Research advances in reproduction for dairy goats

Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the 1980s. Reproduction in goats is described as seasonal. The onset and length of the breeding season is dependent on various factors such as breed,...

Full description

Saved in:
Bibliographic Details
Published inAnimal bioscience Vol. 32; no. 8; pp. 1284 - 1295
Main Authors Luo, Jun, Wang, Wei, Sun, Shuang
Format Journal Article
LanguageEnglish
Published Korea (South) Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) 01.08.2019
Asian-Australasian Association of Animal Production Societies
아세아·태평양축산학회
Subjects
Online AccessGet full text
ISSN1011-2367
2765-0189
1976-5517
2765-0235
DOI10.5713/ajas.19.0486

Cover

Loading…
Abstract Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the 1980s. Reproduction in goats is described as seasonal. The onset and length of the breeding season is dependent on various factors such as breed, climate, physiological stage, male effect, breeding system, and photoperiod. The reproductive physiology of goats was investigated extensively, including hypothalamic and pituitary control of the ovary related to estrus behavior and cyclicity etc. Photoperiodic treatments coupled with the male effect allow hormone-free synchronization of ovulation, but the kidding rate is still less than for hormonal treatments. Different protocols have been developed to meet the needs and expectations of producers; dairy industries are subject to growing demands for year round production. Hormonal treatments for synchronization of estrus and ovulation in combination with artificial insemination (AI) or natural mating facilitate out-of-season breeding and the grouping of the kidding period. The AI with fresh or frozen semen has been increasingly adopted in the intensive production system, this is perhaps the most powerful tool that reproductive physiologists and geneticists have provided the dairy goat industry with for improving reproductive efficiency, genetic progress and genetic materials transportation. One of the most exciting developments in the reproduction of dairy animals is embryo transfer (ET), the so-called second generation reproductive biotechnology following AI. Multiple ovulation and ET (MOET) program in dairy goats combining with estrus synchronization (ES) and AI significantly increase annual genetic improvement by decreasing the generation interval. Based on the advances in reproduction technologies that have been utilized through experiments and investigation, this review will focus on the application of these technologies and how they can be used to promote the dairy goat research and industry development in the future.
AbstractList Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the 1980s. Reproduction in goats is described as seasonal. The onset and length of the breeding season is dependent on various factors such as breed, climate, physiological stage, male effect, breeding system, and photoperiod. The reproductive physiology of goats was investigated extensively, including hypothalamic and pituitary control of the ovary related to estrus behavior and cyclicity etc. Photoperiodic treatments coupled with the male effect allow hormone-free synchronization of ovulation, but the kidding rate is still less than for hormonal treatments. Different protocols have been developed to meet the needs and expectations of producers; dairy industries are subject to growing demands for year round production. Hormonal treatments for synchronization of estrus and ovulation in combination with artificial insemination (AI) or natural mating facilitate out-of-season breeding and the grouping of the kidding period. The AI with fresh or frozen semen has been increasingly adopted in the intensive production system, this is perhaps the most powerful tool that reproductive physiologists and geneticists have provided the dairy goat industry with for improving reproductive efficiency, genetic progress and genetic materials transportation. One of the most exciting developments in the reproduction of dairy animals is embryo transfer (ET), the so-called second generation reproductive biotechnology following AI. Multiple ovulation and ET (MOET) program in dairy goats combining with estrus synchronization (ES) and AI significantly increase annual genetic improvement by decreasing the generation interval. Based on the advances in reproduction technologies that have been utilized through experiments and investigation, this review will focus on the application of these technologies and how they can be used to promote the dairy goat research and industry development in the future. KCI Citation Count: 18
Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the 1980s. Reproduction in goats is described as seasonal. The onset and length of the breeding season is dependent on various factors such as breed, climate, physiological stage, male effect, breeding system, and photoperiod. The reproductive physiology of goats was investigated extensively, including hypothalamic and pituitary control of the ovary related to estrus behavior and cyclicity etc. Photoperiodic treatments coupled with the male effect allow hormone-free synchronization of ovulation, but the kidding rate is still less than for hormonal treatments. Different protocols have been developed to meet the needs and expectations of producers; dairy industries are subject to growing demands for year round production. Hormonal treatments for synchronization of estrus and ovulation in combination with artificial insemination (AI) or natural mating facilitate out-of-season breeding and the grouping of the kidding period. The AI with fresh or frozen semen has been increasingly adopted in the intensive production system, this is perhaps the most powerful tool that reproductive physiologists and geneticists have provided the dairy goat industry with for improving reproductive efficiency, genetic progress and genetic materials transportation. One of the most exciting developments in the reproduction of dairy animals is embryo transfer (ET), the so-called second generation reproductive biotechnology following AI. Multiple ovulation and ET (MOET) program in dairy goats combining with estrus synchronization (ES) and AI significantly increase annual genetic improvement by decreasing the generation interval. Based on the advances in reproduction technologies that have been utilized through experiments and investigation, this review will focus on the application of these technologies and how they can be used to promote the dairy goat research and industry development in the future.
Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the 1980s. Reproduction in goats is described as seasonal. The onset and length of the breeding season is dependent on various factors such as breed, climate, physiological stage, male effect, breeding system, and photoperiod. The reproductive physiology of goats was investigated extensively, including hypothalamic and pituitary control of the ovary related to estrus behavior and cyclicity etc. Photoperiodic treatments coupled with the male effect allow hormone-free synchronization of ovulation, but the kidding rate is still less than for hormonal treatments. Different protocols have been developed to meet the needs and expectations of producers; dairy industries are subject to growing demands for year round production. Hormonal treatments for synchronization of estrus and ovulation in combination with artificial insemination (AI) or natural mating facilitate out-of-season breeding and the grouping of the kidding period. The AI with fresh or frozen semen has been increasingly adopted in the intensive production system, this is perhaps the most powerful tool that reproductive physiologists and geneticists have provided the dairy goat industry with for improving reproductive efficiency, genetic progress and genetic materials transportation. One of the most exciting developments in the reproduction of dairy animals is embryo transfer (ET), the so-called second generation reproductive biotechnology following AI. Multiple ovulation and ET (MOET) program in dairy goats combining with estrus synchronization (ES) and AI significantly increase annual genetic improvement by decreasing the generation interval. Based on the advances in reproduction technologies that have been utilized through experiments and investigation, this review will focus on the application of these technologies and how they can be used to promote the dairy goat research and industry development in the future.Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the 1980s. Reproduction in goats is described as seasonal. The onset and length of the breeding season is dependent on various factors such as breed, climate, physiological stage, male effect, breeding system, and photoperiod. The reproductive physiology of goats was investigated extensively, including hypothalamic and pituitary control of the ovary related to estrus behavior and cyclicity etc. Photoperiodic treatments coupled with the male effect allow hormone-free synchronization of ovulation, but the kidding rate is still less than for hormonal treatments. Different protocols have been developed to meet the needs and expectations of producers; dairy industries are subject to growing demands for year round production. Hormonal treatments for synchronization of estrus and ovulation in combination with artificial insemination (AI) or natural mating facilitate out-of-season breeding and the grouping of the kidding period. The AI with fresh or frozen semen has been increasingly adopted in the intensive production system, this is perhaps the most powerful tool that reproductive physiologists and geneticists have provided the dairy goat industry with for improving reproductive efficiency, genetic progress and genetic materials transportation. One of the most exciting developments in the reproduction of dairy animals is embryo transfer (ET), the so-called second generation reproductive biotechnology following AI. Multiple ovulation and ET (MOET) program in dairy goats combining with estrus synchronization (ES) and AI significantly increase annual genetic improvement by decreasing the generation interval. Based on the advances in reproduction technologies that have been utilized through experiments and investigation, this review will focus on the application of these technologies and how they can be used to promote the dairy goat research and industry development in the future.
Author Wang, Wei
Luo, Jun
Sun, Shuang
AuthorAffiliation 2 College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
1 Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
AuthorAffiliation_xml – name: 2 College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
– name: 1 Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0002-3338-4667
  surname: Luo
  fullname: Luo, Jun
– sequence: 2
  givenname: Wei
  orcidid: 0000-0003-4727-1564
  surname: Wang
  fullname: Wang, Wei
– sequence: 3
  givenname: Shuang
  orcidid: 0000-0002-0636-8362
  surname: Sun
  fullname: Sun, Shuang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31357269$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002488394$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNptkc1r3DAQxU1JaT7aW8_FxxbqrUaf9qUQQtssBAohPYuxNN5o47W2kjeQ_772bhKa0tMIzW_ee_BOi6MhDlQU74EtlAHxBdeYF9AsmKz1q-IEGqMrpcAcTW8GUHGhzXFxmvOaMSW5qd8UxwKEMlw3JwVcUyZM7rZEf4-Do1yGoUy0TdHv3BjiUHYxlR5DeihXEcf8tnjdYZ_p3eM8K359_3ZzcVld_fyxvDi_qpwEOVaGvG-FB6EbamTNHbSSNIBHKcTkT8i95Jq1Xklw4BpFXEvfYUuGt1qJs-LTQXdInb1zwUYM-7mK9i7Z8-ubpVUNk8D1xC4PrI-4ttsUNpge9gf7j5hWFtMYXE_WtKpuvVFG80aKrsaOdUwROik5892s9fWgtd21G_KOhjFh_0L05WYIt1Ome6u1rmsNk8DHR4EUf-8oj3YTsqO-x4HiLlvOtWEg-T73h7-9nk2e-pmAzwfApZhzou4ZAWbn-u1cv4XGzvVPOP8Hd2HEucUpaej_f_QHvRKyxQ
CitedBy_id crossref_primary_10_18502_espoch_v2i2_11180
crossref_primary_10_32634_0869_8155_2020_343_11_36_40
crossref_primary_10_1016_j_theriogenology_2023_12_032
crossref_primary_10_1080_1828051X_2024_2312161
crossref_primary_10_2478_aoas_2020_0034
crossref_primary_10_36111_jvmohr_2021_3_1__0026
crossref_primary_10_1007_s11250_023_03661_w
crossref_primary_10_1016_j_anireprosci_2024_107622
crossref_primary_10_3389_fphys_2022_990691
crossref_primary_10_1007_s12033_024_01283_7
crossref_primary_10_1016_j_smallrumres_2020_106299
crossref_primary_10_1080_10495398_2025_2450349
crossref_primary_10_1186_s40104_021_00613_y
crossref_primary_10_1186_s12917_023_03706_0
crossref_primary_10_14202_vetworld_2024_2443_2450
crossref_primary_10_1016_j_smallrumres_2021_106397
crossref_primary_10_3390_agriculture13112079
crossref_primary_10_1111_rda_14135
crossref_primary_10_33724_zm_1340073
crossref_primary_10_5187_jast_2021_e10
crossref_primary_10_15407_animbiol25_03_019
crossref_primary_10_3389_fvets_2023_1181659
crossref_primary_10_1016_j_cryobiol_2020_10_013
crossref_primary_10_1002_mrd_23772
crossref_primary_10_1080_23311932_2022_2149131
crossref_primary_10_20473_ovz_v12i1_2023_18_24
crossref_primary_10_3389_fvets_2021_662102
crossref_primary_10_3390_ani10040658
crossref_primary_10_1007_s11250_021_02895_w
crossref_primary_10_3389_fvets_2023_1152103
crossref_primary_10_3923_pjbs_2022_827_834
crossref_primary_10_20473_ovz_v10i2_2021_53_58
crossref_primary_10_1016_j_anireprosci_2022_107047
crossref_primary_10_3389_fphys_2022_820459
crossref_primary_10_3389_fvets_2023_1333633
crossref_primary_10_32634_0869_8155_2020_343_11_33_35
crossref_primary_10_1080_09712119_2023_2191677
crossref_primary_10_3390_ani10111986
crossref_primary_10_1016_j_theriogenology_2024_02_013
Cites_doi 10.1016/j.theriogenology.2015.03.018
10.1016/0378-4320(92)90010-B
10.4142/jvs.2008.9.1.103
10.1016/0093-691X(92)90282-V
10.1071/AR9790973
10.1016/j.anireprosci.2018.11.009
10.1095/biolreprod.102.007146
10.1111/j.1600-0897.1986.tb00021.x
10.1095/biolreprod.102.008656
10.1016/S0301-6226(01)00242-1
10.1186/1297-9686-35-1-65
10.1017/S0021859600039897
10.1016/j.theriogenology.2008.09.042
10.1530/jrf.0.0670403
10.1016/j.anireprosci.2004.03.005
10.1111/j.1469-185X.1970.tb01076.x
10.1016/j.anireprosci.2012.01.009
10.1016/j.anireprosci.2007.11.026
10.1071/RDv31n1Ab144
10.1016/0093-691X(87)90252-4
10.1016/j.anireprosci.2004.05.014
10.1016/j.smallrumres.2017.02.005
10.1051/rnd:2001140
10.5713/ajas.2006.341
10.1016/0093-691X(91)90341-A
10.1111/j.1439-0531.1992.tb01135.x
10.1016/0921-4488(95)00735-0
10.1016/0093-691X(85)90092-5
10.3168/jds.S0022-0302(00)74907-1
10.5897/AJB2014.14300
10.1016/0378-4320(95)01377-C
10.1016/j.cryobiol.2011.09.002
10.4314/sajas.v33i2.3766
10.1590/1678-4162-10196
10.1016/j.smallrumres.2009.01.015
10.1093/jas/sky139
10.1051/animres:19920313
10.3791/2764
10.1016/j.smallrumres.2003.08.010
10.1146/annurev-animal-031412-103709
10.1016/j.theriogenology.2006.02.040
10.1016/j.theriogenology.2007.09.012
10.1046/j.1439-0531.2003.00480.x
10.1016/j.anireprosci.2018.03.003
10.1002/(SICI)1521-1878(199909)21:9<751::AID-BIES6>3.0.CO;2-I
10.1016/j.theriogenology.2016.04.027
10.1016/j.anireprosci.2006.03.002
10.1071/BI9760125
10.3168/jds.2016-11519
10.1111/rda.12444
10.1017/S1357729800055387
10.3923/jbs.2008.1129.1137
10.1016/0093-691X(91)90467-R
10.1016/j.theriogenology.2013.09.011
10.1016/S0301-6226(00)00184-6
10.1016/0921-4488(92)90042-3
10.1016/j.theriogenology.2016.08.013
10.1016/0093-691X(83)90121-8
10.4141/A98-049
10.1016/0093-691X(93)90414-Z
10.1016/j.anireprosci.2006.10.001
10.1016/j.anireprosci.2011.05.011
10.1016/j.anireprosci.2006.01.008
10.1016/j.theriogenology.2007.08.003
10.21451/1984-3143-AR2018-0022
10.1016/S0301-6226(98)00140-7
10.3168/jds.2017-13138
10.1016/j.anireprosci.2019.01.008
10.1095/biolreprod41.2.199
10.1016/0093-691X(84)90463-1
10.1139/cjas-2017-0183
10.1111/rda.12334
10.1016/S0093-691X(98)00235-0
10.1016/j.anireprosci.2012.01.011
10.1016/j.smallrumres.2005.06.032
10.3923/biotech.2008.371.384
10.1016/j.foodchem.2015.07.075
10.1016/j.livprodsci.2003.09.015
10.1016/0093-691X(78)90049-3
10.1136/vr.130.5.97
10.1016/0010-4809(77)90030-1
10.1016/S0378-4320(00)00156-1
10.1002/mrd.1120170303
10.1038/srep37983
10.1016/j.theriogenology.2016.04.025
10.1095/biolreprod.103.023093
ContentType Journal Article
Copyright Copyright © 2019 by Asian-Australasian Journal of Animal Sciences 2019
Copyright_xml – notice: Copyright © 2019 by Asian-Australasian Journal of Animal Sciences 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
ACYCR
DOI 10.5713/ajas.19.0486
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1976-5517
2765-0235
EndPage 1295
ExternalDocumentID oai_kci_go_kr_ARTI_5904126
oai_doaj_org_article_7b58bd75762943f8af0f05eac4420df6
PMC6668861
31357269
10_5713_ajas_19_0486
Genre Journal Article
GrantInformation_xml – fundername: Shaanxi Province of China
  grantid: 2017ZDXM-NY-076
GroupedDBID 23N
2XV
5GY
9ZL
AAFWJ
AAYXX
ABDBF
ACUHS
ACYCR
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
GJPHO
GROUPED_DOAJ
HYE
IAG
IAO
ITC
JDI
KQ8
M48
OK1
P2P
PGMZT
PV9
RPM
RZL
SJN
~KM
ADRAZ
AGJBV
ICW
IPNFZ
ISR
KVFHK
N95
NPM
RIG
XI7
7X8
5PM
EYRJQ
IGS
ID FETCH-LOGICAL-c414t-7eddb3d1369e9482c1b4e611da433313ea2d4260bd541c1c95e264dfabe72b653
IEDL.DBID M48
ISSN 1011-2367
2765-0189
IngestDate Tue Jun 25 21:07:32 EDT 2024
Wed Aug 27 01:30:36 EDT 2025
Thu Aug 21 13:49:47 EDT 2025
Fri Jul 11 03:52:16 EDT 2025
Thu Jan 02 22:52:06 EST 2025
Tue Jul 01 04:08:55 EDT 2025
Thu Apr 24 22:58:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Dairy Goat
Reproduction
Embryo Transfer (ET)
Artificial Insemination (AI)
Estrus Synchronization (ES)
Reproductive Physiology
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-7eddb3d1369e9482c1b4e611da433313ea2d4260bd541c1c95e264dfabe72b653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4727-1564
0000-0002-0636-8362
0000-0002-3338-4667
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.5713/ajas.19.0486
PMID 31357269
PQID 2267014226
PQPubID 23479
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_5904126
doaj_primary_oai_doaj_org_article_7b58bd75762943f8af0f05eac4420df6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6668861
proquest_miscellaneous_2267014226
pubmed_primary_31357269
crossref_primary_10_5713_ajas_19_0486
crossref_citationtrail_10_5713_ajas_19_0486
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
PublicationTitle Animal bioscience
PublicationTitleAlternate Asian-Australas J Anim Sci
PublicationYear 2019
Publisher Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST)
Asian-Australasian Association of Animal Production Societies
아세아·태평양축산학회
Publisher_xml – name: Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST)
– name: Asian-Australasian Association of Animal Production Societies
– name: 아세아·태평양축산학회
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
Greyling (ref77) 2010
ref54
ref51
ref50
Warwick (ref83)
ref46
ref48
ref47
ref42
Johnson (ref39) 1992
ref41
ref49
ref7
Chinmoy (ref99) 2017
ref4
ref6
Rowson (ref69) 1949
Leboeuf (ref30) 2004
ref100
ref101
ref40
ref35
ref34
ref36
Cobb (ref3) 2006
ref33
ref32
Lai (ref96) 2016
Wang (ref44) 2015
ref38
Li (ref95) 2014
ref24
Swanson (ref107) 1996
ref23
Sudano (ref78) 2013
ref26
ref25
Ivanov (ref27) 1907
ref20
Moore (ref45) 1974
ref22
Dauzier (ref29) 1966
Whckersham (ref28) 1919
ref13
ref12
ref15
ref14
ref97
ref11
ref10
ref98
ref17
ref16
ref19
Pelletier (ref18)
Leboeuf (ref21) 2004
ref93
ref92
Elsden (ref72) 1977
ref94
Johnson (ref37) 1999
ref91
ref90
ref89
ref86
ref85
ref88
ref87
Zhao (ref9) 2017
ref82
Corteel (ref31)
ref81
ref84
ref80
ref79
ref108
ref109
ref106
ref75
ref104
ref74
ref105
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref110
ref68
ref67
ref64
ref66
ref65
Leboeuf (ref8) 2008
Gao (ref43) 2009
Nagamalleswari (ref5) 2004
ref60
ref62
ref61
Tervit (ref63) 1986
References_xml – ident: ref50
  doi: 10.1016/j.theriogenology.2015.03.018
– ident: ref23
  doi: 10.1016/0378-4320(92)90010-B
– ident: ref74
  doi: 10.4142/jvs.2008.9.1.103
– ident: ref84
  doi: 10.1016/0093-691X(92)90282-V
– start-page: 65
  volume-title: The dynamic expression patterns and correlation of Tet1 and WNT pathway genes in early fetal tissues of goat
  year: 2017
  ident: ref9
– start-page: 246
  volume-title: Multiple ovulation and ovum transfer in the goat
  year: 1974
  ident: ref45
– ident: ref85
  doi: 10.1071/AR9790973
– ident: ref34
  doi: 10.1016/j.anireprosci.2018.11.009
– ident: ref97
  doi: 10.1095/biolreprod.102.007146
– ident: ref110
  doi: 10.1111/j.1600-0897.1986.tb00021.x
– ident: ref108
  doi: 10.1095/biolreprod.102.008656
– ident: ref101
  doi: 10.1016/S0301-6226(01)00242-1
– ident: ref14
  doi: 10.1186/1297-9686-35-1-65
– ident: ref70
  doi: 10.1017/S0021859600039897
– ident: ref40
  doi: 10.1016/j.theriogenology.2008.09.042
– ident: ref65
  doi: 10.1530/jrf.0.0670403
– ident: ref47
  doi: 10.1016/j.anireprosci.2004.03.005
– ident: ref20
  doi: 10.1111/j.1469-185X.1970.tb01076.x
– start-page: 191
  volume-title: An apparatus for the extraction of fertilized eggs from the living cow
  year: 1949
  ident: ref69
– start-page: 80
  volume-title: Comparison of placental traits and histological structure among different litter size in Dazu Black goat (Capra Hircus)
  year: 2014
  ident: ref95
– start-page: 214
  volume-title: Seasonality of sexual activity and its photoperiodic control in the adult ram and he-goat
  ident: ref18
– ident: ref62
  doi: 10.1016/j.anireprosci.2012.01.009
– year: 2006
  ident: ref3
– ident: ref17
  doi: 10.1016/j.anireprosci.2007.11.026
– ident: ref90
  doi: 10.1071/RDv31n1Ab144
– ident: ref71
  doi: 10.1016/0093-691X(87)90252-4
– ident: ref16
  doi: 10.1016/j.anireprosci.2004.05.014
– ident: ref68
  doi: 10.1016/j.smallrumres.2017.02.005
– ident: ref106
  doi: 10.1051/rnd:2001140
– volume-title: Method to preselect the sex of offspring
  year: 1992
  ident: ref39
– ident: ref59
  doi: 10.5713/ajas.2006.341
– start-page: 160
  volume-title: Improving postcryopreservation survival capacity: an embryo-focused approach
  year: 2013
  ident: ref78
– ident: ref19
  doi: 10.1016/0093-691X(91)90341-A
– ident: ref109
  doi: 10.1111/j.1439-0531.1992.tb01135.x
– ident: ref49
  doi: 10.1016/0921-4488(95)00735-0
– ident: ref66
  doi: 10.1016/0093-691X(85)90092-5
– start-page: 391
  volume-title: Controlling reproduction in selection schemes of dairy goats
  year: 2008
  ident: ref8
– ident: ref6
  doi: 10.3168/jds.S0022-0302(00)74907-1
– ident: ref103
  doi: 10.5897/AJB2014.14300
– ident: ref7
  doi: 10.1016/0378-4320(95)01377-C
– ident: ref80
  doi: 10.1016/j.cryobiol.2011.09.002
– ident: ref76
  doi: 10.4314/sajas.v33i2.3766
– start-page: 10
  year: 1977
  ident: ref72
– ident: ref89
  doi: 10.1590/1678-4162-10196
– ident: ref2
  doi: 10.1016/j.smallrumres.2009.01.015
– ident: ref4
  doi: 10.1093/jas/sky139
– ident: ref87
  doi: 10.1051/animres:19920313
– ident: ref81
  doi: 10.3791/2764
– ident: ref112
  doi: 10.1016/j.smallrumres.2003.08.010
– start-page: 16
  volume-title: Flow cytometric sexing of X- and Y-chromosome-bearing sperm in dairy goats and effects of laparoscopic insemination with low dose frozen sex-sorted semen (in Chinese)
  year: 2009
  ident: ref43
– ident: ref79
  doi: 10.1146/annurev-animal-031412-103709
– ident: ref88
  doi: 10.1016/j.theriogenology.2006.02.040
– start-page: 25
  year: 1919
  ident: ref28
– ident: ref58
  doi: 10.1016/j.theriogenology.2007.09.012
– ident: ref42
  doi: 10.1046/j.1439-0531.2003.00480.x
– ident: ref25
  doi: 10.1016/j.anireprosci.2018.03.003
– start-page: 41
  volume-title: Production, storage and artificial insemination of goat semen
  ident: ref31
– ident: ref100
  doi: 10.1002/(SICI)1521-1878(199909)21:9<751::AID-BIES6>3.0.CO;2-I
– start-page: 230
  volume-title: Production of artificial insemination doses from Alpine and Saanen bucks under various photoperiodic cycles
  year: 2004
  ident: ref21
– ident: ref93
  doi: 10.1016/j.theriogenology.2016.04.027
– ident: ref22
  doi: 10.1016/j.anireprosci.2006.03.002
– start-page: 256
  volume-title: Biometrical relationship of ovaries and pituitary during prepubertal period in goat (Capra hircus)
  year: 2004
  ident: ref5
– ident: ref86
  doi: 10.1071/BI9760125
– ident: ref53
  doi: 10.3168/jds.2016-11519
– start-page: 225
  volume-title: Results of mating rams to Angora female goats
  ident: ref83
– ident: ref35
  doi: 10.1111/rda.12444
– ident: ref10
  doi: 10.1017/S1357729800055387
– ident: ref104
  doi: 10.3923/jbs.2008.1129.1137
– ident: ref111
  doi: 10.1016/0093-691X(91)90467-R
– start-page: 132
  volume-title: Genetic polymorphism of prolific genes in goat-a brief review
  year: 2017
  ident: ref99
– start-page: 150
  year: 2010
  ident: ref77
– ident: ref82
  doi: 10.1016/j.theriogenology.2013.09.011
– start-page: 45
  year: 2015
  ident: ref44
– start-page: 233
  volume-title: Goat semen preserved at 4°C until 76 hours before artificial insemination: different attempts to maintain the fertility
  year: 2004
  ident: ref30
– start-page: 377
  volume-title: De la fecondation artificielle chez les mammiferes [artificial insemination of mammals]
  year: 1907
  ident: ref27
– ident: ref12
  doi: 10.1016/S0301-6226(00)00184-6
– ident: ref105
  doi: 10.1016/0921-4488(92)90042-3
– ident: ref41
  doi: 10.1016/j.theriogenology.2016.08.013
– ident: ref48
  doi: 10.1016/0093-691X(83)90121-8
– ident: ref11
  doi: 10.4141/A98-049
– ident: ref55
  doi: 10.1016/0093-691X(93)90414-Z
– ident: ref46
  doi: 10.1016/j.anireprosci.2006.10.001
– ident: ref56
  doi: 10.1016/j.anireprosci.2011.05.011
– ident: ref60
  doi: 10.1016/j.anireprosci.2006.01.008
– ident: ref52
  doi: 10.1016/j.theriogenology.2007.08.003
– ident: ref57
  doi: 10.21451/1984-3143-AR2018-0022
– ident: ref15
  doi: 10.1016/S0301-6226(98)00140-7
– ident: ref32
  doi: 10.3168/jds.2017-13138
– start-page: 233
  volume-title: Development of an effective goat embryo transfer regime
  year: 1986
  ident: ref63
– ident: ref26
  doi: 10.1016/j.anireprosci.2019.01.008
– ident: ref38
  doi: 10.1095/biolreprod41.2.199
– ident: ref73
  doi: 10.1016/0093-691X(84)90463-1
– start-page: 269
  year: 1966
  ident: ref29
– start-page: 1267
  volume-title: Proc. current status of sexing mammalian sperm
  year: 1999
  ident: ref37
– ident: ref54
  doi: 10.1139/cjas-2017-0183
– ident: ref92
  doi: 10.1111/rda.12334
– ident: ref64
  doi: 10.1016/S0093-691X(98)00235-0
– ident: ref24
  doi: 10.1016/j.anireprosci.2012.01.011
– ident: ref102
  doi: 10.1016/j.smallrumres.2005.06.032
– ident: ref91
  doi: 10.3923/biotech.2008.371.384
– ident: ref1
  doi: 10.1016/j.foodchem.2015.07.075
– ident: ref13
  doi: 10.1016/j.livprodsci.2003.09.015
– ident: ref61
  doi: 10.1016/0093-691X(78)90049-3
– ident: ref67
  doi: 10.1136/vr.130.5.97
– ident: ref33
  doi: 10.1016/0010-4809(77)90030-1
– ident: ref51
  doi: 10.1016/S0378-4320(00)00156-1
– ident: ref36
  doi: 10.1002/mrd.1120170303
– ident: ref94
  doi: 10.1038/srep37983
– start-page: 38096
  volume-title: Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus)
  year: 2016
  ident: ref96
– ident: ref75
  doi: 10.1016/j.theriogenology.2016.04.025
– start-page: 302
  volume-title: Kinetics of the humoral immune response to multiple treatments with exogenous gonadotropins and relation to ovarian responsiveness in domestic cats
  year: 1996
  ident: ref107
– ident: ref98
  doi: 10.1095/biolreprod.103.023093
SSID ssj0054278
ssib044729589
ssj0002513319
ssib053376655
Score 2.347787
Snippet Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the...
SourceID nrf
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1284
SubjectTerms Artificial Insemination (AI)
Dairy Goat
Embryo Transfer (ET)
Estrus Synchronization (ES)
Reproduction
Reproductive Physiology
Review Paper
축산학
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Lb9QwEIetqid6QDwKpDwUKjihtJnYjuNjQVQFqT1RqTfLz2Vpla2y2wP_PTNOdtVFIC6cIiUTyZlJMr-Rx58ZewfBWUITVYDJpxKphcrFJlQeU7GnpZkxQ5LOL9qzS_H1Sl7d2-qLesJGPPDouGPlZOeCQlncaMFTZ1Odaom_CyGaOqQM28acty6mxn-wpA0k8jwnQEWMsrHlXWJFdmx_2OUR6CNizW0lo8zsxxTTD-lPcvP3rsl7aej0EXs46cfyZBz3Y7YT-yds72Q2TAyN-JTBupuunCb4l-W8L4lemeGuGIgSlWoZ7Hz4Wc4WdrXcZ5enn799OqumnREqL0CsKhVDcDwAb3XUoms8OBFbgGAF5xx4tE0g9LwLUoAHr2VE4ROSdVE1rpX8GdvtF318wcquiYQA4yCdECrW1luOEkKFhH7nbSrYh7WLjJ-w4bR7xY3B8oEcasihBrQhhxbs_cb6dsRl_MXuI3l7Y0OQ63wCQ2-m0Jt_hb5ghxgrc-3n-X46zhbmejBYCnwxUhNKDI3erkNp8Muh6RDbx8Xd0qDwVHVeSVyw52NoN-NBH0rVtLpgaivoWwPevtLPv2c6N9aDXdfCwf94wpfsAQo0PTYcvmK7q-EuvkYRtHJv8vv-C5mNAwc
  priority: 102
  providerName: Directory of Open Access Journals
Title Research advances in reproduction for dairy goats
URI https://www.ncbi.nlm.nih.gov/pubmed/31357269
https://www.proquest.com/docview/2267014226
https://pubmed.ncbi.nlm.nih.gov/PMC6668861
https://doaj.org/article/7b58bd75762943f8af0f05eac4420df6
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002488394
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Animal Bioscience, 2019, 32(8), , pp.1284-1295
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkVB7QLxZHquA4ISyjWM7Tk6ooFYtqJxYqTfLz2VplZRkK9ELv50ZJ1l1oVy4JFIyjpwZW_NNZvINIW-oMxqpiVIKzifloaCp8blLLbhii79m-kiSdPKlOJrzT6fidIuM3UYHBXY3hnbYT2rens9-_rh6Dxse8OtMQIy1p7_rbkarGbLH3SK3wSdJbOJwwtf5BIENJWLek9IUOcv6Evi_Ru-QO4wyIXOsf77mpyKdP3ifug03IdE_CyqveajDe-TuAC2T_X4t3Cdbvn5AdvcX7UCv4R8SOhbaJUPuv0uWdYLElpH3FWyUAIhNnF62V8mi0avuEZkfHnz9eJQOTRNSyylfpdI7Z5ijrKh8xcvcUsN9QanTnDF4Oa9zh6z0xglOLbWV8ICJXNDGy9wUgj0m23VT-6ckKXOP7GCMCsO59Jm2mgG6kC6I0rAiTMi7UUXKDozi2NjiXEFkgbpVqFtFK4W6nZC3a-mLnknjH3IfUNtrGeS_jheadqGG7aSkgSk4CcFSXnEWSh2ykAlwIpznmQvwkNdgK3Vml3E8nheNOmsVRAnHSlTIMgZCr0ZTKthUmCnRtW8uOwWYVGbxJ-MJedKbdj2fcYFMiNww-saEN-_Uy2-RuBtCxbIs6LP_Hvmc7ABgq_oCxBdke9Ve-pcAilZmCuHA8edp_KQwjWsfj78OfgPYsw1w
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+advances+in+reproduction+for+dairy+goats&rft.jtitle=Asian-australasian+journal+of+animal+sciences&rft.au=Luo%2C+Jun&rft.au=Wang%2C+Wei&rft.au=Sun%2C+Shuang&rft.date=2019-08-01&rft.pub=Asian-Australasian+Association+of+Animal+Production+Societies+%28AAAP%29+and+Korean+Society+of+Animal+Science+and+Technology+%28KSAST%29&rft.issn=1011-2367&rft.eissn=1976-5517&rft.volume=32&rft.issue=8&rft.spage=1284&rft.epage=1295&rft_id=info:doi/10.5713%2Fajas.19.0486&rft_id=info%3Apmid%2F31357269&rft.externalDocID=PMC6668861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-2367&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-2367&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-2367&client=summon