Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN)
Tree-crown and height are primary tree measurements in forest inventory. Convolutional neural networks (CNNs) are a class of neural networks, which can be used in forest inventory; however, no prior studies have developed a CNN model to detect tree crown and height simultaneously. This study is the...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 178; pp. 112 - 123 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tree-crown and height are primary tree measurements in forest inventory. Convolutional neural networks (CNNs) are a class of neural networks, which can be used in forest inventory; however, no prior studies have developed a CNN model to detect tree crown and height simultaneously. This study is the first-of-its-kind that explored training a mask region-based convolutional neural network (Mask R-CNN) for automatically and concurrently detecting discontinuous tree crown and height of Chinese fir (Cunninghamia lanceolata (Lamb) Hook) in a plantation. A DJI Phantom4-Multispectral Unmanned Aerial Vehicle (UAV) was used to obtain high-resolution images of the study site, Shunchang County, China. Tree crown and height of Chinese fir was manually delineated and derived from this UAV imagery. A portion of the ground-truthed tree height values were used as a test set, and the remaining measurements were used as the model training data. Six different band combinations and derivations of the UAV imagery were used to detect tree crown and height, respectively (Multi band-DSM, RGB-DSM, NDVI-DSM, Multi band-CHM, RGB-CHM, and NDVI-CHM combination). The Mask R-CNN model with the NDVI-CHM combination achieved superior performance. The accuracy of Chinese fir’s individual tree-crown detection was considerable (F1 score = 84.68%), the Intersection over Union (IoU) of tree crown delineation was 91.27%, and tree height estimates were highly correlated with the height from UAV imagery (R2 = 0.97, RMSE = 0.11 m, rRMSE = 4.35%) and field measurement (R2 = 0.87, RMSE = 0.24 m, rRMSE = 9.67%). Results demonstrate that the input image with an CHM achieves higher accuracy of tree crown delineation and tree height assessment compared to an image with a DSM. The accuracy and efficiency of Mask R-CNN has a great potential to assist the application of remote sensing in forests. |
---|---|
AbstractList | Tree-crown and height are primary tree measurements in forest inventory. Convolutional neural networks (CNNs) are a class of neural networks, which can be used in forest inventory; however, no prior studies have developed a CNN model to detect tree crown and height simultaneously. This study is the first-of-its-kind that explored training a mask region-based convolutional neural network (Mask R-CNN) for automatically and concurrently detecting discontinuous tree crown and height of Chinese fir (Cunninghamia lanceolata (Lamb) Hook) in a plantation. A DJI Phantom4-Multispectral Unmanned Aerial Vehicle (UAV) was used to obtain high-resolution images of the study site, Shunchang County, China. Tree crown and height of Chinese fir was manually delineated and derived from this UAV imagery. A portion of the ground-truthed tree height values were used as a test set, and the remaining measurements were used as the model training data. Six different band combinations and derivations of the UAV imagery were used to detect tree crown and height, respectively (Multi band-DSM, RGB-DSM, NDVI-DSM, Multi band-CHM, RGB-CHM, and NDVI-CHM combination). The Mask R-CNN model with the NDVI-CHM combination achieved superior performance. The accuracy of Chinese fir’s individual tree-crown detection was considerable (F1 score = 84.68%), the Intersection over Union (IoU) of tree crown delineation was 91.27%, and tree height estimates were highly correlated with the height from UAV imagery (R² = 0.97, RMSE = 0.11 m, rRMSE = 4.35%) and field measurement (R² = 0.87, RMSE = 0.24 m, rRMSE = 9.67%). Results demonstrate that the input image with an CHM achieves higher accuracy of tree crown delineation and tree height assessment compared to an image with a DSM. The accuracy and efficiency of Mask R-CNN has a great potential to assist the application of remote sensing in forests. Tree-crown and height are primary tree measurements in forest inventory. Convolutional neural networks (CNNs) are a class of neural networks, which can be used in forest inventory; however, no prior studies have developed a CNN model to detect tree crown and height simultaneously. This study is the first-of-its-kind that explored training a mask region-based convolutional neural network (Mask R-CNN) for automatically and concurrently detecting discontinuous tree crown and height of Chinese fir (Cunninghamia lanceolata (Lamb) Hook) in a plantation. A DJI Phantom4-Multispectral Unmanned Aerial Vehicle (UAV) was used to obtain high-resolution images of the study site, Shunchang County, China. Tree crown and height of Chinese fir was manually delineated and derived from this UAV imagery. A portion of the ground-truthed tree height values were used as a test set, and the remaining measurements were used as the model training data. Six different band combinations and derivations of the UAV imagery were used to detect tree crown and height, respectively (Multi band-DSM, RGB-DSM, NDVI-DSM, Multi band-CHM, RGB-CHM, and NDVI-CHM combination). The Mask R-CNN model with the NDVI-CHM combination achieved superior performance. The accuracy of Chinese fir’s individual tree-crown detection was considerable (F1 score = 84.68%), the Intersection over Union (IoU) of tree crown delineation was 91.27%, and tree height estimates were highly correlated with the height from UAV imagery (R2 = 0.97, RMSE = 0.11 m, rRMSE = 4.35%) and field measurement (R2 = 0.87, RMSE = 0.24 m, rRMSE = 9.67%). Results demonstrate that the input image with an CHM achieves higher accuracy of tree crown delineation and tree height assessment compared to an image with a DSM. The accuracy and efficiency of Mask R-CNN has a great potential to assist the application of remote sensing in forests. |
Author | Mikhailova, Elena A. Liu, Jian Lin, Lili Post, Christopher J. Chen, Yan Hao, Zhenbang Li, Minghui Yu, Kunyong |
Author_xml | – sequence: 1 givenname: Zhenbang surname: Hao fullname: Hao, Zhenbang organization: College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China – sequence: 2 givenname: Lili surname: Lin fullname: Lin, Lili organization: University Key Lab for Geomatics Technology and Optimized Resources Utilization in Fujian Province, No. 15 Shangxiadian Road, Fuzhou, Fujian 350002, China – sequence: 3 givenname: Christopher J. surname: Post fullname: Post, Christopher J. organization: Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA – sequence: 4 givenname: Elena A. surname: Mikhailova fullname: Mikhailova, Elena A. organization: Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA – sequence: 5 givenname: Minghui surname: Li fullname: Li, Minghui organization: College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China – sequence: 6 givenname: Yan surname: Chen fullname: Chen, Yan organization: College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China – sequence: 7 givenname: Kunyong surname: Yu fullname: Yu, Kunyong organization: College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China – sequence: 8 givenname: Jian surname: Liu fullname: Liu, Jian email: fjliujian@fafu.edu.cn organization: College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China |
BookMark | eNqNkUFvEzEQhS1UJNLAb8DHctjFYzvezYFDFNEWqRQJtWfL651NnW7sYHtb9R_0Z9dpEAcucLBGevPek-bzKTnxwSMhH4HVwEB93tYu7WPalldzxqFmqmZMvCEzaBtetVwsTsiMLbmseAPqHTlNacsYg4VqZ-R5NeWwMxl7miNiZWN49NT4nt6h29xl2mNGm13w1BWdPoXJb-gQIqZM96Px2bwup-SKvjPpnkbcFKXqTCqlNviHME4Hjxmpxym-jvwY4j09-37w_6zW19ef3pO3gxkTfvg95-T2_OvN-rK6-nHxbb26qqwEmat2wXu14GBMg0vBOoUNgjBCLltuBgudET3rFbQSBuhwkFK2yAAaLoQw3VLMydmxdx_Dr6lcoXcuWRzLKRimpLkSSgrFin9OmqO1QEkp4qD30e1MfNLA9IG93uo_7PWBvWZKF_Yl-eWvpHVHUDkaN_5HfnXMYyHx4DDqZB16i72L5Td0H9w_O14AlMGq6A |
CitedBy_id | crossref_primary_10_3390_f15111959 crossref_primary_10_1016_j_jag_2023_103524 crossref_primary_10_3390_f15010061 crossref_primary_10_3390_fi14100275 crossref_primary_10_1080_10106049_2022_2142966 crossref_primary_10_3390_drones7090547 crossref_primary_10_1016_j_srs_2023_100109 crossref_primary_10_1002_rse2_382 crossref_primary_10_3390_rs14235910 crossref_primary_10_3390_rs15030778 crossref_primary_10_3390_rs14194963 crossref_primary_10_1016_j_isprsjprs_2023_11_011 crossref_primary_10_1016_j_tfp_2023_100436 crossref_primary_10_1016_j_isprsjprs_2021_11_013 crossref_primary_10_1016_j_ophoto_2022_100024 crossref_primary_10_1080_10106049_2022_2036824 crossref_primary_10_1016_j_ecolind_2024_112027 crossref_primary_10_3390_f16020228 crossref_primary_10_3390_rs14071561 crossref_primary_10_1016_j_rse_2023_113613 crossref_primary_10_1016_j_atech_2024_100625 crossref_primary_10_1109_JSTARS_2025_3541395 crossref_primary_10_1016_j_fecs_2023_100088 crossref_primary_10_1016_j_ecoinf_2024_102706 crossref_primary_10_3390_rs15215164 crossref_primary_10_3116_16091833_Ukr_J_Phys_Opt_2024_02021 crossref_primary_10_1515_nleng_2022_0299 crossref_primary_10_3390_rs16213920 crossref_primary_10_1016_j_compag_2024_108795 crossref_primary_10_1007_s00521_022_07640_4 crossref_primary_10_1016_j_rsase_2024_101422 crossref_primary_10_1016_j_rse_2024_114047 crossref_primary_10_1002_rse2_289 crossref_primary_10_1109_MGRS_2024_3479871 crossref_primary_10_1016_j_compag_2022_107333 crossref_primary_10_1016_j_ophoto_2023_100037 crossref_primary_10_1016_j_jag_2024_104235 crossref_primary_10_3390_rs16152807 crossref_primary_10_1016_j_jag_2022_102893 crossref_primary_10_3390_ijgi10120813 crossref_primary_10_1016_j_compag_2024_109277 crossref_primary_10_3390_rs15204923 crossref_primary_10_3390_f16030457 crossref_primary_10_1016_j_isprsjprs_2022_05_002 crossref_primary_10_3390_su16125124 crossref_primary_10_3390_agriculture13091679 crossref_primary_10_1016_j_rse_2023_113485 crossref_primary_10_3390_f14020285 crossref_primary_10_1007_s40725_023_00184_3 crossref_primary_10_1139_cjfr_2023_0187 crossref_primary_10_5194_essd_14_4967_2022 crossref_primary_10_1016_j_isprsjprs_2022_07_001 crossref_primary_10_3390_rs14153546 crossref_primary_10_1016_j_isprsjprs_2022_07_005 crossref_primary_10_3390_drones9020151 crossref_primary_10_1080_01431161_2024_2413026 crossref_primary_10_3390_rs15174295 crossref_primary_10_3390_su14073720 crossref_primary_10_3390_rs16203836 crossref_primary_10_1080_13416979_2025_2479873 crossref_primary_10_1109_JSTARS_2024_3422390 crossref_primary_10_1016_j_crfs_2023_100587 crossref_primary_10_1016_j_compag_2024_109425 crossref_primary_10_1017_eds_2024_16 crossref_primary_10_3389_fpls_2022_958940 crossref_primary_10_3390_app13010164 crossref_primary_10_1016_j_rsase_2024_101195 crossref_primary_10_3390_agronomy14061271 crossref_primary_10_3390_drones8020043 crossref_primary_10_1016_j_foreco_2024_121712 crossref_primary_10_3390_f14091726 crossref_primary_10_3390_f14112126 crossref_primary_10_3390_f15111881 crossref_primary_10_1002_rse2_332 crossref_primary_10_1016_j_isprsjprs_2023_04_010 crossref_primary_10_1016_j_isprsjprs_2021_07_001 crossref_primary_10_1080_17538947_2023_2257636 crossref_primary_10_3390_f15111900 crossref_primary_10_3390_f15020293 crossref_primary_10_3390_electronics13204139 crossref_primary_10_1016_j_jag_2022_102764 crossref_primary_10_3390_rs14020295 crossref_primary_10_3390_rs15184420 crossref_primary_10_1016_j_ophoto_2024_100071 crossref_primary_10_1016_j_buildenv_2022_109178 crossref_primary_10_1109_JSTARS_2023_3339290 crossref_primary_10_1016_j_jafr_2024_101139 crossref_primary_10_1016_j_rse_2024_114002 crossref_primary_10_3390_rs15092263 crossref_primary_10_1016_j_compag_2024_108878 crossref_primary_10_1155_2022_1913577 crossref_primary_10_1016_j_rse_2025_114618 crossref_primary_10_1016_j_isprsjprs_2022_04_002 crossref_primary_10_2139_ssrn_4802804 crossref_primary_10_3390_rs14061523 crossref_primary_10_3390_rs16030524 crossref_primary_10_3390_app14156403 crossref_primary_10_1016_j_compag_2024_109476 crossref_primary_10_1080_10095020_2023_2299146 crossref_primary_10_1016_j_atech_2024_100641 crossref_primary_10_3390_rs13173503 crossref_primary_10_3390_rs17061066 crossref_primary_10_34133_plantphenomics_0103 crossref_primary_10_3390_rs15133334 crossref_primary_10_1016_j_ufug_2025_128755 crossref_primary_10_1109_MGRS_2023_3312347 |
Cites_doi | 10.1080/2150704X.2016.1219424 10.3390/rs11060643 10.1109/JSTARS.2018.2816962 10.3390/s21051617 10.3390/s19061284 10.3390/f7030062 10.3390/f10050415 10.1016/j.ecoinf.2020.101061 10.3390/f8090340 10.1016/j.jag.2020.102091 10.1109/JPROC.2017.2675998 10.1002/rse2.3 10.1016/j.isprsjprs.2020.10.015 10.1080/15481603.2020.1712102 10.3390/rs11080928 10.1016/j.biocon.2015.03.031 10.1016/j.isprsjprs.2018.05.005 10.1371/journal.pone.0223906 10.3390/rs11151812 10.1016/j.isprsjprs.2019.04.015 10.1080/22797254.2018.1434424 10.1002/rse2.146 10.1093/forestry/cpt017 10.1080/01431161.2017.1402387 10.3390/rs11192326 10.1080/01431161.2018.1441568 10.3390/rs9010022 10.3390/f11090924 10.1016/j.rse.2017.04.007 10.1016/j.isprsjprs.2019.12.006 10.3390/s21010320 10.1016/S0034-4257(02)00050-0 10.1016/j.rse.2020.111841 10.1016/j.isprsjprs.2020.12.010 10.1016/j.foreco.2020.118397 10.3390/rs12244104 10.1016/j.jag.2019.101899 10.1016/j.rse.2013.09.006 10.1016/j.isprsjprs.2020.11.008 10.3390/rs12071070 10.1016/j.rse.2018.12.034 10.1016/j.neucom.2020.01.085 10.1016/j.ijforecast.2006.03.001 10.1080/01431161.2010.494184 10.3390/rs11111309 10.1016/j.eja.2014.01.004 10.1016/j.isprsjprs.2018.04.003 10.1016/j.isprsjprs.2020.08.005 10.3390/rs11030269 10.3390/rs11212585 10.1080/01431161.2020.1797219 10.1038/s41586-020-2824-5 10.3389/fpls.2017.01190 10.1080/2150704X.2017.1322733 10.1016/0034-4257(79)90013-0 10.1016/j.isprsjprs.2021.01.008 10.1016/j.isprsjprs.2019.07.010 10.1016/j.isprsjprs.2018.11.008 10.3390/rs12152426 10.3390/rs12081288 10.1016/j.rse.2014.12.020 10.1080/01431161.2019.1615652 10.1080/01431161.2010.507790 10.3390/f5071682 10.1038/s41598-019-53797-9 10.3390/rs13020162 |
ContentType | Journal Article |
Copyright | 2021 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2021 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2021.06.003 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 123 |
ExternalDocumentID | 10_1016_j_isprsjprs_2021_06_003 S0924271621001611 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c414t-852d6521aa7e930b6e7e13a34982afc1ba3d0d61841f1bef4448e01172333ab93 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Tue Aug 05 11:03:10 EDT 2025 Tue Jul 01 03:46:46 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 Fri Feb 23 02:42:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Instance segmentation UAV imagery Plantation forest Tree height Tree-crown delineation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-852d6521aa7e930b6e7e13a34982afc1ba3d0d61841f1bef4448e01172333ab93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2636436023 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2636436023 crossref_primary_10_1016_j_isprsjprs_2021_06_003 crossref_citationtrail_10_1016_j_isprsjprs_2021_06_003 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2021_06_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 20210801 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Guirado, Blanco-Sacristán, Rodríguez-Caballero, Tabik, Alcaraz-Segura, Martínez-Valderrama, Cabello (b0075) 2021; 21 Lagomasino, Fatoyinbo, Lee, Simard (b0135) 2015; 1 Sun, Shrivastava, Singh, Gupta (b0250) 2017 Tucker (b0285) 1979; 8 Pouliot, King, Bell, Pitt (b0190) 2002; 82 Röder, Latifi, Hill, Wild, Svoboda, Brůna, Macek, Nováková, Gülch, Heurich (b0205) 2018; 39 Silva, Saatchi, Garcia, Labriere, Klauberg, Ferraz, Meyer, Jeffery, Abernethy, White, Zhao, Lewis, Hudak (b0235) 2018; 11 Weinstein, Marconi, Bohlman, Zare, White (b0310) 2019; 11 Brandt, Tucker, Kariryaa, Rasmussen, Abel, Small, Chave, Rasmussen, Hiernaux, Diouf, Kergoat, Mertz, Igel, Gieseke, Schöning, Li, Melocik, Meyer, Sinno, Romero, Glennie, Montagu, Dendoncker, Fensholt (b0015) 2020; 587 Kattenborn, Eichel, Wiser, Burrows, Fassnacht, Schmidtlein (b0120) 2020; 6 Wu, Johansen, Phinn, Robson, Tu (b0320) 2020; 89 He, Gkioxari, Dollár, Girshick (b0090) 2017 Cheng, Han, Lu (b0030) 2017; 105 Fricker, Ventura, Wolf, North, Davis, Franklin (b0060) 2019; 11 Hartling, Sagan, Sidike, Maimaitijiang, Carron (b0085) 2019; 19 Dash, Watt, Paul, Morgenroth, Pearse (b0040) 2019; 11 Castilla, Filiatrault, McDermid, Gartrell (b0020) 2020; 11 Wang, Lehtomäki, Liang, Pyörälä, Kukko, Jaakkola, Liu, Feng, Chen, Hyyppä (b0305) 2019; 147 Ferreira, Almeida, Papa, Minervino, Veras, Formighieri, Santos, Ferreira, Figueiredo, Ferreira (b0055) 2020; 475 Goodbody, Coops, Hermosilla, Tompalski, Crawford (b0070) 2018; 39 Zheng, Fu, Li, Wu, Yu, Yuan, Tao, Pang, Kanniah (b0350) 2021; 173 Sothe, De Almeida, Schimalski, La Rosa, Castro, Feitosa, Dalponte, Lima, Liesenberg, Miyoshi, Tommaselli (b0240) 2020; 57 Tochon, Féret, Valero, Martin, Knapp, Salembier, Chanussot, Asner (b0265) 2015; 159 Pourshamsi, Xia, Yokoya, Garcia, Lavalle, Pottier, Balzter (b0195) 2021; 172 Kattenborn, Eichel, Fassnacht (b0115) 2019; 9 Qin, Wang, Wu, Lu, Zhu (b0200) 2021; 13 Safonova, Guirado, Maglinets, Alcaraz-Segura, Tabik (b0210) 2021; 21 Trier, Salberg, Kermit, Rudjord, Gobakken, Næsset, Aarsten (b0270) 2018; 51 Tu, Phinn, Johansen, Robson, Wu (b0280) 2020; 160 Hyndman, Koehler (b0100) 2006; 22 Li, Fu, Yu, Cracknell (b0145) 2017; 9 Persson, Perko (b0180) 2016; 7 Satir, Berberoglu, Akca, Yeler (b0225) 2017; 62 Fromm, Schubert, Castilla, Linke, McDermid (b0065) 2019; 11 Neupane, Horanont, Hung (b0160) 2019; 14 Tu, Johansen, Phinn, Robson (b0275) 2019; 11 Mohan, Silva, Klauberg, Jat, Catts, Cardil, Hudak, Dia (b0155) 2017; 8 Zhao, Liu, Zhang, Liang (b0345) 2019; 40 Larsen, Eriksson, Descombes, Perrin, Brandtberg, Gougeon (b0140) 2011; 32 Safonova, Tabik, Alcaraz-Segura, Rubtsov, Maglinets, Herrera (b0215) 2019; 11 Hao, Lin, Post, Jiang, Li, Wei, Yu, Liu (b0080) 2021 Sankey, Donager, McVay, Sankey (b0220) 2017; 195 Pearse, Tan, Watt, Franz, Dash (b0175) 2020; 168 Ding, Zhang, Deng, Jia, Kuijper (b0050) 2018; 141 Zarco-Tejada, Diaz-Varela, Angileri, Loudjani (b0340) 2014; 55 Wu, Sahoo, Hoi (b0325) 2020; 396 Wallace, Lucieer, Malenovský, Turner, Vopěnka (b0300) 2016; 7 Ke, Quackenbush (b0130) 2011; 32 Weinstein, Marconi, Bohlman, Zare, White (b0315) 2020; 56 Sylvain, Drolet, Brown (b0260) 2019; 156 Pleșoianu, Stupariu, Șandric, Pătru-Stupariu, Drăguț (b0185) 2020; 12 Chadwick, Goodbody, Coops, Hervieux, Bater, Martens, White, Röeser (b0025) 2020; 12 Imangholiloo, Saarinen, Markelin, Rosnell, Näsi, Hakala, Honkavaara, Holopainen, Hyyppä, Vastaranta (b0105) 2019; 10 Yin, Wang (b0330) 2019; 223 Zahawi, Dandois, Holl, Nadwodny, Reid, Ellis (b0335) 2015; 186 Ubbens, J.R., Stavness, I., 2017. Deep plant phenomics: A deep learning platform for complex plant phenotyping tasks. Frontiers in Plant Science, 8. Alonzo, Dial, Schulz, Andersen, Lewis-Clark, Cook, Morton (b0005) 2020; 245 Kakareko, Jung, Ozguven (b0110) 2020; 41 Straub, Tian, Seitz, Reinartz (b0245) 2013; 86 Deng, Sun, Zhou, Zhao, Lei, Zou (b0045) 2018; 145 Kattenborn, Leitloff, Schiefer, Hinz (b0125) 2021; 173 Nezami, Khoramshahi, Nevalainen, Pölönen, Honkavaara (b0165) 2020; 12 Schiefer, Kattenborn, Frick, Frey, Schall, Koch, Schmidtlein (b0230) 2020; 170 Dalponte, Ørka, Ene, Gobakken, Næsset (b0035) 2014; 140 Holopainen, Vastaranta, Hyyppä (b0095) 2014; 5 Braga, J.R., Peripato, V., Dalagnol, R., P. Ferreira, M., Tarabalka, Y., O. C. Aragão, L.E., F. De Campos Velho, H., Shiguemori, E.H. and Wagner, F.H., 2020. Tree crown delineation algorithm based on a convolutional neural network. Remote sensing, 12(8): 1288. Ma, Liu, Zhang, Ye, Yin, Johnson (b0150) 2019; 152 Özcan, Hisar, Sayar, Ünsalan (b0170) 2017; 8 Swinfield, Lindsell, Williams, Harrison, Agustiono, Gemita, Schönlieb, Coomes (b0255) 2019; 11 Vaglio Laurin, Ding, Disney, Bartholomeus, Herold, Papale, Valentini (b0295) 2019; 82 Alonzo (10.1016/j.isprsjprs.2021.06.003_b0005) 2020; 245 Weinstein (10.1016/j.isprsjprs.2021.06.003_b0310) 2019; 11 Zhao (10.1016/j.isprsjprs.2021.06.003_b0345) 2019; 40 Holopainen (10.1016/j.isprsjprs.2021.06.003_b0095) 2014; 5 Kattenborn (10.1016/j.isprsjprs.2021.06.003_b0125) 2021; 173 Deng (10.1016/j.isprsjprs.2021.06.003_b0045) 2018; 145 Zahawi (10.1016/j.isprsjprs.2021.06.003_b0335) 2015; 186 Guirado (10.1016/j.isprsjprs.2021.06.003_b0075) 2021; 21 Tochon (10.1016/j.isprsjprs.2021.06.003_b0265) 2015; 159 Tu (10.1016/j.isprsjprs.2021.06.003_b0280) 2020; 160 Fricker (10.1016/j.isprsjprs.2021.06.003_b0060) 2019; 11 Satir (10.1016/j.isprsjprs.2021.06.003_b0225) 2017; 62 Wu (10.1016/j.isprsjprs.2021.06.003_b0320) 2020; 89 Hartling (10.1016/j.isprsjprs.2021.06.003_b0085) 2019; 19 Wu (10.1016/j.isprsjprs.2021.06.003_b0325) 2020; 396 Safonova (10.1016/j.isprsjprs.2021.06.003_b0210) 2021; 21 Ferreira (10.1016/j.isprsjprs.2021.06.003_b0055) 2020; 475 Chadwick (10.1016/j.isprsjprs.2021.06.003_b0025) 2020; 12 Fromm (10.1016/j.isprsjprs.2021.06.003_b0065) 2019; 11 Neupane (10.1016/j.isprsjprs.2021.06.003_b0160) 2019; 14 Vaglio Laurin (10.1016/j.isprsjprs.2021.06.003_b0295) 2019; 82 Sankey (10.1016/j.isprsjprs.2021.06.003_b0220) 2017; 195 Kattenborn (10.1016/j.isprsjprs.2021.06.003_b0120) 2020; 6 He (10.1016/j.isprsjprs.2021.06.003_b0090) 2017 Dalponte (10.1016/j.isprsjprs.2021.06.003_b0035) 2014; 140 Li (10.1016/j.isprsjprs.2021.06.003_b0145) 2017; 9 Özcan (10.1016/j.isprsjprs.2021.06.003_b0170) 2017; 8 Pleșoianu (10.1016/j.isprsjprs.2021.06.003_b0185) 2020; 12 10.1016/j.isprsjprs.2021.06.003_b0010 10.1016/j.isprsjprs.2021.06.003_b0290 Brandt (10.1016/j.isprsjprs.2021.06.003_b0015) 2020; 587 Nezami (10.1016/j.isprsjprs.2021.06.003_b0165) 2020; 12 Pourshamsi (10.1016/j.isprsjprs.2021.06.003_b0195) 2021; 172 Swinfield (10.1016/j.isprsjprs.2021.06.003_b0255) 2019; 11 Hyndman (10.1016/j.isprsjprs.2021.06.003_b0100) 2006; 22 Kakareko (10.1016/j.isprsjprs.2021.06.003_b0110) 2020; 41 Persson (10.1016/j.isprsjprs.2021.06.003_b0180) 2016; 7 Dash (10.1016/j.isprsjprs.2021.06.003_b0040) 2019; 11 Sothe (10.1016/j.isprsjprs.2021.06.003_b0240) 2020; 57 Zarco-Tejada (10.1016/j.isprsjprs.2021.06.003_b0340) 2014; 55 Weinstein (10.1016/j.isprsjprs.2021.06.003_b0315) 2020; 56 Castilla (10.1016/j.isprsjprs.2021.06.003_b0020) 2020; 11 Lagomasino (10.1016/j.isprsjprs.2021.06.003_b0135) 2015; 1 Röder (10.1016/j.isprsjprs.2021.06.003_b0205) 2018; 39 Safonova (10.1016/j.isprsjprs.2021.06.003_b0215) 2019; 11 Ke (10.1016/j.isprsjprs.2021.06.003_b0130) 2011; 32 Straub (10.1016/j.isprsjprs.2021.06.003_b0245) 2013; 86 Wallace (10.1016/j.isprsjprs.2021.06.003_b0300) 2016; 7 Kattenborn (10.1016/j.isprsjprs.2021.06.003_b0115) 2019; 9 Silva (10.1016/j.isprsjprs.2021.06.003_b0235) 2018; 11 Tu (10.1016/j.isprsjprs.2021.06.003_b0275) 2019; 11 Hao (10.1016/j.isprsjprs.2021.06.003_b0080) 2021 Trier (10.1016/j.isprsjprs.2021.06.003_b0270) 2018; 51 Cheng (10.1016/j.isprsjprs.2021.06.003_b0030) 2017; 105 Qin (10.1016/j.isprsjprs.2021.06.003_b0200) 2021; 13 Tucker (10.1016/j.isprsjprs.2021.06.003_b0285) 1979; 8 Wang (10.1016/j.isprsjprs.2021.06.003_b0305) 2019; 147 Ding (10.1016/j.isprsjprs.2021.06.003_b0050) 2018; 141 Mohan (10.1016/j.isprsjprs.2021.06.003_b0155) 2017; 8 Goodbody (10.1016/j.isprsjprs.2021.06.003_b0070) 2018; 39 Yin (10.1016/j.isprsjprs.2021.06.003_b0330) 2019; 223 Pouliot (10.1016/j.isprsjprs.2021.06.003_b0190) 2002; 82 Sylvain (10.1016/j.isprsjprs.2021.06.003_b0260) 2019; 156 Zheng (10.1016/j.isprsjprs.2021.06.003_b0350) 2021; 173 Larsen (10.1016/j.isprsjprs.2021.06.003_b0140) 2011; 32 Imangholiloo (10.1016/j.isprsjprs.2021.06.003_b0105) 2019; 10 Ma (10.1016/j.isprsjprs.2021.06.003_b0150) 2019; 152 Pearse (10.1016/j.isprsjprs.2021.06.003_b0175) 2020; 168 Schiefer (10.1016/j.isprsjprs.2021.06.003_b0230) 2020; 170 Sun (10.1016/j.isprsjprs.2021.06.003_b0250) 2017 |
References_xml | – volume: 9 start-page: 22 year: 2017 ident: b0145 article-title: Deep learning based oil palm tree detection and counting for high-resolution remote sensing images publication-title: Remote Sens. – volume: 56 year: 2020 ident: b0315 article-title: Cross-site learning in deep learning RGB tree crown detection publication-title: Ecol. Inf. – volume: 168 start-page: 156 year: 2020 end-page: 169 ident: b0175 article-title: Detecting and mapping tree seedlings in UAV imagery using convolutional neural networks and field-verified data publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 245 year: 2020 ident: b0005 article-title: Mapping tall shrub biomass in Alaska at landscape scale using structure-from-motion photogrammetry and lidar publication-title: Remote Sens. Environ. – volume: 11 start-page: 643 year: 2019 ident: b0215 article-title: Detection of fir trees ( publication-title: Remote Sens. – volume: 11 start-page: 2585 year: 2019 ident: b0065 article-title: Automated detection of conifer seedlings in drone imagery using convolutional neural networks publication-title: Remote Sens. – reference: Ubbens, J.R., Stavness, I., 2017. Deep plant phenomics: A deep learning platform for complex plant phenotyping tasks. Frontiers in Plant Science, 8. – volume: 105 start-page: 1865 year: 2017 end-page: 1883 ident: b0030 article-title: Remote sensing image scene classification: Benchmark and state of the art publication-title: Proc. IEEE – volume: 11 start-page: 2326 year: 2019 ident: b0060 article-title: A convolutional neural network classifier identifies tree species in mixed-conifer forest from hyperspectral imagery publication-title: Remote Sens. – volume: 12 start-page: 4104 year: 2020 ident: b0025 article-title: Automatic delineation and height measurement of regenerating conifer crowns under leaf-off conditions using UAV Imagery publication-title: Remote Sens. – volume: 57 start-page: 369 year: 2020 end-page: 394 ident: b0240 article-title: Comparative performance of convolutional neural network, weighted and conventional support vector machine and random forest for classifying tree species using hyperspectral and photogrammetric data publication-title: GIScience Remote Sens. – volume: 11 start-page: 269 year: 2019 ident: b0275 article-title: Measuring canopy structure and condition using multi-spectral UAS imagery in a horticultural environment publication-title: Remote Sens. – volume: 140 start-page: 306 year: 2014 end-page: 317 ident: b0035 article-title: Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data publication-title: Remote Sens. Environ. – volume: 55 start-page: 89 year: 2014 end-page: 99 ident: b0340 article-title: Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods publication-title: Eur. J. Agron. – volume: 41 start-page: 9039 year: 2020 end-page: 9063 ident: b0110 article-title: Estimation of tree failure consequences due to high winds using convolutional neural networks publication-title: Int. J. Remote Sens. – volume: 51 start-page: 336 year: 2018 end-page: 351 ident: b0270 article-title: Tree species classification in Norway from airborne hyperspectral and airborne laser scanning data publication-title: European J. Remote Sens. – volume: 7 start-page: 62 year: 2016 ident: b0300 article-title: Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds publication-title: Forests – start-page: 2961 year: 2017 end-page: 2969 ident: b0090 article-title: Mask R-CNN publication-title: Proceedings of the IEEE international conference on computer vision – volume: 82 start-page: 322 year: 2002 end-page: 334 ident: b0190 article-title: Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration publication-title: Remote Sens. Environ. – volume: 5 start-page: 1682 year: 2014 end-page: 1694 ident: b0095 article-title: Outlook for the next generation’s precision forestry in Finland publication-title: Forests – volume: 170 start-page: 205 year: 2020 end-page: 215 ident: b0230 article-title: Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 8 start-page: 127 year: 1979 end-page: 150 ident: b0285 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. – volume: 13 start-page: 162 year: 2021 ident: b0200 article-title: Identifying pine wood nematode disease using UAV images and deep learning algorithms publication-title: Remote Sens. – volume: 396 start-page: 39 year: 2020 end-page: 64 ident: b0325 article-title: Recent advances in deep learning for object detection publication-title: Neurocomputing – volume: 223 start-page: 34 year: 2019 end-page: 49 ident: b0330 article-title: Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges publication-title: Remote Sens. Environ. – volume: 9 year: 2019 ident: b0115 article-title: Convolutional neural networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery publication-title: Sci. Rep. – volume: 6 start-page: 472 year: 2020 end-page: 486 ident: b0120 article-title: Convolutional neural networks accurately predict cover fractions of plant species and communities in unmanned aerial vehicle imagery publication-title: Remote Sens. Ecol. Conserv. – volume: 145 start-page: 3 year: 2018 end-page: 22 ident: b0045 article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 10 start-page: 415 year: 2019 ident: b0105 article-title: Characterizing seedling stands using leaf-off and leaf-on photogrammetric point clouds and hyperspectral imagery acquired from unmanned aerial vehicle publication-title: Forests – volume: 21 start-page: 1617 year: 2021 ident: b0210 article-title: Olive tree biovolume from UAV multi-resolution image segmentation with Mask R-CNN publication-title: Sensors – start-page: 1 year: 2021 end-page: 20 ident: b0080 article-title: Assessing tree height and density of a young forest using a consumer unmanned aerial vehicle (UAV) publication-title: New Forest – reference: Braga, J.R., Peripato, V., Dalagnol, R., P. Ferreira, M., Tarabalka, Y., O. C. Aragão, L.E., F. De Campos Velho, H., Shiguemori, E.H. and Wagner, F.H., 2020. Tree crown delineation algorithm based on a convolutional neural network. Remote sensing, 12(8): 1288. – volume: 11 start-page: 1812 year: 2019 ident: b0040 article-title: Early detection of invasive exotic trees using UAV and manned aircraft multispectral and LiDAR data publication-title: Remote Sens. – volume: 32 start-page: 5827 year: 2011 end-page: 5852 ident: b0140 article-title: Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions publication-title: Int. J. Remote Sens. – volume: 11 start-page: 3512 year: 2018 end-page: 3526 ident: b0235 article-title: Comparison of small- and large-footprint lidar characterization of tropical forest aboveground structure and biomass: A case study from central Gabon publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 173 start-page: 95 year: 2021 end-page: 121 ident: b0350 article-title: Growing status observation for oil palm trees using Unmanned Aerial Vehicle (UAV) images publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 11 start-page: 928 year: 2019 ident: b0255 article-title: Accurate measurement of tropical forest canopy heights and aboveground carbon using structure from motion publication-title: Remote Sens. – volume: 173 start-page: 24 year: 2021 end-page: 49 ident: b0125 article-title: Review on convolutional neural networks (CNN) in vegetation remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 89 year: 2020 ident: b0320 article-title: Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crowns publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 21 start-page: 320 year: 2021 ident: b0075 article-title: Mask R-CNN and OBIA fusion improves the segmentation of scattered vegetation in very high-resolution optical sensors publication-title: Sensors – volume: 156 start-page: 14 year: 2019 end-page: 26 ident: b0260 article-title: Mapping dead forest cover using a deep convolutional neural network and digital aerial photography publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 1 start-page: 51 year: 2015 end-page: 60 ident: b0135 article-title: High-resolution forest canopy height estimation in an African blue carbon ecosystem publication-title: Remote Sens. Ecol. Conserv. – volume: 39 start-page: 5288 year: 2018 end-page: 5309 ident: b0205 article-title: Application of optical unmanned aerial vehicle-based imagery for the inventory of natural regeneration and standing deadwood in post-disturbed spruce forests publication-title: Int. J. Remote Sens. – volume: 11 start-page: 924 year: 2020 ident: b0020 article-title: Estimating individual conifer seedling height using drone-based image point clouds publication-title: Forests – volume: 40 start-page: 8506 year: 2019 end-page: 8527 ident: b0345 article-title: Convolutional neural network based heterogeneous transfer learning for remote-sensing scene classification publication-title: Int. J. Remote Sens. – volume: 19 start-page: 1284 year: 2019 ident: b0085 article-title: Urban tree species classification using a WorldView-2/3 and LiDAR data fusion approach and deep learning publication-title: Sensors – volume: 22 start-page: 679 year: 2006 end-page: 688 ident: b0100 article-title: Another look at measures of forecast accuracy publication-title: Int. J. Forecast. – volume: 172 start-page: 79 year: 2021 end-page: 94 ident: b0195 article-title: Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 141 start-page: 208 year: 2018 end-page: 218 ident: b0050 article-title: A light and faster regional convolutional neural network for object detection in optical remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 39 start-page: 5246 year: 2018 end-page: 5264 ident: b0070 article-title: Assessing the status of forest regeneration using digital aerial photogrammetry and unmanned aerial systems publication-title: Int. J. Remote Sens. – volume: 195 start-page: 30 year: 2017 end-page: 43 ident: b0220 article-title: UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA publication-title: Remote Sens. Environ. – volume: 186 start-page: 287 year: 2015 end-page: 295 ident: b0335 article-title: Using lightweight unmanned aerial vehicles to monitor tropical forest recovery publication-title: Biol. Conserv. – volume: 7 start-page: 1150 year: 2016 end-page: 1159 ident: b0180 article-title: Assessment of boreal forest height from WorldView-2 satellite stereo images publication-title: Remote Sens. Lett. – volume: 147 start-page: 132 year: 2019 end-page: 145 ident: b0305 article-title: Is field-measured tree height as reliable as believed – A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 82 year: 2019 ident: b0295 article-title: Tree height in tropical forest as measured by different ground, proximal, and remote sensing instruments, and impacts on above ground biomass estimates publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 160 start-page: 83 year: 2020 end-page: 96 ident: b0280 article-title: Optimising drone flight planning for measuring horticultural tree crop structure publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 11 start-page: 1309 year: 2019 ident: b0310 article-title: Individual tree-crown detection in RGB Imagery using semi-supervised deep learning neural networks publication-title: Remote Sens. – volume: 8 start-page: 761 year: 2017 end-page: 770 ident: b0170 article-title: Tree crown detection and delineation in satellite images using probabilistic voting publication-title: Remote Sens. Lett. – volume: 12 start-page: 1070 year: 2020 ident: b0165 article-title: Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks publication-title: Remote Sens. – volume: 12 start-page: 2426 year: 2020 ident: b0185 article-title: Individual tree-crown detection and species classification in very high-resolution remote sensing imagery using a deep learning ensemble model publication-title: Remote Sens. – volume: 62 start-page: 157 year: 2017 end-page: 171 ident: b0225 article-title: Mapping the dominant forest tree distribution using a combined image classification approach in a complex Eastern Mediterranean basin publication-title: J. Spatial Sci. – volume: 152 start-page: 166 year: 2019 end-page: 177 ident: b0150 article-title: Deep learning in remote sensing applications: A meta-analysis and review publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 475 year: 2020 ident: b0055 article-title: Individual tree detection and species classification of Amazonian palms using UAV images and deep learning publication-title: For. Ecol. Manage. – volume: 14 year: 2019 ident: b0160 article-title: Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV) publication-title: PLoS ONE – volume: 587 start-page: 78 year: 2020 end-page: 82 ident: b0015 article-title: An unexpectedly large count of trees in the West African Sahara and Sahel publication-title: Nature – year: 2017 ident: b0250 article-title: Revisiting unreasonable effectiveness of data in deep learning era publication-title: The IEEE International Conference on Computer Vision – volume: 86 start-page: 463 year: 2013 end-page: 473 ident: b0245 article-title: Assessment of Cartosat-1 and WorldView-2 stereo imagery in combination with a LiDAR-DTM for timber volume estimation in a highly structured forest in Germany publication-title: Forestry – volume: 159 start-page: 318 year: 2015 end-page: 331 ident: b0265 article-title: On the use of binary partition trees for the tree crown segmentation of tropical rainforest hyperspectral images publication-title: Remote Sens. Environ. – volume: 8 start-page: 340 year: 2017 ident: b0155 article-title: Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest publication-title: Forests – volume: 32 start-page: 4725 year: 2011 end-page: 4747 ident: b0130 article-title: A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing publication-title: Int. J. Remote Sens. – volume: 7 start-page: 1150 issue: 12 year: 2016 ident: 10.1016/j.isprsjprs.2021.06.003_b0180 article-title: Assessment of boreal forest height from WorldView-2 satellite stereo images publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2016.1219424 – volume: 11 start-page: 643 issue: 6 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0215 article-title: Detection of fir trees (Abies sibirica) damaged by the bark beetle in unmanned aerial vehicle images with deep learning publication-title: Remote Sens. doi: 10.3390/rs11060643 – volume: 11 start-page: 3512 issue: 10 year: 2018 ident: 10.1016/j.isprsjprs.2021.06.003_b0235 article-title: Comparison of small- and large-footprint lidar characterization of tropical forest aboveground structure and biomass: A case study from central Gabon publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2816962 – volume: 21 start-page: 1617 issue: 5 year: 2021 ident: 10.1016/j.isprsjprs.2021.06.003_b0210 article-title: Olive tree biovolume from UAV multi-resolution image segmentation with Mask R-CNN publication-title: Sensors doi: 10.3390/s21051617 – volume: 19 start-page: 1284 issue: 6 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0085 article-title: Urban tree species classification using a WorldView-2/3 and LiDAR data fusion approach and deep learning publication-title: Sensors doi: 10.3390/s19061284 – volume: 7 start-page: 62 issue: 12 year: 2016 ident: 10.1016/j.isprsjprs.2021.06.003_b0300 article-title: Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds publication-title: Forests doi: 10.3390/f7030062 – volume: 10 start-page: 415 issue: 5 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0105 article-title: Characterizing seedling stands using leaf-off and leaf-on photogrammetric point clouds and hyperspectral imagery acquired from unmanned aerial vehicle publication-title: Forests doi: 10.3390/f10050415 – volume: 56 year: 2020 ident: 10.1016/j.isprsjprs.2021.06.003_b0315 article-title: Cross-site learning in deep learning RGB tree crown detection publication-title: Ecol. Inf. doi: 10.1016/j.ecoinf.2020.101061 – volume: 8 start-page: 340 issue: 9 year: 2017 ident: 10.1016/j.isprsjprs.2021.06.003_b0155 article-title: Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest publication-title: Forests doi: 10.3390/f8090340 – volume: 89 year: 2020 ident: 10.1016/j.isprsjprs.2021.06.003_b0320 article-title: Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crowns publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2020.102091 – volume: 105 start-page: 1865 issue: 10 year: 2017 ident: 10.1016/j.isprsjprs.2021.06.003_b0030 article-title: Remote sensing image scene classification: Benchmark and state of the art publication-title: Proc. IEEE doi: 10.1109/JPROC.2017.2675998 – volume: 1 start-page: 51 issue: 1 year: 2015 ident: 10.1016/j.isprsjprs.2021.06.003_b0135 article-title: High-resolution forest canopy height estimation in an African blue carbon ecosystem publication-title: Remote Sens. Ecol. Conserv. doi: 10.1002/rse2.3 – volume: 170 start-page: 205 year: 2020 ident: 10.1016/j.isprsjprs.2021.06.003_b0230 article-title: Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.10.015 – volume: 57 start-page: 369 issue: 3 year: 2020 ident: 10.1016/j.isprsjprs.2021.06.003_b0240 article-title: Comparative performance of convolutional neural network, weighted and conventional support vector machine and random forest for classifying tree species using hyperspectral and photogrammetric data publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2020.1712102 – volume: 11 start-page: 928 issue: 8 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0255 article-title: Accurate measurement of tropical forest canopy heights and aboveground carbon using structure from motion publication-title: Remote Sens. doi: 10.3390/rs11080928 – volume: 186 start-page: 287 year: 2015 ident: 10.1016/j.isprsjprs.2021.06.003_b0335 article-title: Using lightweight unmanned aerial vehicles to monitor tropical forest recovery publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2015.03.031 – volume: 141 start-page: 208 year: 2018 ident: 10.1016/j.isprsjprs.2021.06.003_b0050 article-title: A light and faster regional convolutional neural network for object detection in optical remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.05.005 – volume: 14 issue: 10 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0160 article-title: Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV) publication-title: PLoS ONE doi: 10.1371/journal.pone.0223906 – volume: 11 start-page: 1812 issue: 15 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0040 article-title: Early detection of invasive exotic trees using UAV and manned aircraft multispectral and LiDAR data publication-title: Remote Sens. doi: 10.3390/rs11151812 – volume: 152 start-page: 166 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0150 article-title: Deep learning in remote sensing applications: A meta-analysis and review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.04.015 – volume: 62 start-page: 157 issue: 1 year: 2017 ident: 10.1016/j.isprsjprs.2021.06.003_b0225 article-title: Mapping the dominant forest tree distribution using a combined image classification approach in a complex Eastern Mediterranean basin publication-title: J. Spatial Sci. – volume: 51 start-page: 336 issue: 1 year: 2018 ident: 10.1016/j.isprsjprs.2021.06.003_b0270 article-title: Tree species classification in Norway from airborne hyperspectral and airborne laser scanning data publication-title: European J. Remote Sens. doi: 10.1080/22797254.2018.1434424 – volume: 6 start-page: 472 issue: 4 year: 2020 ident: 10.1016/j.isprsjprs.2021.06.003_b0120 article-title: Convolutional neural networks accurately predict cover fractions of plant species and communities in unmanned aerial vehicle imagery publication-title: Remote Sens. Ecol. Conserv. doi: 10.1002/rse2.146 – volume: 86 start-page: 463 issue: 4 year: 2013 ident: 10.1016/j.isprsjprs.2021.06.003_b0245 article-title: Assessment of Cartosat-1 and WorldView-2 stereo imagery in combination with a LiDAR-DTM for timber volume estimation in a highly structured forest in Germany publication-title: Forestry doi: 10.1093/forestry/cpt017 – volume: 39 start-page: 5246 issue: 15–16 year: 2018 ident: 10.1016/j.isprsjprs.2021.06.003_b0070 article-title: Assessing the status of forest regeneration using digital aerial photogrammetry and unmanned aerial systems publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1402387 – volume: 11 start-page: 2326 issue: 19 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0060 article-title: A convolutional neural network classifier identifies tree species in mixed-conifer forest from hyperspectral imagery publication-title: Remote Sens. doi: 10.3390/rs11192326 – volume: 39 start-page: 5288 issue: 15–16 year: 2018 ident: 10.1016/j.isprsjprs.2021.06.003_b0205 article-title: Application of optical unmanned aerial vehicle-based imagery for the inventory of natural regeneration and standing deadwood in post-disturbed spruce forests publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1441568 – volume: 9 start-page: 22 issue: 1 year: 2017 ident: 10.1016/j.isprsjprs.2021.06.003_b0145 article-title: Deep learning based oil palm tree detection and counting for high-resolution remote sensing images publication-title: Remote Sens. doi: 10.3390/rs9010022 – volume: 11 start-page: 924 issue: 9 year: 2020 ident: 10.1016/j.isprsjprs.2021.06.003_b0020 article-title: Estimating individual conifer seedling height using drone-based image point clouds publication-title: Forests doi: 10.3390/f11090924 – volume: 195 start-page: 30 year: 2017 ident: 10.1016/j.isprsjprs.2021.06.003_b0220 article-title: UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.04.007 – volume: 160 start-page: 83 year: 2020 ident: 10.1016/j.isprsjprs.2021.06.003_b0280 article-title: Optimising drone flight planning for measuring horticultural tree crop structure publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.12.006 – volume: 21 start-page: 320 issue: 1 year: 2021 ident: 10.1016/j.isprsjprs.2021.06.003_b0075 article-title: Mask R-CNN and OBIA fusion improves the segmentation of scattered vegetation in very high-resolution optical sensors publication-title: Sensors doi: 10.3390/s21010320 – volume: 82 start-page: 322 issue: 2 year: 2002 ident: 10.1016/j.isprsjprs.2021.06.003_b0190 article-title: Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00050-0 – volume: 245 year: 2020 ident: 10.1016/j.isprsjprs.2021.06.003_b0005 article-title: Mapping tall shrub biomass in Alaska at landscape scale using structure-from-motion photogrammetry and lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111841 – volume: 173 start-page: 24 year: 2021 ident: 10.1016/j.isprsjprs.2021.06.003_b0125 article-title: Review on convolutional neural networks (CNN) in vegetation remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.12.010 – start-page: 2961 year: 2017 ident: 10.1016/j.isprsjprs.2021.06.003_b0090 article-title: Mask R-CNN publication-title: Proceedings of the IEEE international conference on computer vision – volume: 475 year: 2020 ident: 10.1016/j.isprsjprs.2021.06.003_b0055 article-title: Individual tree detection and species classification of Amazonian palms using UAV images and deep learning publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2020.118397 – volume: 12 start-page: 4104 issue: 24 year: 2020 ident: 10.1016/j.isprsjprs.2021.06.003_b0025 article-title: Automatic delineation and height measurement of regenerating conifer crowns under leaf-off conditions using UAV Imagery publication-title: Remote Sens. doi: 10.3390/rs12244104 – volume: 82 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0295 article-title: Tree height in tropical forest as measured by different ground, proximal, and remote sensing instruments, and impacts on above ground biomass estimates publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2019.101899 – volume: 140 start-page: 306 year: 2014 ident: 10.1016/j.isprsjprs.2021.06.003_b0035 article-title: Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.09.006 – volume: 172 start-page: 79 year: 2021 ident: 10.1016/j.isprsjprs.2021.06.003_b0195 article-title: Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.11.008 – volume: 12 start-page: 1070 issue: 7 year: 2020 ident: 10.1016/j.isprsjprs.2021.06.003_b0165 article-title: Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks publication-title: Remote Sens. doi: 10.3390/rs12071070 – volume: 223 start-page: 34 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0330 article-title: Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.12.034 – volume: 396 start-page: 39 year: 2020 ident: 10.1016/j.isprsjprs.2021.06.003_b0325 article-title: Recent advances in deep learning for object detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.085 – volume: 22 start-page: 679 issue: 4 year: 2006 ident: 10.1016/j.isprsjprs.2021.06.003_b0100 article-title: Another look at measures of forecast accuracy publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2006.03.001 – volume: 32 start-page: 4725 issue: 17 year: 2011 ident: 10.1016/j.isprsjprs.2021.06.003_b0130 article-title: A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.494184 – volume: 11 start-page: 1309 issue: 11 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0310 article-title: Individual tree-crown detection in RGB Imagery using semi-supervised deep learning neural networks publication-title: Remote Sens. doi: 10.3390/rs11111309 – volume: 55 start-page: 89 year: 2014 ident: 10.1016/j.isprsjprs.2021.06.003_b0340 article-title: Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2014.01.004 – volume: 145 start-page: 3 year: 2018 ident: 10.1016/j.isprsjprs.2021.06.003_b0045 article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.003 – volume: 168 start-page: 156 year: 2020 ident: 10.1016/j.isprsjprs.2021.06.003_b0175 article-title: Detecting and mapping tree seedlings in UAV imagery using convolutional neural networks and field-verified data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.08.005 – volume: 11 start-page: 269 issue: 3 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0275 article-title: Measuring canopy structure and condition using multi-spectral UAS imagery in a horticultural environment publication-title: Remote Sens. doi: 10.3390/rs11030269 – volume: 11 start-page: 2585 issue: 21 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0065 article-title: Automated detection of conifer seedlings in drone imagery using convolutional neural networks publication-title: Remote Sens. doi: 10.3390/rs11212585 – volume: 41 start-page: 9039 issue: 23 year: 2020 ident: 10.1016/j.isprsjprs.2021.06.003_b0110 article-title: Estimation of tree failure consequences due to high winds using convolutional neural networks publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1797219 – year: 2017 ident: 10.1016/j.isprsjprs.2021.06.003_b0250 article-title: Revisiting unreasonable effectiveness of data in deep learning era – volume: 587 start-page: 78 issue: 7832 year: 2020 ident: 10.1016/j.isprsjprs.2021.06.003_b0015 article-title: An unexpectedly large count of trees in the West African Sahara and Sahel publication-title: Nature doi: 10.1038/s41586-020-2824-5 – ident: 10.1016/j.isprsjprs.2021.06.003_b0290 doi: 10.3389/fpls.2017.01190 – volume: 8 start-page: 761 issue: 8 year: 2017 ident: 10.1016/j.isprsjprs.2021.06.003_b0170 article-title: Tree crown detection and delineation in satellite images using probabilistic voting publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2017.1322733 – volume: 8 start-page: 127 issue: 2 year: 1979 ident: 10.1016/j.isprsjprs.2021.06.003_b0285 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 – volume: 173 start-page: 95 year: 2021 ident: 10.1016/j.isprsjprs.2021.06.003_b0350 article-title: Growing status observation for oil palm trees using Unmanned Aerial Vehicle (UAV) images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.01.008 – volume: 156 start-page: 14 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0260 article-title: Mapping dead forest cover using a deep convolutional neural network and digital aerial photography publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.07.010 – volume: 147 start-page: 132 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0305 article-title: Is field-measured tree height as reliable as believed – A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.008 – volume: 12 start-page: 2426 issue: 15 year: 2020 ident: 10.1016/j.isprsjprs.2021.06.003_b0185 article-title: Individual tree-crown detection and species classification in very high-resolution remote sensing imagery using a deep learning ensemble model publication-title: Remote Sens. doi: 10.3390/rs12152426 – ident: 10.1016/j.isprsjprs.2021.06.003_b0010 doi: 10.3390/rs12081288 – volume: 159 start-page: 318 year: 2015 ident: 10.1016/j.isprsjprs.2021.06.003_b0265 article-title: On the use of binary partition trees for the tree crown segmentation of tropical rainforest hyperspectral images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.12.020 – start-page: 1 year: 2021 ident: 10.1016/j.isprsjprs.2021.06.003_b0080 article-title: Assessing tree height and density of a young forest using a consumer unmanned aerial vehicle (UAV) publication-title: New Forest – volume: 40 start-page: 8506 issue: 22 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0345 article-title: Convolutional neural network based heterogeneous transfer learning for remote-sensing scene classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1615652 – volume: 32 start-page: 5827 issue: 20 year: 2011 ident: 10.1016/j.isprsjprs.2021.06.003_b0140 article-title: Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.507790 – volume: 5 start-page: 1682 issue: 7 year: 2014 ident: 10.1016/j.isprsjprs.2021.06.003_b0095 article-title: Outlook for the next generation’s precision forestry in Finland publication-title: Forests doi: 10.3390/f5071682 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.isprsjprs.2021.06.003_b0115 article-title: Convolutional neural networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery publication-title: Sci. Rep. doi: 10.1038/s41598-019-53797-9 – volume: 13 start-page: 162 issue: 2 year: 2021 ident: 10.1016/j.isprsjprs.2021.06.003_b0200 article-title: Identifying pine wood nematode disease using UAV images and deep learning algorithms publication-title: Remote Sens. doi: 10.3390/rs13020162 |
SSID | ssj0001568 |
Score | 2.6178522 |
Snippet | Tree-crown and height are primary tree measurements in forest inventory. Convolutional neural networks (CNNs) are a class of neural networks, which can be used... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112 |
SubjectTerms | automation China Cunninghamia lanceolata Deep learning forest inventory forest plantations Instance segmentation neural networks photogrammetry Plantation forest tree crown Tree height Tree-crown delineation trees UAV imagery |
Title | Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN) |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2021.06.003 https://www.proquest.com/docview/2636436023 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGIAB8RRvGYkBBtM4dtOEraqoCogOPKRukR27UB5p1aZDF2Z-NndOUl4DA0MUxbJly3e-R_zdHSFHRoHNGvGIaaMtk1aGTOmQsygUiQaKh36C0cjXnaB9Ly-7tW6FNMtYGIRVFrI_l-lOWhct1WI3q8N-v3rrgevgYwIk7uwWF8Eu68jlp2-fMA-eh8NhZ4a9v2G8-uPhaPwEDziKPneJPMvqWb811A9Z7RRQa4UsF5YjbeSLWyUVm66RpS_5BNfIQlHS_HG6Tt4bk2wA5qg1FC-eWYL-NlWpoY_ubyg1NnMwrJT2oZ1O8dhTMGFhajp8UXlIUkoRGP9AX9X4mWIRh0HKUPEZinD1gm1hVZgW070cqJweX2P_G9bsdE42yH3r_K7ZZkXZBZZILjMW1nwTgFZXqm4j4enA1i0XSsgo9FUv4VoJ4xksFMN7XNueBA_PYmo5XwihdCQ2yVw6SO0WoSA9tIoCq3WvLlXN04mwIVcBeCkeENhuk6Dc6jgpcpJjaYyXuASfPcUzGsVIo9jB8MQ28WYDh3lajr-HnJW0jL9xWAzK4-_BhyX1Yzh_eKmiUjuYQKdAgFEXgOmz858JdskifuXQwj0yl40mdh_MnUwfOH4-IPONi6t25wNRBgOz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9C5cB2QINtGmwwT9phO1iN4zRNuFUVqHw0hw0kbpYdu1DG0oqmB_6D_dm85zgVsAMHDlEkx0-2_Oz3Ef_eewDfrUabNRc5N9Y4nrgk49pkgueZLA1yPItLikYeF-noIjm57F2uwbCNhSFYZZD9jUz30jq0dMNqdufTafd3hK5DTAmQhLdb0AVap-xUvQ6sD45PR8VKIIsmIo76cyJ4AvOaLuZ3ixt80FeMhc_l2RbQ-l9JPRPXXgcdvYPNYDyyQTO_LVhz1Ta8fZRScBs2QlXz6_v38G-wrGdokTrL6O6Zl-RyM11Zdu1_iDLrao_EqtgU29k9nXyGViwOzea3uolKqhhh46_YX734w6iOw6zipPssI8R62Lk4K8qM6V8eV85-jKn_Lz4sip8f4OLo8Hw44qHyAi8TkdQ868U2RcWudd_lMjKp6zshtUzyLNaTUhgtbWSpVoyYCOMmCTp5jrLLxVJKbXL5ETrVrHKfgKEAMTpPnTGTfqJ7kSmly4RO0VGJkMduB9J2qVUZ0pJTdYxb1eLPbtSKR4p4pDwST-5AtCKcN5k5XiY5aHmpnmwyhfrjZeJvLfcVHkG6V9GVmy2xUyrRrkvR-tl9zQBfYWN0Pj5TZ8fF6Wd4Q18apOEX6NR3S7eH1k9t9sPufgAmGwZk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+tree-crown+and+height+detection+in+a+young+forest+plantation+using+mask+region-based+convolutional+neural+network+%28Mask+R-CNN%29&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Hao%2C+Zhenbang&rft.au=Lin%2C+Lili&rft.au=Post%2C+Christopher+J.&rft.au=Mikhailova%2C+Elena+A.&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=178&rft.spage=112&rft.epage=123&rft_id=info:doi/10.1016%2Fj.isprsjprs.2021.06.003&rft.externalDocID=S0924271621001611 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |