Research advances in reproduction for dairy goats
Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the 1980s. Reproduction in goats is described as seasonal. The onset and length of the breeding season is dependent on various factors such as breed,...
Saved in:
Published in | Animal bioscience Vol. 32; no. 8; pp. 1284 - 1295 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Korea (South)
Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST)
01.08.2019
Asian-Australasian Association of Animal Production Societies 아세아·태평양축산학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1011-2367 2765-0189 1976-5517 2765-0235 |
DOI | 10.5713/ajas.19.0486 |
Cover
Loading…
Abstract | Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the 1980s. Reproduction in goats is described as seasonal. The onset and length of the breeding season is dependent on various factors such as breed, climate, physiological stage, male effect, breeding system, and photoperiod. The reproductive physiology of goats was investigated extensively, including hypothalamic and pituitary control of the ovary related to estrus behavior and cyclicity etc. Photoperiodic treatments coupled with the male effect allow hormone-free synchronization of ovulation, but the kidding rate is still less than for hormonal treatments. Different protocols have been developed to meet the needs and expectations of producers; dairy industries are subject to growing demands for year round production. Hormonal treatments for synchronization of estrus and ovulation in combination with artificial insemination (AI) or natural mating facilitate out-of-season breeding and the grouping of the kidding period. The AI with fresh or frozen semen has been increasingly adopted in the intensive production system, this is perhaps the most powerful tool that reproductive physiologists and geneticists have provided the dairy goat industry with for improving reproductive efficiency, genetic progress and genetic materials transportation. One of the most exciting developments in the reproduction of dairy animals is embryo transfer (ET), the so-called second generation reproductive biotechnology following AI. Multiple ovulation and ET (MOET) program in dairy goats combining with estrus synchronization (ES) and AI significantly increase annual genetic improvement by decreasing the generation interval. Based on the advances in reproduction technologies that have been utilized through experiments and investigation, this review will focus on the application of these technologies and how they can be used to promote the dairy goat research and industry development in the future. |
---|---|
AbstractList | Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the 1980s. Reproduction in goats is described as seasonal. The onset and length of the breeding season is dependent on various factors such as breed, climate, physiological stage, male effect, breeding system, and photoperiod. The reproductive physiology of goats was investigated extensively, including hypothalamic and pituitary control of the ovary related to estrus behavior and cyclicity etc. Photoperiodic treatments coupled with the male effect allow hormone-free synchronization of ovulation, but the kidding rate is still less than for hormonal treatments. Different protocols have been developed to meet the needs and expectations of producers; dairy industries are subject to growing demands for year round production. Hormonal treatments for synchronization of estrus and ovulation in combination with artificial insemination (AI) or natural mating facilitate out-of-season breeding and the grouping of the kidding period. The AI with fresh or frozen semen has been increasingly adopted in the intensive production system, this is perhaps the most powerful tool that reproductive physiologists and geneticists have provided the dairy goat industry with for improving reproductive efficiency, genetic progress and genetic materials transportation. One of the most exciting developments in the reproduction of dairy animals is embryo transfer (ET), the so-called second generation reproductive biotechnology following AI. Multiple ovulation and ET (MOET) program in dairy goats combining with estrus synchronization (ES) and AI significantly increase annual genetic improvement by decreasing the generation interval. Based on the advances in reproduction technologies that have been utilized through experiments and investigation, this review will focus on the application of these technologies and how they can be used to promote the dairy goat research and industry development in the future. KCI Citation Count: 18 Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the 1980s. Reproduction in goats is described as seasonal. The onset and length of the breeding season is dependent on various factors such as breed, climate, physiological stage, male effect, breeding system, and photoperiod. The reproductive physiology of goats was investigated extensively, including hypothalamic and pituitary control of the ovary related to estrus behavior and cyclicity etc. Photoperiodic treatments coupled with the male effect allow hormone-free synchronization of ovulation, but the kidding rate is still less than for hormonal treatments. Different protocols have been developed to meet the needs and expectations of producers; dairy industries are subject to growing demands for year round production. Hormonal treatments for synchronization of estrus and ovulation in combination with artificial insemination (AI) or natural mating facilitate out-of-season breeding and the grouping of the kidding period. The AI with fresh or frozen semen has been increasingly adopted in the intensive production system, this is perhaps the most powerful tool that reproductive physiologists and geneticists have provided the dairy goat industry with for improving reproductive efficiency, genetic progress and genetic materials transportation. One of the most exciting developments in the reproduction of dairy animals is embryo transfer (ET), the so-called second generation reproductive biotechnology following AI. Multiple ovulation and ET (MOET) program in dairy goats combining with estrus synchronization (ES) and AI significantly increase annual genetic improvement by decreasing the generation interval. Based on the advances in reproduction technologies that have been utilized through experiments and investigation, this review will focus on the application of these technologies and how they can be used to promote the dairy goat research and industry development in the future. Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the 1980s. Reproduction in goats is described as seasonal. The onset and length of the breeding season is dependent on various factors such as breed, climate, physiological stage, male effect, breeding system, and photoperiod. The reproductive physiology of goats was investigated extensively, including hypothalamic and pituitary control of the ovary related to estrus behavior and cyclicity etc. Photoperiodic treatments coupled with the male effect allow hormone-free synchronization of ovulation, but the kidding rate is still less than for hormonal treatments. Different protocols have been developed to meet the needs and expectations of producers; dairy industries are subject to growing demands for year round production. Hormonal treatments for synchronization of estrus and ovulation in combination with artificial insemination (AI) or natural mating facilitate out-of-season breeding and the grouping of the kidding period. The AI with fresh or frozen semen has been increasingly adopted in the intensive production system, this is perhaps the most powerful tool that reproductive physiologists and geneticists have provided the dairy goat industry with for improving reproductive efficiency, genetic progress and genetic materials transportation. One of the most exciting developments in the reproduction of dairy animals is embryo transfer (ET), the so-called second generation reproductive biotechnology following AI. Multiple ovulation and ET (MOET) program in dairy goats combining with estrus synchronization (ES) and AI significantly increase annual genetic improvement by decreasing the generation interval. Based on the advances in reproduction technologies that have been utilized through experiments and investigation, this review will focus on the application of these technologies and how they can be used to promote the dairy goat research and industry development in the future.Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the 1980s. Reproduction in goats is described as seasonal. The onset and length of the breeding season is dependent on various factors such as breed, climate, physiological stage, male effect, breeding system, and photoperiod. The reproductive physiology of goats was investigated extensively, including hypothalamic and pituitary control of the ovary related to estrus behavior and cyclicity etc. Photoperiodic treatments coupled with the male effect allow hormone-free synchronization of ovulation, but the kidding rate is still less than for hormonal treatments. Different protocols have been developed to meet the needs and expectations of producers; dairy industries are subject to growing demands for year round production. Hormonal treatments for synchronization of estrus and ovulation in combination with artificial insemination (AI) or natural mating facilitate out-of-season breeding and the grouping of the kidding period. The AI with fresh or frozen semen has been increasingly adopted in the intensive production system, this is perhaps the most powerful tool that reproductive physiologists and geneticists have provided the dairy goat industry with for improving reproductive efficiency, genetic progress and genetic materials transportation. One of the most exciting developments in the reproduction of dairy animals is embryo transfer (ET), the so-called second generation reproductive biotechnology following AI. Multiple ovulation and ET (MOET) program in dairy goats combining with estrus synchronization (ES) and AI significantly increase annual genetic improvement by decreasing the generation interval. Based on the advances in reproduction technologies that have been utilized through experiments and investigation, this review will focus on the application of these technologies and how they can be used to promote the dairy goat research and industry development in the future. |
Author | Wang, Wei Luo, Jun Sun, Shuang |
AuthorAffiliation | 2 College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, China 1 Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China |
AuthorAffiliation_xml | – name: 2 College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, China – name: 1 Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China |
Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0002-3338-4667 surname: Luo fullname: Luo, Jun – sequence: 2 givenname: Wei orcidid: 0000-0003-4727-1564 surname: Wang fullname: Wang, Wei – sequence: 3 givenname: Shuang orcidid: 0000-0002-0636-8362 surname: Sun fullname: Sun, Shuang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31357269$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002488394$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNptkc1r3DAQxU1JaT7aW8_FxxbqrUaf9qUQQtssBAohPYuxNN5o47W2kjeQ_772bhKa0tMIzW_ee_BOi6MhDlQU74EtlAHxBdeYF9AsmKz1q-IEGqMrpcAcTW8GUHGhzXFxmvOaMSW5qd8UxwKEMlw3JwVcUyZM7rZEf4-Do1yGoUy0TdHv3BjiUHYxlR5DeihXEcf8tnjdYZ_p3eM8K359_3ZzcVld_fyxvDi_qpwEOVaGvG-FB6EbamTNHbSSNIBHKcTkT8i95Jq1Xklw4BpFXEvfYUuGt1qJs-LTQXdInb1zwUYM-7mK9i7Z8-ubpVUNk8D1xC4PrI-4ttsUNpge9gf7j5hWFtMYXE_WtKpuvVFG80aKrsaOdUwROik5892s9fWgtd21G_KOhjFh_0L05WYIt1Ome6u1rmsNk8DHR4EUf-8oj3YTsqO-x4HiLlvOtWEg-T73h7-9nk2e-pmAzwfApZhzou4ZAWbn-u1cv4XGzvVPOP8Hd2HEucUpaej_f_QHvRKyxQ |
CitedBy_id | crossref_primary_10_18502_espoch_v2i2_11180 crossref_primary_10_32634_0869_8155_2020_343_11_36_40 crossref_primary_10_1016_j_theriogenology_2023_12_032 crossref_primary_10_1080_1828051X_2024_2312161 crossref_primary_10_2478_aoas_2020_0034 crossref_primary_10_36111_jvmohr_2021_3_1__0026 crossref_primary_10_1007_s11250_023_03661_w crossref_primary_10_1016_j_anireprosci_2024_107622 crossref_primary_10_3389_fphys_2022_990691 crossref_primary_10_1007_s12033_024_01283_7 crossref_primary_10_1016_j_smallrumres_2020_106299 crossref_primary_10_1080_10495398_2025_2450349 crossref_primary_10_1186_s40104_021_00613_y crossref_primary_10_1186_s12917_023_03706_0 crossref_primary_10_14202_vetworld_2024_2443_2450 crossref_primary_10_1016_j_smallrumres_2021_106397 crossref_primary_10_3390_agriculture13112079 crossref_primary_10_1111_rda_14135 crossref_primary_10_33724_zm_1340073 crossref_primary_10_5187_jast_2021_e10 crossref_primary_10_15407_animbiol25_03_019 crossref_primary_10_3389_fvets_2023_1181659 crossref_primary_10_1016_j_cryobiol_2020_10_013 crossref_primary_10_1002_mrd_23772 crossref_primary_10_1080_23311932_2022_2149131 crossref_primary_10_20473_ovz_v12i1_2023_18_24 crossref_primary_10_3389_fvets_2021_662102 crossref_primary_10_3390_ani10040658 crossref_primary_10_1007_s11250_021_02895_w crossref_primary_10_3389_fvets_2023_1152103 crossref_primary_10_3923_pjbs_2022_827_834 crossref_primary_10_20473_ovz_v10i2_2021_53_58 crossref_primary_10_1016_j_anireprosci_2022_107047 crossref_primary_10_3389_fphys_2022_820459 crossref_primary_10_3389_fvets_2023_1333633 crossref_primary_10_32634_0869_8155_2020_343_11_33_35 crossref_primary_10_1080_09712119_2023_2191677 crossref_primary_10_3390_ani10111986 crossref_primary_10_1016_j_theriogenology_2024_02_013 |
Cites_doi | 10.1016/j.theriogenology.2015.03.018 10.1016/0378-4320(92)90010-B 10.4142/jvs.2008.9.1.103 10.1016/0093-691X(92)90282-V 10.1071/AR9790973 10.1016/j.anireprosci.2018.11.009 10.1095/biolreprod.102.007146 10.1111/j.1600-0897.1986.tb00021.x 10.1095/biolreprod.102.008656 10.1016/S0301-6226(01)00242-1 10.1186/1297-9686-35-1-65 10.1017/S0021859600039897 10.1016/j.theriogenology.2008.09.042 10.1530/jrf.0.0670403 10.1016/j.anireprosci.2004.03.005 10.1111/j.1469-185X.1970.tb01076.x 10.1016/j.anireprosci.2012.01.009 10.1016/j.anireprosci.2007.11.026 10.1071/RDv31n1Ab144 10.1016/0093-691X(87)90252-4 10.1016/j.anireprosci.2004.05.014 10.1016/j.smallrumres.2017.02.005 10.1051/rnd:2001140 10.5713/ajas.2006.341 10.1016/0093-691X(91)90341-A 10.1111/j.1439-0531.1992.tb01135.x 10.1016/0921-4488(95)00735-0 10.1016/0093-691X(85)90092-5 10.3168/jds.S0022-0302(00)74907-1 10.5897/AJB2014.14300 10.1016/0378-4320(95)01377-C 10.1016/j.cryobiol.2011.09.002 10.4314/sajas.v33i2.3766 10.1590/1678-4162-10196 10.1016/j.smallrumres.2009.01.015 10.1093/jas/sky139 10.1051/animres:19920313 10.3791/2764 10.1016/j.smallrumres.2003.08.010 10.1146/annurev-animal-031412-103709 10.1016/j.theriogenology.2006.02.040 10.1016/j.theriogenology.2007.09.012 10.1046/j.1439-0531.2003.00480.x 10.1016/j.anireprosci.2018.03.003 10.1002/(SICI)1521-1878(199909)21:9<751::AID-BIES6>3.0.CO;2-I 10.1016/j.theriogenology.2016.04.027 10.1016/j.anireprosci.2006.03.002 10.1071/BI9760125 10.3168/jds.2016-11519 10.1111/rda.12444 10.1017/S1357729800055387 10.3923/jbs.2008.1129.1137 10.1016/0093-691X(91)90467-R 10.1016/j.theriogenology.2013.09.011 10.1016/S0301-6226(00)00184-6 10.1016/0921-4488(92)90042-3 10.1016/j.theriogenology.2016.08.013 10.1016/0093-691X(83)90121-8 10.4141/A98-049 10.1016/0093-691X(93)90414-Z 10.1016/j.anireprosci.2006.10.001 10.1016/j.anireprosci.2011.05.011 10.1016/j.anireprosci.2006.01.008 10.1016/j.theriogenology.2007.08.003 10.21451/1984-3143-AR2018-0022 10.1016/S0301-6226(98)00140-7 10.3168/jds.2017-13138 10.1016/j.anireprosci.2019.01.008 10.1095/biolreprod41.2.199 10.1016/0093-691X(84)90463-1 10.1139/cjas-2017-0183 10.1111/rda.12334 10.1016/S0093-691X(98)00235-0 10.1016/j.anireprosci.2012.01.011 10.1016/j.smallrumres.2005.06.032 10.3923/biotech.2008.371.384 10.1016/j.foodchem.2015.07.075 10.1016/j.livprodsci.2003.09.015 10.1016/0093-691X(78)90049-3 10.1136/vr.130.5.97 10.1016/0010-4809(77)90030-1 10.1016/S0378-4320(00)00156-1 10.1002/mrd.1120170303 10.1038/srep37983 10.1016/j.theriogenology.2016.04.025 10.1095/biolreprod.103.023093 |
ContentType | Journal Article |
Copyright | Copyright © 2019 by Asian-Australasian Journal of Animal Sciences 2019 |
Copyright_xml | – notice: Copyright © 2019 by Asian-Australasian Journal of Animal Sciences 2019 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA ACYCR |
DOI | 10.5713/ajas.19.0486 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1976-5517 2765-0235 |
EndPage | 1295 |
ExternalDocumentID | oai_kci_go_kr_ARTI_5904126 oai_doaj_org_article_7b58bd75762943f8af0f05eac4420df6 PMC6668861 31357269 10_5713_ajas_19_0486 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Shaanxi Province of China grantid: 2017ZDXM-NY-076 |
GroupedDBID | 23N 2XV 5GY 9ZL AAFWJ AAYXX ABDBF ACUHS ACYCR ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EJD GJPHO GROUPED_DOAJ HYE IAG IAO ITC JDI KQ8 M48 OK1 P2P PGMZT PV9 RPM RZL SJN ~KM ADRAZ AGJBV ICW IPNFZ ISR KVFHK N95 NPM RIG XI7 7X8 5PM EYRJQ IGS |
ID | FETCH-LOGICAL-c414t-7eddb3d1369e9482c1b4e611da433313ea2d4260bd541c1c95e264dfabe72b653 |
IEDL.DBID | M48 |
ISSN | 1011-2367 2765-0189 |
IngestDate | Tue Jun 25 21:07:32 EDT 2024 Wed Aug 27 01:30:36 EDT 2025 Thu Aug 21 13:49:47 EDT 2025 Fri Jul 11 03:52:16 EDT 2025 Thu Jan 02 22:52:06 EST 2025 Tue Jul 01 04:08:55 EDT 2025 Thu Apr 24 22:58:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Dairy Goat Reproduction Embryo Transfer (ET) Artificial Insemination (AI) Estrus Synchronization (ES) Reproductive Physiology |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-7eddb3d1369e9482c1b4e611da433313ea2d4260bd541c1c95e264dfabe72b653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4727-1564 0000-0002-0636-8362 0000-0002-3338-4667 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.5713/ajas.19.0486 |
PMID | 31357269 |
PQID | 2267014226 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_5904126 doaj_primary_oai_doaj_org_article_7b58bd75762943f8af0f05eac4420df6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6668861 proquest_miscellaneous_2267014226 pubmed_primary_31357269 crossref_primary_10_5713_ajas_19_0486 crossref_citationtrail_10_5713_ajas_19_0486 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Korea (South) |
PublicationPlace_xml | – name: Korea (South) |
PublicationTitle | Animal bioscience |
PublicationTitleAlternate | Asian-Australas J Anim Sci |
PublicationYear | 2019 |
Publisher | Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) Asian-Australasian Association of Animal Production Societies 아세아·태평양축산학회 |
Publisher_xml | – name: Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) – name: Asian-Australasian Association of Animal Production Societies – name: 아세아·태평양축산학회 |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 Greyling (ref77) 2010 ref54 ref51 ref50 Warwick (ref83) ref46 ref48 ref47 ref42 Johnson (ref39) 1992 ref41 ref49 ref7 Chinmoy (ref99) 2017 ref4 ref6 Rowson (ref69) 1949 Leboeuf (ref30) 2004 ref100 ref101 ref40 ref35 ref34 ref36 Cobb (ref3) 2006 ref33 ref32 Lai (ref96) 2016 Wang (ref44) 2015 ref38 Li (ref95) 2014 ref24 Swanson (ref107) 1996 ref23 Sudano (ref78) 2013 ref26 ref25 Ivanov (ref27) 1907 ref20 Moore (ref45) 1974 ref22 Dauzier (ref29) 1966 Whckersham (ref28) 1919 ref13 ref12 ref15 ref14 ref97 ref11 ref10 ref98 ref17 ref16 ref19 Pelletier (ref18) Leboeuf (ref21) 2004 ref93 ref92 Elsden (ref72) 1977 ref94 Johnson (ref37) 1999 ref91 ref90 ref89 ref86 ref85 ref88 ref87 Zhao (ref9) 2017 ref82 Corteel (ref31) ref81 ref84 ref80 ref79 ref108 ref109 ref106 ref75 ref104 ref74 ref105 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref110 ref68 ref67 ref64 ref66 ref65 Leboeuf (ref8) 2008 Gao (ref43) 2009 Nagamalleswari (ref5) 2004 ref60 ref62 ref61 Tervit (ref63) 1986 |
References_xml | – ident: ref50 doi: 10.1016/j.theriogenology.2015.03.018 – ident: ref23 doi: 10.1016/0378-4320(92)90010-B – ident: ref74 doi: 10.4142/jvs.2008.9.1.103 – ident: ref84 doi: 10.1016/0093-691X(92)90282-V – start-page: 65 volume-title: The dynamic expression patterns and correlation of Tet1 and WNT pathway genes in early fetal tissues of goat year: 2017 ident: ref9 – start-page: 246 volume-title: Multiple ovulation and ovum transfer in the goat year: 1974 ident: ref45 – ident: ref85 doi: 10.1071/AR9790973 – ident: ref34 doi: 10.1016/j.anireprosci.2018.11.009 – ident: ref97 doi: 10.1095/biolreprod.102.007146 – ident: ref110 doi: 10.1111/j.1600-0897.1986.tb00021.x – ident: ref108 doi: 10.1095/biolreprod.102.008656 – ident: ref101 doi: 10.1016/S0301-6226(01)00242-1 – ident: ref14 doi: 10.1186/1297-9686-35-1-65 – ident: ref70 doi: 10.1017/S0021859600039897 – ident: ref40 doi: 10.1016/j.theriogenology.2008.09.042 – ident: ref65 doi: 10.1530/jrf.0.0670403 – ident: ref47 doi: 10.1016/j.anireprosci.2004.03.005 – ident: ref20 doi: 10.1111/j.1469-185X.1970.tb01076.x – start-page: 191 volume-title: An apparatus for the extraction of fertilized eggs from the living cow year: 1949 ident: ref69 – start-page: 80 volume-title: Comparison of placental traits and histological structure among different litter size in Dazu Black goat (Capra Hircus) year: 2014 ident: ref95 – start-page: 214 volume-title: Seasonality of sexual activity and its photoperiodic control in the adult ram and he-goat ident: ref18 – ident: ref62 doi: 10.1016/j.anireprosci.2012.01.009 – year: 2006 ident: ref3 – ident: ref17 doi: 10.1016/j.anireprosci.2007.11.026 – ident: ref90 doi: 10.1071/RDv31n1Ab144 – ident: ref71 doi: 10.1016/0093-691X(87)90252-4 – ident: ref16 doi: 10.1016/j.anireprosci.2004.05.014 – ident: ref68 doi: 10.1016/j.smallrumres.2017.02.005 – ident: ref106 doi: 10.1051/rnd:2001140 – volume-title: Method to preselect the sex of offspring year: 1992 ident: ref39 – ident: ref59 doi: 10.5713/ajas.2006.341 – start-page: 160 volume-title: Improving postcryopreservation survival capacity: an embryo-focused approach year: 2013 ident: ref78 – ident: ref19 doi: 10.1016/0093-691X(91)90341-A – ident: ref109 doi: 10.1111/j.1439-0531.1992.tb01135.x – ident: ref49 doi: 10.1016/0921-4488(95)00735-0 – ident: ref66 doi: 10.1016/0093-691X(85)90092-5 – start-page: 391 volume-title: Controlling reproduction in selection schemes of dairy goats year: 2008 ident: ref8 – ident: ref6 doi: 10.3168/jds.S0022-0302(00)74907-1 – ident: ref103 doi: 10.5897/AJB2014.14300 – ident: ref7 doi: 10.1016/0378-4320(95)01377-C – ident: ref80 doi: 10.1016/j.cryobiol.2011.09.002 – ident: ref76 doi: 10.4314/sajas.v33i2.3766 – start-page: 10 year: 1977 ident: ref72 – ident: ref89 doi: 10.1590/1678-4162-10196 – ident: ref2 doi: 10.1016/j.smallrumres.2009.01.015 – ident: ref4 doi: 10.1093/jas/sky139 – ident: ref87 doi: 10.1051/animres:19920313 – ident: ref81 doi: 10.3791/2764 – ident: ref112 doi: 10.1016/j.smallrumres.2003.08.010 – start-page: 16 volume-title: Flow cytometric sexing of X- and Y-chromosome-bearing sperm in dairy goats and effects of laparoscopic insemination with low dose frozen sex-sorted semen (in Chinese) year: 2009 ident: ref43 – ident: ref79 doi: 10.1146/annurev-animal-031412-103709 – ident: ref88 doi: 10.1016/j.theriogenology.2006.02.040 – start-page: 25 year: 1919 ident: ref28 – ident: ref58 doi: 10.1016/j.theriogenology.2007.09.012 – ident: ref42 doi: 10.1046/j.1439-0531.2003.00480.x – ident: ref25 doi: 10.1016/j.anireprosci.2018.03.003 – start-page: 41 volume-title: Production, storage and artificial insemination of goat semen ident: ref31 – ident: ref100 doi: 10.1002/(SICI)1521-1878(199909)21:9<751::AID-BIES6>3.0.CO;2-I – start-page: 230 volume-title: Production of artificial insemination doses from Alpine and Saanen bucks under various photoperiodic cycles year: 2004 ident: ref21 – ident: ref93 doi: 10.1016/j.theriogenology.2016.04.027 – ident: ref22 doi: 10.1016/j.anireprosci.2006.03.002 – start-page: 256 volume-title: Biometrical relationship of ovaries and pituitary during prepubertal period in goat (Capra hircus) year: 2004 ident: ref5 – ident: ref86 doi: 10.1071/BI9760125 – ident: ref53 doi: 10.3168/jds.2016-11519 – start-page: 225 volume-title: Results of mating rams to Angora female goats ident: ref83 – ident: ref35 doi: 10.1111/rda.12444 – ident: ref10 doi: 10.1017/S1357729800055387 – ident: ref104 doi: 10.3923/jbs.2008.1129.1137 – ident: ref111 doi: 10.1016/0093-691X(91)90467-R – start-page: 132 volume-title: Genetic polymorphism of prolific genes in goat-a brief review year: 2017 ident: ref99 – start-page: 150 year: 2010 ident: ref77 – ident: ref82 doi: 10.1016/j.theriogenology.2013.09.011 – start-page: 45 year: 2015 ident: ref44 – start-page: 233 volume-title: Goat semen preserved at 4°C until 76 hours before artificial insemination: different attempts to maintain the fertility year: 2004 ident: ref30 – start-page: 377 volume-title: De la fecondation artificielle chez les mammiferes [artificial insemination of mammals] year: 1907 ident: ref27 – ident: ref12 doi: 10.1016/S0301-6226(00)00184-6 – ident: ref105 doi: 10.1016/0921-4488(92)90042-3 – ident: ref41 doi: 10.1016/j.theriogenology.2016.08.013 – ident: ref48 doi: 10.1016/0093-691X(83)90121-8 – ident: ref11 doi: 10.4141/A98-049 – ident: ref55 doi: 10.1016/0093-691X(93)90414-Z – ident: ref46 doi: 10.1016/j.anireprosci.2006.10.001 – ident: ref56 doi: 10.1016/j.anireprosci.2011.05.011 – ident: ref60 doi: 10.1016/j.anireprosci.2006.01.008 – ident: ref52 doi: 10.1016/j.theriogenology.2007.08.003 – ident: ref57 doi: 10.21451/1984-3143-AR2018-0022 – ident: ref15 doi: 10.1016/S0301-6226(98)00140-7 – ident: ref32 doi: 10.3168/jds.2017-13138 – start-page: 233 volume-title: Development of an effective goat embryo transfer regime year: 1986 ident: ref63 – ident: ref26 doi: 10.1016/j.anireprosci.2019.01.008 – ident: ref38 doi: 10.1095/biolreprod41.2.199 – ident: ref73 doi: 10.1016/0093-691X(84)90463-1 – start-page: 269 year: 1966 ident: ref29 – start-page: 1267 volume-title: Proc. current status of sexing mammalian sperm year: 1999 ident: ref37 – ident: ref54 doi: 10.1139/cjas-2017-0183 – ident: ref92 doi: 10.1111/rda.12334 – ident: ref64 doi: 10.1016/S0093-691X(98)00235-0 – ident: ref24 doi: 10.1016/j.anireprosci.2012.01.011 – ident: ref102 doi: 10.1016/j.smallrumres.2005.06.032 – ident: ref91 doi: 10.3923/biotech.2008.371.384 – ident: ref1 doi: 10.1016/j.foodchem.2015.07.075 – ident: ref13 doi: 10.1016/j.livprodsci.2003.09.015 – ident: ref61 doi: 10.1016/0093-691X(78)90049-3 – ident: ref67 doi: 10.1136/vr.130.5.97 – ident: ref33 doi: 10.1016/0010-4809(77)90030-1 – ident: ref51 doi: 10.1016/S0378-4320(00)00156-1 – ident: ref36 doi: 10.1002/mrd.1120170303 – ident: ref94 doi: 10.1038/srep37983 – start-page: 38096 volume-title: Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus) year: 2016 ident: ref96 – ident: ref75 doi: 10.1016/j.theriogenology.2016.04.025 – start-page: 302 volume-title: Kinetics of the humoral immune response to multiple treatments with exogenous gonadotropins and relation to ovarian responsiveness in domestic cats year: 1996 ident: ref107 – ident: ref98 doi: 10.1095/biolreprod.103.023093 |
SSID | ssj0054278 ssib044729589 ssj0002513319 ssib053376655 |
Score | 2.347787 |
Snippet | Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the... |
SourceID | nrf doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1284 |
SubjectTerms | Artificial Insemination (AI) Dairy Goat Embryo Transfer (ET) Estrus Synchronization (ES) Reproduction Reproductive Physiology Review Paper 축산학 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Lb9QwEIetqid6QDwKpDwUKjihtJnYjuNjQVQFqT1RqTfLz2Vpla2y2wP_PTNOdtVFIC6cIiUTyZlJMr-Rx58ZewfBWUITVYDJpxKphcrFJlQeU7GnpZkxQ5LOL9qzS_H1Sl7d2-qLesJGPPDouGPlZOeCQlncaMFTZ1Odaom_CyGaOqQM28acty6mxn-wpA0k8jwnQEWMsrHlXWJFdmx_2OUR6CNizW0lo8zsxxTTD-lPcvP3rsl7aej0EXs46cfyZBz3Y7YT-yds72Q2TAyN-JTBupuunCb4l-W8L4lemeGuGIgSlWoZ7Hz4Wc4WdrXcZ5enn799OqumnREqL0CsKhVDcDwAb3XUoms8OBFbgGAF5xx4tE0g9LwLUoAHr2VE4ROSdVE1rpX8GdvtF318wcquiYQA4yCdECrW1luOEkKFhH7nbSrYh7WLjJ-w4bR7xY3B8oEcasihBrQhhxbs_cb6dsRl_MXuI3l7Y0OQ63wCQ2-m0Jt_hb5ghxgrc-3n-X46zhbmejBYCnwxUhNKDI3erkNp8Muh6RDbx8Xd0qDwVHVeSVyw52NoN-NBH0rVtLpgaivoWwPevtLPv2c6N9aDXdfCwf94wpfsAQo0PTYcvmK7q-EuvkYRtHJv8vv-C5mNAwc priority: 102 providerName: Directory of Open Access Journals |
Title | Research advances in reproduction for dairy goats |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31357269 https://www.proquest.com/docview/2267014226 https://pubmed.ncbi.nlm.nih.gov/PMC6668861 https://doaj.org/article/7b58bd75762943f8af0f05eac4420df6 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002488394 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Animal Bioscience, 2019, 32(8), , pp.1284-1295 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkVB7QLxZHquA4ISyjWM7Tk6ooFYtqJxYqTfLz2VplZRkK9ELv50ZJ1l1oVy4JFIyjpwZW_NNZvINIW-oMxqpiVIKzifloaCp8blLLbhii79m-kiSdPKlOJrzT6fidIuM3UYHBXY3hnbYT2rens9-_rh6Dxse8OtMQIy1p7_rbkarGbLH3SK3wSdJbOJwwtf5BIENJWLek9IUOcv6Evi_Ru-QO4wyIXOsf77mpyKdP3ifug03IdE_CyqveajDe-TuAC2T_X4t3Cdbvn5AdvcX7UCv4R8SOhbaJUPuv0uWdYLElpH3FWyUAIhNnF62V8mi0avuEZkfHnz9eJQOTRNSyylfpdI7Z5ijrKh8xcvcUsN9QanTnDF4Oa9zh6z0xglOLbWV8ICJXNDGy9wUgj0m23VT-6ckKXOP7GCMCsO59Jm2mgG6kC6I0rAiTMi7UUXKDozi2NjiXEFkgbpVqFtFK4W6nZC3a-mLnknjH3IfUNtrGeS_jheadqGG7aSkgSk4CcFSXnEWSh2ykAlwIpznmQvwkNdgK3Vml3E8nheNOmsVRAnHSlTIMgZCr0ZTKthUmCnRtW8uOwWYVGbxJ-MJedKbdj2fcYFMiNww-saEN-_Uy2-RuBtCxbIs6LP_Hvmc7ABgq_oCxBdke9Ve-pcAilZmCuHA8edp_KQwjWsfj78OfgPYsw1w |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+advances+in+reproduction+for+dairy+goats&rft.jtitle=Asian-australasian+journal+of+animal+sciences&rft.au=Luo%2C+Jun&rft.au=Wang%2C+Wei&rft.au=Sun%2C+Shuang&rft.date=2019-08-01&rft.pub=Asian-Australasian+Association+of+Animal+Production+Societies+%28AAAP%29+and+Korean+Society+of+Animal+Science+and+Technology+%28KSAST%29&rft.issn=1011-2367&rft.eissn=1976-5517&rft.volume=32&rft.issue=8&rft.spage=1284&rft.epage=1295&rft_id=info:doi/10.5713%2Fajas.19.0486&rft_id=info%3Apmid%2F31357269&rft.externalDocID=PMC6668861 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-2367&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-2367&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-2367&client=summon |