A One-Layer Projection Neural Network for Nonsmooth Optimization Subject to Linear Equalities and Bound Constraints

This paper presents a one-layer projection neural network for solving nonsmooth optimization problems with generalized convex objective functions and subject to linear equalities and bound constraints. The proposed neural network is designed based on two projection operators: linear equality constra...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 24; no. 5; pp. 812 - 824
Main Authors Liu, Qingshan, Wang, Jun
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a one-layer projection neural network for solving nonsmooth optimization problems with generalized convex objective functions and subject to linear equalities and bound constraints. The proposed neural network is designed based on two projection operators: linear equality constraints, and bound constraints. The objective function in the optimization problem can be any nonsmooth function which is not restricted to be convex but is required to be convex (pseudoconvex) on a set defined by the constraints. Compared with existing recurrent neural networks for nonsmooth optimization, the proposed model does not have any design parameter, which is more convenient for design and implementation. It is proved that the output variables of the proposed neural network are globally convergent to the optimal solutions provided that the objective function is at least pseudoconvex. Simulation results of numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.
AbstractList This paper presents a one-layer projection neural network for solving nonsmooth optimization problems with generalized convex objective functions and subject to linear equalities and bound constraints. The proposed neural network is designed based on two projection operators: linear equality constraints, and bound constraints. The objective function in the optimization problem can be any nonsmooth function which is not restricted to be convex but is required to be convex (pseudoconvex) on a set defined by the constraints. Compared with existing recurrent neural networks for nonsmooth optimization, the proposed model does not have any design parameter, which is more convenient for design and implementation. It is proved that the output variables of the proposed neural network are globally convergent to the optimal solutions provided that the objective function is at least pseudoconvex. Simulation results of numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.
This paper presents a one-layer projection neural network for solving nonsmooth optimization problems with generalized convex objective functions and subject to linear equalities and bound constraints. The proposed neural network is designed based on two projection operators: linear equality constraints, and bound constraints. The objective function in the optimization problem can be any nonsmooth function which is not restricted to be convex but is required to be convex (pseudoconvex) on a set defined by the constraints. Compared with existing recurrent neural networks for nonsmooth optimization, the proposed model does not have any design parameter, which is more convenient for design and implementation. It is proved that the output variables of the proposed neural network are globally convergent to the optimal solutions provided that the objective function is at least pseudoconvex. Simulation results of numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.This paper presents a one-layer projection neural network for solving nonsmooth optimization problems with generalized convex objective functions and subject to linear equalities and bound constraints. The proposed neural network is designed based on two projection operators: linear equality constraints, and bound constraints. The objective function in the optimization problem can be any nonsmooth function which is not restricted to be convex but is required to be convex (pseudoconvex) on a set defined by the constraints. Compared with existing recurrent neural networks for nonsmooth optimization, the proposed model does not have any design parameter, which is more convenient for design and implementation. It is proved that the output variables of the proposed neural network are globally convergent to the optimal solutions provided that the objective function is at least pseudoconvex. Simulation results of numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.
Author Jun Wang
Qingshan Liu
Author_xml – sequence: 1
  givenname: Qingshan
  surname: Liu
  fullname: Liu, Qingshan
– sequence: 2
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27321511$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24808430$$D View this record in MEDLINE/PubMed
BookMark eNqFkktr3DAURkVJadI0f6CFIiiFbjzVy7a8TIf0AWamkBS6E7LmmmpqSxNJJiS_vppHUsgiEUJXi3Mu6Op7jY6cd4DQW0pmlJLm89Vi0V7OGKF8xpgQDZEv0AmjFSsYl_Lo4V7_PkZnMa5JXhUpK9G8QsdMSCIFJyconuOlg6LVtxDwz-DXYJL1Di9gCnrIJd348Bf3PuCFd3H0Pv3By02yo73TO_Jy6rYSTh631oEO-OJ60oNNFiLWboW_-Cmf82ynoK1L8Q162eshwtmhnqJfXy-u5t-Ldvntx_y8LYygIhWSl30v-QpqgJJ0XdUbw8WKMsYqUvWiF6RhhJUd58zQRjRl1XHJZN6EQi34Kfq077sJ_nqCmNRoo4Fh0A78FBUtGRdElDV7HuWiERUnVGb0wyN07afg8kMylX-iluWOen-gpm6EldoEO-pwq-4nn4GPB0BHo4c-aGds_M_VnNGS0szJPWeCjzFAr4xNu8lvpzkoStQ2D2qXB7XNgzrkIavskXrf_Unp3V6yAPAgVKJmpK75P1jUviM
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TCYB_2016_2611529
crossref_primary_10_1109_TCYB_2024_3394394
crossref_primary_10_1109_TNNLS_2015_2496658
crossref_primary_10_1007_s11424_018_7145_5
crossref_primary_10_1016_j_neucom_2022_03_023
crossref_primary_10_1007_s11228_024_00718_2
crossref_primary_10_1109_TSMC_2023_3281903
crossref_primary_10_1109_TII_2017_2737363
crossref_primary_10_1109_TAC_2019_2902612
crossref_primary_10_1109_TNNLS_2015_2461553
crossref_primary_10_1007_s00521_019_04391_7
crossref_primary_10_1016_j_eswa_2017_04_016
crossref_primary_10_1016_j_neucom_2022_01_018
crossref_primary_10_1007_s11063_023_11371_5
crossref_primary_10_1016_j_ins_2021_07_022
crossref_primary_10_1109_TCYB_2021_3102941
crossref_primary_10_1007_s00500_022_07486_x
crossref_primary_10_1007_s40747_023_01178_1
crossref_primary_10_1016_j_ifacol_2017_08_149
crossref_primary_10_1109_TNNLS_2021_3130173
crossref_primary_10_1109_TNNLS_2016_2538288
crossref_primary_10_1109_TAC_2021_3079192
crossref_primary_10_1109_TCYB_2020_3022240
crossref_primary_10_1109_TAC_2017_2681200
crossref_primary_10_1016_j_neucom_2023_126480
crossref_primary_10_1016_j_neunet_2013_03_010
crossref_primary_10_1016_j_sysconle_2023_105619
crossref_primary_10_1109_TNNLS_2014_2314129
crossref_primary_10_1631_FITEE_2200381
crossref_primary_10_1109_TCSI_2024_3351942
crossref_primary_10_1109_TNSE_2022_3178107
crossref_primary_10_1007_s11432_022_3781_4
crossref_primary_10_1109_TNNLS_2016_2574363
crossref_primary_10_1109_TSMC_2022_3228105
crossref_primary_10_1016_j_neucom_2018_06_050
crossref_primary_10_1109_TSMC_2024_3387908
crossref_primary_10_1109_TSMC_2017_2697447
crossref_primary_10_1016_j_jmaa_2019_07_037
crossref_primary_10_1109_TAC_2015_2416927
crossref_primary_10_1109_TNNLS_2019_2898919
crossref_primary_10_1007_s11063_023_11434_7
crossref_primary_10_1016_j_neucom_2018_01_002
crossref_primary_10_1016_j_neunet_2018_01_008
crossref_primary_10_1016_j_neunet_2021_03_039
crossref_primary_10_1016_j_neucom_2022_07_034
crossref_primary_10_1016_j_neucom_2021_11_014
crossref_primary_10_1109_TNNLS_2017_2708712
crossref_primary_10_1162_neco_a_01294
crossref_primary_10_1109_TCYB_2018_2883095
crossref_primary_10_1002_oca_2385
crossref_primary_10_1109_TSMC_2019_2894862
crossref_primary_10_1007_s11063_017_9599_1
crossref_primary_10_1016_j_neunet_2022_10_018
crossref_primary_10_1109_TAC_2018_2862471
crossref_primary_10_1109_TNNLS_2018_2884788
crossref_primary_10_1007_s40747_024_01436_w
crossref_primary_10_1016_j_neucom_2015_06_111
crossref_primary_10_1137_17M1118609
crossref_primary_10_1016_j_asoc_2024_112044
crossref_primary_10_1016_j_neucom_2018_01_014
crossref_primary_10_1049_cje_2021_05_005
crossref_primary_10_1016_j_neunet_2013_11_007
crossref_primary_10_1109_TNNLS_2022_3208086
crossref_primary_10_1109_TNNLS_2013_2280905
crossref_primary_10_1007_s11432_021_3442_2
crossref_primary_10_1109_TETCI_2019_2915813
crossref_primary_10_1109_TNNLS_2015_2500618
crossref_primary_10_1109_TCYB_2021_3090204
crossref_primary_10_1109_TNNLS_2016_2582381
crossref_primary_10_1109_TNNLS_2022_3213167
crossref_primary_10_1080_0952813X_2022_2153271
crossref_primary_10_1007_s10489_014_0616_z
crossref_primary_10_1109_TCYB_2020_3042519
crossref_primary_10_1109_TSMC_2016_2616486
crossref_primary_10_1109_TNNLS_2015_2497715
crossref_primary_10_1016_j_cogsys_2019_09_024
crossref_primary_10_1109_TIE_2018_2864707
crossref_primary_10_1109_TNNLS_2014_2387862
crossref_primary_10_1007_s11063_023_11154_y
crossref_primary_10_1016_j_neunet_2014_06_002
crossref_primary_10_1016_j_neunet_2022_10_029
crossref_primary_10_1109_TNNLS_2013_2275732
crossref_primary_10_1016_j_neunet_2013_11_015
crossref_primary_10_1080_00207721_2024_2428844
crossref_primary_10_1016_j_neunet_2021_10_007
crossref_primary_10_1016_j_neunet_2022_06_023
crossref_primary_10_1109_TNNLS_2015_2464314
crossref_primary_10_1007_s11071_019_04764_6
crossref_primary_10_1016_j_neunet_2024_106128
crossref_primary_10_1109_TCYB_2020_2997686
crossref_primary_10_1109_TNNLS_2015_2479117
crossref_primary_10_1109_TNNLS_2018_2836933
crossref_primary_10_1109_TSMC_2022_3186019
crossref_primary_10_1109_TNNLS_2014_2345734
crossref_primary_10_1016_j_sysconle_2019_104607
crossref_primary_10_1109_ACCESS_2019_2907960
crossref_primary_10_1109_TAC_2024_3416269
crossref_primary_10_1109_TNNLS_2019_2927639
crossref_primary_10_1007_s11071_020_06189_y
crossref_primary_10_1109_TNNLS_2016_2570257
crossref_primary_10_1016_j_neucom_2014_06_018
crossref_primary_10_1109_TAC_2018_2852602
crossref_primary_10_1016_j_ijepes_2020_106737
crossref_primary_10_1016_j_sysconle_2021_105002
crossref_primary_10_1016_j_jfranklin_2023_06_004
crossref_primary_10_1016_j_neunet_2014_10_011
crossref_primary_10_1049_iet_cta_2019_0020
crossref_primary_10_1109_TNNLS_2021_3127883
crossref_primary_10_1016_j_jfranklin_2022_11_022
crossref_primary_10_1016_j_jprocont_2024_103161
crossref_primary_10_1016_j_neucom_2024_128988
crossref_primary_10_1109_TNNLS_2015_2425301
crossref_primary_10_1109_TNNLS_2021_3105732
crossref_primary_10_1109_TAC_2016_2610945
crossref_primary_10_1109_TNNLS_2021_3139865
crossref_primary_10_1016_j_neunet_2018_10_010
crossref_primary_10_1007_s11063_021_10681_w
crossref_primary_10_1016_j_neunet_2021_01_004
crossref_primary_10_1016_j_neunet_2022_03_011
crossref_primary_10_1186_s13660_023_03046_5
crossref_primary_10_1109_TAC_2023_3308343
crossref_primary_10_1007_s40997_023_00596_3
crossref_primary_10_1109_TSMC_2019_2912825
crossref_primary_10_1109_TNNLS_2018_2814824
crossref_primary_10_1016_j_neunet_2021_04_038
crossref_primary_10_1016_j_matcom_2015_09_013
crossref_primary_10_1016_j_automatica_2021_109794
crossref_primary_10_1016_j_neucom_2014_08_014
crossref_primary_10_1109_TNNLS_2016_2549703
crossref_primary_10_1016_j_sigpro_2023_109360
crossref_primary_10_1016_j_neunet_2023_10_022
crossref_primary_10_1109_TNNLS_2015_2481006
crossref_primary_10_1109_TNNLS_2021_3098668
crossref_primary_10_1109_TCNS_2021_3056034
crossref_primary_10_1016_j_aeue_2018_06_019
crossref_primary_10_1016_j_neunet_2014_07_014
crossref_primary_10_1109_TNNLS_2013_2275948
crossref_primary_10_1109_TNNLS_2016_2524619
crossref_primary_10_1109_TNNLS_2021_3082528
crossref_primary_10_1155_2017_5073640
crossref_primary_10_1016_j_ijepes_2021_107373
crossref_primary_10_1109_TCYB_2020_2990796
crossref_primary_10_1016_j_neunet_2014_09_009
crossref_primary_10_1109_TCYB_2021_3088884
crossref_primary_10_1109_TCYB_2019_2922207
crossref_primary_10_1155_2014_787102
crossref_primary_10_1016_j_neunet_2019_02_002
crossref_primary_10_1109_TETCI_2024_3369482
crossref_primary_10_1109_TNNLS_2014_2305440
crossref_primary_10_1109_TNNLS_2017_2652478
crossref_primary_10_1016_j_neucom_2021_06_097
crossref_primary_10_1109_TIE_2016_2542788
crossref_primary_10_1109_TNNLS_2021_3071404
crossref_primary_10_3390_math11173674
crossref_primary_10_1007_s40435_021_00838_9
crossref_primary_10_1016_j_neunet_2018_08_020
crossref_primary_10_1002_cjce_22865
crossref_primary_10_1109_TCNS_2022_3203486
crossref_primary_10_1016_j_neunet_2024_106791
crossref_primary_10_1016_j_neunet_2024_107121
crossref_primary_10_1016_j_neunet_2018_03_003
crossref_primary_10_1109_TNNLS_2021_3088535
crossref_primary_10_1007_s00034_020_01445_3
crossref_primary_10_1016_j_neunet_2014_03_006
crossref_primary_10_1109_TSMC_2018_2859364
crossref_primary_10_1109_TNNLS_2018_2818127
crossref_primary_10_1109_TCYB_2015_2443877
crossref_primary_10_1109_TNNLS_2016_2549566
crossref_primary_10_1016_j_neunet_2020_08_013
crossref_primary_10_1109_TNNLS_2022_3144148
crossref_primary_10_1016_j_neunet_2023_06_003
crossref_primary_10_1016_j_jfranklin_2023_11_041
crossref_primary_10_1109_TNNLS_2015_2404773
crossref_primary_10_1177_0142331218793486
crossref_primary_10_1142_S179352452250070X
crossref_primary_10_1007_s11063_023_11289_y
crossref_primary_10_1109_TNNLS_2013_2292893
crossref_primary_10_1109_TNNLS_2014_2342260
crossref_primary_10_1002_cem_2795
crossref_primary_10_1016_j_automatica_2021_109899
crossref_primary_10_1016_j_automatica_2023_111494
crossref_primary_10_1016_j_neunet_2022_05_022
crossref_primary_10_1002_rnc_5199
crossref_primary_10_1016_j_automatica_2018_04_010
crossref_primary_10_1016_j_neunet_2022_07_018
Cites_doi 10.1016/j.physd.2005.12.006
10.1109/TCSI.2004.834493
10.1109/TNN.2008.2011266
10.1109/TNN.2007.910736
10.1007/978-94-015-7793-9
10.1109/TNN.2011.2109735
10.1109/TNN.2008.2003287
10.1137/100786022
10.1162/neco.2006.18.3.683
10.1109/TCSI.2003.818614
10.1002/047084535X
10.1016/j.neunet.2011.09.001
10.1109/TNN.2005.849834
10.1109/82.160169
10.1109/TNN.2004.824425
10.1109/81.244913
10.1109/TNN.2008.2000273
10.1137/080740544
10.1002/0471787779
10.1109/TCS.1986.1085953
10.1023/A:1022659230603
10.1109/TSMCB.2007.903706
10.1109/TNN.2004.841779
10.1109/72.143372
10.1109/TNN.2009.2016340
10.1109/TNN.2006.881046
10.1007/978-3-642-69512-4
10.1109/81.995659
10.1109/TNN.2004.824252
10.1109/TNN.2006.879774
10.1109/9.802909
10.1016/0893-6080(94)90041-8
10.1162/neco.2007.03-07-488
10.1109/TNN.2005.852862
10.1109/TCSI.2008.920131
10.1109/31.1783
10.1109/72.207617
10.1109/TNN.2011.2104979
10.1109/3477.907574
10.1109/TNN.2006.879775
10.1109/TSMCB.2011.2140395
10.1016/S0375-9601(01)00542-4
10.1109/72.857782
10.1109/72.728383
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2013
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2013.2244908
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE - Academic
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 2162-2388
EndPage 824
ExternalDocumentID 2938973281
24808430
27321511
10_1109_TNNLS_2013_2244908
6472077
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
ABPTK
IPNFZ
IQODW
PQEST
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c414t-835ff83de7ee50bb6fcc34d1222606f4f4092025b332c194956b382882801e743
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 14:50:51 EDT 2025
Fri Jul 11 15:54:30 EDT 2025
Mon Jun 30 05:47:46 EDT 2025
Mon Jul 21 05:54:45 EDT 2025
Tue Sep 20 22:33:43 EDT 2022
Tue Jul 01 00:27:15 EDT 2025
Thu Apr 24 23:00:10 EDT 2025
Tue Aug 26 16:42:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Convex set
Generalized function
Network management
Modeling
Linear operator
nonsmooth optimization
Optimization
Projection method
projection neural network
Nonsmooth analysis
Efficiency
Convex function
Mathematical programming
Recurrent neural nets
global convergence
Linear programming
Neural network
Distributed system
Set constraint
Projection operator
Optimal solution
Equality constraint
Objective function
Differential inclusion
Lyapunov function
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-835ff83de7ee50bb6fcc34d1222606f4f4092025b332c194956b382882801e743
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24808430
PQID 1324478518
PQPubID 85436
PageCount 13
ParticipantIDs proquest_journals_1324478518
pascalfrancis_primary_27321511
ieee_primary_6472077
proquest_miscellaneous_1523404572
proquest_miscellaneous_1349463018
crossref_citationtrail_10_1109_TNNLS_2013_2244908
crossref_primary_10_1109_TNNLS_2013_2244908
pubmed_primary_24808430
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref17
ref16
ref19
ref18
aubin (ref1) 1984
clarke (ref9) 1983
ref46
ref45
ref48
ref47
xia (ref41) 2008; 19
ref42
ref44
auslender (ref2) 1976
ref43
ref49
ref8
ref7
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref39
ref38
liu (ref28) 2009
ref24
li (ref23) 2006
ref26
ref25
ref21
liu (ref30) 2011; 41
ref27
liu (ref29) 2011; 22
kinderlehrer (ref22) 1982
filippov (ref10) 1988
hu (ref20) 2009; 20
References_xml – ident: ref11
  doi: 10.1016/j.physd.2005.12.006
– ident: ref14
  doi: 10.1109/TCSI.2004.834493
– year: 1976
  ident: ref2
  publication-title: Optimisation M thodes Num riques
– volume: 20
  start-page: 654
  year: 2009
  ident: ref20
  article-title: A new recurrent neural network for solving convex quadratic programming problems with an application to the k-winners-take-all problem
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2011266
– year: 1982
  ident: ref22
  publication-title: An Introduction to Variational Inequalities and Their Applications
– ident: ref27
  doi: 10.1109/TNN.2007.910736
– year: 1988
  ident: ref10
  publication-title: Differential Equations with Discontinuous Righthand Sides Mathematics and Its Applications
  doi: 10.1007/978-94-015-7793-9
– ident: ref7
  doi: 10.1109/TNN.2011.2109735
– ident: ref19
  doi: 10.1109/TNN.2008.2003287
– ident: ref6
  doi: 10.1137/100786022
– ident: ref32
  doi: 10.1162/neco.2006.18.3.683
– ident: ref12
  doi: 10.1109/TCSI.2003.818614
– start-page: 344
  year: 2006
  ident: ref23
  article-title: A neural network model for non-smooth optimization over a compact convex subset
  publication-title: Proc 3rd Int Symp Neural Netw
– year: 1983
  ident: ref9
  publication-title: Optimization and Nonsmooth Analysis
– ident: ref34
  doi: 10.1002/047084535X
– start-page: 1003
  year: 2009
  ident: ref28
  article-title: A one-layer recurrent neural network for non-smooth convex optimization subject to linear equality constraints
  publication-title: Proc 15th Int Conf Neural Inf Proc
– ident: ref25
  doi: 10.1016/j.neunet.2011.09.001
– ident: ref24
  doi: 10.1109/TNN.2005.849834
– ident: ref49
  doi: 10.1109/82.160169
– ident: ref16
  doi: 10.1109/TNN.2004.824425
– ident: ref39
  doi: 10.1109/81.244913
– volume: 19
  start-page: 1340
  year: 2008
  ident: ref41
  article-title: A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2000273
– ident: ref35
  doi: 10.1137/080740544
– ident: ref3
  doi: 10.1002/0471787779
– ident: ref37
  doi: 10.1109/TCS.1986.1085953
– ident: ref36
  doi: 10.1023/A:1022659230603
– ident: ref18
  doi: 10.1109/TSMCB.2007.903706
– ident: ref47
  doi: 10.1109/TNN.2004.841779
– ident: ref33
  doi: 10.1109/72.143372
– ident: ref4
  doi: 10.1109/TNN.2009.2016340
– ident: ref31
  doi: 10.1109/TNN.2006.881046
– year: 1984
  ident: ref1
  publication-title: Differential Inclusions Set-Valued Maps and Viability Theory
  doi: 10.1007/978-3-642-69512-4
– ident: ref42
  doi: 10.1109/81.995659
– ident: ref46
  doi: 10.1109/TNN.2004.824252
– ident: ref17
  doi: 10.1109/TNN.2006.879774
– ident: ref8
  doi: 10.1109/9.802909
– ident: ref40
  doi: 10.1016/0893-6080(94)90041-8
– ident: ref26
  doi: 10.1162/neco.2007.03-07-488
– ident: ref13
  doi: 10.1109/TNN.2005.852862
– ident: ref48
  doi: 10.1109/TCSI.2008.920131
– ident: ref21
  doi: 10.1109/31.1783
– ident: ref5
  doi: 10.1109/72.207617
– volume: 22
  start-page: 601
  year: 2011
  ident: ref29
  article-title: Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2104979
– ident: ref45
  doi: 10.1109/3477.907574
– ident: ref15
  doi: 10.1109/TNN.2006.879775
– volume: 41
  start-page: 1323
  year: 2011
  ident: ref30
  article-title: A one-layer recurrent neural network for constrained nonsmooth optimization
  publication-title: IEEE Trans Syst Man Cybern -B
  doi: 10.1109/TSMCB.2011.2140395
– ident: ref38
  doi: 10.1016/S0375-9601(01)00542-4
– ident: ref44
  doi: 10.1109/72.857782
– ident: ref43
  doi: 10.1109/72.728383
SSID ssj0000605649
Score 2.514634
Snippet This paper presents a one-layer projection neural network for solving nonsmooth optimization problems with generalized convex objective functions and subject...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 812
SubjectTerms Algorithms
Applied sciences
Artificial intelligence
Biological neural networks
Computer science; control theory; systems
Computer Simulation
Connectionism. Neural networks
Convergence
Differential inclusion
Exact sciences and technology
global convergence
Humans
Linear programming
Lyapunov function
Mathematical model
Neural networks
Neural Networks (Computer)
Nonlinear Dynamics
nonsmooth optimization
Operations research
Optimization
Problem Solving
projection neural network
Recurrent neural networks
Studies
Title A One-Layer Projection Neural Network for Nonsmooth Optimization Subject to Linear Equalities and Bound Constraints
URI https://ieeexplore.ieee.org/document/6472077
https://www.ncbi.nlm.nih.gov/pubmed/24808430
https://www.proquest.com/docview/1324478518
https://www.proquest.com/docview/1349463018
https://www.proquest.com/docview/1523404572
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhQHkESmUkbuBtYjtOciyoVYXaFIlW2lvkOPYFmiA2e-HXM-M44SGokHKIZDuyM2P7--x5ALxWVqvW5i3vjJBcZbbiRpmOd0JqU-nOmBBn-7LW5zfqwzpf78DbxRfGOReMz9yKXsNdfjfYLR2VHVOo87QodmEXidvkq7Wcp6SIy3VAuyLTggtZrGcfmbQ6vq7ri09kyCVXuGfRZRdFAVZlWiqyf_5lSwo5VshC0mzwJ_kpu8W_4WfYhs724XIewGR98nm1HduV_f5HbMf_HeEDuB_xKDuZFOgh7Lj-EezPuR5YnPoHsDlhV73jFwYhOvs4Hd-gSBkF98D29WRNzhACsxoV-XZADWBXuB7dRkdPhksUNWLjwJAA4wRjp5NHJ3J1ZvqOvaMMT4wyiIa8FePmMdycnV6_P-cxYQO3KlMjRzTnfSk7VziXpy35EVmpugwxCPIkrzySSYEgq5VS2KwibtZKpHz4pJlDLPME9vqhd8-A-dZpj-hCV94o4fLSV9YVnRaZq0phfALZLLPGxmjm1LkvTWA1adUEkTck8iaKPIE3S5uvUyyPO2sfkHyWmlE0CRz9phpLOeJAgk9ZAoezrjRxPdg0yPmVKhDd4mdfLcU4k-l6xvRu2FIdVSmNC-5ddXIhFaLwQiTwdNLDnx2I6vz87x1_AfdESOVBxpqHsDd-27qXCKjG9ijMpB-_6hmy
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBQo00BYjcYNsE9txkmOpWi2wmyKxlfYWOY59oU0Qm73w65lxHjwEFVIOkWxHdmY88409D4DX0ihZmaQKa81FKGOTh1rqOqy5UDpXtdY-z_ayUPMr-WGdrHfg7RQLY631zmd2Rq_-Lr9uzZaOyk4o1XmUpnfgLur9hPfRWtOJSoTIXHm8y2PFQy7S9RglE-Unq6JYfCZXLjFDrUXXXZQHWGZRJskD-hel5KuskI-k3uBvcn19i38DUK-ILvZgOS6h9z_5Mtt21cx8_yO74_-u8SE8GBApO-1Z6BHs2OYx7I3VHtiw-fdhc8ouGxsuNIJ09qk_wEGiMkrvgeOL3p-cIQhmBbLyTYs8wC5RIt0MoZ4MhRQNYl3L0ATGLcbO-5hOtNaZbmr2jmo8Maoh6itXdJsncHVxvjqbh0PJhtDIWHYh4jnnMlHb1NokqiiSyAhZx4hC0FJy0qE5yRFmVUJwE-dknVUCjT58otgimnkKu03b2ANgrrLKIb5QudOS2yRzubFprXhs84xrF0A80qw0Qz5zmtx16e2aKC89yUsieTmQPIA305ivfTaPW3vvE32mngNpAjj-jTWmdkSCBKDiAA5HXikHibAp0eqXMkV8i599NTXjXqYLGt3Ydkt9ZC4Vitzb-iRcSMThKQ_gWc-HPycwsPPzv0_8Jdybr5aLcvG--PgC7nNf2INcNw9ht_u2tUcIr7rq2O-qH5K0HPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+one-layer+projection+neural+network+for+nonsmooth+optimization+subject+to+linear+equalities+and+bound+constraints&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Liu%2C+Qingshan&rft.au=Wang%2C+Jun&rft.date=2013-05-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=24&rft.issue=5&rft.spage=812&rft_id=info:doi/10.1109%2FTNNLS.2013.2244908&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon