Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN)

Tree-crown and height are primary tree measurements in forest inventory. Convolutional neural networks (CNNs) are a class of neural networks, which can be used in forest inventory; however, no prior studies have developed a CNN model to detect tree crown and height simultaneously. This study is the...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 178; pp. 112 - 123
Main Authors Hao, Zhenbang, Lin, Lili, Post, Christopher J., Mikhailova, Elena A., Li, Minghui, Chen, Yan, Yu, Kunyong, Liu, Jian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tree-crown and height are primary tree measurements in forest inventory. Convolutional neural networks (CNNs) are a class of neural networks, which can be used in forest inventory; however, no prior studies have developed a CNN model to detect tree crown and height simultaneously. This study is the first-of-its-kind that explored training a mask region-based convolutional neural network (Mask R-CNN) for automatically and concurrently detecting discontinuous tree crown and height of Chinese fir (Cunninghamia lanceolata (Lamb) Hook) in a plantation. A DJI Phantom4-Multispectral Unmanned Aerial Vehicle (UAV) was used to obtain high-resolution images of the study site, Shunchang County, China. Tree crown and height of Chinese fir was manually delineated and derived from this UAV imagery. A portion of the ground-truthed tree height values were used as a test set, and the remaining measurements were used as the model training data. Six different band combinations and derivations of the UAV imagery were used to detect tree crown and height, respectively (Multi band-DSM, RGB-DSM, NDVI-DSM, Multi band-CHM, RGB-CHM, and NDVI-CHM combination). The Mask R-CNN model with the NDVI-CHM combination achieved superior performance. The accuracy of Chinese fir’s individual tree-crown detection was considerable (F1 score = 84.68%), the Intersection over Union (IoU) of tree crown delineation was 91.27%, and tree height estimates were highly correlated with the height from UAV imagery (R2 = 0.97, RMSE = 0.11 m, rRMSE = 4.35%) and field measurement (R2 = 0.87, RMSE = 0.24 m, rRMSE = 9.67%). Results demonstrate that the input image with an CHM achieves higher accuracy of tree crown delineation and tree height assessment compared to an image with a DSM. The accuracy and efficiency of Mask R-CNN has a great potential to assist the application of remote sensing in forests.
AbstractList Tree-crown and height are primary tree measurements in forest inventory. Convolutional neural networks (CNNs) are a class of neural networks, which can be used in forest inventory; however, no prior studies have developed a CNN model to detect tree crown and height simultaneously. This study is the first-of-its-kind that explored training a mask region-based convolutional neural network (Mask R-CNN) for automatically and concurrently detecting discontinuous tree crown and height of Chinese fir (Cunninghamia lanceolata (Lamb) Hook) in a plantation. A DJI Phantom4-Multispectral Unmanned Aerial Vehicle (UAV) was used to obtain high-resolution images of the study site, Shunchang County, China. Tree crown and height of Chinese fir was manually delineated and derived from this UAV imagery. A portion of the ground-truthed tree height values were used as a test set, and the remaining measurements were used as the model training data. Six different band combinations and derivations of the UAV imagery were used to detect tree crown and height, respectively (Multi band-DSM, RGB-DSM, NDVI-DSM, Multi band-CHM, RGB-CHM, and NDVI-CHM combination). The Mask R-CNN model with the NDVI-CHM combination achieved superior performance. The accuracy of Chinese fir’s individual tree-crown detection was considerable (F1 score = 84.68%), the Intersection over Union (IoU) of tree crown delineation was 91.27%, and tree height estimates were highly correlated with the height from UAV imagery (R² = 0.97, RMSE = 0.11 m, rRMSE = 4.35%) and field measurement (R² = 0.87, RMSE = 0.24 m, rRMSE = 9.67%). Results demonstrate that the input image with an CHM achieves higher accuracy of tree crown delineation and tree height assessment compared to an image with a DSM. The accuracy and efficiency of Mask R-CNN has a great potential to assist the application of remote sensing in forests.
Tree-crown and height are primary tree measurements in forest inventory. Convolutional neural networks (CNNs) are a class of neural networks, which can be used in forest inventory; however, no prior studies have developed a CNN model to detect tree crown and height simultaneously. This study is the first-of-its-kind that explored training a mask region-based convolutional neural network (Mask R-CNN) for automatically and concurrently detecting discontinuous tree crown and height of Chinese fir (Cunninghamia lanceolata (Lamb) Hook) in a plantation. A DJI Phantom4-Multispectral Unmanned Aerial Vehicle (UAV) was used to obtain high-resolution images of the study site, Shunchang County, China. Tree crown and height of Chinese fir was manually delineated and derived from this UAV imagery. A portion of the ground-truthed tree height values were used as a test set, and the remaining measurements were used as the model training data. Six different band combinations and derivations of the UAV imagery were used to detect tree crown and height, respectively (Multi band-DSM, RGB-DSM, NDVI-DSM, Multi band-CHM, RGB-CHM, and NDVI-CHM combination). The Mask R-CNN model with the NDVI-CHM combination achieved superior performance. The accuracy of Chinese fir’s individual tree-crown detection was considerable (F1 score = 84.68%), the Intersection over Union (IoU) of tree crown delineation was 91.27%, and tree height estimates were highly correlated with the height from UAV imagery (R2 = 0.97, RMSE = 0.11 m, rRMSE = 4.35%) and field measurement (R2 = 0.87, RMSE = 0.24 m, rRMSE = 9.67%). Results demonstrate that the input image with an CHM achieves higher accuracy of tree crown delineation and tree height assessment compared to an image with a DSM. The accuracy and efficiency of Mask R-CNN has a great potential to assist the application of remote sensing in forests.
Author Mikhailova, Elena A.
Liu, Jian
Lin, Lili
Post, Christopher J.
Chen, Yan
Hao, Zhenbang
Li, Minghui
Yu, Kunyong
Author_xml – sequence: 1
  givenname: Zhenbang
  surname: Hao
  fullname: Hao, Zhenbang
  organization: College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
– sequence: 2
  givenname: Lili
  surname: Lin
  fullname: Lin, Lili
  organization: University Key Lab for Geomatics Technology and Optimized Resources Utilization in Fujian Province, No. 15 Shangxiadian Road, Fuzhou, Fujian 350002, China
– sequence: 3
  givenname: Christopher J.
  surname: Post
  fullname: Post, Christopher J.
  organization: Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
– sequence: 4
  givenname: Elena A.
  surname: Mikhailova
  fullname: Mikhailova, Elena A.
  organization: Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
– sequence: 5
  givenname: Minghui
  surname: Li
  fullname: Li, Minghui
  organization: College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
– sequence: 6
  givenname: Yan
  surname: Chen
  fullname: Chen, Yan
  organization: College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
– sequence: 7
  givenname: Kunyong
  surname: Yu
  fullname: Yu, Kunyong
  organization: College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
– sequence: 8
  givenname: Jian
  surname: Liu
  fullname: Liu, Jian
  email: fjliujian@fafu.edu.cn
  organization: College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
BookMark eNqNkUFvEzEQhS1UJNLAb8DHctjFYzvezYFDFNEWqRQJtWfL651NnW7sYHtb9R_0Z9dpEAcucLBGevPek-bzKTnxwSMhH4HVwEB93tYu7WPalldzxqFmqmZMvCEzaBtetVwsTsiMLbmseAPqHTlNacsYg4VqZ-R5NeWwMxl7miNiZWN49NT4nt6h29xl2mNGm13w1BWdPoXJb-gQIqZM96Px2bwup-SKvjPpnkbcFKXqTCqlNviHME4Hjxmpxym-jvwY4j09-37w_6zW19ef3pO3gxkTfvg95-T2_OvN-rK6-nHxbb26qqwEmat2wXu14GBMg0vBOoUNgjBCLltuBgudET3rFbQSBuhwkFK2yAAaLoQw3VLMydmxdx_Dr6lcoXcuWRzLKRimpLkSSgrFin9OmqO1QEkp4qD30e1MfNLA9IG93uo_7PWBvWZKF_Yl-eWvpHVHUDkaN_5HfnXMYyHx4DDqZB16i72L5Td0H9w_O14AlMGq6A
CitedBy_id crossref_primary_10_3390_f15111959
crossref_primary_10_1016_j_jag_2023_103524
crossref_primary_10_3390_f15010061
crossref_primary_10_3390_fi14100275
crossref_primary_10_1080_10106049_2022_2142966
crossref_primary_10_3390_drones7090547
crossref_primary_10_1016_j_srs_2023_100109
crossref_primary_10_1002_rse2_382
crossref_primary_10_3390_rs14235910
crossref_primary_10_3390_rs15030778
crossref_primary_10_3390_rs14194963
crossref_primary_10_1016_j_isprsjprs_2023_11_011
crossref_primary_10_1016_j_tfp_2023_100436
crossref_primary_10_1016_j_isprsjprs_2021_11_013
crossref_primary_10_1016_j_ophoto_2022_100024
crossref_primary_10_1080_10106049_2022_2036824
crossref_primary_10_1016_j_ecolind_2024_112027
crossref_primary_10_3390_f16020228
crossref_primary_10_3390_rs14071561
crossref_primary_10_1016_j_rse_2023_113613
crossref_primary_10_1016_j_atech_2024_100625
crossref_primary_10_1109_JSTARS_2025_3541395
crossref_primary_10_1016_j_fecs_2023_100088
crossref_primary_10_1016_j_ecoinf_2024_102706
crossref_primary_10_3390_rs15215164
crossref_primary_10_3116_16091833_Ukr_J_Phys_Opt_2024_02021
crossref_primary_10_1515_nleng_2022_0299
crossref_primary_10_3390_rs16213920
crossref_primary_10_1016_j_compag_2024_108795
crossref_primary_10_1007_s00521_022_07640_4
crossref_primary_10_1016_j_rsase_2024_101422
crossref_primary_10_1016_j_rse_2024_114047
crossref_primary_10_1002_rse2_289
crossref_primary_10_1109_MGRS_2024_3479871
crossref_primary_10_1016_j_compag_2022_107333
crossref_primary_10_1016_j_ophoto_2023_100037
crossref_primary_10_1016_j_jag_2024_104235
crossref_primary_10_3390_rs16152807
crossref_primary_10_1016_j_jag_2022_102893
crossref_primary_10_3390_ijgi10120813
crossref_primary_10_1016_j_compag_2024_109277
crossref_primary_10_3390_rs15204923
crossref_primary_10_3390_f16030457
crossref_primary_10_1016_j_isprsjprs_2022_05_002
crossref_primary_10_3390_su16125124
crossref_primary_10_3390_agriculture13091679
crossref_primary_10_1016_j_rse_2023_113485
crossref_primary_10_3390_f14020285
crossref_primary_10_1007_s40725_023_00184_3
crossref_primary_10_1139_cjfr_2023_0187
crossref_primary_10_5194_essd_14_4967_2022
crossref_primary_10_1016_j_isprsjprs_2022_07_001
crossref_primary_10_3390_rs14153546
crossref_primary_10_1016_j_isprsjprs_2022_07_005
crossref_primary_10_3390_drones9020151
crossref_primary_10_1080_01431161_2024_2413026
crossref_primary_10_3390_rs15174295
crossref_primary_10_3390_su14073720
crossref_primary_10_3390_rs16203836
crossref_primary_10_1080_13416979_2025_2479873
crossref_primary_10_1109_JSTARS_2024_3422390
crossref_primary_10_1016_j_crfs_2023_100587
crossref_primary_10_1016_j_compag_2024_109425
crossref_primary_10_1017_eds_2024_16
crossref_primary_10_3389_fpls_2022_958940
crossref_primary_10_3390_app13010164
crossref_primary_10_1016_j_rsase_2024_101195
crossref_primary_10_3390_agronomy14061271
crossref_primary_10_3390_drones8020043
crossref_primary_10_1016_j_foreco_2024_121712
crossref_primary_10_3390_f14091726
crossref_primary_10_3390_f14112126
crossref_primary_10_3390_f15111881
crossref_primary_10_1002_rse2_332
crossref_primary_10_1016_j_isprsjprs_2023_04_010
crossref_primary_10_1016_j_isprsjprs_2021_07_001
crossref_primary_10_1080_17538947_2023_2257636
crossref_primary_10_3390_f15111900
crossref_primary_10_3390_f15020293
crossref_primary_10_3390_electronics13204139
crossref_primary_10_1016_j_jag_2022_102764
crossref_primary_10_3390_rs14020295
crossref_primary_10_3390_rs15184420
crossref_primary_10_1016_j_ophoto_2024_100071
crossref_primary_10_1016_j_buildenv_2022_109178
crossref_primary_10_1109_JSTARS_2023_3339290
crossref_primary_10_1016_j_jafr_2024_101139
crossref_primary_10_1016_j_rse_2024_114002
crossref_primary_10_3390_rs15092263
crossref_primary_10_1016_j_compag_2024_108878
crossref_primary_10_1155_2022_1913577
crossref_primary_10_1016_j_rse_2025_114618
crossref_primary_10_1016_j_isprsjprs_2022_04_002
crossref_primary_10_2139_ssrn_4802804
crossref_primary_10_3390_rs14061523
crossref_primary_10_3390_rs16030524
crossref_primary_10_3390_app14156403
crossref_primary_10_1016_j_compag_2024_109476
crossref_primary_10_1080_10095020_2023_2299146
crossref_primary_10_1016_j_atech_2024_100641
crossref_primary_10_3390_rs13173503
crossref_primary_10_3390_rs17061066
crossref_primary_10_34133_plantphenomics_0103
crossref_primary_10_3390_rs15133334
crossref_primary_10_1016_j_ufug_2025_128755
crossref_primary_10_1109_MGRS_2023_3312347
Cites_doi 10.1080/2150704X.2016.1219424
10.3390/rs11060643
10.1109/JSTARS.2018.2816962
10.3390/s21051617
10.3390/s19061284
10.3390/f7030062
10.3390/f10050415
10.1016/j.ecoinf.2020.101061
10.3390/f8090340
10.1016/j.jag.2020.102091
10.1109/JPROC.2017.2675998
10.1002/rse2.3
10.1016/j.isprsjprs.2020.10.015
10.1080/15481603.2020.1712102
10.3390/rs11080928
10.1016/j.biocon.2015.03.031
10.1016/j.isprsjprs.2018.05.005
10.1371/journal.pone.0223906
10.3390/rs11151812
10.1016/j.isprsjprs.2019.04.015
10.1080/22797254.2018.1434424
10.1002/rse2.146
10.1093/forestry/cpt017
10.1080/01431161.2017.1402387
10.3390/rs11192326
10.1080/01431161.2018.1441568
10.3390/rs9010022
10.3390/f11090924
10.1016/j.rse.2017.04.007
10.1016/j.isprsjprs.2019.12.006
10.3390/s21010320
10.1016/S0034-4257(02)00050-0
10.1016/j.rse.2020.111841
10.1016/j.isprsjprs.2020.12.010
10.1016/j.foreco.2020.118397
10.3390/rs12244104
10.1016/j.jag.2019.101899
10.1016/j.rse.2013.09.006
10.1016/j.isprsjprs.2020.11.008
10.3390/rs12071070
10.1016/j.rse.2018.12.034
10.1016/j.neucom.2020.01.085
10.1016/j.ijforecast.2006.03.001
10.1080/01431161.2010.494184
10.3390/rs11111309
10.1016/j.eja.2014.01.004
10.1016/j.isprsjprs.2018.04.003
10.1016/j.isprsjprs.2020.08.005
10.3390/rs11030269
10.3390/rs11212585
10.1080/01431161.2020.1797219
10.1038/s41586-020-2824-5
10.3389/fpls.2017.01190
10.1080/2150704X.2017.1322733
10.1016/0034-4257(79)90013-0
10.1016/j.isprsjprs.2021.01.008
10.1016/j.isprsjprs.2019.07.010
10.1016/j.isprsjprs.2018.11.008
10.3390/rs12152426
10.3390/rs12081288
10.1016/j.rse.2014.12.020
10.1080/01431161.2019.1615652
10.1080/01431161.2010.507790
10.3390/f5071682
10.1038/s41598-019-53797-9
10.3390/rs13020162
ContentType Journal Article
Copyright 2021 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2021 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2021.06.003
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 123
ExternalDocumentID 10_1016_j_isprsjprs_2021_06_003
S0924271621001611
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c414t-852d6521aa7e930b6e7e13a34982afc1ba3d0d61841f1bef4448e01172333ab93
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Tue Aug 05 11:03:10 EDT 2025
Tue Jul 01 03:46:46 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
Fri Feb 23 02:42:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Instance segmentation
UAV imagery
Plantation forest
Tree height
Tree-crown delineation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-852d6521aa7e930b6e7e13a34982afc1ba3d0d61841f1bef4448e01172333ab93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636436023
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2636436023
crossref_primary_10_1016_j_isprsjprs_2021_06_003
crossref_citationtrail_10_1016_j_isprsjprs_2021_06_003
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2021_06_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Guirado, Blanco-Sacristán, Rodríguez-Caballero, Tabik, Alcaraz-Segura, Martínez-Valderrama, Cabello (b0075) 2021; 21
Lagomasino, Fatoyinbo, Lee, Simard (b0135) 2015; 1
Sun, Shrivastava, Singh, Gupta (b0250) 2017
Tucker (b0285) 1979; 8
Pouliot, King, Bell, Pitt (b0190) 2002; 82
Röder, Latifi, Hill, Wild, Svoboda, Brůna, Macek, Nováková, Gülch, Heurich (b0205) 2018; 39
Silva, Saatchi, Garcia, Labriere, Klauberg, Ferraz, Meyer, Jeffery, Abernethy, White, Zhao, Lewis, Hudak (b0235) 2018; 11
Weinstein, Marconi, Bohlman, Zare, White (b0310) 2019; 11
Brandt, Tucker, Kariryaa, Rasmussen, Abel, Small, Chave, Rasmussen, Hiernaux, Diouf, Kergoat, Mertz, Igel, Gieseke, Schöning, Li, Melocik, Meyer, Sinno, Romero, Glennie, Montagu, Dendoncker, Fensholt (b0015) 2020; 587
Kattenborn, Eichel, Wiser, Burrows, Fassnacht, Schmidtlein (b0120) 2020; 6
Wu, Johansen, Phinn, Robson, Tu (b0320) 2020; 89
He, Gkioxari, Dollár, Girshick (b0090) 2017
Cheng, Han, Lu (b0030) 2017; 105
Fricker, Ventura, Wolf, North, Davis, Franklin (b0060) 2019; 11
Hartling, Sagan, Sidike, Maimaitijiang, Carron (b0085) 2019; 19
Dash, Watt, Paul, Morgenroth, Pearse (b0040) 2019; 11
Castilla, Filiatrault, McDermid, Gartrell (b0020) 2020; 11
Wang, Lehtomäki, Liang, Pyörälä, Kukko, Jaakkola, Liu, Feng, Chen, Hyyppä (b0305) 2019; 147
Ferreira, Almeida, Papa, Minervino, Veras, Formighieri, Santos, Ferreira, Figueiredo, Ferreira (b0055) 2020; 475
Goodbody, Coops, Hermosilla, Tompalski, Crawford (b0070) 2018; 39
Zheng, Fu, Li, Wu, Yu, Yuan, Tao, Pang, Kanniah (b0350) 2021; 173
Sothe, De Almeida, Schimalski, La Rosa, Castro, Feitosa, Dalponte, Lima, Liesenberg, Miyoshi, Tommaselli (b0240) 2020; 57
Tochon, Féret, Valero, Martin, Knapp, Salembier, Chanussot, Asner (b0265) 2015; 159
Pourshamsi, Xia, Yokoya, Garcia, Lavalle, Pottier, Balzter (b0195) 2021; 172
Kattenborn, Eichel, Fassnacht (b0115) 2019; 9
Qin, Wang, Wu, Lu, Zhu (b0200) 2021; 13
Safonova, Guirado, Maglinets, Alcaraz-Segura, Tabik (b0210) 2021; 21
Trier, Salberg, Kermit, Rudjord, Gobakken, Næsset, Aarsten (b0270) 2018; 51
Tu, Phinn, Johansen, Robson, Wu (b0280) 2020; 160
Hyndman, Koehler (b0100) 2006; 22
Li, Fu, Yu, Cracknell (b0145) 2017; 9
Persson, Perko (b0180) 2016; 7
Satir, Berberoglu, Akca, Yeler (b0225) 2017; 62
Fromm, Schubert, Castilla, Linke, McDermid (b0065) 2019; 11
Neupane, Horanont, Hung (b0160) 2019; 14
Tu, Johansen, Phinn, Robson (b0275) 2019; 11
Mohan, Silva, Klauberg, Jat, Catts, Cardil, Hudak, Dia (b0155) 2017; 8
Zhao, Liu, Zhang, Liang (b0345) 2019; 40
Larsen, Eriksson, Descombes, Perrin, Brandtberg, Gougeon (b0140) 2011; 32
Safonova, Tabik, Alcaraz-Segura, Rubtsov, Maglinets, Herrera (b0215) 2019; 11
Hao, Lin, Post, Jiang, Li, Wei, Yu, Liu (b0080) 2021
Sankey, Donager, McVay, Sankey (b0220) 2017; 195
Pearse, Tan, Watt, Franz, Dash (b0175) 2020; 168
Ding, Zhang, Deng, Jia, Kuijper (b0050) 2018; 141
Zarco-Tejada, Diaz-Varela, Angileri, Loudjani (b0340) 2014; 55
Wu, Sahoo, Hoi (b0325) 2020; 396
Wallace, Lucieer, Malenovský, Turner, Vopěnka (b0300) 2016; 7
Ke, Quackenbush (b0130) 2011; 32
Weinstein, Marconi, Bohlman, Zare, White (b0315) 2020; 56
Sylvain, Drolet, Brown (b0260) 2019; 156
Pleșoianu, Stupariu, Șandric, Pătru-Stupariu, Drăguț (b0185) 2020; 12
Chadwick, Goodbody, Coops, Hervieux, Bater, Martens, White, Röeser (b0025) 2020; 12
Imangholiloo, Saarinen, Markelin, Rosnell, Näsi, Hakala, Honkavaara, Holopainen, Hyyppä, Vastaranta (b0105) 2019; 10
Yin, Wang (b0330) 2019; 223
Zahawi, Dandois, Holl, Nadwodny, Reid, Ellis (b0335) 2015; 186
Ubbens, J.R., Stavness, I., 2017. Deep plant phenomics: A deep learning platform for complex plant phenotyping tasks. Frontiers in Plant Science, 8.
Alonzo, Dial, Schulz, Andersen, Lewis-Clark, Cook, Morton (b0005) 2020; 245
Kakareko, Jung, Ozguven (b0110) 2020; 41
Straub, Tian, Seitz, Reinartz (b0245) 2013; 86
Deng, Sun, Zhou, Zhao, Lei, Zou (b0045) 2018; 145
Kattenborn, Leitloff, Schiefer, Hinz (b0125) 2021; 173
Nezami, Khoramshahi, Nevalainen, Pölönen, Honkavaara (b0165) 2020; 12
Schiefer, Kattenborn, Frick, Frey, Schall, Koch, Schmidtlein (b0230) 2020; 170
Dalponte, Ørka, Ene, Gobakken, Næsset (b0035) 2014; 140
Holopainen, Vastaranta, Hyyppä (b0095) 2014; 5
Braga, J.R., Peripato, V., Dalagnol, R., P. Ferreira, M., Tarabalka, Y., O. C. Aragão, L.E., F. De Campos Velho, H., Shiguemori, E.H. and Wagner, F.H., 2020. Tree crown delineation algorithm based on a convolutional neural network. Remote sensing, 12(8): 1288.
Ma, Liu, Zhang, Ye, Yin, Johnson (b0150) 2019; 152
Özcan, Hisar, Sayar, Ünsalan (b0170) 2017; 8
Swinfield, Lindsell, Williams, Harrison, Agustiono, Gemita, Schönlieb, Coomes (b0255) 2019; 11
Vaglio Laurin, Ding, Disney, Bartholomeus, Herold, Papale, Valentini (b0295) 2019; 82
Alonzo (10.1016/j.isprsjprs.2021.06.003_b0005) 2020; 245
Weinstein (10.1016/j.isprsjprs.2021.06.003_b0310) 2019; 11
Zhao (10.1016/j.isprsjprs.2021.06.003_b0345) 2019; 40
Holopainen (10.1016/j.isprsjprs.2021.06.003_b0095) 2014; 5
Kattenborn (10.1016/j.isprsjprs.2021.06.003_b0125) 2021; 173
Deng (10.1016/j.isprsjprs.2021.06.003_b0045) 2018; 145
Zahawi (10.1016/j.isprsjprs.2021.06.003_b0335) 2015; 186
Guirado (10.1016/j.isprsjprs.2021.06.003_b0075) 2021; 21
Tochon (10.1016/j.isprsjprs.2021.06.003_b0265) 2015; 159
Tu (10.1016/j.isprsjprs.2021.06.003_b0280) 2020; 160
Fricker (10.1016/j.isprsjprs.2021.06.003_b0060) 2019; 11
Satir (10.1016/j.isprsjprs.2021.06.003_b0225) 2017; 62
Wu (10.1016/j.isprsjprs.2021.06.003_b0320) 2020; 89
Hartling (10.1016/j.isprsjprs.2021.06.003_b0085) 2019; 19
Wu (10.1016/j.isprsjprs.2021.06.003_b0325) 2020; 396
Safonova (10.1016/j.isprsjprs.2021.06.003_b0210) 2021; 21
Ferreira (10.1016/j.isprsjprs.2021.06.003_b0055) 2020; 475
Chadwick (10.1016/j.isprsjprs.2021.06.003_b0025) 2020; 12
Fromm (10.1016/j.isprsjprs.2021.06.003_b0065) 2019; 11
Neupane (10.1016/j.isprsjprs.2021.06.003_b0160) 2019; 14
Vaglio Laurin (10.1016/j.isprsjprs.2021.06.003_b0295) 2019; 82
Sankey (10.1016/j.isprsjprs.2021.06.003_b0220) 2017; 195
Kattenborn (10.1016/j.isprsjprs.2021.06.003_b0120) 2020; 6
He (10.1016/j.isprsjprs.2021.06.003_b0090) 2017
Dalponte (10.1016/j.isprsjprs.2021.06.003_b0035) 2014; 140
Li (10.1016/j.isprsjprs.2021.06.003_b0145) 2017; 9
Özcan (10.1016/j.isprsjprs.2021.06.003_b0170) 2017; 8
Pleșoianu (10.1016/j.isprsjprs.2021.06.003_b0185) 2020; 12
10.1016/j.isprsjprs.2021.06.003_b0010
10.1016/j.isprsjprs.2021.06.003_b0290
Brandt (10.1016/j.isprsjprs.2021.06.003_b0015) 2020; 587
Nezami (10.1016/j.isprsjprs.2021.06.003_b0165) 2020; 12
Pourshamsi (10.1016/j.isprsjprs.2021.06.003_b0195) 2021; 172
Swinfield (10.1016/j.isprsjprs.2021.06.003_b0255) 2019; 11
Hyndman (10.1016/j.isprsjprs.2021.06.003_b0100) 2006; 22
Kakareko (10.1016/j.isprsjprs.2021.06.003_b0110) 2020; 41
Persson (10.1016/j.isprsjprs.2021.06.003_b0180) 2016; 7
Dash (10.1016/j.isprsjprs.2021.06.003_b0040) 2019; 11
Sothe (10.1016/j.isprsjprs.2021.06.003_b0240) 2020; 57
Zarco-Tejada (10.1016/j.isprsjprs.2021.06.003_b0340) 2014; 55
Weinstein (10.1016/j.isprsjprs.2021.06.003_b0315) 2020; 56
Castilla (10.1016/j.isprsjprs.2021.06.003_b0020) 2020; 11
Lagomasino (10.1016/j.isprsjprs.2021.06.003_b0135) 2015; 1
Röder (10.1016/j.isprsjprs.2021.06.003_b0205) 2018; 39
Safonova (10.1016/j.isprsjprs.2021.06.003_b0215) 2019; 11
Ke (10.1016/j.isprsjprs.2021.06.003_b0130) 2011; 32
Straub (10.1016/j.isprsjprs.2021.06.003_b0245) 2013; 86
Wallace (10.1016/j.isprsjprs.2021.06.003_b0300) 2016; 7
Kattenborn (10.1016/j.isprsjprs.2021.06.003_b0115) 2019; 9
Silva (10.1016/j.isprsjprs.2021.06.003_b0235) 2018; 11
Tu (10.1016/j.isprsjprs.2021.06.003_b0275) 2019; 11
Hao (10.1016/j.isprsjprs.2021.06.003_b0080) 2021
Trier (10.1016/j.isprsjprs.2021.06.003_b0270) 2018; 51
Cheng (10.1016/j.isprsjprs.2021.06.003_b0030) 2017; 105
Qin (10.1016/j.isprsjprs.2021.06.003_b0200) 2021; 13
Tucker (10.1016/j.isprsjprs.2021.06.003_b0285) 1979; 8
Wang (10.1016/j.isprsjprs.2021.06.003_b0305) 2019; 147
Ding (10.1016/j.isprsjprs.2021.06.003_b0050) 2018; 141
Mohan (10.1016/j.isprsjprs.2021.06.003_b0155) 2017; 8
Goodbody (10.1016/j.isprsjprs.2021.06.003_b0070) 2018; 39
Yin (10.1016/j.isprsjprs.2021.06.003_b0330) 2019; 223
Pouliot (10.1016/j.isprsjprs.2021.06.003_b0190) 2002; 82
Sylvain (10.1016/j.isprsjprs.2021.06.003_b0260) 2019; 156
Zheng (10.1016/j.isprsjprs.2021.06.003_b0350) 2021; 173
Larsen (10.1016/j.isprsjprs.2021.06.003_b0140) 2011; 32
Imangholiloo (10.1016/j.isprsjprs.2021.06.003_b0105) 2019; 10
Ma (10.1016/j.isprsjprs.2021.06.003_b0150) 2019; 152
Pearse (10.1016/j.isprsjprs.2021.06.003_b0175) 2020; 168
Schiefer (10.1016/j.isprsjprs.2021.06.003_b0230) 2020; 170
Sun (10.1016/j.isprsjprs.2021.06.003_b0250) 2017
References_xml – volume: 9
  start-page: 22
  year: 2017
  ident: b0145
  article-title: Deep learning based oil palm tree detection and counting for high-resolution remote sensing images
  publication-title: Remote Sens.
– volume: 56
  year: 2020
  ident: b0315
  article-title: Cross-site learning in deep learning RGB tree crown detection
  publication-title: Ecol. Inf.
– volume: 168
  start-page: 156
  year: 2020
  end-page: 169
  ident: b0175
  article-title: Detecting and mapping tree seedlings in UAV imagery using convolutional neural networks and field-verified data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 245
  year: 2020
  ident: b0005
  article-title: Mapping tall shrub biomass in Alaska at landscape scale using structure-from-motion photogrammetry and lidar
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 643
  year: 2019
  ident: b0215
  article-title: Detection of fir trees (
  publication-title: Remote Sens.
– volume: 11
  start-page: 2585
  year: 2019
  ident: b0065
  article-title: Automated detection of conifer seedlings in drone imagery using convolutional neural networks
  publication-title: Remote Sens.
– reference: Ubbens, J.R., Stavness, I., 2017. Deep plant phenomics: A deep learning platform for complex plant phenotyping tasks. Frontiers in Plant Science, 8.
– volume: 105
  start-page: 1865
  year: 2017
  end-page: 1883
  ident: b0030
  article-title: Remote sensing image scene classification: Benchmark and state of the art
  publication-title: Proc. IEEE
– volume: 11
  start-page: 2326
  year: 2019
  ident: b0060
  article-title: A convolutional neural network classifier identifies tree species in mixed-conifer forest from hyperspectral imagery
  publication-title: Remote Sens.
– volume: 12
  start-page: 4104
  year: 2020
  ident: b0025
  article-title: Automatic delineation and height measurement of regenerating conifer crowns under leaf-off conditions using UAV Imagery
  publication-title: Remote Sens.
– volume: 57
  start-page: 369
  year: 2020
  end-page: 394
  ident: b0240
  article-title: Comparative performance of convolutional neural network, weighted and conventional support vector machine and random forest for classifying tree species using hyperspectral and photogrammetric data
  publication-title: GIScience Remote Sens.
– volume: 11
  start-page: 269
  year: 2019
  ident: b0275
  article-title: Measuring canopy structure and condition using multi-spectral UAS imagery in a horticultural environment
  publication-title: Remote Sens.
– volume: 140
  start-page: 306
  year: 2014
  end-page: 317
  ident: b0035
  article-title: Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data
  publication-title: Remote Sens. Environ.
– volume: 55
  start-page: 89
  year: 2014
  end-page: 99
  ident: b0340
  article-title: Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods
  publication-title: Eur. J. Agron.
– volume: 41
  start-page: 9039
  year: 2020
  end-page: 9063
  ident: b0110
  article-title: Estimation of tree failure consequences due to high winds using convolutional neural networks
  publication-title: Int. J. Remote Sens.
– volume: 51
  start-page: 336
  year: 2018
  end-page: 351
  ident: b0270
  article-title: Tree species classification in Norway from airborne hyperspectral and airborne laser scanning data
  publication-title: European J. Remote Sens.
– volume: 7
  start-page: 62
  year: 2016
  ident: b0300
  article-title: Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds
  publication-title: Forests
– start-page: 2961
  year: 2017
  end-page: 2969
  ident: b0090
  article-title: Mask R-CNN
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 82
  start-page: 322
  year: 2002
  end-page: 334
  ident: b0190
  article-title: Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration
  publication-title: Remote Sens. Environ.
– volume: 5
  start-page: 1682
  year: 2014
  end-page: 1694
  ident: b0095
  article-title: Outlook for the next generation’s precision forestry in Finland
  publication-title: Forests
– volume: 170
  start-page: 205
  year: 2020
  end-page: 215
  ident: b0230
  article-title: Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 8
  start-page: 127
  year: 1979
  end-page: 150
  ident: b0285
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
– volume: 13
  start-page: 162
  year: 2021
  ident: b0200
  article-title: Identifying pine wood nematode disease using UAV images and deep learning algorithms
  publication-title: Remote Sens.
– volume: 396
  start-page: 39
  year: 2020
  end-page: 64
  ident: b0325
  article-title: Recent advances in deep learning for object detection
  publication-title: Neurocomputing
– volume: 223
  start-page: 34
  year: 2019
  end-page: 49
  ident: b0330
  article-title: Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges
  publication-title: Remote Sens. Environ.
– volume: 9
  year: 2019
  ident: b0115
  article-title: Convolutional neural networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery
  publication-title: Sci. Rep.
– volume: 6
  start-page: 472
  year: 2020
  end-page: 486
  ident: b0120
  article-title: Convolutional neural networks accurately predict cover fractions of plant species and communities in unmanned aerial vehicle imagery
  publication-title: Remote Sens. Ecol. Conserv.
– volume: 145
  start-page: 3
  year: 2018
  end-page: 22
  ident: b0045
  article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 10
  start-page: 415
  year: 2019
  ident: b0105
  article-title: Characterizing seedling stands using leaf-off and leaf-on photogrammetric point clouds and hyperspectral imagery acquired from unmanned aerial vehicle
  publication-title: Forests
– volume: 21
  start-page: 1617
  year: 2021
  ident: b0210
  article-title: Olive tree biovolume from UAV multi-resolution image segmentation with Mask R-CNN
  publication-title: Sensors
– start-page: 1
  year: 2021
  end-page: 20
  ident: b0080
  article-title: Assessing tree height and density of a young forest using a consumer unmanned aerial vehicle (UAV)
  publication-title: New Forest
– reference: Braga, J.R., Peripato, V., Dalagnol, R., P. Ferreira, M., Tarabalka, Y., O. C. Aragão, L.E., F. De Campos Velho, H., Shiguemori, E.H. and Wagner, F.H., 2020. Tree crown delineation algorithm based on a convolutional neural network. Remote sensing, 12(8): 1288.
– volume: 11
  start-page: 1812
  year: 2019
  ident: b0040
  article-title: Early detection of invasive exotic trees using UAV and manned aircraft multispectral and LiDAR data
  publication-title: Remote Sens.
– volume: 32
  start-page: 5827
  year: 2011
  end-page: 5852
  ident: b0140
  article-title: Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions
  publication-title: Int. J. Remote Sens.
– volume: 11
  start-page: 3512
  year: 2018
  end-page: 3526
  ident: b0235
  article-title: Comparison of small- and large-footprint lidar characterization of tropical forest aboveground structure and biomass: A case study from central Gabon
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 173
  start-page: 95
  year: 2021
  end-page: 121
  ident: b0350
  article-title: Growing status observation for oil palm trees using Unmanned Aerial Vehicle (UAV) images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 11
  start-page: 928
  year: 2019
  ident: b0255
  article-title: Accurate measurement of tropical forest canopy heights and aboveground carbon using structure from motion
  publication-title: Remote Sens.
– volume: 173
  start-page: 24
  year: 2021
  end-page: 49
  ident: b0125
  article-title: Review on convolutional neural networks (CNN) in vegetation remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 89
  year: 2020
  ident: b0320
  article-title: Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crowns
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 21
  start-page: 320
  year: 2021
  ident: b0075
  article-title: Mask R-CNN and OBIA fusion improves the segmentation of scattered vegetation in very high-resolution optical sensors
  publication-title: Sensors
– volume: 156
  start-page: 14
  year: 2019
  end-page: 26
  ident: b0260
  article-title: Mapping dead forest cover using a deep convolutional neural network and digital aerial photography
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 1
  start-page: 51
  year: 2015
  end-page: 60
  ident: b0135
  article-title: High-resolution forest canopy height estimation in an African blue carbon ecosystem
  publication-title: Remote Sens. Ecol. Conserv.
– volume: 39
  start-page: 5288
  year: 2018
  end-page: 5309
  ident: b0205
  article-title: Application of optical unmanned aerial vehicle-based imagery for the inventory of natural regeneration and standing deadwood in post-disturbed spruce forests
  publication-title: Int. J. Remote Sens.
– volume: 11
  start-page: 924
  year: 2020
  ident: b0020
  article-title: Estimating individual conifer seedling height using drone-based image point clouds
  publication-title: Forests
– volume: 40
  start-page: 8506
  year: 2019
  end-page: 8527
  ident: b0345
  article-title: Convolutional neural network based heterogeneous transfer learning for remote-sensing scene classification
  publication-title: Int. J. Remote Sens.
– volume: 19
  start-page: 1284
  year: 2019
  ident: b0085
  article-title: Urban tree species classification using a WorldView-2/3 and LiDAR data fusion approach and deep learning
  publication-title: Sensors
– volume: 22
  start-page: 679
  year: 2006
  end-page: 688
  ident: b0100
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
– volume: 172
  start-page: 79
  year: 2021
  end-page: 94
  ident: b0195
  article-title: Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 141
  start-page: 208
  year: 2018
  end-page: 218
  ident: b0050
  article-title: A light and faster regional convolutional neural network for object detection in optical remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 39
  start-page: 5246
  year: 2018
  end-page: 5264
  ident: b0070
  article-title: Assessing the status of forest regeneration using digital aerial photogrammetry and unmanned aerial systems
  publication-title: Int. J. Remote Sens.
– volume: 195
  start-page: 30
  year: 2017
  end-page: 43
  ident: b0220
  article-title: UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA
  publication-title: Remote Sens. Environ.
– volume: 186
  start-page: 287
  year: 2015
  end-page: 295
  ident: b0335
  article-title: Using lightweight unmanned aerial vehicles to monitor tropical forest recovery
  publication-title: Biol. Conserv.
– volume: 7
  start-page: 1150
  year: 2016
  end-page: 1159
  ident: b0180
  article-title: Assessment of boreal forest height from WorldView-2 satellite stereo images
  publication-title: Remote Sens. Lett.
– volume: 147
  start-page: 132
  year: 2019
  end-page: 145
  ident: b0305
  article-title: Is field-measured tree height as reliable as believed – A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 82
  year: 2019
  ident: b0295
  article-title: Tree height in tropical forest as measured by different ground, proximal, and remote sensing instruments, and impacts on above ground biomass estimates
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 160
  start-page: 83
  year: 2020
  end-page: 96
  ident: b0280
  article-title: Optimising drone flight planning for measuring horticultural tree crop structure
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 11
  start-page: 1309
  year: 2019
  ident: b0310
  article-title: Individual tree-crown detection in RGB Imagery using semi-supervised deep learning neural networks
  publication-title: Remote Sens.
– volume: 8
  start-page: 761
  year: 2017
  end-page: 770
  ident: b0170
  article-title: Tree crown detection and delineation in satellite images using probabilistic voting
  publication-title: Remote Sens. Lett.
– volume: 12
  start-page: 1070
  year: 2020
  ident: b0165
  article-title: Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks
  publication-title: Remote Sens.
– volume: 12
  start-page: 2426
  year: 2020
  ident: b0185
  article-title: Individual tree-crown detection and species classification in very high-resolution remote sensing imagery using a deep learning ensemble model
  publication-title: Remote Sens.
– volume: 62
  start-page: 157
  year: 2017
  end-page: 171
  ident: b0225
  article-title: Mapping the dominant forest tree distribution using a combined image classification approach in a complex Eastern Mediterranean basin
  publication-title: J. Spatial Sci.
– volume: 152
  start-page: 166
  year: 2019
  end-page: 177
  ident: b0150
  article-title: Deep learning in remote sensing applications: A meta-analysis and review
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 475
  year: 2020
  ident: b0055
  article-title: Individual tree detection and species classification of Amazonian palms using UAV images and deep learning
  publication-title: For. Ecol. Manage.
– volume: 14
  year: 2019
  ident: b0160
  article-title: Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV)
  publication-title: PLoS ONE
– volume: 587
  start-page: 78
  year: 2020
  end-page: 82
  ident: b0015
  article-title: An unexpectedly large count of trees in the West African Sahara and Sahel
  publication-title: Nature
– year: 2017
  ident: b0250
  article-title: Revisiting unreasonable effectiveness of data in deep learning era
  publication-title: The IEEE International Conference on Computer Vision
– volume: 86
  start-page: 463
  year: 2013
  end-page: 473
  ident: b0245
  article-title: Assessment of Cartosat-1 and WorldView-2 stereo imagery in combination with a LiDAR-DTM for timber volume estimation in a highly structured forest in Germany
  publication-title: Forestry
– volume: 159
  start-page: 318
  year: 2015
  end-page: 331
  ident: b0265
  article-title: On the use of binary partition trees for the tree crown segmentation of tropical rainforest hyperspectral images
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 340
  year: 2017
  ident: b0155
  article-title: Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest
  publication-title: Forests
– volume: 32
  start-page: 4725
  year: 2011
  end-page: 4747
  ident: b0130
  article-title: A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing
  publication-title: Int. J. Remote Sens.
– volume: 7
  start-page: 1150
  issue: 12
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.06.003_b0180
  article-title: Assessment of boreal forest height from WorldView-2 satellite stereo images
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2016.1219424
– volume: 11
  start-page: 643
  issue: 6
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0215
  article-title: Detection of fir trees (Abies sibirica) damaged by the bark beetle in unmanned aerial vehicle images with deep learning
  publication-title: Remote Sens.
  doi: 10.3390/rs11060643
– volume: 11
  start-page: 3512
  issue: 10
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.06.003_b0235
  article-title: Comparison of small- and large-footprint lidar characterization of tropical forest aboveground structure and biomass: A case study from central Gabon
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2816962
– volume: 21
  start-page: 1617
  issue: 5
  year: 2021
  ident: 10.1016/j.isprsjprs.2021.06.003_b0210
  article-title: Olive tree biovolume from UAV multi-resolution image segmentation with Mask R-CNN
  publication-title: Sensors
  doi: 10.3390/s21051617
– volume: 19
  start-page: 1284
  issue: 6
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0085
  article-title: Urban tree species classification using a WorldView-2/3 and LiDAR data fusion approach and deep learning
  publication-title: Sensors
  doi: 10.3390/s19061284
– volume: 7
  start-page: 62
  issue: 12
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.06.003_b0300
  article-title: Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds
  publication-title: Forests
  doi: 10.3390/f7030062
– volume: 10
  start-page: 415
  issue: 5
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0105
  article-title: Characterizing seedling stands using leaf-off and leaf-on photogrammetric point clouds and hyperspectral imagery acquired from unmanned aerial vehicle
  publication-title: Forests
  doi: 10.3390/f10050415
– volume: 56
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.06.003_b0315
  article-title: Cross-site learning in deep learning RGB tree crown detection
  publication-title: Ecol. Inf.
  doi: 10.1016/j.ecoinf.2020.101061
– volume: 8
  start-page: 340
  issue: 9
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.06.003_b0155
  article-title: Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest
  publication-title: Forests
  doi: 10.3390/f8090340
– volume: 89
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.06.003_b0320
  article-title: Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crowns
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2020.102091
– volume: 105
  start-page: 1865
  issue: 10
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.06.003_b0030
  article-title: Remote sensing image scene classification: Benchmark and state of the art
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2017.2675998
– volume: 1
  start-page: 51
  issue: 1
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.06.003_b0135
  article-title: High-resolution forest canopy height estimation in an African blue carbon ecosystem
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.3
– volume: 170
  start-page: 205
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.06.003_b0230
  article-title: Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.10.015
– volume: 57
  start-page: 369
  issue: 3
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.06.003_b0240
  article-title: Comparative performance of convolutional neural network, weighted and conventional support vector machine and random forest for classifying tree species using hyperspectral and photogrammetric data
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2020.1712102
– volume: 11
  start-page: 928
  issue: 8
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0255
  article-title: Accurate measurement of tropical forest canopy heights and aboveground carbon using structure from motion
  publication-title: Remote Sens.
  doi: 10.3390/rs11080928
– volume: 186
  start-page: 287
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.06.003_b0335
  article-title: Using lightweight unmanned aerial vehicles to monitor tropical forest recovery
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2015.03.031
– volume: 141
  start-page: 208
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.06.003_b0050
  article-title: A light and faster regional convolutional neural network for object detection in optical remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.05.005
– volume: 14
  issue: 10
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0160
  article-title: Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV)
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0223906
– volume: 11
  start-page: 1812
  issue: 15
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0040
  article-title: Early detection of invasive exotic trees using UAV and manned aircraft multispectral and LiDAR data
  publication-title: Remote Sens.
  doi: 10.3390/rs11151812
– volume: 152
  start-page: 166
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0150
  article-title: Deep learning in remote sensing applications: A meta-analysis and review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.04.015
– volume: 62
  start-page: 157
  issue: 1
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.06.003_b0225
  article-title: Mapping the dominant forest tree distribution using a combined image classification approach in a complex Eastern Mediterranean basin
  publication-title: J. Spatial Sci.
– volume: 51
  start-page: 336
  issue: 1
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.06.003_b0270
  article-title: Tree species classification in Norway from airborne hyperspectral and airborne laser scanning data
  publication-title: European J. Remote Sens.
  doi: 10.1080/22797254.2018.1434424
– volume: 6
  start-page: 472
  issue: 4
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.06.003_b0120
  article-title: Convolutional neural networks accurately predict cover fractions of plant species and communities in unmanned aerial vehicle imagery
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.146
– volume: 86
  start-page: 463
  issue: 4
  year: 2013
  ident: 10.1016/j.isprsjprs.2021.06.003_b0245
  article-title: Assessment of Cartosat-1 and WorldView-2 stereo imagery in combination with a LiDAR-DTM for timber volume estimation in a highly structured forest in Germany
  publication-title: Forestry
  doi: 10.1093/forestry/cpt017
– volume: 39
  start-page: 5246
  issue: 15–16
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.06.003_b0070
  article-title: Assessing the status of forest regeneration using digital aerial photogrammetry and unmanned aerial systems
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1402387
– volume: 11
  start-page: 2326
  issue: 19
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0060
  article-title: A convolutional neural network classifier identifies tree species in mixed-conifer forest from hyperspectral imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs11192326
– volume: 39
  start-page: 5288
  issue: 15–16
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.06.003_b0205
  article-title: Application of optical unmanned aerial vehicle-based imagery for the inventory of natural regeneration and standing deadwood in post-disturbed spruce forests
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1441568
– volume: 9
  start-page: 22
  issue: 1
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.06.003_b0145
  article-title: Deep learning based oil palm tree detection and counting for high-resolution remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs9010022
– volume: 11
  start-page: 924
  issue: 9
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.06.003_b0020
  article-title: Estimating individual conifer seedling height using drone-based image point clouds
  publication-title: Forests
  doi: 10.3390/f11090924
– volume: 195
  start-page: 30
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.06.003_b0220
  article-title: UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.04.007
– volume: 160
  start-page: 83
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.06.003_b0280
  article-title: Optimising drone flight planning for measuring horticultural tree crop structure
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.12.006
– volume: 21
  start-page: 320
  issue: 1
  year: 2021
  ident: 10.1016/j.isprsjprs.2021.06.003_b0075
  article-title: Mask R-CNN and OBIA fusion improves the segmentation of scattered vegetation in very high-resolution optical sensors
  publication-title: Sensors
  doi: 10.3390/s21010320
– volume: 82
  start-page: 322
  issue: 2
  year: 2002
  ident: 10.1016/j.isprsjprs.2021.06.003_b0190
  article-title: Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00050-0
– volume: 245
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.06.003_b0005
  article-title: Mapping tall shrub biomass in Alaska at landscape scale using structure-from-motion photogrammetry and lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111841
– volume: 173
  start-page: 24
  year: 2021
  ident: 10.1016/j.isprsjprs.2021.06.003_b0125
  article-title: Review on convolutional neural networks (CNN) in vegetation remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.12.010
– start-page: 2961
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.06.003_b0090
  article-title: Mask R-CNN
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 475
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.06.003_b0055
  article-title: Individual tree detection and species classification of Amazonian palms using UAV images and deep learning
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2020.118397
– volume: 12
  start-page: 4104
  issue: 24
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.06.003_b0025
  article-title: Automatic delineation and height measurement of regenerating conifer crowns under leaf-off conditions using UAV Imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs12244104
– volume: 82
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0295
  article-title: Tree height in tropical forest as measured by different ground, proximal, and remote sensing instruments, and impacts on above ground biomass estimates
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2019.101899
– volume: 140
  start-page: 306
  year: 2014
  ident: 10.1016/j.isprsjprs.2021.06.003_b0035
  article-title: Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.09.006
– volume: 172
  start-page: 79
  year: 2021
  ident: 10.1016/j.isprsjprs.2021.06.003_b0195
  article-title: Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.11.008
– volume: 12
  start-page: 1070
  issue: 7
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.06.003_b0165
  article-title: Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks
  publication-title: Remote Sens.
  doi: 10.3390/rs12071070
– volume: 223
  start-page: 34
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0330
  article-title: Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.034
– volume: 396
  start-page: 39
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.06.003_b0325
  article-title: Recent advances in deep learning for object detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.085
– volume: 22
  start-page: 679
  issue: 4
  year: 2006
  ident: 10.1016/j.isprsjprs.2021.06.003_b0100
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2006.03.001
– volume: 32
  start-page: 4725
  issue: 17
  year: 2011
  ident: 10.1016/j.isprsjprs.2021.06.003_b0130
  article-title: A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.494184
– volume: 11
  start-page: 1309
  issue: 11
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0310
  article-title: Individual tree-crown detection in RGB Imagery using semi-supervised deep learning neural networks
  publication-title: Remote Sens.
  doi: 10.3390/rs11111309
– volume: 55
  start-page: 89
  year: 2014
  ident: 10.1016/j.isprsjprs.2021.06.003_b0340
  article-title: Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2014.01.004
– volume: 145
  start-page: 3
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.06.003_b0045
  article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.003
– volume: 168
  start-page: 156
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.06.003_b0175
  article-title: Detecting and mapping tree seedlings in UAV imagery using convolutional neural networks and field-verified data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.08.005
– volume: 11
  start-page: 269
  issue: 3
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0275
  article-title: Measuring canopy structure and condition using multi-spectral UAS imagery in a horticultural environment
  publication-title: Remote Sens.
  doi: 10.3390/rs11030269
– volume: 11
  start-page: 2585
  issue: 21
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0065
  article-title: Automated detection of conifer seedlings in drone imagery using convolutional neural networks
  publication-title: Remote Sens.
  doi: 10.3390/rs11212585
– volume: 41
  start-page: 9039
  issue: 23
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.06.003_b0110
  article-title: Estimation of tree failure consequences due to high winds using convolutional neural networks
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1797219
– year: 2017
  ident: 10.1016/j.isprsjprs.2021.06.003_b0250
  article-title: Revisiting unreasonable effectiveness of data in deep learning era
– volume: 587
  start-page: 78
  issue: 7832
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.06.003_b0015
  article-title: An unexpectedly large count of trees in the West African Sahara and Sahel
  publication-title: Nature
  doi: 10.1038/s41586-020-2824-5
– ident: 10.1016/j.isprsjprs.2021.06.003_b0290
  doi: 10.3389/fpls.2017.01190
– volume: 8
  start-page: 761
  issue: 8
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.06.003_b0170
  article-title: Tree crown detection and delineation in satellite images using probabilistic voting
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2017.1322733
– volume: 8
  start-page: 127
  issue: 2
  year: 1979
  ident: 10.1016/j.isprsjprs.2021.06.003_b0285
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90013-0
– volume: 173
  start-page: 95
  year: 2021
  ident: 10.1016/j.isprsjprs.2021.06.003_b0350
  article-title: Growing status observation for oil palm trees using Unmanned Aerial Vehicle (UAV) images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.01.008
– volume: 156
  start-page: 14
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0260
  article-title: Mapping dead forest cover using a deep convolutional neural network and digital aerial photography
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.07.010
– volume: 147
  start-page: 132
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0305
  article-title: Is field-measured tree height as reliable as believed – A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.008
– volume: 12
  start-page: 2426
  issue: 15
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.06.003_b0185
  article-title: Individual tree-crown detection and species classification in very high-resolution remote sensing imagery using a deep learning ensemble model
  publication-title: Remote Sens.
  doi: 10.3390/rs12152426
– ident: 10.1016/j.isprsjprs.2021.06.003_b0010
  doi: 10.3390/rs12081288
– volume: 159
  start-page: 318
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.06.003_b0265
  article-title: On the use of binary partition trees for the tree crown segmentation of tropical rainforest hyperspectral images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.12.020
– start-page: 1
  year: 2021
  ident: 10.1016/j.isprsjprs.2021.06.003_b0080
  article-title: Assessing tree height and density of a young forest using a consumer unmanned aerial vehicle (UAV)
  publication-title: New Forest
– volume: 40
  start-page: 8506
  issue: 22
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0345
  article-title: Convolutional neural network based heterogeneous transfer learning for remote-sensing scene classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1615652
– volume: 32
  start-page: 5827
  issue: 20
  year: 2011
  ident: 10.1016/j.isprsjprs.2021.06.003_b0140
  article-title: Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.507790
– volume: 5
  start-page: 1682
  issue: 7
  year: 2014
  ident: 10.1016/j.isprsjprs.2021.06.003_b0095
  article-title: Outlook for the next generation’s precision forestry in Finland
  publication-title: Forests
  doi: 10.3390/f5071682
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.06.003_b0115
  article-title: Convolutional neural networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53797-9
– volume: 13
  start-page: 162
  issue: 2
  year: 2021
  ident: 10.1016/j.isprsjprs.2021.06.003_b0200
  article-title: Identifying pine wood nematode disease using UAV images and deep learning algorithms
  publication-title: Remote Sens.
  doi: 10.3390/rs13020162
SSID ssj0001568
Score 2.6178522
Snippet Tree-crown and height are primary tree measurements in forest inventory. Convolutional neural networks (CNNs) are a class of neural networks, which can be used...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112
SubjectTerms automation
China
Cunninghamia lanceolata
Deep learning
forest inventory
forest plantations
Instance segmentation
neural networks
photogrammetry
Plantation forest
tree crown
Tree height
Tree-crown delineation
trees
UAV imagery
Title Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN)
URI https://dx.doi.org/10.1016/j.isprsjprs.2021.06.003
https://www.proquest.com/docview/2636436023
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGIAB8RRvGYkBBtM4dtOEraqoCogOPKRukR27UB5p1aZDF2Z-NndOUl4DA0MUxbJly3e-R_zdHSFHRoHNGvGIaaMtk1aGTOmQsygUiQaKh36C0cjXnaB9Ly-7tW6FNMtYGIRVFrI_l-lOWhct1WI3q8N-v3rrgevgYwIk7uwWF8Eu68jlp2-fMA-eh8NhZ4a9v2G8-uPhaPwEDziKPneJPMvqWb811A9Z7RRQa4UsF5YjbeSLWyUVm66RpS_5BNfIQlHS_HG6Tt4bk2wA5qg1FC-eWYL-NlWpoY_ubyg1NnMwrJT2oZ1O8dhTMGFhajp8UXlIUkoRGP9AX9X4mWIRh0HKUPEZinD1gm1hVZgW070cqJweX2P_G9bsdE42yH3r_K7ZZkXZBZZILjMW1nwTgFZXqm4j4enA1i0XSsgo9FUv4VoJ4xksFMN7XNueBA_PYmo5XwihdCQ2yVw6SO0WoSA9tIoCq3WvLlXN04mwIVcBeCkeENhuk6Dc6jgpcpJjaYyXuASfPcUzGsVIo9jB8MQ28WYDh3lajr-HnJW0jL9xWAzK4-_BhyX1Yzh_eKmiUjuYQKdAgFEXgOmz858JdskifuXQwj0yl40mdh_MnUwfOH4-IPONi6t25wNRBgOz
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9C5cB2QINtGmwwT9phO1iN4zRNuFUVqHw0hw0kbpYdu1DG0oqmB_6D_dm85zgVsAMHDlEkx0-2_Oz3Ef_eewDfrUabNRc5N9Y4nrgk49pkgueZLA1yPItLikYeF-noIjm57F2uwbCNhSFYZZD9jUz30jq0dMNqdufTafd3hK5DTAmQhLdb0AVap-xUvQ6sD45PR8VKIIsmIo76cyJ4AvOaLuZ3ixt80FeMhc_l2RbQ-l9JPRPXXgcdvYPNYDyyQTO_LVhz1Ta8fZRScBs2QlXz6_v38G-wrGdokTrL6O6Zl-RyM11Zdu1_iDLrao_EqtgU29k9nXyGViwOzea3uolKqhhh46_YX734w6iOw6zipPssI8R62Lk4K8qM6V8eV85-jKn_Lz4sip8f4OLo8Hw44qHyAi8TkdQ868U2RcWudd_lMjKp6zshtUzyLNaTUhgtbWSpVoyYCOMmCTp5jrLLxVJKbXL5ETrVrHKfgKEAMTpPnTGTfqJ7kSmly4RO0VGJkMduB9J2qVUZ0pJTdYxb1eLPbtSKR4p4pDwST-5AtCKcN5k5XiY5aHmpnmwyhfrjZeJvLfcVHkG6V9GVmy2xUyrRrkvR-tl9zQBfYWN0Pj5TZ8fF6Wd4Q18apOEX6NR3S7eH1k9t9sPufgAmGwZk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+tree-crown+and+height+detection+in+a+young+forest+plantation+using+mask+region-based+convolutional+neural+network+%28Mask+R-CNN%29&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Hao%2C+Zhenbang&rft.au=Lin%2C+Lili&rft.au=Post%2C+Christopher+J.&rft.au=Mikhailova%2C+Elena+A.&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=178&rft.spage=112&rft.epage=123&rft_id=info:doi/10.1016%2Fj.isprsjprs.2021.06.003&rft.externalDocID=S0924271621001611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon