An adjustable grouping genetic algorithm for the design of cellular manufacturing system integrating structural and operational parameters
[Display omitted] •Proposes Cellular Manufacturing Systems (CMS) model that evolves integrated structural and operational design decisions.•Presents a non-linear & linear mathematical formulation for the proposed CMS model.•Proposes Adjustable Grouping Genetic Algorithm (AGGA) with features to a...
Saved in:
Published in | Journal of manufacturing systems Vol. 44; pp. 115 - 142 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Proposes Cellular Manufacturing Systems (CMS) model that evolves integrated structural and operational design decisions.•Presents a non-linear & linear mathematical formulation for the proposed CMS model.•Proposes Adjustable Grouping Genetic Algorithm (AGGA) with features to adjust coding for machine duplication environment.•AGGA regulates genetic parameters towards convergence in a computationally efficient manner.•Discusses the means of extending the model and AGGA to other clustering applications.
This paper presents non-linear and linear formulations for the design of a Cellular Manufacturing Systems (CMS) modeled integrating structural and operational decision parameters, and a Genetic Algorithm (GA) based on self-regulating adaptive operators. The proposed CMS model evolves the structural design decisions of number of cells, and parts – machines assignment to cells, along with operational decisions of scheduling under machine duplications and alternate routings/cross-flow environments. The distinctive features of the CMS model under consideration are: i) integration of cost elements addressing both structural and operational issues in the design of CMS; ii) capable of evolving better CMS design decisions in terms of operational cost when compared to the literature part-machine grouping decisions; iii) suitable for variety of manufacturing system designs by relaxing the model constraints. Besides, this paper proposes a new variant of Grouping Genetic Algorithm namely Adjustable Grouping Genetic Algorithm (AGGA) that has features to adjust the coding suitable for machine duplication environment of the proposed CMS model and regulate genetic parameters towards convergence. It is shown, through comparisons with Simulated Annealing (SA) algorithm, Simple Genetic Algorithm (SGA) and also optimal solutions obtained via mathematical model relaxed to fixed number of cells, that AGGA is capable of evolving optimal or near optimal solutions in a computationally efficient manner. |
---|---|
AbstractList | [Display omitted]
•Proposes Cellular Manufacturing Systems (CMS) model that evolves integrated structural and operational design decisions.•Presents a non-linear & linear mathematical formulation for the proposed CMS model.•Proposes Adjustable Grouping Genetic Algorithm (AGGA) with features to adjust coding for machine duplication environment.•AGGA regulates genetic parameters towards convergence in a computationally efficient manner.•Discusses the means of extending the model and AGGA to other clustering applications.
This paper presents non-linear and linear formulations for the design of a Cellular Manufacturing Systems (CMS) modeled integrating structural and operational decision parameters, and a Genetic Algorithm (GA) based on self-regulating adaptive operators. The proposed CMS model evolves the structural design decisions of number of cells, and parts – machines assignment to cells, along with operational decisions of scheduling under machine duplications and alternate routings/cross-flow environments. The distinctive features of the CMS model under consideration are: i) integration of cost elements addressing both structural and operational issues in the design of CMS; ii) capable of evolving better CMS design decisions in terms of operational cost when compared to the literature part-machine grouping decisions; iii) suitable for variety of manufacturing system designs by relaxing the model constraints. Besides, this paper proposes a new variant of Grouping Genetic Algorithm namely Adjustable Grouping Genetic Algorithm (AGGA) that has features to adjust the coding suitable for machine duplication environment of the proposed CMS model and regulate genetic parameters towards convergence. It is shown, through comparisons with Simulated Annealing (SA) algorithm, Simple Genetic Algorithm (SGA) and also optimal solutions obtained via mathematical model relaxed to fixed number of cells, that AGGA is capable of evolving optimal or near optimal solutions in a computationally efficient manner. |
Author | Jawahar, N. Subhaa, R. |
Author_xml | – sequence: 1 givenname: N. surname: Jawahar fullname: Jawahar, N. email: jawahartce@yahoo.co.uk, jawahartce@tce.edu organization: Department of Mechanical Engineering,Thiagarajar College of Engineering, Madurai, 625 015, India – sequence: 2 givenname: R. surname: Subhaa fullname: Subhaa, R. email: rsubhaa@yahoo.com organization: Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai, 625 015, India |
BookMark | eNp9kMFO5TAMRSMEEg-YH5hVfuCVJE3TIrFBaAaQkNjAOnJdt6Rqk6ckHen9wnz1tDArFqyu7atj2feCnfrgibGfUhRSSHM9FuOcjoUSsi6ELlY5YTvZ1M3eGK1O2U6orZaqOmcXKY1CSKWF2rG_d55DNy4pQzsRH2JYDs4PfCBP2SGHaQjR5feZ9yHy_E68o-QGz0PPkaZpmSDyGfzSA-Ylbmg6pkwzdz7TECF_jHJcNhsmDr7j4UCbEfzaHyDCTJliumJnPUyJfvzXS_b2-9fr_eP--eXh6f7ueY9a6ryvEbA1uje6kpKwUS12jVGmqmsUBGiwJFFWnWp12RnACrUhgWVV3-i2QV1esuZzL8aQUqTeossf5-QIbrJS2C1TO9otU7tlaoW2q6yo-oIeopshHr-Hbj8hWp_64yjahI48UuciYbZdcN_h_wAs3pgv |
CitedBy_id | crossref_primary_10_1016_j_cie_2025_110946 crossref_primary_10_1016_j_jmsy_2021_05_012 crossref_primary_10_1109_TSMC_2023_3253471 crossref_primary_10_1016_j_jmsy_2020_08_014 crossref_primary_10_3390_app8122382 crossref_primary_10_1016_j_jmsy_2020_07_012 crossref_primary_10_1016_j_cie_2018_11_050 crossref_primary_10_1088_1742_6596_1582_1_012076 crossref_primary_10_1016_j_jmsy_2020_02_013 crossref_primary_10_1109_JSYST_2019_2963222 crossref_primary_10_1007_s00500_021_06402_z crossref_primary_10_1007_s00521_024_10215_0 crossref_primary_10_1016_j_jmsy_2020_06_011 crossref_primary_10_1299_jamdsm_2021jamdsm0069 crossref_primary_10_1080_00207543_2022_2105763 crossref_primary_10_3390_mca30020031 crossref_primary_10_1016_j_cie_2020_106565 crossref_primary_10_1016_j_cie_2022_108293 crossref_primary_10_1002_adem_202100646 crossref_primary_10_1016_j_jmsy_2019_10_002 crossref_primary_10_1080_17509653_2019_1655674 crossref_primary_10_1016_j_swevo_2020_100796 crossref_primary_10_1142_S0219686722500172 |
Cites_doi | 10.1080/095372800414151 10.1007/s10696-014-9194-y 10.1016/j.cie.2015.10.014 10.1016/j.jmsy.2014.09.005 10.1016/j.cie.2010.09.003 10.1016/S0305-0548(02)00085-0 10.1007/BF01301703 10.1016/j.cie.2007.06.021 10.1016/j.asoc.2011.03.013 10.1080/00207540500336108 10.1016/j.asoc.2014.04.027 10.1016/j.eswa.2005.04.009 10.1007/s10845-013-0859-2 10.1016/j.asoc.2012.11.011 10.1016/j.cie.2012.09.016 10.1080/00207543.2013.825745 10.1016/j.cie.2012.05.006 10.1016/j.cie.2004.07.003 10.1080/00207540701673457 10.1016/j.cie.2013.07.009 10.1016/j.jmsy.2014.11.018 10.1016/j.eswa.2008.02.060 10.1016/j.jmsy.2011.07.007 10.1007/s10845-010-0395-2 10.1016/j.asoc.2011.07.021 10.1016/j.jmsy.2012.07.014 10.1080/0951192X.2013.874590 10.1016/j.apm.2013.08.026 10.1016/j.engappai.2006.04.001 10.1080/0951192X.2012.665182 10.1016/j.apm.2015.09.004 10.1007/s001700070057 10.1016/j.eswa.2007.01.012 10.1016/j.ejor.2015.01.013 10.1016/j.cie.2016.03.026 10.1080/00207540110068781 10.1016/S0278-6125(01)89003-8 10.1016/j.jmsy.2015.11.001 10.1016/j.ijpe.2012.10.001 10.1007/s10845-013-0749-7 10.1016/j.eswa.2010.08.029 10.1016/j.cie.2010.08.016 10.1016/j.apm.2015.05.005 10.1016/j.cor.2005.08.010 10.1016/j.cie.2008.08.003 10.1016/j.cie.2011.03.007 10.1080/00207549108930075 10.1016/0272-6963(86)90021-5 10.1016/j.cie.2013.09.002 10.1016/j.jmsy.2014.09.008 10.1016/j.eswa.2012.02.149 10.1016/j.amc.2007.01.060 10.1007/s00170-011-3334-2 10.1016/j.ejor.2006.02.012 10.1016/j.cor.2012.01.012 10.1109/4235.585893 10.1016/S0378-4754(99)00122-6 |
ContentType | Journal Article |
Copyright | 2017 The Society of Manufacturing Engineers |
Copyright_xml | – notice: 2017 The Society of Manufacturing Engineers |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jmsy.2017.04.017 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-6642 |
EndPage | 142 |
ExternalDocumentID | 10_1016_j_jmsy_2017_04_017 S0278612517300705 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 3EH 3V. 4.4 457 4G. 5GY 5VS 7-5 71M 7WY 883 88I 8AO 8FE 8FG 8FL 8FW 8G5 8P~ 8R4 8R5 9JN 9M8 AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABFNM ABJCF ABJNI ABMAC ABUWG ABXDB ABYKQ ACDAQ ACGFO ACGFS ACGOD ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKRA AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BENPR BEZIV BGLVJ BJAXD BKOJK BKOMP BLXMC BPHCQ C1A CCPQU CS3 D-I DU5 DWQXO E3Z EBS EFJIC EFLBG EJD EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FRNLG FYGXN G-2 GBLVA GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HVGLF HZ~ H~9 IHE J1W JJJVA K60 K6V K6~ K7- KOM L6V LY7 M0C M0F M0N M2O M2P M41 M7S MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PQBIZ PQQKQ PRG PROAC PTHSS Q2X Q38 R2- RIG ROL RPZ RWL S0X SDF SES SET SPC SPCBC SST SSZ T5K TAE TN5 U5U WH7 WUQ ZHY ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION PHGZM PHGZT PQBZA SSH |
ID | FETCH-LOGICAL-c414t-7cacb64f64511ec82bcd8626577c0eac6c3e035d2b43d6ac5c46e0c35794b8c43 |
IEDL.DBID | .~1 |
ISSN | 0278-6125 |
IngestDate | Thu Apr 24 23:01:53 EDT 2025 Tue Jul 01 00:55:34 EDT 2025 Fri Feb 23 02:15:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cell formation Grouping genetic algorithm Cellular manufacturing system Genetic algorithm Adaptive parameters |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-7cacb64f64511ec82bcd8626577c0eac6c3e035d2b43d6ac5c46e0c35794b8c43 |
PageCount | 28 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jmsy_2017_04_017 crossref_primary_10_1016_j_jmsy_2017_04_017 elsevier_sciencedirect_doi_10_1016_j_jmsy_2017_04_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of manufacturing systems |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wolpert, Macready (bib0285) 1997; 1 Website reference Gökhan, Süer (bib0170) 2015; 35 Askin (bib0005) 2013; 51 Goncalves Jose Fernando, Mauricio Resende (bib0315) 2004; 47 Tavakkoli-Moghaddam, Ranjbar-Bourani, Amin, Siadat (bib0135) 2012; 23 Siva Sathya, Radhika (bib0275) 2013; 13 Bortolini, Manzini, Accorsi (bib0025) 2011; 57 Abdeljaouad, Bahroun, Omrane, Fondrevelle (bib0260) 2015; 244 Sudhakara Pandian, Mahapatra (bib0310) 2009; 56 Brown, Sumichrast (bib0215) 2001; 39 Solimanpur, Elmi (bib0070) 2013; 141 Paydar, Mahdavi, Sharafuddin, Solimanpur (bib0045) 2010; 59 Niakan, Armand Baboli, Thierry Moyaux, Valérie Botta-Genoulaz (bib0020) 2016; 38 Elmi, Solimanpur, Topaloglu, Elmi (bib0065) 2011; 61 Kia, Baboli, Javadian, Tavakkoli-Moghaddam, Kazemi, Khorrami (bib0245) 2012; 39 Arkat, Farahani, Ahmadizar (bib0125) 2012; 25 Mahdavi, Javadi, Fallah-Alipour, Slomp (bib0280) 2007; 190 Zohrevand, Rafiei, Zohrevand (bib0175) 2016; 98 Wu, Chang, Chung (bib0110) 2008; 34 James, Brown, Kellie (bib0100) 2007; 34 Chung, Wu, Chang (bib0120) 2011; 60 Chang, Wu, Wu (bib0050) 2013; 66 . Banerjee, Das (bib0295) 2012; 12 Nouri (bib0015) 2016; 40 Ma, Zhang (bib0265) 2012 Mahdavi, Aalaei, Paydar, Solimanpur (bib0130) 2012; 31 Tunnukij, Hicks (bib0210) 2009; 47 Chattopadhyay, Sengupta, Ghosh, Dan, Mazumdar (bib0180) 2013; 64 Bartz-Beielstein, Chiarandini, Paquete, Paquete (bib0290) 2017 Renna, Ambrico (bib0155) 2015; 28 Wu, Chung, Chang (bib0115) 2009; 36 De Lit, Falkenauer, Delchambre (bib0080) 2000; 51 Egilmez, Süer, Huang (bib0140) 2012; 63 Deep, Singh (bib0160) 2015; 35 Vin, Delchambre (bib0205) 2014; 25 Chan, Chung, Chan (bib0230) 2005; 29 Sakhaii, Tavakkoli-Moghaddam, Bagheri, Vatani (bib0055) 2016; 40 Goldberg (bib0185) 2006 Wu, Chu, Wang, Yue (bib0040) 2007; 53 Abduelmola, Taboun (bib0190) 2000; 11 Nsakanda, Price, Diaby, Gravel (bib0255) 2007; 178 Agustı́n-Blas, Salcedo-Sanz, Jiménez-Fernández, Carro-Calvo, Del Ser, Portilla-Figueras (bib0200) 2012; 39 Jawahar, Aravindan, Ponnambalam (bib0270) 1998; 14 Wemmerlov, Hyer (bib0010) 1986; 6 Brown (bib0035) 2014; 37 Hu, Yasuda (bib0095) 2006; 44 Nouri, Hong (bib0145) 2013; 32 Adil, Rajamani (bib0085) 2000; 19 Boctor (bib0300) 1991; 29 Rezaeian, Javadian, Tavakkoli-Moghaddam, Jolai (bib0060) 2011; 11 Sivanandam, Deepa (bib0220) 2008 Bayram, Şahi̇n (bib0240) 2016; 91 Alhourani (bib0030) 2013; 66 Li, Meng, Li, Tian (bib0075) 2016; 27 Chattopadhyay, Dan, Mazumdar (bib0150) 2014; 22 Chen, Fan, Ma, Zeng (bib0195) 2011; 38 Mak, Wong, Wang (bib0235) 2000; 16 Keeling, Brown, James (bib0105) 2007; 20 De Jong, Jayshree Sharma (bib0225) 1992 Bagheri, Bashiri (bib0305) 2014; 38 Erozan, Orhan Torkul, Ozden Ustun (bib0165) 2015; 27 Brown, Sumichrast (bib0090) 2003; 30 Chan (10.1016/j.jmsy.2017.04.017_bib0230) 2005; 29 Wu (10.1016/j.jmsy.2017.04.017_bib0110) 2008; 34 Zohrevand (10.1016/j.jmsy.2017.04.017_bib0175) 2016; 98 Bartz-Beielstein (10.1016/j.jmsy.2017.04.017_bib0290) 2017 Arkat (10.1016/j.jmsy.2017.04.017_bib0125) 2012; 25 Erozan (10.1016/j.jmsy.2017.04.017_bib0165) 2015; 27 Niakan (10.1016/j.jmsy.2017.04.017_bib0020) 2016; 38 Bayram (10.1016/j.jmsy.2017.04.017_bib0240) 2016; 91 Nsakanda (10.1016/j.jmsy.2017.04.017_bib0255) 2007; 178 Paydar (10.1016/j.jmsy.2017.04.017_bib0045) 2010; 59 Bagheri (10.1016/j.jmsy.2017.04.017_bib0305) 2014; 38 Boctor (10.1016/j.jmsy.2017.04.017_bib0300) 1991; 29 Sakhaii (10.1016/j.jmsy.2017.04.017_bib0055) 2016; 40 Jawahar (10.1016/j.jmsy.2017.04.017_bib0270) 1998; 14 Solimanpur (10.1016/j.jmsy.2017.04.017_bib0070) 2013; 141 De Lit (10.1016/j.jmsy.2017.04.017_bib0080) 2000; 51 Banerjee (10.1016/j.jmsy.2017.04.017_bib0295) 2012; 12 Adil (10.1016/j.jmsy.2017.04.017_bib0085) 2000; 19 Gökhan (10.1016/j.jmsy.2017.04.017_bib0170) 2015; 35 Chattopadhyay (10.1016/j.jmsy.2017.04.017_bib0150) 2014; 22 Abduelmola (10.1016/j.jmsy.2017.04.017_bib0190) 2000; 11 Goncalves Jose Fernando (10.1016/j.jmsy.2017.04.017_bib0315) 2004; 47 Keeling (10.1016/j.jmsy.2017.04.017_bib0105) 2007; 20 Egilmez (10.1016/j.jmsy.2017.04.017_bib0140) 2012; 63 Renna (10.1016/j.jmsy.2017.04.017_bib0155) 2015; 28 Ma (10.1016/j.jmsy.2017.04.017_bib0265) 2012 Wemmerlov (10.1016/j.jmsy.2017.04.017_bib0010) 1986; 6 Sivanandam (10.1016/j.jmsy.2017.04.017_bib0220) 2008 Tunnukij (10.1016/j.jmsy.2017.04.017_bib0210) 2009; 47 Wu (10.1016/j.jmsy.2017.04.017_bib0040) 2007; 53 Brown (10.1016/j.jmsy.2017.04.017_bib0090) 2003; 30 Kia (10.1016/j.jmsy.2017.04.017_bib0245) 2012; 39 Chang (10.1016/j.jmsy.2017.04.017_bib0050) 2013; 66 Mahdavi (10.1016/j.jmsy.2017.04.017_bib0280) 2007; 190 Elmi (10.1016/j.jmsy.2017.04.017_bib0065) 2011; 61 Wu (10.1016/j.jmsy.2017.04.017_bib0115) 2009; 36 Hu (10.1016/j.jmsy.2017.04.017_bib0095) 2006; 44 Mak (10.1016/j.jmsy.2017.04.017_bib0235) 2000; 16 Brown (10.1016/j.jmsy.2017.04.017_bib0215) 2001; 39 Chattopadhyay (10.1016/j.jmsy.2017.04.017_bib0180) 2013; 64 Vin (10.1016/j.jmsy.2017.04.017_bib0205) 2014; 25 James (10.1016/j.jmsy.2017.04.017_bib0100) 2007; 34 Goldberg (10.1016/j.jmsy.2017.04.017_bib0185) 2006 De Jong (10.1016/j.jmsy.2017.04.017_bib0225) 1992 Mahdavi (10.1016/j.jmsy.2017.04.017_bib0130) 2012; 31 Agustı́n-Blas (10.1016/j.jmsy.2017.04.017_bib0200) 2012; 39 Sudhakara Pandian (10.1016/j.jmsy.2017.04.017_bib0310) 2009; 56 Siva Sathya (10.1016/j.jmsy.2017.04.017_bib0275) 2013; 13 Bortolini (10.1016/j.jmsy.2017.04.017_bib0025) 2011; 57 Chung (10.1016/j.jmsy.2017.04.017_bib0120) 2011; 60 Nouri (10.1016/j.jmsy.2017.04.017_bib0015) 2016; 40 Rezaeian (10.1016/j.jmsy.2017.04.017_bib0060) 2011; 11 Abdeljaouad (10.1016/j.jmsy.2017.04.017_bib0260) 2015; 244 10.1016/j.jmsy.2017.04.017_bib0250 Askin (10.1016/j.jmsy.2017.04.017_bib0005) 2013; 51 Wolpert (10.1016/j.jmsy.2017.04.017_bib0285) 1997; 1 Chen (10.1016/j.jmsy.2017.04.017_bib0195) 2011; 38 Tavakkoli-Moghaddam (10.1016/j.jmsy.2017.04.017_bib0135) 2012; 23 Li (10.1016/j.jmsy.2017.04.017_bib0075) 2016; 27 Nouri (10.1016/j.jmsy.2017.04.017_bib0145) 2013; 32 Brown (10.1016/j.jmsy.2017.04.017_bib0035) 2014; 37 Alhourani (10.1016/j.jmsy.2017.04.017_bib0030) 2013; 66 Deep (10.1016/j.jmsy.2017.04.017_bib0160) 2015; 35 |
References_xml | – volume: 59 start-page: 929 year: 2010 end-page: 936 ident: bib0045 article-title: Applying simulated annealing for designing cellular manufacturing systems using MDmTSPq publication-title: Comput Ind Eng – volume: 29 start-page: 364 year: 2005 end-page: 371 ident: bib0230 article-title: An adaptive genetic algorithm with dominated genes for distributed scheduling problems publication-title: Expert Syst Appl – volume: 178 start-page: 634 year: 2007 end-page: 638 ident: bib0255 article-title: Ensuring population diversity in genetic algorithms: a technical note with application to the cell formation problem publication-title: Eur J Oper Res – year: 2008 ident: bib0220 article-title: Principles of Soft Computing – volume: 25 start-page: 625 year: 2012 end-page: 635 ident: bib0125 article-title: Multi-objective genetic algorithm for cell formation problem considering cellular layout and operations scheduling publication-title: Int J Comput Integr Manuf – volume: 14 start-page: 588 year: 1998 end-page: 607 ident: bib0270 article-title: A genetic algorithm for scheduling flexible manufacturing systems publication-title: Int J Adv Manuf Technol – volume: 16 start-page: 491 year: 2000 end-page: 497 ident: bib0235 article-title: An adaptive genetic algorithm for manufacturing cell formation publication-title: Int J Adv Manuf Technol – volume: 91 start-page: 10 year: 2016 end-page: 29 ident: bib0240 article-title: A comprehensive mathematical model for dynamic cellular manufacturing system design and linear programming embedded hybrid solution techniques publication-title: Comput Ind Eng – volume: 27 start-page: 283 year: 2016 end-page: 296 ident: bib0075 article-title: An ACO-based intercell scheduling approach for job shop cells with multiple single processing machines and one batch processing machine publication-title: J Intell Manuf – volume: 44 start-page: 2133 year: 2006 end-page: 2167 ident: bib0095 article-title: Minimising material handling cost in cell formation with alternative processing routes by grouping genetic algorithm publication-title: Int J Prod Res – volume: 98 start-page: 323 year: 2016 end-page: 332 ident: bib0175 article-title: Multi-objective dynamic cell formation problem: a stochastic programming approach publication-title: Comput Ind Eng – volume: 39 start-page: 3651 year: 2001 end-page: 3669 ident: bib0215 article-title: CF-GGA: a grouping genetic algorithm for the cell formation problem publication-title: Int J Prod Res – year: 1992 ident: bib0225 article-title: Generation Gaps revisited – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: bib0285 article-title: No free lunch theorems for optimization publication-title: IEEE Trans Evol Comput – volume: 56 start-page: 1340 year: 2009 end-page: 1347 ident: bib0310 article-title: Manufacturing cell formation with production data using neural networks publication-title: Comput Ind Eng – volume: 34 start-page: 1609 year: 2008 end-page: 1617 ident: bib0110 article-title: A simulated annealing algorithm for manufacturing cell formation problems publication-title: Expert Syst Appl – volume: 38 start-page: 46 year: 2016 end-page: 62 ident: bib0020 article-title: A bi-objective model in sustainable dynamic cell formation problem with skill-based worker assignment publication-title: J Manuf Syst – volume: 244 start-page: 117 year: 2015 end-page: 128 ident: bib0260 article-title: Job-shop production scheduling with reverse flows publication-title: Eur J Oper Res – volume: 35 start-page: 136 year: 2015 end-page: 143 ident: bib0170 article-title: Stochastic cell loading to minimize nT subject to maximum acceptable probability of tardiness publication-title: J Manuf Syst – volume: 64 start-page: 256 year: 2013 end-page: 272 ident: bib0180 article-title: Neuro-genetic impact on cell formation methods of Cellular Manufacturing System design: a quantitative review and analysis publication-title: Comput Ind Eng – volume: 38 start-page: 1237 year: 2014 end-page: 1254 ident: bib0305 article-title: A new mathematical model towards the integration of cell formation with operator assignment and inter-cell layout problems in a dynamic environment publication-title: Appl Math Modell – volume: 53 start-page: 277 year: 2007 end-page: 289 ident: bib0040 article-title: Genetic algorithms for integrating cell formation with machine layout and scheduling publication-title: Comput Ind Eng – volume: 60 start-page: 7 year: 2011 end-page: 15 ident: bib0120 article-title: An efficient tabu search algorithm to the cell formation problem with alternative routings and machine reliability considerations publication-title: Comput Ind Eng – volume: 36 start-page: 3652 year: 2009 end-page: 3661 ident: bib0115 article-title: Hybrid simulated annealing algorithm with mutation operator to the cell formation problem with alternative process routings publication-title: Expert Syst Appl – volume: 61 start-page: 171 year: 2011 end-page: 178 ident: bib0065 article-title: A simulated annealing algorithm for the job shop cell scheduling problem with intercellular moves and reentrant parts publication-title: Comput Ind Eng – volume: 39 start-page: 2642 year: 2012 end-page: 2658 ident: bib0245 article-title: Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing publication-title: Comput Oper Res – volume: 57 start-page: 1155 year: 2011 end-page: 1173 ident: bib0025 article-title: Cristina Mora A hybrid procedure for machine duplication in cellular manufacturing systems publication-title: Int J Adv Manuf Technol – volume: 28 start-page: 170 year: 2015 end-page: 186 ident: bib0155 article-title: Design and reconfiguration models for dynamic cellular manufacturing to handle market changes publication-title: Int J Comput Integr Manuf – year: 2006 ident: bib0185 article-title: Genetic Algorithms in search, Optimization and Machine Learning – volume: 63 start-page: 842 year: 2012 end-page: 854 ident: bib0140 article-title: Stochastic cellular manufacturing system design subject to maximum acceptable risk level publication-title: Comput Ind Eng – volume: 66 start-page: 438 year: 2013 end-page: 450 ident: bib0050 article-title: An efficient approach to determine cell formation, cell layout and intracellular machine sequence in cellular manufacturing systems publication-title: Comput Ind Eng – year: 2017 ident: bib0290 article-title: Experimental Methods for the Analysis of Optimization Algorithms – start-page: 205 year: 2012 end-page: 244 ident: bib0265 article-title: Genetic algorithms for manufacturing process planning publication-title: Variants of Evolutionary Algorithms for Real-World Applications – volume: 51 start-page: 257 year: 2000 end-page: 271 ident: bib0080 article-title: Grouping genetic algorithms: an efficient method to solve the cell formation problem publication-title: Math Comput Simul – volume: 32 start-page: 20 year: 2013 end-page: 31 ident: bib0145 article-title: Development of bacteria foraging optimization algorithm for cell formation in cellular manufacturing system considering cell load variations publication-title: J Manuf Syst – volume: 35 start-page: 155 year: 2015 end-page: 163 ident: bib0160 article-title: Design of robust cellular manufacturing system for dynamic part population considering multiple processing routes using genetic algorithm publication-title: J Manuf Syst – volume: 27 start-page: 30 year: 2015 end-page: 57 ident: bib0165 article-title: Proposal of a nonlinear multi-objective genetic algorithm using conic scalarization to the design of cellular manufacturing systems publication-title: Flexible Serv Manuf J – volume: 40 start-page: 169 year: 2016 end-page: 191 ident: bib0055 article-title: A robust optimization approach for an integrated dynamic cellular manufacturing system and production planning with unreliable machines publication-title: Appl Math Modell – reference: Website reference: – volume: 47 start-page: 247 year: 2004 end-page: 273 ident: bib0315 article-title: An evolutionary algorithm for manufacturing cell formation publication-title: Comput Ind Eng – volume: 51 start-page: 6778 year: 2013 end-page: 6787 ident: bib0005 article-title: Contributions to the design and analysis of cellular manufacturing systems publication-title: Int J Prod Res – volume: 66 start-page: 781 year: 2013 end-page: 790 ident: bib0030 article-title: Clustering algorithm for solving group technology problem with multiple process routings publication-title: Comput Ind Eng – volume: 31 start-page: 214 year: 2012 end-page: 223 ident: bib0130 article-title: A new mathematical model for integrating all incidence matrices in multi- dimensional cellular manufacturing system publication-title: J Manuf Syst – volume: 34 start-page: 2059 year: 2007 end-page: 2079 ident: bib0100 article-title: Keeling A hybrid grouping genetic algorithm for the cell formation problem publication-title: Comput Oper Res – volume: 22 start-page: 528 year: 2014 end-page: 543 ident: bib0150 article-title: Comparison of visualization of optimal clustering using self-organizing map and growing hierarchical self-organizing map in cellular manufacturing system publication-title: Appl Soft Comput – volume: 29 start-page: 343 year: 1991 end-page: 356 ident: bib0300 article-title: A linear formulation of the machine-part cell formation problem publication-title: Int J Prod Res – volume: 11 start-page: 4195 year: 2011 end-page: 4202 ident: bib0060 article-title: A hybrid approach based on the genetic algorithm and neural network to design an incremental cellular manufacturing system publication-title: Appl Soft Comput – volume: 39 start-page: 9695 year: 2012 end-page: 9703 ident: bib0200 article-title: A new grouping genetic algorithm for clustering problems publication-title: Expert Syst Appl – volume: 40 start-page: 1514 year: 2016 end-page: 1531 ident: bib0015 article-title: Development of comprehensive model and BFO algorithm for dynamic cellular manufacturing system publication-title: Appl Math Modell – volume: 13 start-page: 2759 year: 2013 end-page: 2766 ident: bib0275 article-title: Convergence of nomadic genetic algorithm on benchmark mathematical functions publication-title: Appl Soft Comput – volume: 30 start-page: 1575 year: 2003 end-page: 1593 ident: bib0090 article-title: Impact of the replacement heuristic in a grouping genetic algorithm publication-title: Comput Oper Res – volume: 6 year: 1986 ident: bib0010 article-title: Procedures for the part family/machine group identification problem in cellular manufacturing publication-title: J Oper Manage – volume: 19 start-page: 305 year: 2000 end-page: 317 ident: bib0085 article-title: The trade-off between intracell and intercell moves in group technology cell formation publication-title: J Manuf Syst – volume: 38 start-page: 2401 year: 2011 end-page: 2411 ident: bib0195 article-title: A hybrid grouping genetic algorithm for reviewer group construction problem publication-title: Expert Syst Appl – reference: . – volume: 23 start-page: 1127 year: 2012 end-page: 1139 ident: bib0135 article-title: A cell formation problem considering machine utilization and alternative process routes by scatter search publication-title: J Intell Manuf – volume: 47 start-page: 1989 year: 2009 end-page: 2007 ident: bib0210 article-title: An Enhanced Grouping Genetic Algorithm for solving the cell formation problem publication-title: Int J Prod Res – volume: 25 start-page: 1113 year: 2014 end-page: 1124 ident: bib0205 article-title: Generalized cell formation: iterative versus simultaneous resolution with grouping genetic algorithm publication-title: J Intell Manuf – volume: 37 start-page: 227 year: 2014 end-page: 232 ident: bib0035 article-title: A capacity constrained mathematical programming model for cellular manufacturing with exceptional elements publication-title: J Manuf Syst – volume: 12 start-page: 559 year: 2012 end-page: 572 ident: bib0295 article-title: Group technology based adaptive cell formation using predator–prey genetic algorithm publication-title: Appl Soft Comput – volume: 11 start-page: 589 year: 2000 end-page: 597 ident: bib0190 article-title: A simulated annealing algorithm for designing cellular manufacturing systems with productivity consideration publication-title: Prod Plann Control: Manage Oper – volume: 141 start-page: 639 year: 2013 end-page: 645 ident: bib0070 article-title: A tabu search approach for cell scheduling problem with makespan criterion publication-title: Int J Prod Econ – volume: 20 start-page: 63 year: 2007 end-page: 78 ident: bib0105 article-title: Grouping efficiency measures and their impact on factory measures for the machine-part cell formation problem: a simulation study publication-title: Eng Appl Artif Intell – volume: 190 start-page: 662 year: 2007 end-page: 670 ident: bib0280 article-title: Designing a new mathematical model for cellular manufacturing system based on cell utilization publication-title: Appl Math Comput – volume: 11 start-page: 589 issue: 6 year: 2000 ident: 10.1016/j.jmsy.2017.04.017_bib0190 article-title: A simulated annealing algorithm for designing cellular manufacturing systems with productivity consideration publication-title: Prod Plann Control: Manage Oper doi: 10.1080/095372800414151 – volume: 27 start-page: 30 issue: 1 year: 2015 ident: 10.1016/j.jmsy.2017.04.017_bib0165 article-title: Proposal of a nonlinear multi-objective genetic algorithm using conic scalarization to the design of cellular manufacturing systems publication-title: Flexible Serv Manuf J doi: 10.1007/s10696-014-9194-y – volume: 91 start-page: 10 year: 2016 ident: 10.1016/j.jmsy.2017.04.017_bib0240 article-title: A comprehensive mathematical model for dynamic cellular manufacturing system design and linear programming embedded hybrid solution techniques publication-title: Comput Ind Eng doi: 10.1016/j.cie.2015.10.014 – volume: 37 start-page: 227 year: 2014 ident: 10.1016/j.jmsy.2017.04.017_bib0035 article-title: A capacity constrained mathematical programming model for cellular manufacturing with exceptional elements publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2014.09.005 – volume: 59 start-page: 929 year: 2010 ident: 10.1016/j.jmsy.2017.04.017_bib0045 article-title: Applying simulated annealing for designing cellular manufacturing systems using MDmTSPq publication-title: Comput Ind Eng doi: 10.1016/j.cie.2010.09.003 – volume: 30 start-page: 1575 year: 2003 ident: 10.1016/j.jmsy.2017.04.017_bib0090 article-title: Impact of the replacement heuristic in a grouping genetic algorithm publication-title: Comput Oper Res doi: 10.1016/S0305-0548(02)00085-0 – volume: 14 start-page: 588 year: 1998 ident: 10.1016/j.jmsy.2017.04.017_bib0270 article-title: A genetic algorithm for scheduling flexible manufacturing systems publication-title: Int J Adv Manuf Technol doi: 10.1007/BF01301703 – volume: 53 start-page: 277 year: 2007 ident: 10.1016/j.jmsy.2017.04.017_bib0040 article-title: Genetic algorithms for integrating cell formation with machine layout and scheduling publication-title: Comput Ind Eng doi: 10.1016/j.cie.2007.06.021 – volume: 11 start-page: 4195 year: 2011 ident: 10.1016/j.jmsy.2017.04.017_bib0060 article-title: A hybrid approach based on the genetic algorithm and neural network to design an incremental cellular manufacturing system publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2011.03.013 – volume: 44 start-page: 2133 issue: 11 year: 2006 ident: 10.1016/j.jmsy.2017.04.017_bib0095 article-title: Minimising material handling cost in cell formation with alternative processing routes by grouping genetic algorithm publication-title: Int J Prod Res doi: 10.1080/00207540500336108 – volume: 22 start-page: 528 year: 2014 ident: 10.1016/j.jmsy.2017.04.017_bib0150 article-title: Comparison of visualization of optimal clustering using self-organizing map and growing hierarchical self-organizing map in cellular manufacturing system publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.04.027 – volume: 29 start-page: 364 year: 2005 ident: 10.1016/j.jmsy.2017.04.017_bib0230 article-title: An adaptive genetic algorithm with dominated genes for distributed scheduling problems publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2005.04.009 – volume: 27 start-page: 283 issue: 2 year: 2016 ident: 10.1016/j.jmsy.2017.04.017_bib0075 article-title: An ACO-based intercell scheduling approach for job shop cells with multiple single processing machines and one batch processing machine publication-title: J Intell Manuf doi: 10.1007/s10845-013-0859-2 – volume: 13 start-page: 2759 year: 2013 ident: 10.1016/j.jmsy.2017.04.017_bib0275 article-title: Convergence of nomadic genetic algorithm on benchmark mathematical functions publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.11.011 – volume: 64 start-page: 256 year: 2013 ident: 10.1016/j.jmsy.2017.04.017_bib0180 article-title: Neuro-genetic impact on cell formation methods of Cellular Manufacturing System design: a quantitative review and analysis publication-title: Comput Ind Eng doi: 10.1016/j.cie.2012.09.016 – volume: 51 start-page: 6778 issue: 23–24 year: 2013 ident: 10.1016/j.jmsy.2017.04.017_bib0005 article-title: Contributions to the design and analysis of cellular manufacturing systems publication-title: Int J Prod Res doi: 10.1080/00207543.2013.825745 – volume: 63 start-page: 842 year: 2012 ident: 10.1016/j.jmsy.2017.04.017_bib0140 article-title: Stochastic cellular manufacturing system design subject to maximum acceptable risk level publication-title: Comput Ind Eng doi: 10.1016/j.cie.2012.05.006 – volume: 47 start-page: 247 year: 2004 ident: 10.1016/j.jmsy.2017.04.017_bib0315 article-title: An evolutionary algorithm for manufacturing cell formation publication-title: Comput Ind Eng doi: 10.1016/j.cie.2004.07.003 – volume: 47 start-page: 1989 issue: 7 year: 2009 ident: 10.1016/j.jmsy.2017.04.017_bib0210 article-title: An Enhanced Grouping Genetic Algorithm for solving the cell formation problem publication-title: Int J Prod Res doi: 10.1080/00207540701673457 – volume: 66 start-page: 438 year: 2013 ident: 10.1016/j.jmsy.2017.04.017_bib0050 article-title: An efficient approach to determine cell formation, cell layout and intracellular machine sequence in cellular manufacturing systems publication-title: Comput Ind Eng doi: 10.1016/j.cie.2013.07.009 – volume: 35 start-page: 136 year: 2015 ident: 10.1016/j.jmsy.2017.04.017_bib0170 article-title: Stochastic cell loading to minimize nT subject to maximum acceptable probability of tardiness publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2014.11.018 – volume: 36 start-page: 3652 year: 2009 ident: 10.1016/j.jmsy.2017.04.017_bib0115 article-title: Hybrid simulated annealing algorithm with mutation operator to the cell formation problem with alternative process routings publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.02.060 – volume: 31 start-page: 214 year: 2012 ident: 10.1016/j.jmsy.2017.04.017_bib0130 article-title: A new mathematical model for integrating all incidence matrices in multi- dimensional cellular manufacturing system publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2011.07.007 – ident: 10.1016/j.jmsy.2017.04.017_bib0250 – year: 2017 ident: 10.1016/j.jmsy.2017.04.017_bib0290 – volume: 23 start-page: 1127 year: 2012 ident: 10.1016/j.jmsy.2017.04.017_bib0135 article-title: A cell formation problem considering machine utilization and alternative process routes by scatter search publication-title: J Intell Manuf doi: 10.1007/s10845-010-0395-2 – volume: 12 start-page: 559 year: 2012 ident: 10.1016/j.jmsy.2017.04.017_bib0295 article-title: Group technology based adaptive cell formation using predator–prey genetic algorithm publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2011.07.021 – volume: 32 start-page: 20 year: 2013 ident: 10.1016/j.jmsy.2017.04.017_bib0145 article-title: Development of bacteria foraging optimization algorithm for cell formation in cellular manufacturing system considering cell load variations publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2012.07.014 – volume: 28 start-page: 170 issue: 2 year: 2015 ident: 10.1016/j.jmsy.2017.04.017_bib0155 article-title: Design and reconfiguration models for dynamic cellular manufacturing to handle market changes publication-title: Int J Comput Integr Manuf doi: 10.1080/0951192X.2013.874590 – volume: 38 start-page: 1237 year: 2014 ident: 10.1016/j.jmsy.2017.04.017_bib0305 article-title: A new mathematical model towards the integration of cell formation with operator assignment and inter-cell layout problems in a dynamic environment publication-title: Appl Math Modell doi: 10.1016/j.apm.2013.08.026 – volume: 20 start-page: 63 year: 2007 ident: 10.1016/j.jmsy.2017.04.017_bib0105 article-title: Grouping efficiency measures and their impact on factory measures for the machine-part cell formation problem: a simulation study publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2006.04.001 – volume: 25 start-page: 625 issue: 7 year: 2012 ident: 10.1016/j.jmsy.2017.04.017_bib0125 article-title: Multi-objective genetic algorithm for cell formation problem considering cellular layout and operations scheduling publication-title: Int J Comput Integr Manuf doi: 10.1080/0951192X.2012.665182 – volume: 40 start-page: 1514 issue: 2 year: 2016 ident: 10.1016/j.jmsy.2017.04.017_bib0015 article-title: Development of comprehensive model and BFO algorithm for dynamic cellular manufacturing system publication-title: Appl Math Modell doi: 10.1016/j.apm.2015.09.004 – volume: 16 start-page: 491 year: 2000 ident: 10.1016/j.jmsy.2017.04.017_bib0235 article-title: An adaptive genetic algorithm for manufacturing cell formation publication-title: Int J Adv Manuf Technol doi: 10.1007/s001700070057 – volume: 34 start-page: 1609 year: 2008 ident: 10.1016/j.jmsy.2017.04.017_bib0110 article-title: A simulated annealing algorithm for manufacturing cell formation problems publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.01.012 – volume: 244 start-page: 117 issue: 1 year: 2015 ident: 10.1016/j.jmsy.2017.04.017_bib0260 article-title: Job-shop production scheduling with reverse flows publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2015.01.013 – volume: 98 start-page: 323 year: 2016 ident: 10.1016/j.jmsy.2017.04.017_bib0175 article-title: Multi-objective dynamic cell formation problem: a stochastic programming approach publication-title: Comput Ind Eng doi: 10.1016/j.cie.2016.03.026 – year: 2008 ident: 10.1016/j.jmsy.2017.04.017_bib0220 – volume: 39 start-page: 3651 issue: 16 year: 2001 ident: 10.1016/j.jmsy.2017.04.017_bib0215 article-title: CF-GGA: a grouping genetic algorithm for the cell formation problem publication-title: Int J Prod Res doi: 10.1080/00207540110068781 – volume: 19 start-page: 305 issue: 5 year: 2000 ident: 10.1016/j.jmsy.2017.04.017_bib0085 article-title: The trade-off between intracell and intercell moves in group technology cell formation publication-title: J Manuf Syst doi: 10.1016/S0278-6125(01)89003-8 – volume: 38 start-page: 46 year: 2016 ident: 10.1016/j.jmsy.2017.04.017_bib0020 article-title: A bi-objective model in sustainable dynamic cell formation problem with skill-based worker assignment publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2015.11.001 – volume: 141 start-page: 639 year: 2013 ident: 10.1016/j.jmsy.2017.04.017_bib0070 article-title: A tabu search approach for cell scheduling problem with makespan criterion publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2012.10.001 – volume: 25 start-page: 1113 issue: 5 year: 2014 ident: 10.1016/j.jmsy.2017.04.017_bib0205 article-title: Generalized cell formation: iterative versus simultaneous resolution with grouping genetic algorithm publication-title: J Intell Manuf doi: 10.1007/s10845-013-0749-7 – volume: 38 start-page: 2401 year: 2011 ident: 10.1016/j.jmsy.2017.04.017_bib0195 article-title: A hybrid grouping genetic algorithm for reviewer group construction problem publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.08.029 – volume: 60 start-page: 7 year: 2011 ident: 10.1016/j.jmsy.2017.04.017_bib0120 article-title: An efficient tabu search algorithm to the cell formation problem with alternative routings and machine reliability considerations publication-title: Comput Ind Eng doi: 10.1016/j.cie.2010.08.016 – volume: 40 start-page: 169 issue: 1 year: 2016 ident: 10.1016/j.jmsy.2017.04.017_bib0055 article-title: A robust optimization approach for an integrated dynamic cellular manufacturing system and production planning with unreliable machines publication-title: Appl Math Modell doi: 10.1016/j.apm.2015.05.005 – start-page: 205 year: 2012 ident: 10.1016/j.jmsy.2017.04.017_bib0265 article-title: Genetic algorithms for manufacturing process planning – volume: 34 start-page: 2059 year: 2007 ident: 10.1016/j.jmsy.2017.04.017_bib0100 article-title: Keeling A hybrid grouping genetic algorithm for the cell formation problem publication-title: Comput Oper Res doi: 10.1016/j.cor.2005.08.010 – year: 2006 ident: 10.1016/j.jmsy.2017.04.017_bib0185 – volume: 56 start-page: 1340 year: 2009 ident: 10.1016/j.jmsy.2017.04.017_bib0310 article-title: Manufacturing cell formation with production data using neural networks publication-title: Comput Ind Eng doi: 10.1016/j.cie.2008.08.003 – volume: 61 start-page: 171 year: 2011 ident: 10.1016/j.jmsy.2017.04.017_bib0065 article-title: A simulated annealing algorithm for the job shop cell scheduling problem with intercellular moves and reentrant parts publication-title: Comput Ind Eng doi: 10.1016/j.cie.2011.03.007 – volume: 29 start-page: 343 issue: 2 year: 1991 ident: 10.1016/j.jmsy.2017.04.017_bib0300 article-title: A linear formulation of the machine-part cell formation problem publication-title: Int J Prod Res doi: 10.1080/00207549108930075 – volume: 6 issue: 2 year: 1986 ident: 10.1016/j.jmsy.2017.04.017_bib0010 article-title: Procedures for the part family/machine group identification problem in cellular manufacturing publication-title: J Oper Manage doi: 10.1016/0272-6963(86)90021-5 – volume: 66 start-page: 781 year: 2013 ident: 10.1016/j.jmsy.2017.04.017_bib0030 article-title: Clustering algorithm for solving group technology problem with multiple process routings publication-title: Comput Ind Eng doi: 10.1016/j.cie.2013.09.002 – volume: 35 start-page: 155 year: 2015 ident: 10.1016/j.jmsy.2017.04.017_bib0160 article-title: Design of robust cellular manufacturing system for dynamic part population considering multiple processing routes using genetic algorithm publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2014.09.008 – volume: 39 start-page: 9695 year: 2012 ident: 10.1016/j.jmsy.2017.04.017_bib0200 article-title: A new grouping genetic algorithm for clustering problems publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.02.149 – volume: 190 start-page: 662 year: 2007 ident: 10.1016/j.jmsy.2017.04.017_bib0280 article-title: Designing a new mathematical model for cellular manufacturing system based on cell utilization publication-title: Appl Math Comput doi: 10.1016/j.amc.2007.01.060 – volume: 57 start-page: 1155 year: 2011 ident: 10.1016/j.jmsy.2017.04.017_bib0025 article-title: Cristina Mora A hybrid procedure for machine duplication in cellular manufacturing systems publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-011-3334-2 – volume: 178 start-page: 634 year: 2007 ident: 10.1016/j.jmsy.2017.04.017_bib0255 article-title: Ensuring population diversity in genetic algorithms: a technical note with application to the cell formation problem publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2006.02.012 – volume: 39 start-page: 2642 issue: 39 year: 2012 ident: 10.1016/j.jmsy.2017.04.017_bib0245 article-title: Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing publication-title: Comput Oper Res doi: 10.1016/j.cor.2012.01.012 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.jmsy.2017.04.017_bib0285 article-title: No free lunch theorems for optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – volume: 51 start-page: 257 year: 2000 ident: 10.1016/j.jmsy.2017.04.017_bib0080 article-title: Grouping genetic algorithms: an efficient method to solve the cell formation problem publication-title: Math Comput Simul doi: 10.1016/S0378-4754(99)00122-6 – year: 1992 ident: 10.1016/j.jmsy.2017.04.017_bib0225 |
SSID | ssj0012402 |
Score | 2.2552836 |
Snippet | [Display omitted]
•Proposes Cellular Manufacturing Systems (CMS) model that evolves integrated structural and operational design decisions.•Presents a... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 115 |
SubjectTerms | Adaptive parameters Cell formation Cellular manufacturing system Genetic algorithm Grouping genetic algorithm |
Title | An adjustable grouping genetic algorithm for the design of cellular manufacturing system integrating structural and operational parameters |
URI | https://dx.doi.org/10.1016/j.jmsy.2017.04.017 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4IHPwZiqFbrflSIgENXJREm7NvqoQKETw4MUf4K92ZtsSTAwHT03b3aTZ2c58s_vNt4xdY9Lhp0K1vcDEChMU5XtKpMazbW1D8pmtlKqRnwaiP-QPo3BUYd2yFoZolYXvz32689bFk0Yxmo3FeNx4pj0zF59Jcj1yOqacRzTLb7_WNI8m7R64dRbMlqh1UTiTc7wms-Un0bsiJ3fqDi37IzhtBJzeAdsvkCJ08o85ZBWbHbG9Df3AY_bdyUCaCdVAqakFV6GBLwAnBdUmgpy-zjH5f5sBQlNAqAfGETZgngKt2BMFFWYy-6DyBlevCLmyM5QqEu6Rk5gleQ6QmYH5wr4XK4hAwuEzItQsT9iwd_fS7XvF4Qqe5k2-8iIttRI8FSRQZnXcUtpQdhNGkfbRGwsdWD8ITUvxwAipQ82F9XUQ4g-sYs2DU1bN5pk9YyACI2UYERhIeSxtbBBTmFS3EWykiH9qrFmOaqIL5XE6AGOalBSzSUKWSMgSic8TvNTYzbrPItfd2No6LI2V_Jo9CQaGLf3O_9nvgu3SXU7bvWRVtIO9QnCyUnU3--psp3P_2B_8AB7l6HE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQOQAHxCrKOgduKGpobCc9VghUtl4AiZvlLUDVphXLgV_gq5lxHAQS4sApkp2RItuZxX7vmbFDLDrSUppekrnCYIFi0sTI0iW-Z70gn9ktiY18PZSDO35xL-7n2EnDhSFYZfT9tU8P3jq2dOJodmZPT50bOjML8Zkk13PSMZ0ndSrRYvP988vB8OswgQ4QwlYLFkxkELkzNcxrNHl5J4RXHhRPw71lv8SnbzHnbIUtx2QR-vX3rLI5X62xpW8Sguvso1-BdiOiQZmxh0DSwA7AdUH0RNDjhynW_48TwOwUMNsDFzAbMC2BNu0JhQoTXb0RwyFQFqEWd4ZGSCI0BZVZUugAXTmYzvxz3EQE0g6fEKbmZYPdnZ3engySeL9CYvkxf01yq62RvJSkUeZt0TXWUYEj8tym6JClzXyaCdc1PHNSW2G59KnNBP7DprA822Stalr5LQYyc1qLnPKBkhfaFw7TClfaHuYbJaZAbXbcjKqyUXyc7sAYqwZlNlI0E4pmQqVc4aPNjr5sZrX0xp9vi2ay1I8FpDA2_GG3_U-7A7YwuL2-Ulfnw8sdtkg9NYp3l7VwTvwe5iqvZj-uxU8RV-si |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adjustable+grouping+genetic+algorithm+for+the+design+of+cellular+manufacturing+system+integrating+structural+and+operational+parameters&rft.jtitle=Journal+of+manufacturing+systems&rft.au=Jawahar%2C+N.&rft.au=Subhaa%2C+R.&rft.date=2017-07-01&rft.issn=0278-6125&rft.volume=44&rft.spage=115&rft.epage=142&rft_id=info:doi/10.1016%2Fj.jmsy.2017.04.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmsy_2017_04_017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-6125&client=summon |