A One-Layer Projection Neural Network for Nonsmooth Optimization Subject to Linear Equalities and Bound Constraints
This paper presents a one-layer projection neural network for solving nonsmooth optimization problems with generalized convex objective functions and subject to linear equalities and bound constraints. The proposed neural network is designed based on two projection operators: linear equality constra...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 24; no. 5; pp. 812 - 824 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.05.2013
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a one-layer projection neural network for solving nonsmooth optimization problems with generalized convex objective functions and subject to linear equalities and bound constraints. The proposed neural network is designed based on two projection operators: linear equality constraints, and bound constraints. The objective function in the optimization problem can be any nonsmooth function which is not restricted to be convex but is required to be convex (pseudoconvex) on a set defined by the constraints. Compared with existing recurrent neural networks for nonsmooth optimization, the proposed model does not have any design parameter, which is more convenient for design and implementation. It is proved that the output variables of the proposed neural network are globally convergent to the optimal solutions provided that the objective function is at least pseudoconvex. Simulation results of numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network. |
---|---|
AbstractList | This paper presents a one-layer projection neural network for solving nonsmooth optimization problems with generalized convex objective functions and subject to linear equalities and bound constraints. The proposed neural network is designed based on two projection operators: linear equality constraints, and bound constraints. The objective function in the optimization problem can be any nonsmooth function which is not restricted to be convex but is required to be convex (pseudoconvex) on a set defined by the constraints. Compared with existing recurrent neural networks for nonsmooth optimization, the proposed model does not have any design parameter, which is more convenient for design and implementation. It is proved that the output variables of the proposed neural network are globally convergent to the optimal solutions provided that the objective function is at least pseudoconvex. Simulation results of numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network. This paper presents a one-layer projection neural network for solving nonsmooth optimization problems with generalized convex objective functions and subject to linear equalities and bound constraints. The proposed neural network is designed based on two projection operators: linear equality constraints, and bound constraints. The objective function in the optimization problem can be any nonsmooth function which is not restricted to be convex but is required to be convex (pseudoconvex) on a set defined by the constraints. Compared with existing recurrent neural networks for nonsmooth optimization, the proposed model does not have any design parameter, which is more convenient for design and implementation. It is proved that the output variables of the proposed neural network are globally convergent to the optimal solutions provided that the objective function is at least pseudoconvex. Simulation results of numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.This paper presents a one-layer projection neural network for solving nonsmooth optimization problems with generalized convex objective functions and subject to linear equalities and bound constraints. The proposed neural network is designed based on two projection operators: linear equality constraints, and bound constraints. The objective function in the optimization problem can be any nonsmooth function which is not restricted to be convex but is required to be convex (pseudoconvex) on a set defined by the constraints. Compared with existing recurrent neural networks for nonsmooth optimization, the proposed model does not have any design parameter, which is more convenient for design and implementation. It is proved that the output variables of the proposed neural network are globally convergent to the optimal solutions provided that the objective function is at least pseudoconvex. Simulation results of numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network. |
Author | Jun Wang Qingshan Liu |
Author_xml | – sequence: 1 givenname: Qingshan surname: Liu fullname: Liu, Qingshan – sequence: 2 givenname: Jun surname: Wang fullname: Wang, Jun |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27321511$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24808430$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktr3DAURkVJadI0f6CFIiiFbjzVy7a8TIf0AWamkBS6E7LmmmpqSxNJJiS_vppHUsgiEUJXi3Mu6Op7jY6cd4DQW0pmlJLm89Vi0V7OGKF8xpgQDZEv0AmjFSsYl_Lo4V7_PkZnMa5JXhUpK9G8QsdMSCIFJyconuOlg6LVtxDwz-DXYJL1Di9gCnrIJd348Bf3PuCFd3H0Pv3By02yo73TO_Jy6rYSTh631oEO-OJ60oNNFiLWboW_-Cmf82ynoK1L8Q162eshwtmhnqJfXy-u5t-Ldvntx_y8LYygIhWSl30v-QpqgJJ0XdUbw8WKMsYqUvWiF6RhhJUd58zQRjRl1XHJZN6EQi34Kfq077sJ_nqCmNRoo4Fh0A78FBUtGRdElDV7HuWiERUnVGb0wyN07afg8kMylX-iluWOen-gpm6EldoEO-pwq-4nn4GPB0BHo4c-aGds_M_VnNGS0szJPWeCjzFAr4xNu8lvpzkoStQ2D2qXB7XNgzrkIavskXrf_Unp3V6yAPAgVKJmpK75P1jUviM |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TCYB_2016_2611529 crossref_primary_10_1109_TCYB_2024_3394394 crossref_primary_10_1109_TNNLS_2015_2496658 crossref_primary_10_1007_s11424_018_7145_5 crossref_primary_10_1016_j_neucom_2022_03_023 crossref_primary_10_1007_s11228_024_00718_2 crossref_primary_10_1109_TSMC_2023_3281903 crossref_primary_10_1109_TII_2017_2737363 crossref_primary_10_1109_TAC_2019_2902612 crossref_primary_10_1109_TNNLS_2015_2461553 crossref_primary_10_1007_s00521_019_04391_7 crossref_primary_10_1016_j_eswa_2017_04_016 crossref_primary_10_1016_j_neucom_2022_01_018 crossref_primary_10_1007_s11063_023_11371_5 crossref_primary_10_1016_j_ins_2021_07_022 crossref_primary_10_1109_TCYB_2021_3102941 crossref_primary_10_1007_s00500_022_07486_x crossref_primary_10_1007_s40747_023_01178_1 crossref_primary_10_1016_j_ifacol_2017_08_149 crossref_primary_10_1109_TNNLS_2021_3130173 crossref_primary_10_1109_TNNLS_2016_2538288 crossref_primary_10_1109_TAC_2021_3079192 crossref_primary_10_1109_TCYB_2020_3022240 crossref_primary_10_1109_TAC_2017_2681200 crossref_primary_10_1016_j_neucom_2023_126480 crossref_primary_10_1016_j_neunet_2013_03_010 crossref_primary_10_1016_j_sysconle_2023_105619 crossref_primary_10_1109_TNNLS_2014_2314129 crossref_primary_10_1631_FITEE_2200381 crossref_primary_10_1109_TCSI_2024_3351942 crossref_primary_10_1109_TNSE_2022_3178107 crossref_primary_10_1007_s11432_022_3781_4 crossref_primary_10_1109_TNNLS_2016_2574363 crossref_primary_10_1109_TSMC_2022_3228105 crossref_primary_10_1016_j_neucom_2018_06_050 crossref_primary_10_1109_TSMC_2024_3387908 crossref_primary_10_1109_TSMC_2017_2697447 crossref_primary_10_1016_j_jmaa_2019_07_037 crossref_primary_10_1109_TAC_2015_2416927 crossref_primary_10_1109_TNNLS_2019_2898919 crossref_primary_10_1007_s11063_023_11434_7 crossref_primary_10_1016_j_neucom_2018_01_002 crossref_primary_10_1016_j_neunet_2018_01_008 crossref_primary_10_1016_j_neunet_2021_03_039 crossref_primary_10_1016_j_neucom_2022_07_034 crossref_primary_10_1016_j_neucom_2021_11_014 crossref_primary_10_1109_TNNLS_2017_2708712 crossref_primary_10_1162_neco_a_01294 crossref_primary_10_1109_TCYB_2018_2883095 crossref_primary_10_1002_oca_2385 crossref_primary_10_1109_TSMC_2019_2894862 crossref_primary_10_1007_s11063_017_9599_1 crossref_primary_10_1016_j_neunet_2022_10_018 crossref_primary_10_1109_TAC_2018_2862471 crossref_primary_10_1109_TNNLS_2018_2884788 crossref_primary_10_1007_s40747_024_01436_w crossref_primary_10_1016_j_neucom_2015_06_111 crossref_primary_10_1137_17M1118609 crossref_primary_10_1016_j_asoc_2024_112044 crossref_primary_10_1016_j_neucom_2018_01_014 crossref_primary_10_1049_cje_2021_05_005 crossref_primary_10_1016_j_neunet_2013_11_007 crossref_primary_10_1109_TNNLS_2022_3208086 crossref_primary_10_1109_TNNLS_2013_2280905 crossref_primary_10_1007_s11432_021_3442_2 crossref_primary_10_1109_TETCI_2019_2915813 crossref_primary_10_1109_TNNLS_2015_2500618 crossref_primary_10_1109_TCYB_2021_3090204 crossref_primary_10_1109_TNNLS_2016_2582381 crossref_primary_10_1109_TNNLS_2022_3213167 crossref_primary_10_1080_0952813X_2022_2153271 crossref_primary_10_1007_s10489_014_0616_z crossref_primary_10_1109_TCYB_2020_3042519 crossref_primary_10_1109_TSMC_2016_2616486 crossref_primary_10_1109_TNNLS_2015_2497715 crossref_primary_10_1016_j_cogsys_2019_09_024 crossref_primary_10_1109_TIE_2018_2864707 crossref_primary_10_1109_TNNLS_2014_2387862 crossref_primary_10_1007_s11063_023_11154_y crossref_primary_10_1016_j_neunet_2014_06_002 crossref_primary_10_1016_j_neunet_2022_10_029 crossref_primary_10_1109_TNNLS_2013_2275732 crossref_primary_10_1016_j_neunet_2013_11_015 crossref_primary_10_1080_00207721_2024_2428844 crossref_primary_10_1016_j_neunet_2021_10_007 crossref_primary_10_1016_j_neunet_2022_06_023 crossref_primary_10_1109_TNNLS_2015_2464314 crossref_primary_10_1007_s11071_019_04764_6 crossref_primary_10_1016_j_neunet_2024_106128 crossref_primary_10_1109_TCYB_2020_2997686 crossref_primary_10_1109_TNNLS_2015_2479117 crossref_primary_10_1109_TNNLS_2018_2836933 crossref_primary_10_1109_TSMC_2022_3186019 crossref_primary_10_1109_TNNLS_2014_2345734 crossref_primary_10_1016_j_sysconle_2019_104607 crossref_primary_10_1109_ACCESS_2019_2907960 crossref_primary_10_1109_TAC_2024_3416269 crossref_primary_10_1109_TNNLS_2019_2927639 crossref_primary_10_1007_s11071_020_06189_y crossref_primary_10_1109_TNNLS_2016_2570257 crossref_primary_10_1016_j_neucom_2014_06_018 crossref_primary_10_1109_TAC_2018_2852602 crossref_primary_10_1016_j_ijepes_2020_106737 crossref_primary_10_1016_j_sysconle_2021_105002 crossref_primary_10_1016_j_jfranklin_2023_06_004 crossref_primary_10_1016_j_neunet_2014_10_011 crossref_primary_10_1049_iet_cta_2019_0020 crossref_primary_10_1109_TNNLS_2021_3127883 crossref_primary_10_1016_j_jfranklin_2022_11_022 crossref_primary_10_1016_j_jprocont_2024_103161 crossref_primary_10_1016_j_neucom_2024_128988 crossref_primary_10_1109_TNNLS_2015_2425301 crossref_primary_10_1109_TNNLS_2021_3105732 crossref_primary_10_1109_TAC_2016_2610945 crossref_primary_10_1109_TNNLS_2021_3139865 crossref_primary_10_1016_j_neunet_2018_10_010 crossref_primary_10_1007_s11063_021_10681_w crossref_primary_10_1016_j_neunet_2021_01_004 crossref_primary_10_1016_j_neunet_2022_03_011 crossref_primary_10_1186_s13660_023_03046_5 crossref_primary_10_1109_TAC_2023_3308343 crossref_primary_10_1007_s40997_023_00596_3 crossref_primary_10_1109_TSMC_2019_2912825 crossref_primary_10_1109_TNNLS_2018_2814824 crossref_primary_10_1016_j_neunet_2021_04_038 crossref_primary_10_1016_j_matcom_2015_09_013 crossref_primary_10_1016_j_automatica_2021_109794 crossref_primary_10_1016_j_neucom_2014_08_014 crossref_primary_10_1109_TNNLS_2016_2549703 crossref_primary_10_1016_j_sigpro_2023_109360 crossref_primary_10_1016_j_neunet_2023_10_022 crossref_primary_10_1109_TNNLS_2015_2481006 crossref_primary_10_1109_TNNLS_2021_3098668 crossref_primary_10_1109_TCNS_2021_3056034 crossref_primary_10_1016_j_aeue_2018_06_019 crossref_primary_10_1016_j_neunet_2014_07_014 crossref_primary_10_1109_TNNLS_2013_2275948 crossref_primary_10_1109_TNNLS_2016_2524619 crossref_primary_10_1109_TNNLS_2021_3082528 crossref_primary_10_1155_2017_5073640 crossref_primary_10_1016_j_ijepes_2021_107373 crossref_primary_10_1109_TCYB_2020_2990796 crossref_primary_10_1016_j_neunet_2014_09_009 crossref_primary_10_1109_TCYB_2021_3088884 crossref_primary_10_1109_TCYB_2019_2922207 crossref_primary_10_1155_2014_787102 crossref_primary_10_1016_j_neunet_2019_02_002 crossref_primary_10_1109_TETCI_2024_3369482 crossref_primary_10_1109_TNNLS_2014_2305440 crossref_primary_10_1109_TNNLS_2017_2652478 crossref_primary_10_1016_j_neucom_2021_06_097 crossref_primary_10_1109_TIE_2016_2542788 crossref_primary_10_1109_TNNLS_2021_3071404 crossref_primary_10_3390_math11173674 crossref_primary_10_1007_s40435_021_00838_9 crossref_primary_10_1016_j_neunet_2018_08_020 crossref_primary_10_1002_cjce_22865 crossref_primary_10_1109_TCNS_2022_3203486 crossref_primary_10_1016_j_neunet_2024_106791 crossref_primary_10_1016_j_neunet_2024_107121 crossref_primary_10_1016_j_neunet_2018_03_003 crossref_primary_10_1109_TNNLS_2021_3088535 crossref_primary_10_1007_s00034_020_01445_3 crossref_primary_10_1016_j_neunet_2014_03_006 crossref_primary_10_1109_TSMC_2018_2859364 crossref_primary_10_1109_TNNLS_2018_2818127 crossref_primary_10_1109_TCYB_2015_2443877 crossref_primary_10_1109_TNNLS_2016_2549566 crossref_primary_10_1016_j_neunet_2020_08_013 crossref_primary_10_1109_TNNLS_2022_3144148 crossref_primary_10_1016_j_neunet_2023_06_003 crossref_primary_10_1016_j_jfranklin_2023_11_041 crossref_primary_10_1109_TNNLS_2015_2404773 crossref_primary_10_1177_0142331218793486 crossref_primary_10_1142_S179352452250070X crossref_primary_10_1007_s11063_023_11289_y crossref_primary_10_1109_TNNLS_2013_2292893 crossref_primary_10_1109_TNNLS_2014_2342260 crossref_primary_10_1002_cem_2795 crossref_primary_10_1016_j_automatica_2021_109899 crossref_primary_10_1016_j_automatica_2023_111494 crossref_primary_10_1016_j_neunet_2022_05_022 crossref_primary_10_1002_rnc_5199 crossref_primary_10_1016_j_automatica_2018_04_010 crossref_primary_10_1016_j_neunet_2022_07_018 |
Cites_doi | 10.1016/j.physd.2005.12.006 10.1109/TCSI.2004.834493 10.1109/TNN.2008.2011266 10.1109/TNN.2007.910736 10.1007/978-94-015-7793-9 10.1109/TNN.2011.2109735 10.1109/TNN.2008.2003287 10.1137/100786022 10.1162/neco.2006.18.3.683 10.1109/TCSI.2003.818614 10.1002/047084535X 10.1016/j.neunet.2011.09.001 10.1109/TNN.2005.849834 10.1109/82.160169 10.1109/TNN.2004.824425 10.1109/81.244913 10.1109/TNN.2008.2000273 10.1137/080740544 10.1002/0471787779 10.1109/TCS.1986.1085953 10.1023/A:1022659230603 10.1109/TSMCB.2007.903706 10.1109/TNN.2004.841779 10.1109/72.143372 10.1109/TNN.2009.2016340 10.1109/TNN.2006.881046 10.1007/978-3-642-69512-4 10.1109/81.995659 10.1109/TNN.2004.824252 10.1109/TNN.2006.879774 10.1109/9.802909 10.1016/0893-6080(94)90041-8 10.1162/neco.2007.03-07-488 10.1109/TNN.2005.852862 10.1109/TCSI.2008.920131 10.1109/31.1783 10.1109/72.207617 10.1109/TNN.2011.2104979 10.1109/3477.907574 10.1109/TNN.2006.879775 10.1109/TSMCB.2011.2140395 10.1016/S0375-9601(01)00542-4 10.1109/72.857782 10.1109/72.728383 |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2013 |
Copyright_xml | – notice: 2014 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2013 |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2013.2244908 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) - NZ url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISSN | 2162-2388 |
EndPage | 824 |
ExternalDocumentID | 2938973281 24808430 27321511 10_1109_TNNLS_2013_2244908 6472077 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG ABPTK IPNFZ IQODW PQEST CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c414t-835ff83de7ee50bb6fcc34d1222606f4f4092025b332c194956b382882801e743 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 14:50:51 EDT 2025 Fri Jul 11 15:54:30 EDT 2025 Mon Jun 30 05:47:46 EDT 2025 Mon Jul 21 05:54:45 EDT 2025 Tue Sep 20 22:33:43 EDT 2022 Tue Jul 01 00:27:15 EDT 2025 Thu Apr 24 23:00:10 EDT 2025 Tue Aug 26 16:42:11 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Keywords | Convex set Generalized function Network management Modeling Linear operator nonsmooth optimization Optimization Projection method projection neural network Nonsmooth analysis Efficiency Convex function Mathematical programming Recurrent neural nets global convergence Linear programming Neural network Distributed system Set constraint Projection operator Optimal solution Equality constraint Objective function Differential inclusion Lyapunov function |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-835ff83de7ee50bb6fcc34d1222606f4f4092025b332c194956b382882801e743 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24808430 |
PQID | 1324478518 |
PQPubID | 85436 |
PageCount | 13 |
ParticipantIDs | proquest_journals_1324478518 pascalfrancis_primary_27321511 ieee_primary_6472077 proquest_miscellaneous_1523404572 proquest_miscellaneous_1349463018 crossref_citationtrail_10_1109_TNNLS_2013_2244908 crossref_primary_10_1109_TNNLS_2013_2244908 pubmed_primary_24808430 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2013 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref17 ref16 ref19 ref18 aubin (ref1) 1984 clarke (ref9) 1983 ref46 ref45 ref48 ref47 xia (ref41) 2008; 19 ref42 ref44 auslender (ref2) 1976 ref43 ref49 ref8 ref7 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref33 ref32 ref39 ref38 liu (ref28) 2009 ref24 li (ref23) 2006 ref26 ref25 ref21 liu (ref30) 2011; 41 ref27 liu (ref29) 2011; 22 kinderlehrer (ref22) 1982 filippov (ref10) 1988 hu (ref20) 2009; 20 |
References_xml | – ident: ref11 doi: 10.1016/j.physd.2005.12.006 – ident: ref14 doi: 10.1109/TCSI.2004.834493 – year: 1976 ident: ref2 publication-title: Optimisation M thodes Num riques – volume: 20 start-page: 654 year: 2009 ident: ref20 article-title: A new recurrent neural network for solving convex quadratic programming problems with an application to the k-winners-take-all problem publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2011266 – year: 1982 ident: ref22 publication-title: An Introduction to Variational Inequalities and Their Applications – ident: ref27 doi: 10.1109/TNN.2007.910736 – year: 1988 ident: ref10 publication-title: Differential Equations with Discontinuous Righthand Sides Mathematics and Its Applications doi: 10.1007/978-94-015-7793-9 – ident: ref7 doi: 10.1109/TNN.2011.2109735 – ident: ref19 doi: 10.1109/TNN.2008.2003287 – ident: ref6 doi: 10.1137/100786022 – ident: ref32 doi: 10.1162/neco.2006.18.3.683 – ident: ref12 doi: 10.1109/TCSI.2003.818614 – start-page: 344 year: 2006 ident: ref23 article-title: A neural network model for non-smooth optimization over a compact convex subset publication-title: Proc 3rd Int Symp Neural Netw – year: 1983 ident: ref9 publication-title: Optimization and Nonsmooth Analysis – ident: ref34 doi: 10.1002/047084535X – start-page: 1003 year: 2009 ident: ref28 article-title: A one-layer recurrent neural network for non-smooth convex optimization subject to linear equality constraints publication-title: Proc 15th Int Conf Neural Inf Proc – ident: ref25 doi: 10.1016/j.neunet.2011.09.001 – ident: ref24 doi: 10.1109/TNN.2005.849834 – ident: ref49 doi: 10.1109/82.160169 – ident: ref16 doi: 10.1109/TNN.2004.824425 – ident: ref39 doi: 10.1109/81.244913 – volume: 19 start-page: 1340 year: 2008 ident: ref41 article-title: A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2000273 – ident: ref35 doi: 10.1137/080740544 – ident: ref3 doi: 10.1002/0471787779 – ident: ref37 doi: 10.1109/TCS.1986.1085953 – ident: ref36 doi: 10.1023/A:1022659230603 – ident: ref18 doi: 10.1109/TSMCB.2007.903706 – ident: ref47 doi: 10.1109/TNN.2004.841779 – ident: ref33 doi: 10.1109/72.143372 – ident: ref4 doi: 10.1109/TNN.2009.2016340 – ident: ref31 doi: 10.1109/TNN.2006.881046 – year: 1984 ident: ref1 publication-title: Differential Inclusions Set-Valued Maps and Viability Theory doi: 10.1007/978-3-642-69512-4 – ident: ref42 doi: 10.1109/81.995659 – ident: ref46 doi: 10.1109/TNN.2004.824252 – ident: ref17 doi: 10.1109/TNN.2006.879774 – ident: ref8 doi: 10.1109/9.802909 – ident: ref40 doi: 10.1016/0893-6080(94)90041-8 – ident: ref26 doi: 10.1162/neco.2007.03-07-488 – ident: ref13 doi: 10.1109/TNN.2005.852862 – ident: ref48 doi: 10.1109/TCSI.2008.920131 – ident: ref21 doi: 10.1109/31.1783 – ident: ref5 doi: 10.1109/72.207617 – volume: 22 start-page: 601 year: 2011 ident: ref29 article-title: Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2104979 – ident: ref45 doi: 10.1109/3477.907574 – ident: ref15 doi: 10.1109/TNN.2006.879775 – volume: 41 start-page: 1323 year: 2011 ident: ref30 article-title: A one-layer recurrent neural network for constrained nonsmooth optimization publication-title: IEEE Trans Syst Man Cybern -B doi: 10.1109/TSMCB.2011.2140395 – ident: ref38 doi: 10.1016/S0375-9601(01)00542-4 – ident: ref44 doi: 10.1109/72.857782 – ident: ref43 doi: 10.1109/72.728383 |
SSID | ssj0000605649 |
Score | 2.514634 |
Snippet | This paper presents a one-layer projection neural network for solving nonsmooth optimization problems with generalized convex objective functions and subject... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 812 |
SubjectTerms | Algorithms Applied sciences Artificial intelligence Biological neural networks Computer science; control theory; systems Computer Simulation Connectionism. Neural networks Convergence Differential inclusion Exact sciences and technology global convergence Humans Linear programming Lyapunov function Mathematical model Neural networks Neural Networks (Computer) Nonlinear Dynamics nonsmooth optimization Operations research Optimization Problem Solving projection neural network Recurrent neural networks Studies |
Title | A One-Layer Projection Neural Network for Nonsmooth Optimization Subject to Linear Equalities and Bound Constraints |
URI | https://ieeexplore.ieee.org/document/6472077 https://www.ncbi.nlm.nih.gov/pubmed/24808430 https://www.proquest.com/docview/1324478518 https://www.proquest.com/docview/1349463018 https://www.proquest.com/docview/1523404572 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhQHkESmUkbuBtYjtOciyoVYXaFIlW2lvkOPYFmiA2e-HXM-M44SGokHKIZDuyM2P7--x5ALxWVqvW5i3vjJBcZbbiRpmOd0JqU-nOmBBn-7LW5zfqwzpf78DbxRfGOReMz9yKXsNdfjfYLR2VHVOo87QodmEXidvkq7Wcp6SIy3VAuyLTggtZrGcfmbQ6vq7ri09kyCVXuGfRZRdFAVZlWiqyf_5lSwo5VshC0mzwJ_kpu8W_4WfYhs724XIewGR98nm1HduV_f5HbMf_HeEDuB_xKDuZFOgh7Lj-EezPuR5YnPoHsDlhV73jFwYhOvs4Hd-gSBkF98D29WRNzhACsxoV-XZADWBXuB7dRkdPhksUNWLjwJAA4wRjp5NHJ3J1ZvqOvaMMT4wyiIa8FePmMdycnV6_P-cxYQO3KlMjRzTnfSk7VziXpy35EVmpugwxCPIkrzySSYEgq5VS2KwibtZKpHz4pJlDLPME9vqhd8-A-dZpj-hCV94o4fLSV9YVnRaZq0phfALZLLPGxmjm1LkvTWA1adUEkTck8iaKPIE3S5uvUyyPO2sfkHyWmlE0CRz9phpLOeJAgk9ZAoezrjRxPdg0yPmVKhDd4mdfLcU4k-l6xvRu2FIdVSmNC-5ddXIhFaLwQiTwdNLDnx2I6vz87x1_AfdESOVBxpqHsDd-27qXCKjG9ijMpB-_6hmy |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBQo00BYjcYNsE9txkmOpWi2wmyKxlfYWOY59oU0Qm73w65lxHjwEFVIOkWxHdmY88409D4DX0ihZmaQKa81FKGOTh1rqOqy5UDpXtdY-z_ayUPMr-WGdrHfg7RQLY631zmd2Rq_-Lr9uzZaOyk4o1XmUpnfgLur9hPfRWtOJSoTIXHm8y2PFQy7S9RglE-Unq6JYfCZXLjFDrUXXXZQHWGZRJskD-hel5KuskI-k3uBvcn19i38DUK-ILvZgOS6h9z_5Mtt21cx8_yO74_-u8SE8GBApO-1Z6BHs2OYx7I3VHtiw-fdhc8ouGxsuNIJ09qk_wEGiMkrvgeOL3p-cIQhmBbLyTYs8wC5RIt0MoZ4MhRQNYl3L0ATGLcbO-5hOtNaZbmr2jmo8Maoh6itXdJsncHVxvjqbh0PJhtDIWHYh4jnnMlHb1NokqiiSyAhZx4hC0FJy0qE5yRFmVUJwE-dknVUCjT58otgimnkKu03b2ANgrrLKIb5QudOS2yRzubFprXhs84xrF0A80qw0Qz5zmtx16e2aKC89yUsieTmQPIA305ivfTaPW3vvE32mngNpAjj-jTWmdkSCBKDiAA5HXikHibAp0eqXMkV8i599NTXjXqYLGt3Ydkt9ZC4Vitzb-iRcSMThKQ_gWc-HPycwsPPzv0_8Jdybr5aLcvG--PgC7nNf2INcNw9ht_u2tUcIr7rq2O-qH5K0HPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+one-layer+projection+neural+network+for+nonsmooth+optimization+subject+to+linear+equalities+and+bound+constraints&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Liu%2C+Qingshan&rft.au=Wang%2C+Jun&rft.date=2013-05-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=24&rft.issue=5&rft.spage=812&rft_id=info:doi/10.1109%2FTNNLS.2013.2244908&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |