Vibronic exciton theory of singlet fission. I. Linear absorption and the anatomy of the correlated triplet pair state
Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this work, which forms the first article of a series, we set out to unravel the mechanisms underlying singlet fission through a vibronic exciton...
Saved in:
Published in | The Journal of chemical physics Vol. 146; no. 17; pp. 174703 - 174712 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
07.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this work, which forms the first article of a series, we set out to unravel the mechanisms underlying singlet fission through a vibronic exciton theory. We formulate a model in which both electronic and vibrational degrees of freedom are treated microscopically and non-perturbatively. Using pentacene as a prototypical material for singlet fission, we subject our theory to comparison with measurements on polarization-resolved absorption of single crystals, and employ our model to characterize the excited states underlying the absorption band. Special attention is given to the convergence of photophysical observables with respect to the basis size employed, through which we determine the optimal basis for more expensive calculations to be presented in subsequent work. We furthermore evaluate the energetic separation between the optically prepared singlet excited state and the correlated triplet pair state, as well as provide a real-space characterization of the latter, both of which are of key importance in the discussion of fission dynamics. We discuss our results in the context of recent experimental studies. |
---|---|
AbstractList | Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this work, which forms the first article of a series, we set out to unravel the mechanisms underlying singlet fission through a vibronic exciton theory. We formulate a model in which both electronic and vibrational degrees of freedom are treated microscopically and non-perturbatively. Using pentacene as a prototypical material for singlet fission, we subject our theory to comparison with measurements on polarization-resolved absorption of single crystals, and employ our model to characterize the excited states underlying the absorption band. Special attention is given to the convergence of photophysical observables with respect to the basis size employed, through which we determine the optimal basis for more expensive calculations to be presented in subsequent work. We furthermore evaluate the energetic separation between the optically prepared singlet excited state and the correlated triplet pair state, as well as provide a real-space characterization of the latter, both of which are of key importance in the discussion of fission dynamics. We discuss our results in the context of recent experimental studies. Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this work, which forms the first article of a series, we set out to unravel the mechanisms underlying singlet fission through a vibronic exciton theory. We formulate a model in which both electronic and vibrational degrees of freedom are treated microscopically and non-perturbatively. Using pentacene as a prototypical material for singlet fission, we subject our theory to comparison with measurements on polarization-resolved absorption of single crystals, and employ our model to characterize the excited states underlying the absorption band. Special attention is given to the convergence of photophysical observables with respect to the basis size employed, through which we determine the optimal basis for more expensive calculations to be presented in subsequent work. We furthermore evaluate the energetic separation between the optically prepared singlet excited state and the correlated triplet pair state, as well as provide a real-space characterization of the latter, both of which are of key importance in the discussion of fission dynamics. We discuss our results in the context of recent experimental studies.Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this work, which forms the first article of a series, we set out to unravel the mechanisms underlying singlet fission through a vibronic exciton theory. We formulate a model in which both electronic and vibrational degrees of freedom are treated microscopically and non-perturbatively. Using pentacene as a prototypical material for singlet fission, we subject our theory to comparison with measurements on polarization-resolved absorption of single crystals, and employ our model to characterize the excited states underlying the absorption band. Special attention is given to the convergence of photophysical observables with respect to the basis size employed, through which we determine the optimal basis for more expensive calculations to be presented in subsequent work. We furthermore evaluate the energetic separation between the optically prepared singlet excited state and the correlated triplet pair state, as well as provide a real-space characterization of the latter, both of which are of key importance in the discussion of fission dynamics. We discuss our results in the context of recent experimental studies. |
Author | Tempelaar, Roel Reichman, David R. |
Author_xml | – sequence: 1 givenname: Roel surname: Tempelaar fullname: Tempelaar, Roel email: r.tempelaar@gmail.com organization: Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA – sequence: 2 givenname: David R. surname: Reichman fullname: Reichman, David R. email: drr2103@columbia.edu organization: Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28477613$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAUhUVJaSaTLvoHiqCbJuCJJMuytAyhecBAN2225lqWWgWP5EoyJP8-cmbSRShd3Ye-cxD3nKAjH7xB6BMlG0pEfUE3XElWC_YOrSiRqmqFIkdoRQijlRJEHKOTlB4IIbRl_AM6ZpK3raD1Cs33ro_BO43No3Y5eJx_mxCfcLA4Of9rNBlbl5ILfoPvNnjrvIGIoU8hTrlsMfhh0ZQKOexehMuoQ4xmhGzKa3TT4jOBizjlsjtF7y2MyXw81DX6ef3tx9Vttf1-c3d1ua00pzxXkijSt1JJUMJyzRQIPRDgPTMc6kY2lDS1bDgMVkHdgtKlZ9Lavml7O7B6jb7ufacY_swm5W7nkjbjCN6EOXVUKsFpo4rNGn15gz6EOfryu45RxrnipJWF-nyg5n5nhm6KbgfxqXs9aAHO9oCOIaVo7F-Ekm4Jq6PdIazCXrxhSwKwHDVHcOM_Fed7RXol_2P_DA60ols |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1039_C8SC00293B crossref_primary_10_1039_D2EE01600A crossref_primary_10_1038_s41586_023_05814_1 crossref_primary_10_1063_1_4997527 crossref_primary_10_1063_5_0247854 crossref_primary_10_1021_acs_chemrev_7b00581 crossref_primary_10_1021_acs_jpclett_0c00031 crossref_primary_10_1063_5_0028605 crossref_primary_10_1021_acs_jpclett_7b01996 crossref_primary_10_1021_acs_jpca_0c07938 crossref_primary_10_1002_wcms_1589 crossref_primary_10_1021_acs_jpclett_8b02181 crossref_primary_10_1063_1_5118942 crossref_primary_10_1063_1_4982359 crossref_primary_10_1063_5_0209546 crossref_primary_10_1063_1_5115239 crossref_primary_10_1063_1_5125945 crossref_primary_10_1021_acs_jpca_9b02986 crossref_primary_10_1021_acs_jpca_7b07069 crossref_primary_10_1021_acs_jpca_4c06380 crossref_primary_10_1063_1_5110188 crossref_primary_10_1080_23746149_2021_1918022 crossref_primary_10_1039_C7RA06032G crossref_primary_10_1063_1_5110263 crossref_primary_10_1021_acs_jpcc_9b11772 crossref_primary_10_1063_1_5099667 crossref_primary_10_1021_acs_jctc_1c00831 crossref_primary_10_1103_PhysRevLett_119_267401 crossref_primary_10_1021_acs_jpcc_8b09124 crossref_primary_10_1021_acs_jpcc_0c08185 crossref_primary_10_1063_1_5031778 crossref_primary_10_1063_1_5109897 crossref_primary_10_1039_C7SC04688J crossref_primary_10_1039_D2SC03793A crossref_primary_10_1021_acs_jpclett_7b01247 crossref_primary_10_1063_5_0024746 crossref_primary_10_1021_acs_jpca_0c05359 crossref_primary_10_1039_C8CP06256K crossref_primary_10_1063_1_5109251 crossref_primary_10_1021_acs_jpca_0c00263 crossref_primary_10_1021_acs_jpcc_1c09297 crossref_primary_10_1039_C8CP01562G crossref_primary_10_1063_1_5100116 crossref_primary_10_1039_D0SC03301D crossref_primary_10_1021_jacs_0c12201 crossref_primary_10_1021_jacs_2c07237 crossref_primary_10_1063_5_0068292 crossref_primary_10_1021_acs_chemrev_3c00643 crossref_primary_10_1063_5_0009867 crossref_primary_10_1002_cplu_201700489 crossref_primary_10_1063_5_0218752 crossref_primary_10_1021_acs_jpclett_7b02748 crossref_primary_10_1063_1_5000823 crossref_primary_10_1021_acs_jpclett_8b02674 crossref_primary_10_1039_D1CP00563D crossref_primary_10_1021_acs_chemrev_8b00572 crossref_primary_10_1021_acs_jpclett_4c02794 crossref_primary_10_1021_acs_jpca_0c07646 crossref_primary_10_1073_pnas_2310124120 crossref_primary_10_1038_s41467_019_09039_7 crossref_primary_10_1002_wcms_70002 crossref_primary_10_1021_acs_jpcc_9b01713 crossref_primary_10_1021_acs_jpca_8b10977 crossref_primary_10_1002_cptc_201700135 crossref_primary_10_1021_acs_jpcc_8b05309 crossref_primary_10_1063_5_0140002 crossref_primary_10_1016_j_trechm_2019_02_002 crossref_primary_10_1002_cptc_202000089 crossref_primary_10_1063_5_0078158 crossref_primary_10_1021_acs_jpclett_8b02944 crossref_primary_10_1021_acs_jpca_0c08440 crossref_primary_10_1021_acs_jpcb_1c02476 crossref_primary_10_1021_jacs_8b08627 crossref_primary_10_1021_acs_jpclett_2c03053 crossref_primary_10_1088_2516_1075_acf2d4 crossref_primary_10_1063_1_5017713 crossref_primary_10_1016_j_cplett_2022_140199 crossref_primary_10_1038_s41467_021_25395_9 crossref_primary_10_1021_acs_jpclett_1c03217 crossref_primary_10_1021_acs_jpca_1c03934 crossref_primary_10_1063_1_5132341 crossref_primary_10_1103_PhysRevLett_123_126601 |
Cites_doi | 10.1021/jp505082a 10.1021/cm049563q 10.1146/annurev-physchem-040412-110130 10.1063/1.1695695 10.1103/PhysRevLett.110.226402 10.1103/physrevlett.99.176402 10.1038/nmat2872 10.1021/ja208431r 10.1126/science.1213986 10.1021/acs.jpclett.5b02249 10.1080/00268976.2012.695810 10.1080/15421406808082930 10.1021/ar300286s 10.1063/1.4794427 10.1063/1.1736034 10.1021/ja500887a 10.1063/1.4982359 10.1021/jz402122m 10.1063/1.4973981 10.1038/ncomms9602 10.1063/1.1676371 10.1021/acs.jpclett.6b00947 10.1103/physrevb.91.195315 10.1021/cr1002613 10.1103/physrevb.84.195411 10.1063/1.3677839 10.1103/physrevb.68.085301 10.1021/ja201688h 10.1063/1.3076079 10.1021/ja1042462 10.1063/1.1446034 10.1107/s010827010100703x 10.1038/nchem.694 10.1021/jp208905k 10.1002/(sici)1521-3765(19991105)5:11<3399::aid-chem3399>3.0.co;2-v 10.1063/1.1725145 10.1063/1.4794425 10.1021/ar300345h 10.1016/0301-0104(81)85055-0 10.1021/nl204297u 10.1063/1.4892793 10.1103/PhysRevLett.107.017402 10.1103/physrevb.70.125401 10.1021/cr050140x 10.1021/nl503650a 10.1021/ar900233v 10.1038/nphys3241 10.1021/acs.jpcc.5b07163 10.1063/1.2356795 10.1126/science.1232994 10.1021/jp310298n 10.1021/nl104202j 10.1038/nchem.2371 10.1038/nchem.2665 10.1021/jp509011u 10.1063/1.3590871 10.1021/ct4007635 |
ContentType | Journal Article |
Copyright | Author(s) 2017 Author(s). Published by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2017 Author(s). Published by AIP Publishing. |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 |
DOI | 10.1063/1.4982362 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 28477613 10_1063_1_4982362 jcp |
Genre | Journal Article |
GrantInformation_xml | – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) grantid: Rubicon funderid: http://dx.doi.org/10.13039/501100003246 – fundername: National Science Foundation (NSF) grantid: CHE-1464802 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c414t-8090b7898a96f4c29a6cd0a4b2e4a35851053854adf9a37a9c54a28ffb57bfd23 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu Jul 10 22:53:26 EDT 2025 Sun Jun 29 17:00:37 EDT 2025 Wed Feb 19 02:40:36 EST 2025 Tue Jul 01 04:16:19 EDT 2025 Thu Apr 24 23:05:02 EDT 2025 Fri Jun 21 00:14:43 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | 0021-9606/2017/146(17)/174703/10/$30.00 Published by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c414t-8090b7898a96f4c29a6cd0a4b2e4a35851053854adf9a37a9c54a28ffb57bfd23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28477613 |
PQID | 2124494078 |
PQPubID | 2050685 |
PageCount | 10 |
ParticipantIDs | pubmed_primary_28477613 crossref_citationtrail_10_1063_1_4982362 scitation_primary_10_1063_1_4982362 crossref_primary_10_1063_1_4982362 proquest_miscellaneous_1896415905 proquest_journals_2124494078 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-07 |
PublicationDateYYYYMMDD | 2017-05-07 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2017 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Rao, Wilson, Hodgkiss, Albert-Seifried, Bässler, Friend (c54) 2010; 132 Ehrler, Wilson, Rao, Friend, Greenham (c10) 2012; 12 Philpott (c33) 1971; 55 Zimmerman, Zhang, Musgrave (c21) 2010; 2 Shockley, Queisser (c6) 1961; 32 Feng, Luzanov, Krylov (c18) 2013; 4 Smith, Michl (c4) 2013; 64 Hestand, Yamagata, Xu, Sun, Zhong, Harutyunyan, Chen, Dai, Rao, Spano (c30) 2015; 119 Singh, Jones, Siebrand, Stoicheff, Schneider (c1) 1965; 42 Fujihashi, Chen, Ishizaki, Wang, Zhao (c31) 2017; 146 Spano, Clark, Silva, Friend (c35) 2009; 130 Pensack, Ostroumov, Tilley, Mazza, Grieco, Thorley, Asbury, Seferos, Anthony, Scholes (c55) 2016; 7 Nickel, Barabash, Ruiz, Koch, Kahn, Feldman, Haglund, Scoles (c52) 2004; 70 Chan, Berkelbach, Provorse, Monahan, Tritsch, Hybertsen, Reichman, Gao, Zhu (c36) 2013; 46 Wilson, Rao, Ehrler, Friend (c50) 2013; 46 Parker, Seideman, Ratner, Shiozaki (c19) 2014; 118 Berkelbach, Hybertsen, Reichman (c29) 2014; 141 Mattheus, Dros, Baas, Meetsma, de Boer, Palstra (c38) 2001; 57 Hanna, Nozik (c5) 2006; 100 Smith, Michl (c3) 2010; 110 Musser, Liebel, Schnedermann, Wende, Kehoe, Rao, Kukura (c20) 2015; 11 Zeng, Hoffmann, Ananth (c56) 2014; 136 Avakian, Merrifield (c2) 1968; 5 Yang, Tabachnyk, Bayliss, Böhm, Broch, Greenham, Friend, Ehrler (c12) 2015; 15 Irkhin, Biaggio (c8) 2011; 107 Berkelbach, Hybertsen, Reichman (c28) 2013; 138 Yamagata, Norton, Hontz, Olivier, Beljonne, Brédas, Silbey, Spano (c24) 2011; 134 Rao, Wilson, Albert-Seifried, Di Pietro, Friend (c49) 2011; 84 Zimmerman, Bell, Casanova, Head-Gordon (c17) 2011; 133 Casanova (c23) 2014; 10 Coropceanu, Cornil, da Silva Filho, Olivier, Silbey, Brédas (c40) 2007; 107 Chan, Ligges, Jailaubekov, Kaake, Miaja-Avila, Zhu (c14) 2011; 334 Bakulin, Morgan, Kehoe, Wilson, Chin, Zigmantas, Egorova, Rao (c15) 2016; 8 Berkelbach, Hybertsen, Reichman (c27) 2013; 138 Ruiz, Choudhary, Nickel, Toccoli, Chang, Mayer, Clancy, Blakely, Headrick, Iannotta, Malliaras (c51) 2004; 16 Sebastian, Weiser, Bässler (c53) 1981; 61 Beljonne, Yamagata, Brédas, Spano, Olivier (c26) 2013; 110 Yamagata, Maxwell, Fan, Kittilstved, Briseno, Barnes, Spano (c41) 2014; 118 Najafov, Lee, Zhou, Feldman, Podzorov (c7) 2010; 9 Tsiper, Soos (c39) 2003; 68 Tempelaar, Reichman (c57) 2017; 146 Jadhav, Mohanty, Sussman, Lee, Baldo (c9) 2011; 11 Holmes, Kumaraswamy, Matzger, Vollhardt (c37) 1999; 5 Hestand, Tempelaar, Knoester, Jansen, Spano (c42) 2015; 91 McGlynn, Azumi, Kasha (c44) 1964; 40 Spano (c47) 2010; 43 Havenith, de Gier, Broer (c22) 2012; 110 Anger, Ossó, Heinemeyer, Broch, Scholz, Gerlach, Schreiber (c46) 2012; 136 Monahan, Sun, Tamura, Williams, Xu, Zhong, Kumar, Nuckolls, Harutyunyan, Chen, Dai, Beljonne, Rao, Zhu (c16) 2016; 9 Congreve, Lee, Thompson, Hontz, Yost, Reusswig, Bahlke, Reineke, Van Voorhis, Baldo (c11) 2013; 340 Spano (c34) 2002; 116 Wilson, Rao, Clark, Kumar, Brida, Cerullo, Friend (c13) 2011; 133 Wang, Zhang, Zhang, Liu, Wang, Xiao (c32) 2015; 6 Marciniak, Fiebig, Huth, Schiefer, Nickel, Selmaier, Lochbrunner (c48) 2007; 99 Teichen, Eaves (c25) 2012; 116 Ito, Nagami, Nakano (c43) 2015; 6 Tempelaar, Stradomska, Knoester, Spano (c45) 2013; 117 (2023062600390862700_c49) 2011; 84 (2023062600390862700_c4) 2013; 64 (2023062600390862700_c43) 2015; 6 (2023062600390862700_c57) 2017; 146 (2023062600390862700_c15) 2016; 8 (2023062600390862700_c30) 2015; 119 (2023062600390862700_c37) 1999; 5 (2023062600390862700_c5) 2006; 100 (2023062600390862700_c7) 2010; 9 (2023062600390862700_c45) 2013; 117 (2023062600390862700_c8) 2011; 107 (2023062600390862700_c35) 2009; 130 (2023062600390862700_c18) 2013; 4 (2023062600390862700_c17) 2011; 133 (2023062600390862700_c1) 1965; 42 (2023062600390862700_c54) 2010; 132 (2023062600390862700_c40) 2007; 107 (2023062600390862700_c39) 2003; 68 (2023062600390862700_c55) 2016; 7 (2023062600390862700_c56) 2014; 136 (2023062600390862700_c25) 2012; 116 (2023062600390862700_c48) 2007; 99 (2023062600390862700_c6) 1961; 32 (2023062600390862700_c11) 2013; 340 (2023062600390862700_c19) 2014; 118 (2023062600390862700_c3) 2010; 110 (2023062600390862700_c27) 2013; 138 (2023062600390862700_c21) 2010; 2 (2023062600390862700_c44) 1964; 40 (2023062600390862700_c41) 2014; 118 (2023062600390862700_c47) 2010; 43 (2023062600390862700_c10) 2012; 12 (2023062600390862700_c20) 2015; 11 (2023062600390862700_c24) 2011; 134 (2023062600390862700_c38) 2001; 57 (2023062600390862700_c9) 2011; 11 (2023062600390862700_c16) 2016; 9 (2023062600390862700_c50) 2013; 46 (2023062600390862700_c32) 2015; 6 (2023062600390862700_c26) 2013; 110 (2023062600390862700_c36) 2013; 46 (2023062600390862700_c51) 2004; 16 (2023062600390862700_c2) 1968; 5 (2023062600390862700_c12) 2015; 15 (2023062600390862700_c42) 2015; 91 (2023062600390862700_c22) 2012; 110 (2023062600390862700_c28) 2013; 138 (2023062600390862700_c34) 2002; 116 (2023062600390862700_c53) 1981; 61 (2023062600390862700_c46) 2012; 136 (2023062600390862700_c14) 2011; 334 (2023062600390862700_c52) 2004; 70 (2023062600390862700_c23) 2014; 10 (2023062600390862700_c33) 1971; 55 (2023062600390862700_c29) 2014; 141 (2023062600390862700_c13) 2011; 133 (2023062600390862700_c31) 2017; 146 |
References_xml | – volume: 32 start-page: 510 year: 1961 ident: c6 publication-title: J. Appl. Phys. – volume: 61 start-page: 125 year: 1981 ident: c53 publication-title: Chem. Phys. – volume: 133 start-page: 11830 year: 2011 ident: c13 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3845 year: 2013 ident: c18 publication-title: J. Phys. Chem. Lett. – volume: 15 start-page: 354 year: 2015 ident: c12 publication-title: Nano Lett. – volume: 43 start-page: 429 year: 2010 ident: c47 publication-title: Acc. Chem. Res. – volume: 40 start-page: 507 year: 1964 ident: c44 publication-title: J. Chem. Phys. – volume: 42 start-page: 330 year: 1965 ident: c1 publication-title: J. Chem. Phys. – volume: 141 start-page: 074705 year: 2014 ident: c29 publication-title: J. Chem. Phys. – volume: 136 start-page: 054701 year: 2012 ident: c46 publication-title: J. Chem. Phys. – volume: 134 start-page: 204703 year: 2011 ident: c24 publication-title: J. Chem. Phys. – volume: 68 start-page: 085301 year: 2003 ident: c39 publication-title: Phys. Rev. B – volume: 46 start-page: 1321 year: 2013 ident: c36 publication-title: Acc. Chem. Res. – volume: 107 start-page: 926 year: 2007 ident: c40 publication-title: Chem. Rev. – volume: 146 start-page: 174704 year: 2017 ident: c57 publication-title: J. Chem. Phys. – volume: 11 start-page: 352 year: 2015 ident: c20 publication-title: Nat. Phys. – volume: 107 start-page: 017402 year: 2011 ident: c8 publication-title: Phys. Rev. Lett. – volume: 110 start-page: 2445 year: 2012 ident: c22 publication-title: Mol. Phys. – volume: 5 start-page: 3399 year: 1999 ident: c37 publication-title: Chem. - Eur. J. – volume: 117 start-page: 457 year: 2013 ident: c45 publication-title: J. Phys. Chem. B – volume: 6 start-page: 4972 year: 2015 ident: c43 publication-title: J. Phys. Chem. Lett. – volume: 64 start-page: 361 year: 2013 ident: c4 publication-title: Annu. Rev. Phys. Chem. – volume: 16 start-page: 4497 year: 2004 ident: c51 publication-title: Chem. Mater. – volume: 133 start-page: 19944 year: 2011 ident: c17 publication-title: J. Am. Chem. Soc. – volume: 146 start-page: 044101 year: 2017 ident: c31 publication-title: J. Chem. Phys. – volume: 46 start-page: 1330 year: 2013 ident: c50 publication-title: Acc. Chem. Res. – volume: 55 start-page: 2039 year: 1971 ident: c33 publication-title: J. Chem. Phys. – volume: 118 start-page: 12700 year: 2014 ident: c19 publication-title: J. Phys. Chem. C – volume: 119 start-page: 22137 year: 2015 ident: c30 publication-title: J. Phys. Chem. C – volume: 110 start-page: 6891 year: 2010 ident: c3 publication-title: Chem. Rev. – volume: 9 start-page: 341 year: 2016 ident: c16 article-title: Dynamics of the triplet-pair state reveals the likely coexistence of coherent and incoherent singlet fission in crystalline hexacene publication-title: Nat. Chem. – volume: 10 start-page: 324 year: 2014 ident: c23 publication-title: J. Chem. Theory Comput. – volume: 7 start-page: 2370 year: 2016 ident: c55 publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 648 year: 2010 ident: c21 publication-title: Nat. Chem. – volume: 11 start-page: 1495 year: 2011 ident: c9 publication-title: Nano Lett. – volume: 12 start-page: 1053 year: 2012 ident: c10 publication-title: Nano Lett. – volume: 138 start-page: 114102 year: 2013 ident: c27 publication-title: J. Chem. Phys. – volume: 116 start-page: 5877 year: 2002 ident: c34 publication-title: J. Chem. Phys. – volume: 84 start-page: 195411 year: 2011 ident: c49 publication-title: Phys. Rev. B – volume: 100 start-page: 074510 year: 2006 ident: c5 publication-title: J. Appl. Phys. – volume: 99 start-page: 176402 year: 2007 ident: c48 publication-title: Phys. Rev. Lett. – volume: 130 start-page: 074904 year: 2009 ident: c35 publication-title: J. Chem. Phys. – volume: 91 start-page: 195315 year: 2015 ident: c42 publication-title: Phys. Rev. B – volume: 70 start-page: 125401 year: 2004 ident: c52 publication-title: Phys. Rev. B – volume: 118 start-page: 28842 year: 2014 ident: c41 publication-title: J. Phys. Chem. C – volume: 132 start-page: 12698 year: 2010 ident: c54 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 16 year: 2016 ident: c15 publication-title: Nat. Chem. – volume: 6 start-page: 8602 year: 2015 ident: c32 publication-title: Nat. Commun. – volume: 57 start-page: 939 year: 2001 ident: c38 publication-title: Acta Crystallogr., Sect. C: Cryst. Struct. Commun. – volume: 136 start-page: 5755 year: 2014 ident: c56 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 114103 year: 2013 ident: c28 publication-title: J. Chem. Phys. – volume: 340 start-page: 334 year: 2013 ident: c11 publication-title: Science – volume: 110 start-page: 226402 year: 2013 ident: c26 publication-title: Phys. Rev. Lett. – volume: 116 start-page: 11473 year: 2012 ident: c25 publication-title: J. Phys. Chem. B – volume: 334 start-page: 1541 year: 2011 ident: c14 publication-title: Science – volume: 5 start-page: 37 year: 1968 ident: c2 publication-title: Mol. Cryst. – volume: 9 start-page: 938 year: 2010 ident: c7 publication-title: Nat. Mater. – volume: 118 start-page: 12700 year: 2014 ident: 2023062600390862700_c19 publication-title: J. Phys. Chem. C doi: 10.1021/jp505082a – volume: 16 start-page: 4497 year: 2004 ident: 2023062600390862700_c51 publication-title: Chem. Mater. doi: 10.1021/cm049563q – volume: 64 start-page: 361 year: 2013 ident: 2023062600390862700_c4 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-040412-110130 – volume: 42 start-page: 330 year: 1965 ident: 2023062600390862700_c1 publication-title: J. Chem. Phys. doi: 10.1063/1.1695695 – volume: 110 start-page: 226402 year: 2013 ident: 2023062600390862700_c26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.226402 – volume: 99 start-page: 176402 year: 2007 ident: 2023062600390862700_c48 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.99.176402 – volume: 9 start-page: 938 year: 2010 ident: 2023062600390862700_c7 publication-title: Nat. Mater. doi: 10.1038/nmat2872 – volume: 133 start-page: 19944 year: 2011 ident: 2023062600390862700_c17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208431r – volume: 334 start-page: 1541 year: 2011 ident: 2023062600390862700_c14 publication-title: Science doi: 10.1126/science.1213986 – volume: 6 start-page: 4972 year: 2015 ident: 2023062600390862700_c43 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02249 – volume: 110 start-page: 2445 year: 2012 ident: 2023062600390862700_c22 publication-title: Mol. Phys. doi: 10.1080/00268976.2012.695810 – volume: 5 start-page: 37 year: 1968 ident: 2023062600390862700_c2 publication-title: Mol. Cryst. doi: 10.1080/15421406808082930 – volume: 46 start-page: 1321 year: 2013 ident: 2023062600390862700_c36 publication-title: Acc. Chem. Res. doi: 10.1021/ar300286s – volume: 138 start-page: 114103 year: 2013 ident: 2023062600390862700_c28 publication-title: J. Chem. Phys. doi: 10.1063/1.4794427 – volume: 32 start-page: 510 year: 1961 ident: 2023062600390862700_c6 publication-title: J. Appl. Phys. doi: 10.1063/1.1736034 – volume: 136 start-page: 5755 year: 2014 ident: 2023062600390862700_c56 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500887a – volume: 146 start-page: 174704 year: 2017 ident: 2023062600390862700_c57 publication-title: J. Chem. Phys. doi: 10.1063/1.4982359 – volume: 4 start-page: 3845 year: 2013 ident: 2023062600390862700_c18 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz402122m – volume: 146 start-page: 044101 year: 2017 ident: 2023062600390862700_c31 publication-title: J. Chem. Phys. doi: 10.1063/1.4973981 – volume: 6 start-page: 8602 year: 2015 ident: 2023062600390862700_c32 publication-title: Nat. Commun. doi: 10.1038/ncomms9602 – volume: 55 start-page: 2039 year: 1971 ident: 2023062600390862700_c33 publication-title: J. Chem. Phys. doi: 10.1063/1.1676371 – volume: 7 start-page: 2370 year: 2016 ident: 2023062600390862700_c55 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00947 – volume: 91 start-page: 195315 year: 2015 ident: 2023062600390862700_c42 publication-title: Phys. Rev. B doi: 10.1103/physrevb.91.195315 – volume: 110 start-page: 6891 year: 2010 ident: 2023062600390862700_c3 publication-title: Chem. Rev. doi: 10.1021/cr1002613 – volume: 84 start-page: 195411 year: 2011 ident: 2023062600390862700_c49 publication-title: Phys. Rev. B doi: 10.1103/physrevb.84.195411 – volume: 136 start-page: 054701 year: 2012 ident: 2023062600390862700_c46 publication-title: J. Chem. Phys. doi: 10.1063/1.3677839 – volume: 68 start-page: 085301 year: 2003 ident: 2023062600390862700_c39 publication-title: Phys. Rev. B doi: 10.1103/physrevb.68.085301 – volume: 133 start-page: 11830 year: 2011 ident: 2023062600390862700_c13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201688h – volume: 130 start-page: 074904 year: 2009 ident: 2023062600390862700_c35 publication-title: J. Chem. Phys. doi: 10.1063/1.3076079 – volume: 132 start-page: 12698 year: 2010 ident: 2023062600390862700_c54 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1042462 – volume: 116 start-page: 5877 year: 2002 ident: 2023062600390862700_c34 publication-title: J. Chem. Phys. doi: 10.1063/1.1446034 – volume: 57 start-page: 939 year: 2001 ident: 2023062600390862700_c38 publication-title: Acta Crystallogr., Sect. C: Cryst. Struct. Commun. doi: 10.1107/s010827010100703x – volume: 2 start-page: 648 year: 2010 ident: 2023062600390862700_c21 publication-title: Nat. Chem. doi: 10.1038/nchem.694 – volume: 116 start-page: 11473 year: 2012 ident: 2023062600390862700_c25 publication-title: J. Phys. Chem. B doi: 10.1021/jp208905k – volume: 5 start-page: 3399 year: 1999 ident: 2023062600390862700_c37 publication-title: Chem. - Eur. J. doi: 10.1002/(sici)1521-3765(19991105)5:11<3399::aid-chem3399>3.0.co;2-v – volume: 40 start-page: 507 year: 1964 ident: 2023062600390862700_c44 publication-title: J. Chem. Phys. doi: 10.1063/1.1725145 – volume: 138 start-page: 114102 year: 2013 ident: 2023062600390862700_c27 publication-title: J. Chem. Phys. doi: 10.1063/1.4794425 – volume: 46 start-page: 1330 year: 2013 ident: 2023062600390862700_c50 publication-title: Acc. Chem. Res. doi: 10.1021/ar300345h – volume: 61 start-page: 125 year: 1981 ident: 2023062600390862700_c53 publication-title: Chem. Phys. doi: 10.1016/0301-0104(81)85055-0 – volume: 12 start-page: 1053 year: 2012 ident: 2023062600390862700_c10 publication-title: Nano Lett. doi: 10.1021/nl204297u – volume: 141 start-page: 074705 year: 2014 ident: 2023062600390862700_c29 publication-title: J. Chem. Phys. doi: 10.1063/1.4892793 – volume: 107 start-page: 017402 year: 2011 ident: 2023062600390862700_c8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.017402 – volume: 70 start-page: 125401 year: 2004 ident: 2023062600390862700_c52 publication-title: Phys. Rev. B doi: 10.1103/physrevb.70.125401 – volume: 107 start-page: 926 year: 2007 ident: 2023062600390862700_c40 publication-title: Chem. Rev. doi: 10.1021/cr050140x – volume: 15 start-page: 354 year: 2015 ident: 2023062600390862700_c12 publication-title: Nano Lett. doi: 10.1021/nl503650a – volume: 43 start-page: 429 year: 2010 ident: 2023062600390862700_c47 publication-title: Acc. Chem. Res. doi: 10.1021/ar900233v – volume: 11 start-page: 352 year: 2015 ident: 2023062600390862700_c20 publication-title: Nat. Phys. doi: 10.1038/nphys3241 – volume: 119 start-page: 22137 year: 2015 ident: 2023062600390862700_c30 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b07163 – volume: 100 start-page: 074510 year: 2006 ident: 2023062600390862700_c5 publication-title: J. Appl. Phys. doi: 10.1063/1.2356795 – volume: 340 start-page: 334 year: 2013 ident: 2023062600390862700_c11 publication-title: Science doi: 10.1126/science.1232994 – volume: 117 start-page: 457 year: 2013 ident: 2023062600390862700_c45 publication-title: J. Phys. Chem. B doi: 10.1021/jp310298n – volume: 11 start-page: 1495 year: 2011 ident: 2023062600390862700_c9 publication-title: Nano Lett. doi: 10.1021/nl104202j – volume: 8 start-page: 16 year: 2016 ident: 2023062600390862700_c15 publication-title: Nat. Chem. doi: 10.1038/nchem.2371 – volume: 9 start-page: 341 year: 2016 ident: 2023062600390862700_c16 article-title: Dynamics of the triplet-pair state reveals the likely coexistence of coherent and incoherent singlet fission in crystalline hexacene publication-title: Nat. Chem. doi: 10.1038/nchem.2665 – volume: 118 start-page: 28842 year: 2014 ident: 2023062600390862700_c41 publication-title: J. Phys. Chem. C doi: 10.1021/jp509011u – volume: 134 start-page: 204703 year: 2011 ident: 2023062600390862700_c24 publication-title: J. Chem. Phys. doi: 10.1063/1.3590871 – volume: 10 start-page: 324 year: 2014 ident: 2023062600390862700_c23 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct4007635 |
SSID | ssj0001724 |
Score | 2.5071602 |
Snippet | Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 174703 |
SubjectTerms | Absorption spectra Excitons Fission Single crystals |
Title | Vibronic exciton theory of singlet fission. I. Linear absorption and the anatomy of the correlated triplet pair state |
URI | http://dx.doi.org/10.1063/1.4982362 https://www.ncbi.nlm.nih.gov/pubmed/28477613 https://www.proquest.com/docview/2124494078 https://www.proquest.com/docview/1896415905 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagExo8IBgMAgOZywNSlZLYzsWP0wBtiCEEHdpb5Li2qFTSqk0lxK_nnNhOC9sk4CXKzU2V74v9neNzfAh5yQVLJ5nVcSIMj4U2dSwzJWOprS6NKYRJMMH59GN-fCben2fnm9yTLrukrUf656V5Jf-DKpwDXDFL9h-Q7X8UTsA-4AtbQBi2f4XxV7B1uwo25oeets7t7-fM0QUAkAztFMNcm9HwZIT2Ny7bo-rVfOl6ihA-qRqwvV1eCR5qLNkxUyhG2yV64tvhQk2Xwy77aFvObhLLOkmrw-oDzl_Sy_WxAXE-UyGW2_RRHZ_NVH_zPtguut7HL3o3BAxtGPTnhkrjus6klHGRu-Kffd_q_YueRMVWVwmmUNEtb3CxFwfZhA6FkZBYjp1t3wMALL53cOK4WuQukfWPJbPDpetkh4H1wAZk5_DN6Ycv_RANqk2EZaZy_rp_Ei4N7dv-rlMuGB-3yC5IFBctsSVIxnfIbf_a6aGjxV1yzTR7ZPcoFPDbIzc-ORTukXUgCvVEoY4odG6pJwoNRKEnI-qIQjdEoUAUbEM9UbAhHm6IQj1RKBKFdkS5T87evR0fHce-3kasRSpaECsyqYtSlkrmVmgmVa4niRI1M0JxnD-GHrvMhJpYqXihpIZ9VlpbZ0VtJ4zvk0Ezb8xDQhlXNdgGqZrkTBhbS24Z14ILk2kJKjQir8LbrcJrxJoos6oLish5lVYek4g8729duBVYLrvpIEBU-Q90VTHUrhInqiPyrL8MIOCcmGrMfL2q0lLmoGFlkkXkgYO2f0qgQkRe9Fhf_RceXdn-Mbm5-WIOyKBdrs0TkLJt_dQT8xe4xp-l |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibronic+exciton+theory+of+singlet+fission.+I.+Linear+absorption+and+the+anatomy+of+the+correlated+triplet+pair+state&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Tempelaar%2C+Roel&rft.au=Reichman%2C+David+R&rft.date=2017-05-07&rft.eissn=1089-7690&rft.volume=146&rft.issue=17&rft.spage=174703&rft_id=info:doi/10.1063%2F1.4982362&rft_id=info%3Apmid%2F28477613&rft.externalDocID=28477613 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |