Vibronic exciton theory of singlet fission. I. Linear absorption and the anatomy of the correlated triplet pair state

Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this work, which forms the first article of a series, we set out to unravel the mechanisms underlying singlet fission through a vibronic exciton...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 146; no. 17; pp. 174703 - 174712
Main Authors Tempelaar, Roel, Reichman, David R.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 07.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this work, which forms the first article of a series, we set out to unravel the mechanisms underlying singlet fission through a vibronic exciton theory. We formulate a model in which both electronic and vibrational degrees of freedom are treated microscopically and non-perturbatively. Using pentacene as a prototypical material for singlet fission, we subject our theory to comparison with measurements on polarization-resolved absorption of single crystals, and employ our model to characterize the excited states underlying the absorption band. Special attention is given to the convergence of photophysical observables with respect to the basis size employed, through which we determine the optimal basis for more expensive calculations to be presented in subsequent work. We furthermore evaluate the energetic separation between the optically prepared singlet excited state and the correlated triplet pair state, as well as provide a real-space characterization of the latter, both of which are of key importance in the discussion of fission dynamics. We discuss our results in the context of recent experimental studies.
AbstractList Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this work, which forms the first article of a series, we set out to unravel the mechanisms underlying singlet fission through a vibronic exciton theory. We formulate a model in which both electronic and vibrational degrees of freedom are treated microscopically and non-perturbatively. Using pentacene as a prototypical material for singlet fission, we subject our theory to comparison with measurements on polarization-resolved absorption of single crystals, and employ our model to characterize the excited states underlying the absorption band. Special attention is given to the convergence of photophysical observables with respect to the basis size employed, through which we determine the optimal basis for more expensive calculations to be presented in subsequent work. We furthermore evaluate the energetic separation between the optically prepared singlet excited state and the correlated triplet pair state, as well as provide a real-space characterization of the latter, both of which are of key importance in the discussion of fission dynamics. We discuss our results in the context of recent experimental studies.
Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this work, which forms the first article of a series, we set out to unravel the mechanisms underlying singlet fission through a vibronic exciton theory. We formulate a model in which both electronic and vibrational degrees of freedom are treated microscopically and non-perturbatively. Using pentacene as a prototypical material for singlet fission, we subject our theory to comparison with measurements on polarization-resolved absorption of single crystals, and employ our model to characterize the excited states underlying the absorption band. Special attention is given to the convergence of photophysical observables with respect to the basis size employed, through which we determine the optimal basis for more expensive calculations to be presented in subsequent work. We furthermore evaluate the energetic separation between the optically prepared singlet excited state and the correlated triplet pair state, as well as provide a real-space characterization of the latter, both of which are of key importance in the discussion of fission dynamics. We discuss our results in the context of recent experimental studies.Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this work, which forms the first article of a series, we set out to unravel the mechanisms underlying singlet fission through a vibronic exciton theory. We formulate a model in which both electronic and vibrational degrees of freedom are treated microscopically and non-perturbatively. Using pentacene as a prototypical material for singlet fission, we subject our theory to comparison with measurements on polarization-resolved absorption of single crystals, and employ our model to characterize the excited states underlying the absorption band. Special attention is given to the convergence of photophysical observables with respect to the basis size employed, through which we determine the optimal basis for more expensive calculations to be presented in subsequent work. We furthermore evaluate the energetic separation between the optically prepared singlet excited state and the correlated triplet pair state, as well as provide a real-space characterization of the latter, both of which are of key importance in the discussion of fission dynamics. We discuss our results in the context of recent experimental studies.
Author Tempelaar, Roel
Reichman, David R.
Author_xml – sequence: 1
  givenname: Roel
  surname: Tempelaar
  fullname: Tempelaar, Roel
  email: r.tempelaar@gmail.com
  organization: Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
– sequence: 2
  givenname: David R.
  surname: Reichman
  fullname: Reichman, David R.
  email: drr2103@columbia.edu
  organization: Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28477613$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJaSaTLvoHiqCbJuCJJMuytAyhecBAN2225lqWWgWP5EoyJP8-cmbSRShd3Ye-cxD3nKAjH7xB6BMlG0pEfUE3XElWC_YOrSiRqmqFIkdoRQijlRJEHKOTlB4IIbRl_AM6ZpK3raD1Cs33ro_BO43No3Y5eJx_mxCfcLA4Of9rNBlbl5ILfoPvNnjrvIGIoU8hTrlsMfhh0ZQKOexehMuoQ4xmhGzKa3TT4jOBizjlsjtF7y2MyXw81DX6ef3tx9Vttf1-c3d1ua00pzxXkijSt1JJUMJyzRQIPRDgPTMc6kY2lDS1bDgMVkHdgtKlZ9Lavml7O7B6jb7ufacY_swm5W7nkjbjCN6EOXVUKsFpo4rNGn15gz6EOfryu45RxrnipJWF-nyg5n5nhm6KbgfxqXs9aAHO9oCOIaVo7F-Ekm4Jq6PdIazCXrxhSwKwHDVHcOM_Fed7RXol_2P_DA60ols
CODEN JCPSA6
CitedBy_id crossref_primary_10_1039_C8SC00293B
crossref_primary_10_1039_D2EE01600A
crossref_primary_10_1038_s41586_023_05814_1
crossref_primary_10_1063_1_4997527
crossref_primary_10_1063_5_0247854
crossref_primary_10_1021_acs_chemrev_7b00581
crossref_primary_10_1021_acs_jpclett_0c00031
crossref_primary_10_1063_5_0028605
crossref_primary_10_1021_acs_jpclett_7b01996
crossref_primary_10_1021_acs_jpca_0c07938
crossref_primary_10_1002_wcms_1589
crossref_primary_10_1021_acs_jpclett_8b02181
crossref_primary_10_1063_1_5118942
crossref_primary_10_1063_1_4982359
crossref_primary_10_1063_5_0209546
crossref_primary_10_1063_1_5115239
crossref_primary_10_1063_1_5125945
crossref_primary_10_1021_acs_jpca_9b02986
crossref_primary_10_1021_acs_jpca_7b07069
crossref_primary_10_1021_acs_jpca_4c06380
crossref_primary_10_1063_1_5110188
crossref_primary_10_1080_23746149_2021_1918022
crossref_primary_10_1039_C7RA06032G
crossref_primary_10_1063_1_5110263
crossref_primary_10_1021_acs_jpcc_9b11772
crossref_primary_10_1063_1_5099667
crossref_primary_10_1021_acs_jctc_1c00831
crossref_primary_10_1103_PhysRevLett_119_267401
crossref_primary_10_1021_acs_jpcc_8b09124
crossref_primary_10_1021_acs_jpcc_0c08185
crossref_primary_10_1063_1_5031778
crossref_primary_10_1063_1_5109897
crossref_primary_10_1039_C7SC04688J
crossref_primary_10_1039_D2SC03793A
crossref_primary_10_1021_acs_jpclett_7b01247
crossref_primary_10_1063_5_0024746
crossref_primary_10_1021_acs_jpca_0c05359
crossref_primary_10_1039_C8CP06256K
crossref_primary_10_1063_1_5109251
crossref_primary_10_1021_acs_jpca_0c00263
crossref_primary_10_1021_acs_jpcc_1c09297
crossref_primary_10_1039_C8CP01562G
crossref_primary_10_1063_1_5100116
crossref_primary_10_1039_D0SC03301D
crossref_primary_10_1021_jacs_0c12201
crossref_primary_10_1021_jacs_2c07237
crossref_primary_10_1063_5_0068292
crossref_primary_10_1021_acs_chemrev_3c00643
crossref_primary_10_1063_5_0009867
crossref_primary_10_1002_cplu_201700489
crossref_primary_10_1063_5_0218752
crossref_primary_10_1021_acs_jpclett_7b02748
crossref_primary_10_1063_1_5000823
crossref_primary_10_1021_acs_jpclett_8b02674
crossref_primary_10_1039_D1CP00563D
crossref_primary_10_1021_acs_chemrev_8b00572
crossref_primary_10_1021_acs_jpclett_4c02794
crossref_primary_10_1021_acs_jpca_0c07646
crossref_primary_10_1073_pnas_2310124120
crossref_primary_10_1038_s41467_019_09039_7
crossref_primary_10_1002_wcms_70002
crossref_primary_10_1021_acs_jpcc_9b01713
crossref_primary_10_1021_acs_jpca_8b10977
crossref_primary_10_1002_cptc_201700135
crossref_primary_10_1021_acs_jpcc_8b05309
crossref_primary_10_1063_5_0140002
crossref_primary_10_1016_j_trechm_2019_02_002
crossref_primary_10_1002_cptc_202000089
crossref_primary_10_1063_5_0078158
crossref_primary_10_1021_acs_jpclett_8b02944
crossref_primary_10_1021_acs_jpca_0c08440
crossref_primary_10_1021_acs_jpcb_1c02476
crossref_primary_10_1021_jacs_8b08627
crossref_primary_10_1021_acs_jpclett_2c03053
crossref_primary_10_1088_2516_1075_acf2d4
crossref_primary_10_1063_1_5017713
crossref_primary_10_1016_j_cplett_2022_140199
crossref_primary_10_1038_s41467_021_25395_9
crossref_primary_10_1021_acs_jpclett_1c03217
crossref_primary_10_1021_acs_jpca_1c03934
crossref_primary_10_1063_1_5132341
crossref_primary_10_1103_PhysRevLett_123_126601
Cites_doi 10.1021/jp505082a
10.1021/cm049563q
10.1146/annurev-physchem-040412-110130
10.1063/1.1695695
10.1103/PhysRevLett.110.226402
10.1103/physrevlett.99.176402
10.1038/nmat2872
10.1021/ja208431r
10.1126/science.1213986
10.1021/acs.jpclett.5b02249
10.1080/00268976.2012.695810
10.1080/15421406808082930
10.1021/ar300286s
10.1063/1.4794427
10.1063/1.1736034
10.1021/ja500887a
10.1063/1.4982359
10.1021/jz402122m
10.1063/1.4973981
10.1038/ncomms9602
10.1063/1.1676371
10.1021/acs.jpclett.6b00947
10.1103/physrevb.91.195315
10.1021/cr1002613
10.1103/physrevb.84.195411
10.1063/1.3677839
10.1103/physrevb.68.085301
10.1021/ja201688h
10.1063/1.3076079
10.1021/ja1042462
10.1063/1.1446034
10.1107/s010827010100703x
10.1038/nchem.694
10.1021/jp208905k
10.1002/(sici)1521-3765(19991105)5:11<3399::aid-chem3399>3.0.co;2-v
10.1063/1.1725145
10.1063/1.4794425
10.1021/ar300345h
10.1016/0301-0104(81)85055-0
10.1021/nl204297u
10.1063/1.4892793
10.1103/PhysRevLett.107.017402
10.1103/physrevb.70.125401
10.1021/cr050140x
10.1021/nl503650a
10.1021/ar900233v
10.1038/nphys3241
10.1021/acs.jpcc.5b07163
10.1063/1.2356795
10.1126/science.1232994
10.1021/jp310298n
10.1021/nl104202j
10.1038/nchem.2371
10.1038/nchem.2665
10.1021/jp509011u
10.1063/1.3590871
10.1021/ct4007635
ContentType Journal Article
Copyright Author(s)
2017 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2017 Author(s). Published by AIP Publishing.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/1.4982362
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 28477613
10_1063_1_4982362
jcp
Genre Journal Article
GrantInformation_xml – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
  grantid: Rubicon
  funderid: http://dx.doi.org/10.13039/501100003246
– fundername: National Science Foundation (NSF)
  grantid: CHE-1464802
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c414t-8090b7898a96f4c29a6cd0a4b2e4a35851053854adf9a37a9c54a28ffb57bfd23
ISSN 0021-9606
1089-7690
IngestDate Thu Jul 10 22:53:26 EDT 2025
Sun Jun 29 17:00:37 EDT 2025
Wed Feb 19 02:40:36 EST 2025
Tue Jul 01 04:16:19 EDT 2025
Thu Apr 24 23:05:02 EDT 2025
Fri Jun 21 00:14:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License 0021-9606/2017/146(17)/174703/10/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c414t-8090b7898a96f4c29a6cd0a4b2e4a35851053854adf9a37a9c54a28ffb57bfd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28477613
PQID 2124494078
PQPubID 2050685
PageCount 10
ParticipantIDs pubmed_primary_28477613
crossref_citationtrail_10_1063_1_4982362
scitation_primary_10_1063_1_4982362
crossref_primary_10_1063_1_4982362
proquest_miscellaneous_1896415905
proquest_journals_2124494078
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-07
PublicationDateYYYYMMDD 2017-05-07
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2017
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Rao, Wilson, Hodgkiss, Albert-Seifried, Bässler, Friend (c54) 2010; 132
Ehrler, Wilson, Rao, Friend, Greenham (c10) 2012; 12
Philpott (c33) 1971; 55
Zimmerman, Zhang, Musgrave (c21) 2010; 2
Shockley, Queisser (c6) 1961; 32
Feng, Luzanov, Krylov (c18) 2013; 4
Smith, Michl (c4) 2013; 64
Hestand, Yamagata, Xu, Sun, Zhong, Harutyunyan, Chen, Dai, Rao, Spano (c30) 2015; 119
Singh, Jones, Siebrand, Stoicheff, Schneider (c1) 1965; 42
Fujihashi, Chen, Ishizaki, Wang, Zhao (c31) 2017; 146
Spano, Clark, Silva, Friend (c35) 2009; 130
Pensack, Ostroumov, Tilley, Mazza, Grieco, Thorley, Asbury, Seferos, Anthony, Scholes (c55) 2016; 7
Nickel, Barabash, Ruiz, Koch, Kahn, Feldman, Haglund, Scoles (c52) 2004; 70
Chan, Berkelbach, Provorse, Monahan, Tritsch, Hybertsen, Reichman, Gao, Zhu (c36) 2013; 46
Wilson, Rao, Ehrler, Friend (c50) 2013; 46
Parker, Seideman, Ratner, Shiozaki (c19) 2014; 118
Berkelbach, Hybertsen, Reichman (c29) 2014; 141
Mattheus, Dros, Baas, Meetsma, de Boer, Palstra (c38) 2001; 57
Hanna, Nozik (c5) 2006; 100
Smith, Michl (c3) 2010; 110
Musser, Liebel, Schnedermann, Wende, Kehoe, Rao, Kukura (c20) 2015; 11
Zeng, Hoffmann, Ananth (c56) 2014; 136
Avakian, Merrifield (c2) 1968; 5
Yang, Tabachnyk, Bayliss, Böhm, Broch, Greenham, Friend, Ehrler (c12) 2015; 15
Irkhin, Biaggio (c8) 2011; 107
Berkelbach, Hybertsen, Reichman (c28) 2013; 138
Yamagata, Norton, Hontz, Olivier, Beljonne, Brédas, Silbey, Spano (c24) 2011; 134
Rao, Wilson, Albert-Seifried, Di Pietro, Friend (c49) 2011; 84
Zimmerman, Bell, Casanova, Head-Gordon (c17) 2011; 133
Casanova (c23) 2014; 10
Coropceanu, Cornil, da Silva Filho, Olivier, Silbey, Brédas (c40) 2007; 107
Chan, Ligges, Jailaubekov, Kaake, Miaja-Avila, Zhu (c14) 2011; 334
Bakulin, Morgan, Kehoe, Wilson, Chin, Zigmantas, Egorova, Rao (c15) 2016; 8
Berkelbach, Hybertsen, Reichman (c27) 2013; 138
Ruiz, Choudhary, Nickel, Toccoli, Chang, Mayer, Clancy, Blakely, Headrick, Iannotta, Malliaras (c51) 2004; 16
Sebastian, Weiser, Bässler (c53) 1981; 61
Beljonne, Yamagata, Brédas, Spano, Olivier (c26) 2013; 110
Yamagata, Maxwell, Fan, Kittilstved, Briseno, Barnes, Spano (c41) 2014; 118
Najafov, Lee, Zhou, Feldman, Podzorov (c7) 2010; 9
Tsiper, Soos (c39) 2003; 68
Tempelaar, Reichman (c57) 2017; 146
Jadhav, Mohanty, Sussman, Lee, Baldo (c9) 2011; 11
Holmes, Kumaraswamy, Matzger, Vollhardt (c37) 1999; 5
Hestand, Tempelaar, Knoester, Jansen, Spano (c42) 2015; 91
McGlynn, Azumi, Kasha (c44) 1964; 40
Spano (c47) 2010; 43
Havenith, de Gier, Broer (c22) 2012; 110
Anger, Ossó, Heinemeyer, Broch, Scholz, Gerlach, Schreiber (c46) 2012; 136
Monahan, Sun, Tamura, Williams, Xu, Zhong, Kumar, Nuckolls, Harutyunyan, Chen, Dai, Beljonne, Rao, Zhu (c16) 2016; 9
Congreve, Lee, Thompson, Hontz, Yost, Reusswig, Bahlke, Reineke, Van Voorhis, Baldo (c11) 2013; 340
Spano (c34) 2002; 116
Wilson, Rao, Clark, Kumar, Brida, Cerullo, Friend (c13) 2011; 133
Wang, Zhang, Zhang, Liu, Wang, Xiao (c32) 2015; 6
Marciniak, Fiebig, Huth, Schiefer, Nickel, Selmaier, Lochbrunner (c48) 2007; 99
Teichen, Eaves (c25) 2012; 116
Ito, Nagami, Nakano (c43) 2015; 6
Tempelaar, Stradomska, Knoester, Spano (c45) 2013; 117
(2023062600390862700_c49) 2011; 84
(2023062600390862700_c4) 2013; 64
(2023062600390862700_c43) 2015; 6
(2023062600390862700_c57) 2017; 146
(2023062600390862700_c15) 2016; 8
(2023062600390862700_c30) 2015; 119
(2023062600390862700_c37) 1999; 5
(2023062600390862700_c5) 2006; 100
(2023062600390862700_c7) 2010; 9
(2023062600390862700_c45) 2013; 117
(2023062600390862700_c8) 2011; 107
(2023062600390862700_c35) 2009; 130
(2023062600390862700_c18) 2013; 4
(2023062600390862700_c17) 2011; 133
(2023062600390862700_c1) 1965; 42
(2023062600390862700_c54) 2010; 132
(2023062600390862700_c40) 2007; 107
(2023062600390862700_c39) 2003; 68
(2023062600390862700_c55) 2016; 7
(2023062600390862700_c56) 2014; 136
(2023062600390862700_c25) 2012; 116
(2023062600390862700_c48) 2007; 99
(2023062600390862700_c6) 1961; 32
(2023062600390862700_c11) 2013; 340
(2023062600390862700_c19) 2014; 118
(2023062600390862700_c3) 2010; 110
(2023062600390862700_c27) 2013; 138
(2023062600390862700_c21) 2010; 2
(2023062600390862700_c44) 1964; 40
(2023062600390862700_c41) 2014; 118
(2023062600390862700_c47) 2010; 43
(2023062600390862700_c10) 2012; 12
(2023062600390862700_c20) 2015; 11
(2023062600390862700_c24) 2011; 134
(2023062600390862700_c38) 2001; 57
(2023062600390862700_c9) 2011; 11
(2023062600390862700_c16) 2016; 9
(2023062600390862700_c50) 2013; 46
(2023062600390862700_c32) 2015; 6
(2023062600390862700_c26) 2013; 110
(2023062600390862700_c36) 2013; 46
(2023062600390862700_c51) 2004; 16
(2023062600390862700_c2) 1968; 5
(2023062600390862700_c12) 2015; 15
(2023062600390862700_c42) 2015; 91
(2023062600390862700_c22) 2012; 110
(2023062600390862700_c28) 2013; 138
(2023062600390862700_c34) 2002; 116
(2023062600390862700_c53) 1981; 61
(2023062600390862700_c46) 2012; 136
(2023062600390862700_c14) 2011; 334
(2023062600390862700_c52) 2004; 70
(2023062600390862700_c23) 2014; 10
(2023062600390862700_c33) 1971; 55
(2023062600390862700_c29) 2014; 141
(2023062600390862700_c13) 2011; 133
(2023062600390862700_c31) 2017; 146
References_xml – volume: 32
  start-page: 510
  year: 1961
  ident: c6
  publication-title: J. Appl. Phys.
– volume: 61
  start-page: 125
  year: 1981
  ident: c53
  publication-title: Chem. Phys.
– volume: 133
  start-page: 11830
  year: 2011
  ident: c13
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 3845
  year: 2013
  ident: c18
  publication-title: J. Phys. Chem. Lett.
– volume: 15
  start-page: 354
  year: 2015
  ident: c12
  publication-title: Nano Lett.
– volume: 43
  start-page: 429
  year: 2010
  ident: c47
  publication-title: Acc. Chem. Res.
– volume: 40
  start-page: 507
  year: 1964
  ident: c44
  publication-title: J. Chem. Phys.
– volume: 42
  start-page: 330
  year: 1965
  ident: c1
  publication-title: J. Chem. Phys.
– volume: 141
  start-page: 074705
  year: 2014
  ident: c29
  publication-title: J. Chem. Phys.
– volume: 136
  start-page: 054701
  year: 2012
  ident: c46
  publication-title: J. Chem. Phys.
– volume: 134
  start-page: 204703
  year: 2011
  ident: c24
  publication-title: J. Chem. Phys.
– volume: 68
  start-page: 085301
  year: 2003
  ident: c39
  publication-title: Phys. Rev. B
– volume: 46
  start-page: 1321
  year: 2013
  ident: c36
  publication-title: Acc. Chem. Res.
– volume: 107
  start-page: 926
  year: 2007
  ident: c40
  publication-title: Chem. Rev.
– volume: 146
  start-page: 174704
  year: 2017
  ident: c57
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 352
  year: 2015
  ident: c20
  publication-title: Nat. Phys.
– volume: 107
  start-page: 017402
  year: 2011
  ident: c8
  publication-title: Phys. Rev. Lett.
– volume: 110
  start-page: 2445
  year: 2012
  ident: c22
  publication-title: Mol. Phys.
– volume: 5
  start-page: 3399
  year: 1999
  ident: c37
  publication-title: Chem. - Eur. J.
– volume: 117
  start-page: 457
  year: 2013
  ident: c45
  publication-title: J. Phys. Chem. B
– volume: 6
  start-page: 4972
  year: 2015
  ident: c43
  publication-title: J. Phys. Chem. Lett.
– volume: 64
  start-page: 361
  year: 2013
  ident: c4
  publication-title: Annu. Rev. Phys. Chem.
– volume: 16
  start-page: 4497
  year: 2004
  ident: c51
  publication-title: Chem. Mater.
– volume: 133
  start-page: 19944
  year: 2011
  ident: c17
  publication-title: J. Am. Chem. Soc.
– volume: 146
  start-page: 044101
  year: 2017
  ident: c31
  publication-title: J. Chem. Phys.
– volume: 46
  start-page: 1330
  year: 2013
  ident: c50
  publication-title: Acc. Chem. Res.
– volume: 55
  start-page: 2039
  year: 1971
  ident: c33
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 12700
  year: 2014
  ident: c19
  publication-title: J. Phys. Chem. C
– volume: 119
  start-page: 22137
  year: 2015
  ident: c30
  publication-title: J. Phys. Chem. C
– volume: 110
  start-page: 6891
  year: 2010
  ident: c3
  publication-title: Chem. Rev.
– volume: 9
  start-page: 341
  year: 2016
  ident: c16
  article-title: Dynamics of the triplet-pair state reveals the likely coexistence of coherent and incoherent singlet fission in crystalline hexacene
  publication-title: Nat. Chem.
– volume: 10
  start-page: 324
  year: 2014
  ident: c23
  publication-title: J. Chem. Theory Comput.
– volume: 7
  start-page: 2370
  year: 2016
  ident: c55
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 648
  year: 2010
  ident: c21
  publication-title: Nat. Chem.
– volume: 11
  start-page: 1495
  year: 2011
  ident: c9
  publication-title: Nano Lett.
– volume: 12
  start-page: 1053
  year: 2012
  ident: c10
  publication-title: Nano Lett.
– volume: 138
  start-page: 114102
  year: 2013
  ident: c27
  publication-title: J. Chem. Phys.
– volume: 116
  start-page: 5877
  year: 2002
  ident: c34
  publication-title: J. Chem. Phys.
– volume: 84
  start-page: 195411
  year: 2011
  ident: c49
  publication-title: Phys. Rev. B
– volume: 100
  start-page: 074510
  year: 2006
  ident: c5
  publication-title: J. Appl. Phys.
– volume: 99
  start-page: 176402
  year: 2007
  ident: c48
  publication-title: Phys. Rev. Lett.
– volume: 130
  start-page: 074904
  year: 2009
  ident: c35
  publication-title: J. Chem. Phys.
– volume: 91
  start-page: 195315
  year: 2015
  ident: c42
  publication-title: Phys. Rev. B
– volume: 70
  start-page: 125401
  year: 2004
  ident: c52
  publication-title: Phys. Rev. B
– volume: 118
  start-page: 28842
  year: 2014
  ident: c41
  publication-title: J. Phys. Chem. C
– volume: 132
  start-page: 12698
  year: 2010
  ident: c54
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 16
  year: 2016
  ident: c15
  publication-title: Nat. Chem.
– volume: 6
  start-page: 8602
  year: 2015
  ident: c32
  publication-title: Nat. Commun.
– volume: 57
  start-page: 939
  year: 2001
  ident: c38
  publication-title: Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
– volume: 136
  start-page: 5755
  year: 2014
  ident: c56
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 114103
  year: 2013
  ident: c28
  publication-title: J. Chem. Phys.
– volume: 340
  start-page: 334
  year: 2013
  ident: c11
  publication-title: Science
– volume: 110
  start-page: 226402
  year: 2013
  ident: c26
  publication-title: Phys. Rev. Lett.
– volume: 116
  start-page: 11473
  year: 2012
  ident: c25
  publication-title: J. Phys. Chem. B
– volume: 334
  start-page: 1541
  year: 2011
  ident: c14
  publication-title: Science
– volume: 5
  start-page: 37
  year: 1968
  ident: c2
  publication-title: Mol. Cryst.
– volume: 9
  start-page: 938
  year: 2010
  ident: c7
  publication-title: Nat. Mater.
– volume: 118
  start-page: 12700
  year: 2014
  ident: 2023062600390862700_c19
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp505082a
– volume: 16
  start-page: 4497
  year: 2004
  ident: 2023062600390862700_c51
  publication-title: Chem. Mater.
  doi: 10.1021/cm049563q
– volume: 64
  start-page: 361
  year: 2013
  ident: 2023062600390862700_c4
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-040412-110130
– volume: 42
  start-page: 330
  year: 1965
  ident: 2023062600390862700_c1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1695695
– volume: 110
  start-page: 226402
  year: 2013
  ident: 2023062600390862700_c26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.226402
– volume: 99
  start-page: 176402
  year: 2007
  ident: 2023062600390862700_c48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.99.176402
– volume: 9
  start-page: 938
  year: 2010
  ident: 2023062600390862700_c7
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2872
– volume: 133
  start-page: 19944
  year: 2011
  ident: 2023062600390862700_c17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja208431r
– volume: 334
  start-page: 1541
  year: 2011
  ident: 2023062600390862700_c14
  publication-title: Science
  doi: 10.1126/science.1213986
– volume: 6
  start-page: 4972
  year: 2015
  ident: 2023062600390862700_c43
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02249
– volume: 110
  start-page: 2445
  year: 2012
  ident: 2023062600390862700_c22
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2012.695810
– volume: 5
  start-page: 37
  year: 1968
  ident: 2023062600390862700_c2
  publication-title: Mol. Cryst.
  doi: 10.1080/15421406808082930
– volume: 46
  start-page: 1321
  year: 2013
  ident: 2023062600390862700_c36
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300286s
– volume: 138
  start-page: 114103
  year: 2013
  ident: 2023062600390862700_c28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4794427
– volume: 32
  start-page: 510
  year: 1961
  ident: 2023062600390862700_c6
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1736034
– volume: 136
  start-page: 5755
  year: 2014
  ident: 2023062600390862700_c56
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500887a
– volume: 146
  start-page: 174704
  year: 2017
  ident: 2023062600390862700_c57
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4982359
– volume: 4
  start-page: 3845
  year: 2013
  ident: 2023062600390862700_c18
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz402122m
– volume: 146
  start-page: 044101
  year: 2017
  ident: 2023062600390862700_c31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4973981
– volume: 6
  start-page: 8602
  year: 2015
  ident: 2023062600390862700_c32
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9602
– volume: 55
  start-page: 2039
  year: 1971
  ident: 2023062600390862700_c33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1676371
– volume: 7
  start-page: 2370
  year: 2016
  ident: 2023062600390862700_c55
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00947
– volume: 91
  start-page: 195315
  year: 2015
  ident: 2023062600390862700_c42
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.91.195315
– volume: 110
  start-page: 6891
  year: 2010
  ident: 2023062600390862700_c3
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002613
– volume: 84
  start-page: 195411
  year: 2011
  ident: 2023062600390862700_c49
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.84.195411
– volume: 136
  start-page: 054701
  year: 2012
  ident: 2023062600390862700_c46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3677839
– volume: 68
  start-page: 085301
  year: 2003
  ident: 2023062600390862700_c39
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.68.085301
– volume: 133
  start-page: 11830
  year: 2011
  ident: 2023062600390862700_c13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201688h
– volume: 130
  start-page: 074904
  year: 2009
  ident: 2023062600390862700_c35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3076079
– volume: 132
  start-page: 12698
  year: 2010
  ident: 2023062600390862700_c54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1042462
– volume: 116
  start-page: 5877
  year: 2002
  ident: 2023062600390862700_c34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1446034
– volume: 57
  start-page: 939
  year: 2001
  ident: 2023062600390862700_c38
  publication-title: Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
  doi: 10.1107/s010827010100703x
– volume: 2
  start-page: 648
  year: 2010
  ident: 2023062600390862700_c21
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.694
– volume: 116
  start-page: 11473
  year: 2012
  ident: 2023062600390862700_c25
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp208905k
– volume: 5
  start-page: 3399
  year: 1999
  ident: 2023062600390862700_c37
  publication-title: Chem. - Eur. J.
  doi: 10.1002/(sici)1521-3765(19991105)5:11<3399::aid-chem3399>3.0.co;2-v
– volume: 40
  start-page: 507
  year: 1964
  ident: 2023062600390862700_c44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1725145
– volume: 138
  start-page: 114102
  year: 2013
  ident: 2023062600390862700_c27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4794425
– volume: 46
  start-page: 1330
  year: 2013
  ident: 2023062600390862700_c50
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300345h
– volume: 61
  start-page: 125
  year: 1981
  ident: 2023062600390862700_c53
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(81)85055-0
– volume: 12
  start-page: 1053
  year: 2012
  ident: 2023062600390862700_c10
  publication-title: Nano Lett.
  doi: 10.1021/nl204297u
– volume: 141
  start-page: 074705
  year: 2014
  ident: 2023062600390862700_c29
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4892793
– volume: 107
  start-page: 017402
  year: 2011
  ident: 2023062600390862700_c8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.017402
– volume: 70
  start-page: 125401
  year: 2004
  ident: 2023062600390862700_c52
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.70.125401
– volume: 107
  start-page: 926
  year: 2007
  ident: 2023062600390862700_c40
  publication-title: Chem. Rev.
  doi: 10.1021/cr050140x
– volume: 15
  start-page: 354
  year: 2015
  ident: 2023062600390862700_c12
  publication-title: Nano Lett.
  doi: 10.1021/nl503650a
– volume: 43
  start-page: 429
  year: 2010
  ident: 2023062600390862700_c47
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar900233v
– volume: 11
  start-page: 352
  year: 2015
  ident: 2023062600390862700_c20
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3241
– volume: 119
  start-page: 22137
  year: 2015
  ident: 2023062600390862700_c30
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b07163
– volume: 100
  start-page: 074510
  year: 2006
  ident: 2023062600390862700_c5
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2356795
– volume: 340
  start-page: 334
  year: 2013
  ident: 2023062600390862700_c11
  publication-title: Science
  doi: 10.1126/science.1232994
– volume: 117
  start-page: 457
  year: 2013
  ident: 2023062600390862700_c45
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp310298n
– volume: 11
  start-page: 1495
  year: 2011
  ident: 2023062600390862700_c9
  publication-title: Nano Lett.
  doi: 10.1021/nl104202j
– volume: 8
  start-page: 16
  year: 2016
  ident: 2023062600390862700_c15
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2371
– volume: 9
  start-page: 341
  year: 2016
  ident: 2023062600390862700_c16
  article-title: Dynamics of the triplet-pair state reveals the likely coexistence of coherent and incoherent singlet fission in crystalline hexacene
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2665
– volume: 118
  start-page: 28842
  year: 2014
  ident: 2023062600390862700_c41
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp509011u
– volume: 134
  start-page: 204703
  year: 2011
  ident: 2023062600390862700_c24
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3590871
– volume: 10
  start-page: 324
  year: 2014
  ident: 2023062600390862700_c23
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct4007635
SSID ssj0001724
Score 2.5071602
Snippet Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 174703
SubjectTerms Absorption spectra
Excitons
Fission
Single crystals
Title Vibronic exciton theory of singlet fission. I. Linear absorption and the anatomy of the correlated triplet pair state
URI http://dx.doi.org/10.1063/1.4982362
https://www.ncbi.nlm.nih.gov/pubmed/28477613
https://www.proquest.com/docview/2124494078
https://www.proquest.com/docview/1896415905
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagExo8IBgMAgOZywNSlZLYzsWP0wBtiCEEHdpb5Li2qFTSqk0lxK_nnNhOC9sk4CXKzU2V74v9neNzfAh5yQVLJ5nVcSIMj4U2dSwzJWOprS6NKYRJMMH59GN-fCben2fnm9yTLrukrUf656V5Jf-DKpwDXDFL9h-Q7X8UTsA-4AtbQBi2f4XxV7B1uwo25oeets7t7-fM0QUAkAztFMNcm9HwZIT2Ny7bo-rVfOl6ihA-qRqwvV1eCR5qLNkxUyhG2yV64tvhQk2Xwy77aFvObhLLOkmrw-oDzl_Sy_WxAXE-UyGW2_RRHZ_NVH_zPtguut7HL3o3BAxtGPTnhkrjus6klHGRu-Kffd_q_YueRMVWVwmmUNEtb3CxFwfZhA6FkZBYjp1t3wMALL53cOK4WuQukfWPJbPDpetkh4H1wAZk5_DN6Ycv_RANqk2EZaZy_rp_Ei4N7dv-rlMuGB-3yC5IFBctsSVIxnfIbf_a6aGjxV1yzTR7ZPcoFPDbIzc-ORTukXUgCvVEoY4odG6pJwoNRKEnI-qIQjdEoUAUbEM9UbAhHm6IQj1RKBKFdkS5T87evR0fHce-3kasRSpaECsyqYtSlkrmVmgmVa4niRI1M0JxnD-GHrvMhJpYqXihpIZ9VlpbZ0VtJ4zvk0Ezb8xDQhlXNdgGqZrkTBhbS24Z14ILk2kJKjQir8LbrcJrxJoos6oLish5lVYek4g8729duBVYLrvpIEBU-Q90VTHUrhInqiPyrL8MIOCcmGrMfL2q0lLmoGFlkkXkgYO2f0qgQkRe9Fhf_RceXdn-Mbm5-WIOyKBdrs0TkLJt_dQT8xe4xp-l
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibronic+exciton+theory+of+singlet+fission.+I.+Linear+absorption+and+the+anatomy+of+the+correlated+triplet+pair+state&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Tempelaar%2C+Roel&rft.au=Reichman%2C+David+R&rft.date=2017-05-07&rft.eissn=1089-7690&rft.volume=146&rft.issue=17&rft.spage=174703&rft_id=info:doi/10.1063%2F1.4982362&rft_id=info%3Apmid%2F28477613&rft.externalDocID=28477613
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon