-page: 703 issue: 4 year: 2018 ident: 10.1016/j.ijmst.2021.07.012_b0135 article-title: The feasibility of mining under a water body based on a fuzzy neural network publication-title: Mine Water and the Environment doi: 10.1007/s10230-018-0521-5 – volume: 99 start-page: 689 issue: 2 year: 2019 ident: 10.1016/j.ijmst.2021.07.012_b0145 article-title: Discussion on controlling factors of hydrogeochemistry and hydraulic connections of groundwater in different mining districts publication-title: Nat Hazards doi: 10.1007/s11069-019-03767-1 – volume: 52 start-page: 50 year: 2011 ident: 10.1016/j.ijmst.2021.07.012_b0050 article-title: Risk assessment of floor water inrush in coal mines based on secondary fuzzy comprehensive evaluation publication-title: Int J Rock Mech Min Sci – volume: 75 start-page: 1 issue: 9 year: 2016 ident: 10.1016/j.ijmst.2021.07.012_b0185 article-title: Assessment of groundwater inrush from underlying aquifers in Tunbai coal mine, Shanxi province publication-title: China. Environmental Earth Sciences – volume: 11 start-page: 299 issue: 12 year: 2018 ident: 10.1016/j.ijmst.2021.07.012_b0190 article-title: Risk assessment of coal mining above confined aquifer based on maximizing deviation in a gis environment publication-title: Arabian J Geosci doi: 10.1007/s12517-018-3651-y – volume: 27 start-page: 873 issue: 5 year: 2017 ident: 10.1016/j.ijmst.2021.07.012_b0010 article-title: Relationship between water inrush from coal seam floors and main roof weighting publication-title: International Journal of Mining Science and Technology doi: 10.1016/j.ijmst.2017.07.010 – volume: 43 start-page: 321 issue: 1 year: 2018 ident: 10.1016/j.ijmst.2021.07.012_b0020 article-title: Water inrush risk zoning and water conservation mining technology in the Shennan mining area, Shaanxi, China publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-017-2858-7 – volume: 74 start-page: 1429 issue: 2 year: 2015 ident: 10.1016/j.ijmst.2021.07.012_b0070 article-title: Quantitative evaluation and prediction of water inrush vulnerability from aquifers overlying coal seams in Donghuantuo Coal Mine publication-title: China. Environmental Earth Sciences doi: 10.1007/s12665-015-4132-1 – ident: 10.1016/j.ijmst.2021.07.012_b0165 – volume: 33 start-page: 689 issue: 3 year: 2017 ident: 10.1016/j.ijmst.2021.07.012_b0195 article-title: A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration publication-title: Engineering with Computers doi: 10.1007/s00366-016-0497-3 – volume: 56 start-page: 245 issue: 2 year: 2008 ident: 10.1016/j.ijmst.2021.07.012_b0060 article-title: Prediction of groundwater inrush into coal mines from aquifers underlying the coal seams in China: vulnerability index method and its construction publication-title: Environ Geol doi: 10.1007/s00254-007-1160-5 – volume: 49 start-page: 4393 issue: 11 year: 2016 ident: 10.1016/j.ijmst.2021.07.012_b0075 article-title: Rock burst monitoring by integrated microseismic and electromagnetic radiation methods publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-1037-6 – volume: 29 start-page: 371 issue: 3 year: 2019 ident: 10.1016/j.ijmst.2021.07.012_b0100 article-title: Using self-determination theory to identify organizational interventions to support coal mineworkers’ dust-reducing practices publication-title: International Journal of Mining Science and Technology doi: 10.1016/j.ijmst.2019.02.001 – volume: 12 start-page: 30 issue: 2 year: 2019 ident: 10.1016/j.ijmst.2021.07.012_b0025 article-title: Early warning information evolution characteristics of water inrush from floor in underground coal mining publication-title: Arabian J Geosci doi: 10.1007/s12517-018-4181-3 – volume: 9 start-page: 161 issue: 3-5 year: 1987 ident: 10.1016/j.ijmst.2021.07.012_b0180 article-title: The analytic hierarchy process-what it is and how it is used publication-title: Mathematical modelling doi: 10.1016/0270-0255(87)90473-8 – volume: 36 start-page: 533 issue: 2 year: 2019 ident: 10.1016/j.ijmst.2021.07.012_b0200 article-title: A fresh view on particle swarm optimization to develop a precise model for predicting rock fragmentation publication-title: Engineering with Computers doi: 10.1108/EC-06-2018-0253 – volume: 30 start-page: 54 issue: 1 year: 2011 ident: 10.1016/j.ijmst.2021.07.012_b0065 article-title: Using the vulnerable index method to assess the likelihood of a water inrush through the floor of a multi-seam coal mine in China publication-title: Mine water and the environment doi: 10.1007/s10230-010-0125-1 – volume: 49 start-page: 4407 issue: 11 year: 2016 ident: 10.1016/j.ijmst.2021.07.012_b0080 article-title: Microseismic precursory characteristics of rock burst hazard in mining areas near a large residual coal pillar: a case study from Xuzhuang coal mine, Xuzhou publication-title: China. Rock Mechanics and Rock Engineering doi: 10.1007/s00603-016-1036-7 – volume: 25 start-page: 2089 issue: 7 year: 2017 ident: 10.1016/j.ijmst.2021.07.012_b0155 article-title: Method for assessing coal-floor water-inrush risk based on the variable-weight model and unascertained measure theory publication-title: Hydrogeol J doi: 10.1007/s10040-017-1614-0 – volume: 36 start-page: 542 issue: 4 year: 2017 ident: 10.1016/j.ijmst.2021.07.012_b0015 article-title: Physical simulation of high-pressure water inrush through the floor of a deep mine publication-title: Mine Water Environ doi: 10.1007/s10230-017-0443-7 – volume: 30 start-page: 49 issue: 1 year: 2020 ident: 10.1016/j.ijmst.2021.07.012_b0005 article-title: Fracturing, caving propagation and influence of mining on groundwater above longwall panels—a review of predictive models publication-title: International Journal of Mining Science and Technology doi: 10.1016/j.ijmst.2019.12.001 – volume: 45 start-page: 170 issue: 1 year: 2014 ident: 10.1016/j.ijmst.2021.07.012_b0160 article-title: Critical water inrush monitoring index and early-warning model of mine water disaster publication-title: Safety in Coal Mines – volume: 21 start-page: 165 issue: 2 year: 2011 ident: 10.1016/j.ijmst.2021.07.012_b0045 article-title: Determining areas in an inclined coal seam floor prone to water-inrush by micro-seismic monitoring publication-title: Mining Science and Technology – volume: 29 start-page: 565 issue: 4 year: 2019 ident: 10.1016/j.ijmst.2021.07.012_b0110 article-title: Machine learning methods for rockburst prediction-state-of-the-art review publication-title: International Journal of Mining Science and Technology doi: 10.1016/j.ijmst.2019.06.009 – volume: 20 start-page: 121 issue: 1 year: 2010 ident: 10.1016/j.ijmst.2021.07.012_b0035 article-title: Comprehensive evaluation of water-inrush risk from coal floors publication-title: Mining Science and Technology – volume: 67 start-page: 1605 issue: 6 year: 2012 ident: 10.1016/j.ijmst.2021.07.012_b0090 article-title: The study of the hydrogeological setting of the Chamshir Dam site with special emphasis on the cause of water salinity in the Zohreh River downstream from the Chamshir Dam (southwest of Iran) publication-title: Environmental Earth Sciences doi: 10.1007/s12665-012-1602-6 – volume: 18 start-page: 159 issue: 2 year: 2008 ident: 10.1016/j.ijmst.2021.07.012_b0040 article-title: Numerical analysis of water inrush from working-face floor during mining publication-title: Journal of China University of Mining and Technology doi: 10.1016/S1006-1266(08)60034-6 – volume: 26 start-page: 441 year: 2011 ident: 10.1016/j.ijmst.2021.07.012_b0055 article-title: Assessment method of water-inrush risk induced by fault activation and its application research publication-title: Procedia Engineering doi: 10.1016/j.proeng.2011.11.2190 – volume: 30 start-page: 2289 issue: 4 year: 2016 ident: 10.1016/j.ijmst.2021.07.012_b0150 article-title: The fuzzy comprehensive evaluation of water and sand inrush risk during underground mining publication-title: J Intell Fuzzy Syst doi: 10.3233/IFS-151998 |
SSID | ssj0000684852 |
Score | 2.4310136 |
Snippet | As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning, the automatic monitoring and early warning of... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 853 |
SubjectTerms | Automatic monitoring Mine water inrush Real-time warning Recognition model |
Title | Construction of multi-factor identification model for real-time monitoring and early warning of mine water inrush |
URI | https://doaj.org/article/b325551b92e64bb5a8b35b757820eb6e |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwyIT1E-Kg-MBGLHdpwREKhCgqlI3SI7PotWJQVaxMZv5-ykVVlgYYyTONbz5XyOXt4j5EyBLji3OjHOOtygAOZBbkxiNcsBdKYMCz8nPzyq_pO4H8rhitVX4IQ18sANcJc2w6JXMltwUMJaabTNpI0q7ClYBSH74pq3splqcrAWOtrt4MlA49JqITkUyV2j8cssMCk5i9KdjP9YllbU--Myc7dNttr6kF4149oha1Dvks0V1cA98hZMNheyr3TqaSQFJo1zDh25lv8TIafR6YZiZUqxOpwkwUoe28J7HDqjpnYUgsYx_Ww-kcT-8Fl4jIjTUf3-MXveJ4O728FNP2mdE5JKMDFPtEq9BBGyIEhfCe1U7jKbpx5hLJTLU5lCITgw6wuNTZZ7ZbQSXmWQV9kB6dTTGg4JrThOsS_AGQbCZ6aQYIwSoG3FpKugS_gCt7JqVcWDucWkXNDHxmUEuwxgl2leIthdcr686bUR1fj98uswIctLgyJ2bMA4Kds4Kf-Kk6P_6OSYbIRxNRyzE9LBuYZTLErmtkfWL75YL0bhN4Vp4gQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+multi-factor+identification+model+for+real-time+monitoring+and+early+warning+of+mine+water+inrush&rft.jtitle=International+journal+of+mining+science+and+technology&rft.au=Xin+Wang&rft.au=Zhimin+Xu&rft.au=Yajun+Sun&rft.au=Jieming+Zheng&rft.date=2021-09-01&rft.pub=Elsevier&rft.issn=2095-2686&rft.volume=31&rft.issue=5&rft.spage=853&rft.epage=866&rft_id=info:doi/10.1016%2Fj.ijmst.2021.07.012&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b325551b92e64bb5a8b35b757820eb6e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2686&client=summon |