An adjustable grouping genetic algorithm for the design of cellular manufacturing system integrating structural and operational parameters

[Display omitted] •Proposes Cellular Manufacturing Systems (CMS) model that evolves integrated structural and operational design decisions.•Presents a non-linear & linear mathematical formulation for the proposed CMS model.•Proposes Adjustable Grouping Genetic Algorithm (AGGA) with features to a...

Full description

Saved in:
Bibliographic Details
Published inJournal of manufacturing systems Vol. 44; pp. 115 - 142
Main Authors Jawahar, N., Subhaa, R.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Proposes Cellular Manufacturing Systems (CMS) model that evolves integrated structural and operational design decisions.•Presents a non-linear & linear mathematical formulation for the proposed CMS model.•Proposes Adjustable Grouping Genetic Algorithm (AGGA) with features to adjust coding for machine duplication environment.•AGGA regulates genetic parameters towards convergence in a computationally efficient manner.•Discusses the means of extending the model and AGGA to other clustering applications. This paper presents non-linear and linear formulations for the design of a Cellular Manufacturing Systems (CMS) modeled integrating structural and operational decision parameters, and a Genetic Algorithm (GA) based on self-regulating adaptive operators. The proposed CMS model evolves the structural design decisions of number of cells, and parts – machines assignment to cells, along with operational decisions of scheduling under machine duplications and alternate routings/cross-flow environments. The distinctive features of the CMS model under consideration are: i) integration of cost elements addressing both structural and operational issues in the design of CMS; ii) capable of evolving better CMS design decisions in terms of operational cost when compared to the literature part-machine grouping decisions; iii) suitable for variety of manufacturing system designs by relaxing the model constraints. Besides, this paper proposes a new variant of Grouping Genetic Algorithm namely Adjustable Grouping Genetic Algorithm (AGGA) that has features to adjust the coding suitable for machine duplication environment of the proposed CMS model and regulate genetic parameters towards convergence. It is shown, through comparisons with Simulated Annealing (SA) algorithm, Simple Genetic Algorithm (SGA) and also optimal solutions obtained via mathematical model relaxed to fixed number of cells, that AGGA is capable of evolving optimal or near optimal solutions in a computationally efficient manner.
AbstractList [Display omitted] •Proposes Cellular Manufacturing Systems (CMS) model that evolves integrated structural and operational design decisions.•Presents a non-linear & linear mathematical formulation for the proposed CMS model.•Proposes Adjustable Grouping Genetic Algorithm (AGGA) with features to adjust coding for machine duplication environment.•AGGA regulates genetic parameters towards convergence in a computationally efficient manner.•Discusses the means of extending the model and AGGA to other clustering applications. This paper presents non-linear and linear formulations for the design of a Cellular Manufacturing Systems (CMS) modeled integrating structural and operational decision parameters, and a Genetic Algorithm (GA) based on self-regulating adaptive operators. The proposed CMS model evolves the structural design decisions of number of cells, and parts – machines assignment to cells, along with operational decisions of scheduling under machine duplications and alternate routings/cross-flow environments. The distinctive features of the CMS model under consideration are: i) integration of cost elements addressing both structural and operational issues in the design of CMS; ii) capable of evolving better CMS design decisions in terms of operational cost when compared to the literature part-machine grouping decisions; iii) suitable for variety of manufacturing system designs by relaxing the model constraints. Besides, this paper proposes a new variant of Grouping Genetic Algorithm namely Adjustable Grouping Genetic Algorithm (AGGA) that has features to adjust the coding suitable for machine duplication environment of the proposed CMS model and regulate genetic parameters towards convergence. It is shown, through comparisons with Simulated Annealing (SA) algorithm, Simple Genetic Algorithm (SGA) and also optimal solutions obtained via mathematical model relaxed to fixed number of cells, that AGGA is capable of evolving optimal or near optimal solutions in a computationally efficient manner.
Author Jawahar, N.
Subhaa, R.
Author_xml – sequence: 1
  givenname: N.
  surname: Jawahar
  fullname: Jawahar, N.
  email: jawahartce@yahoo.co.uk, jawahartce@tce.edu
  organization: Department of Mechanical Engineering,Thiagarajar College of Engineering, Madurai, 625 015, India
– sequence: 2
  givenname: R.
  surname: Subhaa
  fullname: Subhaa, R.
  email: rsubhaa@yahoo.com
  organization: Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai, 625 015, India
BookMark eNp9kMFO5TAMRSMEEg-YH5hVfuCVJE3TIrFBaAaQkNjAOnJdt6Rqk6ckHen9wnz1tDArFqyu7atj2feCnfrgibGfUhRSSHM9FuOcjoUSsi6ELlY5YTvZ1M3eGK1O2U6orZaqOmcXKY1CSKWF2rG_d55DNy4pQzsRH2JYDs4PfCBP2SGHaQjR5feZ9yHy_E68o-QGz0PPkaZpmSDyGfzSA-Ylbmg6pkwzdz7TECF_jHJcNhsmDr7j4UCbEfzaHyDCTJliumJnPUyJfvzXS_b2-9fr_eP--eXh6f7ueY9a6ryvEbA1uje6kpKwUS12jVGmqmsUBGiwJFFWnWp12RnACrUhgWVV3-i2QV1esuZzL8aQUqTeossf5-QIbrJS2C1TO9otU7tlaoW2q6yo-oIeopshHr-Hbj8hWp_64yjahI48UuciYbZdcN_h_wAs3pgv
CitedBy_id crossref_primary_10_1016_j_cie_2025_110946
crossref_primary_10_1016_j_jmsy_2021_05_012
crossref_primary_10_1109_TSMC_2023_3253471
crossref_primary_10_1016_j_jmsy_2020_08_014
crossref_primary_10_3390_app8122382
crossref_primary_10_1016_j_jmsy_2020_07_012
crossref_primary_10_1016_j_cie_2018_11_050
crossref_primary_10_1088_1742_6596_1582_1_012076
crossref_primary_10_1016_j_jmsy_2020_02_013
crossref_primary_10_1109_JSYST_2019_2963222
crossref_primary_10_1007_s00500_021_06402_z
crossref_primary_10_1007_s00521_024_10215_0
crossref_primary_10_1016_j_jmsy_2020_06_011
crossref_primary_10_1299_jamdsm_2021jamdsm0069
crossref_primary_10_1080_00207543_2022_2105763
crossref_primary_10_3390_mca30020031
crossref_primary_10_1016_j_cie_2020_106565
crossref_primary_10_1016_j_cie_2022_108293
crossref_primary_10_1002_adem_202100646
crossref_primary_10_1016_j_jmsy_2019_10_002
crossref_primary_10_1080_17509653_2019_1655674
crossref_primary_10_1016_j_swevo_2020_100796
crossref_primary_10_1142_S0219686722500172
Cites_doi 10.1080/095372800414151
10.1007/s10696-014-9194-y
10.1016/j.cie.2015.10.014
10.1016/j.jmsy.2014.09.005
10.1016/j.cie.2010.09.003
10.1016/S0305-0548(02)00085-0
10.1007/BF01301703
10.1016/j.cie.2007.06.021
10.1016/j.asoc.2011.03.013
10.1080/00207540500336108
10.1016/j.asoc.2014.04.027
10.1016/j.eswa.2005.04.009
10.1007/s10845-013-0859-2
10.1016/j.asoc.2012.11.011
10.1016/j.cie.2012.09.016
10.1080/00207543.2013.825745
10.1016/j.cie.2012.05.006
10.1016/j.cie.2004.07.003
10.1080/00207540701673457
10.1016/j.cie.2013.07.009
10.1016/j.jmsy.2014.11.018
10.1016/j.eswa.2008.02.060
10.1016/j.jmsy.2011.07.007
10.1007/s10845-010-0395-2
10.1016/j.asoc.2011.07.021
10.1016/j.jmsy.2012.07.014
10.1080/0951192X.2013.874590
10.1016/j.apm.2013.08.026
10.1016/j.engappai.2006.04.001
10.1080/0951192X.2012.665182
10.1016/j.apm.2015.09.004
10.1007/s001700070057
10.1016/j.eswa.2007.01.012
10.1016/j.ejor.2015.01.013
10.1016/j.cie.2016.03.026
10.1080/00207540110068781
10.1016/S0278-6125(01)89003-8
10.1016/j.jmsy.2015.11.001
10.1016/j.ijpe.2012.10.001
10.1007/s10845-013-0749-7
10.1016/j.eswa.2010.08.029
10.1016/j.cie.2010.08.016
10.1016/j.apm.2015.05.005
10.1016/j.cor.2005.08.010
10.1016/j.cie.2008.08.003
10.1016/j.cie.2011.03.007
10.1080/00207549108930075
10.1016/0272-6963(86)90021-5
10.1016/j.cie.2013.09.002
10.1016/j.jmsy.2014.09.008
10.1016/j.eswa.2012.02.149
10.1016/j.amc.2007.01.060
10.1007/s00170-011-3334-2
10.1016/j.ejor.2006.02.012
10.1016/j.cor.2012.01.012
10.1109/4235.585893
10.1016/S0378-4754(99)00122-6
ContentType Journal Article
Copyright 2017 The Society of Manufacturing Engineers
Copyright_xml – notice: 2017 The Society of Manufacturing Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.jmsy.2017.04.017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-6642
EndPage 142
ExternalDocumentID 10_1016_j_jmsy_2017_04_017
S0278612517300705
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
3EH
3V.
4.4
457
4G.
5GY
5VS
7-5
71M
7WY
883
88I
8AO
8FE
8FG
8FL
8FW
8G5
8P~
8R4
8R5
9JN
9M8
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJCF
ABJNI
ABMAC
ABUWG
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BEZIV
BGLVJ
BJAXD
BKOJK
BKOMP
BLXMC
BPHCQ
C1A
CCPQU
CS3
D-I
DU5
DWQXO
E3Z
EBS
EFJIC
EFLBG
EJD
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FRNLG
FYGXN
G-2
GBLVA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K60
K6V
K6~
K7-
KOM
L6V
LY7
M0C
M0F
M0N
M2O
M2P
M41
M7S
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PQBIZ
PQQKQ
PRG
PROAC
PTHSS
Q2X
Q38
R2-
RIG
ROL
RPZ
RWL
S0X
SDF
SES
SET
SPC
SPCBC
SST
SSZ
T5K
TAE
TN5
U5U
WH7
WUQ
ZHY
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
PHGZM
PHGZT
PQBZA
SSH
ID FETCH-LOGICAL-c414t-7cacb64f64511ec82bcd8626577c0eac6c3e035d2b43d6ac5c46e0c35794b8c43
IEDL.DBID .~1
ISSN 0278-6125
IngestDate Thu Apr 24 23:01:53 EDT 2025
Tue Jul 01 00:55:34 EDT 2025
Fri Feb 23 02:15:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cell formation
Grouping genetic algorithm
Cellular manufacturing system
Genetic algorithm
Adaptive parameters
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-7cacb64f64511ec82bcd8626577c0eac6c3e035d2b43d6ac5c46e0c35794b8c43
PageCount 28
ParticipantIDs crossref_citationtrail_10_1016_j_jmsy_2017_04_017
crossref_primary_10_1016_j_jmsy_2017_04_017
elsevier_sciencedirect_doi_10_1016_j_jmsy_2017_04_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of manufacturing systems
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wolpert, Macready (bib0285) 1997; 1
Website reference
Gökhan, Süer (bib0170) 2015; 35
Askin (bib0005) 2013; 51
Goncalves Jose Fernando, Mauricio Resende (bib0315) 2004; 47
Tavakkoli-Moghaddam, Ranjbar-Bourani, Amin, Siadat (bib0135) 2012; 23
Siva Sathya, Radhika (bib0275) 2013; 13
Bortolini, Manzini, Accorsi (bib0025) 2011; 57
Abdeljaouad, Bahroun, Omrane, Fondrevelle (bib0260) 2015; 244
Sudhakara Pandian, Mahapatra (bib0310) 2009; 56
Brown, Sumichrast (bib0215) 2001; 39
Solimanpur, Elmi (bib0070) 2013; 141
Paydar, Mahdavi, Sharafuddin, Solimanpur (bib0045) 2010; 59
Niakan, Armand Baboli, Thierry Moyaux, Valérie Botta-Genoulaz (bib0020) 2016; 38
Elmi, Solimanpur, Topaloglu, Elmi (bib0065) 2011; 61
Kia, Baboli, Javadian, Tavakkoli-Moghaddam, Kazemi, Khorrami (bib0245) 2012; 39
Arkat, Farahani, Ahmadizar (bib0125) 2012; 25
Mahdavi, Javadi, Fallah-Alipour, Slomp (bib0280) 2007; 190
Zohrevand, Rafiei, Zohrevand (bib0175) 2016; 98
Wu, Chang, Chung (bib0110) 2008; 34
James, Brown, Kellie (bib0100) 2007; 34
Chung, Wu, Chang (bib0120) 2011; 60
Chang, Wu, Wu (bib0050) 2013; 66
.
Banerjee, Das (bib0295) 2012; 12
Nouri (bib0015) 2016; 40
Ma, Zhang (bib0265) 2012
Mahdavi, Aalaei, Paydar, Solimanpur (bib0130) 2012; 31
Tunnukij, Hicks (bib0210) 2009; 47
Chattopadhyay, Sengupta, Ghosh, Dan, Mazumdar (bib0180) 2013; 64
Bartz-Beielstein, Chiarandini, Paquete, Paquete (bib0290) 2017
Renna, Ambrico (bib0155) 2015; 28
Wu, Chung, Chang (bib0115) 2009; 36
De Lit, Falkenauer, Delchambre (bib0080) 2000; 51
Egilmez, Süer, Huang (bib0140) 2012; 63
Deep, Singh (bib0160) 2015; 35
Vin, Delchambre (bib0205) 2014; 25
Chan, Chung, Chan (bib0230) 2005; 29
Sakhaii, Tavakkoli-Moghaddam, Bagheri, Vatani (bib0055) 2016; 40
Goldberg (bib0185) 2006
Wu, Chu, Wang, Yue (bib0040) 2007; 53
Abduelmola, Taboun (bib0190) 2000; 11
Nsakanda, Price, Diaby, Gravel (bib0255) 2007; 178
Agustı́n-Blas, Salcedo-Sanz, Jiménez-Fernández, Carro-Calvo, Del Ser, Portilla-Figueras (bib0200) 2012; 39
Jawahar, Aravindan, Ponnambalam (bib0270) 1998; 14
Wemmerlov, Hyer (bib0010) 1986; 6
Brown (bib0035) 2014; 37
Hu, Yasuda (bib0095) 2006; 44
Nouri, Hong (bib0145) 2013; 32
Adil, Rajamani (bib0085) 2000; 19
Boctor (bib0300) 1991; 29
Rezaeian, Javadian, Tavakkoli-Moghaddam, Jolai (bib0060) 2011; 11
Sivanandam, Deepa (bib0220) 2008
Bayram, Şahi̇n (bib0240) 2016; 91
Alhourani (bib0030) 2013; 66
Li, Meng, Li, Tian (bib0075) 2016; 27
Chattopadhyay, Dan, Mazumdar (bib0150) 2014; 22
Chen, Fan, Ma, Zeng (bib0195) 2011; 38
Mak, Wong, Wang (bib0235) 2000; 16
Keeling, Brown, James (bib0105) 2007; 20
De Jong, Jayshree Sharma (bib0225) 1992
Bagheri, Bashiri (bib0305) 2014; 38
Erozan, Orhan Torkul, Ozden Ustun (bib0165) 2015; 27
Brown, Sumichrast (bib0090) 2003; 30
Chan (10.1016/j.jmsy.2017.04.017_bib0230) 2005; 29
Wu (10.1016/j.jmsy.2017.04.017_bib0110) 2008; 34
Zohrevand (10.1016/j.jmsy.2017.04.017_bib0175) 2016; 98
Bartz-Beielstein (10.1016/j.jmsy.2017.04.017_bib0290) 2017
Arkat (10.1016/j.jmsy.2017.04.017_bib0125) 2012; 25
Erozan (10.1016/j.jmsy.2017.04.017_bib0165) 2015; 27
Niakan (10.1016/j.jmsy.2017.04.017_bib0020) 2016; 38
Bayram (10.1016/j.jmsy.2017.04.017_bib0240) 2016; 91
Nsakanda (10.1016/j.jmsy.2017.04.017_bib0255) 2007; 178
Paydar (10.1016/j.jmsy.2017.04.017_bib0045) 2010; 59
Bagheri (10.1016/j.jmsy.2017.04.017_bib0305) 2014; 38
Boctor (10.1016/j.jmsy.2017.04.017_bib0300) 1991; 29
Sakhaii (10.1016/j.jmsy.2017.04.017_bib0055) 2016; 40
Jawahar (10.1016/j.jmsy.2017.04.017_bib0270) 1998; 14
Solimanpur (10.1016/j.jmsy.2017.04.017_bib0070) 2013; 141
De Lit (10.1016/j.jmsy.2017.04.017_bib0080) 2000; 51
Banerjee (10.1016/j.jmsy.2017.04.017_bib0295) 2012; 12
Adil (10.1016/j.jmsy.2017.04.017_bib0085) 2000; 19
Gökhan (10.1016/j.jmsy.2017.04.017_bib0170) 2015; 35
Chattopadhyay (10.1016/j.jmsy.2017.04.017_bib0150) 2014; 22
Abduelmola (10.1016/j.jmsy.2017.04.017_bib0190) 2000; 11
Goncalves Jose Fernando (10.1016/j.jmsy.2017.04.017_bib0315) 2004; 47
Keeling (10.1016/j.jmsy.2017.04.017_bib0105) 2007; 20
Egilmez (10.1016/j.jmsy.2017.04.017_bib0140) 2012; 63
Renna (10.1016/j.jmsy.2017.04.017_bib0155) 2015; 28
Ma (10.1016/j.jmsy.2017.04.017_bib0265) 2012
Wemmerlov (10.1016/j.jmsy.2017.04.017_bib0010) 1986; 6
Sivanandam (10.1016/j.jmsy.2017.04.017_bib0220) 2008
Tunnukij (10.1016/j.jmsy.2017.04.017_bib0210) 2009; 47
Wu (10.1016/j.jmsy.2017.04.017_bib0040) 2007; 53
Brown (10.1016/j.jmsy.2017.04.017_bib0090) 2003; 30
Kia (10.1016/j.jmsy.2017.04.017_bib0245) 2012; 39
Chang (10.1016/j.jmsy.2017.04.017_bib0050) 2013; 66
Mahdavi (10.1016/j.jmsy.2017.04.017_bib0280) 2007; 190
Elmi (10.1016/j.jmsy.2017.04.017_bib0065) 2011; 61
Wu (10.1016/j.jmsy.2017.04.017_bib0115) 2009; 36
Hu (10.1016/j.jmsy.2017.04.017_bib0095) 2006; 44
Mak (10.1016/j.jmsy.2017.04.017_bib0235) 2000; 16
Brown (10.1016/j.jmsy.2017.04.017_bib0215) 2001; 39
Chattopadhyay (10.1016/j.jmsy.2017.04.017_bib0180) 2013; 64
Vin (10.1016/j.jmsy.2017.04.017_bib0205) 2014; 25
James (10.1016/j.jmsy.2017.04.017_bib0100) 2007; 34
Goldberg (10.1016/j.jmsy.2017.04.017_bib0185) 2006
De Jong (10.1016/j.jmsy.2017.04.017_bib0225) 1992
Mahdavi (10.1016/j.jmsy.2017.04.017_bib0130) 2012; 31
Agustı́n-Blas (10.1016/j.jmsy.2017.04.017_bib0200) 2012; 39
Sudhakara Pandian (10.1016/j.jmsy.2017.04.017_bib0310) 2009; 56
Siva Sathya (10.1016/j.jmsy.2017.04.017_bib0275) 2013; 13
Bortolini (10.1016/j.jmsy.2017.04.017_bib0025) 2011; 57
Chung (10.1016/j.jmsy.2017.04.017_bib0120) 2011; 60
Nouri (10.1016/j.jmsy.2017.04.017_bib0015) 2016; 40
Rezaeian (10.1016/j.jmsy.2017.04.017_bib0060) 2011; 11
Abdeljaouad (10.1016/j.jmsy.2017.04.017_bib0260) 2015; 244
10.1016/j.jmsy.2017.04.017_bib0250
Askin (10.1016/j.jmsy.2017.04.017_bib0005) 2013; 51
Wolpert (10.1016/j.jmsy.2017.04.017_bib0285) 1997; 1
Chen (10.1016/j.jmsy.2017.04.017_bib0195) 2011; 38
Tavakkoli-Moghaddam (10.1016/j.jmsy.2017.04.017_bib0135) 2012; 23
Li (10.1016/j.jmsy.2017.04.017_bib0075) 2016; 27
Nouri (10.1016/j.jmsy.2017.04.017_bib0145) 2013; 32
Brown (10.1016/j.jmsy.2017.04.017_bib0035) 2014; 37
Alhourani (10.1016/j.jmsy.2017.04.017_bib0030) 2013; 66
Deep (10.1016/j.jmsy.2017.04.017_bib0160) 2015; 35
References_xml – volume: 59
  start-page: 929
  year: 2010
  end-page: 936
  ident: bib0045
  article-title: Applying simulated annealing for designing cellular manufacturing systems using MDmTSPq
  publication-title: Comput Ind Eng
– volume: 29
  start-page: 364
  year: 2005
  end-page: 371
  ident: bib0230
  article-title: An adaptive genetic algorithm with dominated genes for distributed scheduling problems
  publication-title: Expert Syst Appl
– volume: 178
  start-page: 634
  year: 2007
  end-page: 638
  ident: bib0255
  article-title: Ensuring population diversity in genetic algorithms: a technical note with application to the cell formation problem
  publication-title: Eur J Oper Res
– year: 2008
  ident: bib0220
  article-title: Principles of Soft Computing
– volume: 25
  start-page: 625
  year: 2012
  end-page: 635
  ident: bib0125
  article-title: Multi-objective genetic algorithm for cell formation problem considering cellular layout and operations scheduling
  publication-title: Int J Comput Integr Manuf
– volume: 14
  start-page: 588
  year: 1998
  end-page: 607
  ident: bib0270
  article-title: A genetic algorithm for scheduling flexible manufacturing systems
  publication-title: Int J Adv Manuf Technol
– volume: 16
  start-page: 491
  year: 2000
  end-page: 497
  ident: bib0235
  article-title: An adaptive genetic algorithm for manufacturing cell formation
  publication-title: Int J Adv Manuf Technol
– volume: 91
  start-page: 10
  year: 2016
  end-page: 29
  ident: bib0240
  article-title: A comprehensive mathematical model for dynamic cellular manufacturing system design and linear programming embedded hybrid solution techniques
  publication-title: Comput Ind Eng
– volume: 27
  start-page: 283
  year: 2016
  end-page: 296
  ident: bib0075
  article-title: An ACO-based intercell scheduling approach for job shop cells with multiple single processing machines and one batch processing machine
  publication-title: J Intell Manuf
– volume: 44
  start-page: 2133
  year: 2006
  end-page: 2167
  ident: bib0095
  article-title: Minimising material handling cost in cell formation with alternative processing routes by grouping genetic algorithm
  publication-title: Int J Prod Res
– volume: 98
  start-page: 323
  year: 2016
  end-page: 332
  ident: bib0175
  article-title: Multi-objective dynamic cell formation problem: a stochastic programming approach
  publication-title: Comput Ind Eng
– volume: 39
  start-page: 3651
  year: 2001
  end-page: 3669
  ident: bib0215
  article-title: CF-GGA: a grouping genetic algorithm for the cell formation problem
  publication-title: Int J Prod Res
– year: 1992
  ident: bib0225
  article-title: Generation Gaps revisited
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib0285
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
– volume: 56
  start-page: 1340
  year: 2009
  end-page: 1347
  ident: bib0310
  article-title: Manufacturing cell formation with production data using neural networks
  publication-title: Comput Ind Eng
– volume: 34
  start-page: 1609
  year: 2008
  end-page: 1617
  ident: bib0110
  article-title: A simulated annealing algorithm for manufacturing cell formation problems
  publication-title: Expert Syst Appl
– volume: 38
  start-page: 46
  year: 2016
  end-page: 62
  ident: bib0020
  article-title: A bi-objective model in sustainable dynamic cell formation problem with skill-based worker assignment
  publication-title: J Manuf Syst
– volume: 244
  start-page: 117
  year: 2015
  end-page: 128
  ident: bib0260
  article-title: Job-shop production scheduling with reverse flows
  publication-title: Eur J Oper Res
– volume: 35
  start-page: 136
  year: 2015
  end-page: 143
  ident: bib0170
  article-title: Stochastic cell loading to minimize nT subject to maximum acceptable probability of tardiness
  publication-title: J Manuf Syst
– volume: 64
  start-page: 256
  year: 2013
  end-page: 272
  ident: bib0180
  article-title: Neuro-genetic impact on cell formation methods of Cellular Manufacturing System design: a quantitative review and analysis
  publication-title: Comput Ind Eng
– volume: 38
  start-page: 1237
  year: 2014
  end-page: 1254
  ident: bib0305
  article-title: A new mathematical model towards the integration of cell formation with operator assignment and inter-cell layout problems in a dynamic environment
  publication-title: Appl Math Modell
– volume: 53
  start-page: 277
  year: 2007
  end-page: 289
  ident: bib0040
  article-title: Genetic algorithms for integrating cell formation with machine layout and scheduling
  publication-title: Comput Ind Eng
– volume: 60
  start-page: 7
  year: 2011
  end-page: 15
  ident: bib0120
  article-title: An efficient tabu search algorithm to the cell formation problem with alternative routings and machine reliability considerations
  publication-title: Comput Ind Eng
– volume: 36
  start-page: 3652
  year: 2009
  end-page: 3661
  ident: bib0115
  article-title: Hybrid simulated annealing algorithm with mutation operator to the cell formation problem with alternative process routings
  publication-title: Expert Syst Appl
– volume: 61
  start-page: 171
  year: 2011
  end-page: 178
  ident: bib0065
  article-title: A simulated annealing algorithm for the job shop cell scheduling problem with intercellular moves and reentrant parts
  publication-title: Comput Ind Eng
– volume: 39
  start-page: 2642
  year: 2012
  end-page: 2658
  ident: bib0245
  article-title: Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing
  publication-title: Comput Oper Res
– volume: 57
  start-page: 1155
  year: 2011
  end-page: 1173
  ident: bib0025
  article-title: Cristina Mora A hybrid procedure for machine duplication in cellular manufacturing systems
  publication-title: Int J Adv Manuf Technol
– volume: 28
  start-page: 170
  year: 2015
  end-page: 186
  ident: bib0155
  article-title: Design and reconfiguration models for dynamic cellular manufacturing to handle market changes
  publication-title: Int J Comput Integr Manuf
– year: 2006
  ident: bib0185
  article-title: Genetic Algorithms in search, Optimization and Machine Learning
– volume: 63
  start-page: 842
  year: 2012
  end-page: 854
  ident: bib0140
  article-title: Stochastic cellular manufacturing system design subject to maximum acceptable risk level
  publication-title: Comput Ind Eng
– volume: 66
  start-page: 438
  year: 2013
  end-page: 450
  ident: bib0050
  article-title: An efficient approach to determine cell formation, cell layout and intracellular machine sequence in cellular manufacturing systems
  publication-title: Comput Ind Eng
– year: 2017
  ident: bib0290
  article-title: Experimental Methods for the Analysis of Optimization Algorithms
– start-page: 205
  year: 2012
  end-page: 244
  ident: bib0265
  article-title: Genetic algorithms for manufacturing process planning
  publication-title: Variants of Evolutionary Algorithms for Real-World Applications
– volume: 51
  start-page: 257
  year: 2000
  end-page: 271
  ident: bib0080
  article-title: Grouping genetic algorithms: an efficient method to solve the cell formation problem
  publication-title: Math Comput Simul
– volume: 32
  start-page: 20
  year: 2013
  end-page: 31
  ident: bib0145
  article-title: Development of bacteria foraging optimization algorithm for cell formation in cellular manufacturing system considering cell load variations
  publication-title: J Manuf Syst
– volume: 35
  start-page: 155
  year: 2015
  end-page: 163
  ident: bib0160
  article-title: Design of robust cellular manufacturing system for dynamic part population considering multiple processing routes using genetic algorithm
  publication-title: J Manuf Syst
– volume: 27
  start-page: 30
  year: 2015
  end-page: 57
  ident: bib0165
  article-title: Proposal of a nonlinear multi-objective genetic algorithm using conic scalarization to the design of cellular manufacturing systems
  publication-title: Flexible Serv Manuf J
– volume: 40
  start-page: 169
  year: 2016
  end-page: 191
  ident: bib0055
  article-title: A robust optimization approach for an integrated dynamic cellular manufacturing system and production planning with unreliable machines
  publication-title: Appl Math Modell
– reference: Website reference:
– volume: 47
  start-page: 247
  year: 2004
  end-page: 273
  ident: bib0315
  article-title: An evolutionary algorithm for manufacturing cell formation
  publication-title: Comput Ind Eng
– volume: 51
  start-page: 6778
  year: 2013
  end-page: 6787
  ident: bib0005
  article-title: Contributions to the design and analysis of cellular manufacturing systems
  publication-title: Int J Prod Res
– volume: 66
  start-page: 781
  year: 2013
  end-page: 790
  ident: bib0030
  article-title: Clustering algorithm for solving group technology problem with multiple process routings
  publication-title: Comput Ind Eng
– volume: 31
  start-page: 214
  year: 2012
  end-page: 223
  ident: bib0130
  article-title: A new mathematical model for integrating all incidence matrices in multi- dimensional cellular manufacturing system
  publication-title: J Manuf Syst
– volume: 34
  start-page: 2059
  year: 2007
  end-page: 2079
  ident: bib0100
  article-title: Keeling A hybrid grouping genetic algorithm for the cell formation problem
  publication-title: Comput Oper Res
– volume: 22
  start-page: 528
  year: 2014
  end-page: 543
  ident: bib0150
  article-title: Comparison of visualization of optimal clustering using self-organizing map and growing hierarchical self-organizing map in cellular manufacturing system
  publication-title: Appl Soft Comput
– volume: 29
  start-page: 343
  year: 1991
  end-page: 356
  ident: bib0300
  article-title: A linear formulation of the machine-part cell formation problem
  publication-title: Int J Prod Res
– volume: 11
  start-page: 4195
  year: 2011
  end-page: 4202
  ident: bib0060
  article-title: A hybrid approach based on the genetic algorithm and neural network to design an incremental cellular manufacturing system
  publication-title: Appl Soft Comput
– volume: 39
  start-page: 9695
  year: 2012
  end-page: 9703
  ident: bib0200
  article-title: A new grouping genetic algorithm for clustering problems
  publication-title: Expert Syst Appl
– volume: 40
  start-page: 1514
  year: 2016
  end-page: 1531
  ident: bib0015
  article-title: Development of comprehensive model and BFO algorithm for dynamic cellular manufacturing system
  publication-title: Appl Math Modell
– volume: 13
  start-page: 2759
  year: 2013
  end-page: 2766
  ident: bib0275
  article-title: Convergence of nomadic genetic algorithm on benchmark mathematical functions
  publication-title: Appl Soft Comput
– volume: 30
  start-page: 1575
  year: 2003
  end-page: 1593
  ident: bib0090
  article-title: Impact of the replacement heuristic in a grouping genetic algorithm
  publication-title: Comput Oper Res
– volume: 6
  year: 1986
  ident: bib0010
  article-title: Procedures for the part family/machine group identification problem in cellular manufacturing
  publication-title: J Oper Manage
– volume: 19
  start-page: 305
  year: 2000
  end-page: 317
  ident: bib0085
  article-title: The trade-off between intracell and intercell moves in group technology cell formation
  publication-title: J Manuf Syst
– volume: 38
  start-page: 2401
  year: 2011
  end-page: 2411
  ident: bib0195
  article-title: A hybrid grouping genetic algorithm for reviewer group construction problem
  publication-title: Expert Syst Appl
– reference: .
– volume: 23
  start-page: 1127
  year: 2012
  end-page: 1139
  ident: bib0135
  article-title: A cell formation problem considering machine utilization and alternative process routes by scatter search
  publication-title: J Intell Manuf
– volume: 47
  start-page: 1989
  year: 2009
  end-page: 2007
  ident: bib0210
  article-title: An Enhanced Grouping Genetic Algorithm for solving the cell formation problem
  publication-title: Int J Prod Res
– volume: 25
  start-page: 1113
  year: 2014
  end-page: 1124
  ident: bib0205
  article-title: Generalized cell formation: iterative versus simultaneous resolution with grouping genetic algorithm
  publication-title: J Intell Manuf
– volume: 37
  start-page: 227
  year: 2014
  end-page: 232
  ident: bib0035
  article-title: A capacity constrained mathematical programming model for cellular manufacturing with exceptional elements
  publication-title: J Manuf Syst
– volume: 12
  start-page: 559
  year: 2012
  end-page: 572
  ident: bib0295
  article-title: Group technology based adaptive cell formation using predator–prey genetic algorithm
  publication-title: Appl Soft Comput
– volume: 11
  start-page: 589
  year: 2000
  end-page: 597
  ident: bib0190
  article-title: A simulated annealing algorithm for designing cellular manufacturing systems with productivity consideration
  publication-title: Prod Plann Control: Manage Oper
– volume: 141
  start-page: 639
  year: 2013
  end-page: 645
  ident: bib0070
  article-title: A tabu search approach for cell scheduling problem with makespan criterion
  publication-title: Int J Prod Econ
– volume: 20
  start-page: 63
  year: 2007
  end-page: 78
  ident: bib0105
  article-title: Grouping efficiency measures and their impact on factory measures for the machine-part cell formation problem: a simulation study
  publication-title: Eng Appl Artif Intell
– volume: 190
  start-page: 662
  year: 2007
  end-page: 670
  ident: bib0280
  article-title: Designing a new mathematical model for cellular manufacturing system based on cell utilization
  publication-title: Appl Math Comput
– volume: 11
  start-page: 589
  issue: 6
  year: 2000
  ident: 10.1016/j.jmsy.2017.04.017_bib0190
  article-title: A simulated annealing algorithm for designing cellular manufacturing systems with productivity consideration
  publication-title: Prod Plann Control: Manage Oper
  doi: 10.1080/095372800414151
– volume: 27
  start-page: 30
  issue: 1
  year: 2015
  ident: 10.1016/j.jmsy.2017.04.017_bib0165
  article-title: Proposal of a nonlinear multi-objective genetic algorithm using conic scalarization to the design of cellular manufacturing systems
  publication-title: Flexible Serv Manuf J
  doi: 10.1007/s10696-014-9194-y
– volume: 91
  start-page: 10
  year: 2016
  ident: 10.1016/j.jmsy.2017.04.017_bib0240
  article-title: A comprehensive mathematical model for dynamic cellular manufacturing system design and linear programming embedded hybrid solution techniques
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2015.10.014
– volume: 37
  start-page: 227
  year: 2014
  ident: 10.1016/j.jmsy.2017.04.017_bib0035
  article-title: A capacity constrained mathematical programming model for cellular manufacturing with exceptional elements
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2014.09.005
– volume: 59
  start-page: 929
  year: 2010
  ident: 10.1016/j.jmsy.2017.04.017_bib0045
  article-title: Applying simulated annealing for designing cellular manufacturing systems using MDmTSPq
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2010.09.003
– volume: 30
  start-page: 1575
  year: 2003
  ident: 10.1016/j.jmsy.2017.04.017_bib0090
  article-title: Impact of the replacement heuristic in a grouping genetic algorithm
  publication-title: Comput Oper Res
  doi: 10.1016/S0305-0548(02)00085-0
– volume: 14
  start-page: 588
  year: 1998
  ident: 10.1016/j.jmsy.2017.04.017_bib0270
  article-title: A genetic algorithm for scheduling flexible manufacturing systems
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/BF01301703
– volume: 53
  start-page: 277
  year: 2007
  ident: 10.1016/j.jmsy.2017.04.017_bib0040
  article-title: Genetic algorithms for integrating cell formation with machine layout and scheduling
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2007.06.021
– volume: 11
  start-page: 4195
  year: 2011
  ident: 10.1016/j.jmsy.2017.04.017_bib0060
  article-title: A hybrid approach based on the genetic algorithm and neural network to design an incremental cellular manufacturing system
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.03.013
– volume: 44
  start-page: 2133
  issue: 11
  year: 2006
  ident: 10.1016/j.jmsy.2017.04.017_bib0095
  article-title: Minimising material handling cost in cell formation with alternative processing routes by grouping genetic algorithm
  publication-title: Int J Prod Res
  doi: 10.1080/00207540500336108
– volume: 22
  start-page: 528
  year: 2014
  ident: 10.1016/j.jmsy.2017.04.017_bib0150
  article-title: Comparison of visualization of optimal clustering using self-organizing map and growing hierarchical self-organizing map in cellular manufacturing system
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.04.027
– volume: 29
  start-page: 364
  year: 2005
  ident: 10.1016/j.jmsy.2017.04.017_bib0230
  article-title: An adaptive genetic algorithm with dominated genes for distributed scheduling problems
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2005.04.009
– volume: 27
  start-page: 283
  issue: 2
  year: 2016
  ident: 10.1016/j.jmsy.2017.04.017_bib0075
  article-title: An ACO-based intercell scheduling approach for job shop cells with multiple single processing machines and one batch processing machine
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-013-0859-2
– volume: 13
  start-page: 2759
  year: 2013
  ident: 10.1016/j.jmsy.2017.04.017_bib0275
  article-title: Convergence of nomadic genetic algorithm on benchmark mathematical functions
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.11.011
– volume: 64
  start-page: 256
  year: 2013
  ident: 10.1016/j.jmsy.2017.04.017_bib0180
  article-title: Neuro-genetic impact on cell formation methods of Cellular Manufacturing System design: a quantitative review and analysis
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2012.09.016
– volume: 51
  start-page: 6778
  issue: 23–24
  year: 2013
  ident: 10.1016/j.jmsy.2017.04.017_bib0005
  article-title: Contributions to the design and analysis of cellular manufacturing systems
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2013.825745
– volume: 63
  start-page: 842
  year: 2012
  ident: 10.1016/j.jmsy.2017.04.017_bib0140
  article-title: Stochastic cellular manufacturing system design subject to maximum acceptable risk level
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2012.05.006
– volume: 47
  start-page: 247
  year: 2004
  ident: 10.1016/j.jmsy.2017.04.017_bib0315
  article-title: An evolutionary algorithm for manufacturing cell formation
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2004.07.003
– volume: 47
  start-page: 1989
  issue: 7
  year: 2009
  ident: 10.1016/j.jmsy.2017.04.017_bib0210
  article-title: An Enhanced Grouping Genetic Algorithm for solving the cell formation problem
  publication-title: Int J Prod Res
  doi: 10.1080/00207540701673457
– volume: 66
  start-page: 438
  year: 2013
  ident: 10.1016/j.jmsy.2017.04.017_bib0050
  article-title: An efficient approach to determine cell formation, cell layout and intracellular machine sequence in cellular manufacturing systems
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2013.07.009
– volume: 35
  start-page: 136
  year: 2015
  ident: 10.1016/j.jmsy.2017.04.017_bib0170
  article-title: Stochastic cell loading to minimize nT subject to maximum acceptable probability of tardiness
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2014.11.018
– volume: 36
  start-page: 3652
  year: 2009
  ident: 10.1016/j.jmsy.2017.04.017_bib0115
  article-title: Hybrid simulated annealing algorithm with mutation operator to the cell formation problem with alternative process routings
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.02.060
– volume: 31
  start-page: 214
  year: 2012
  ident: 10.1016/j.jmsy.2017.04.017_bib0130
  article-title: A new mathematical model for integrating all incidence matrices in multi- dimensional cellular manufacturing system
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2011.07.007
– ident: 10.1016/j.jmsy.2017.04.017_bib0250
– year: 2017
  ident: 10.1016/j.jmsy.2017.04.017_bib0290
– volume: 23
  start-page: 1127
  year: 2012
  ident: 10.1016/j.jmsy.2017.04.017_bib0135
  article-title: A cell formation problem considering machine utilization and alternative process routes by scatter search
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-010-0395-2
– volume: 12
  start-page: 559
  year: 2012
  ident: 10.1016/j.jmsy.2017.04.017_bib0295
  article-title: Group technology based adaptive cell formation using predator–prey genetic algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.07.021
– volume: 32
  start-page: 20
  year: 2013
  ident: 10.1016/j.jmsy.2017.04.017_bib0145
  article-title: Development of bacteria foraging optimization algorithm for cell formation in cellular manufacturing system considering cell load variations
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2012.07.014
– volume: 28
  start-page: 170
  issue: 2
  year: 2015
  ident: 10.1016/j.jmsy.2017.04.017_bib0155
  article-title: Design and reconfiguration models for dynamic cellular manufacturing to handle market changes
  publication-title: Int J Comput Integr Manuf
  doi: 10.1080/0951192X.2013.874590
– volume: 38
  start-page: 1237
  year: 2014
  ident: 10.1016/j.jmsy.2017.04.017_bib0305
  article-title: A new mathematical model towards the integration of cell formation with operator assignment and inter-cell layout problems in a dynamic environment
  publication-title: Appl Math Modell
  doi: 10.1016/j.apm.2013.08.026
– volume: 20
  start-page: 63
  year: 2007
  ident: 10.1016/j.jmsy.2017.04.017_bib0105
  article-title: Grouping efficiency measures and their impact on factory measures for the machine-part cell formation problem: a simulation study
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2006.04.001
– volume: 25
  start-page: 625
  issue: 7
  year: 2012
  ident: 10.1016/j.jmsy.2017.04.017_bib0125
  article-title: Multi-objective genetic algorithm for cell formation problem considering cellular layout and operations scheduling
  publication-title: Int J Comput Integr Manuf
  doi: 10.1080/0951192X.2012.665182
– volume: 40
  start-page: 1514
  issue: 2
  year: 2016
  ident: 10.1016/j.jmsy.2017.04.017_bib0015
  article-title: Development of comprehensive model and BFO algorithm for dynamic cellular manufacturing system
  publication-title: Appl Math Modell
  doi: 10.1016/j.apm.2015.09.004
– volume: 16
  start-page: 491
  year: 2000
  ident: 10.1016/j.jmsy.2017.04.017_bib0235
  article-title: An adaptive genetic algorithm for manufacturing cell formation
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s001700070057
– volume: 34
  start-page: 1609
  year: 2008
  ident: 10.1016/j.jmsy.2017.04.017_bib0110
  article-title: A simulated annealing algorithm for manufacturing cell formation problems
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.01.012
– volume: 244
  start-page: 117
  issue: 1
  year: 2015
  ident: 10.1016/j.jmsy.2017.04.017_bib0260
  article-title: Job-shop production scheduling with reverse flows
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.01.013
– volume: 98
  start-page: 323
  year: 2016
  ident: 10.1016/j.jmsy.2017.04.017_bib0175
  article-title: Multi-objective dynamic cell formation problem: a stochastic programming approach
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2016.03.026
– year: 2008
  ident: 10.1016/j.jmsy.2017.04.017_bib0220
– volume: 39
  start-page: 3651
  issue: 16
  year: 2001
  ident: 10.1016/j.jmsy.2017.04.017_bib0215
  article-title: CF-GGA: a grouping genetic algorithm for the cell formation problem
  publication-title: Int J Prod Res
  doi: 10.1080/00207540110068781
– volume: 19
  start-page: 305
  issue: 5
  year: 2000
  ident: 10.1016/j.jmsy.2017.04.017_bib0085
  article-title: The trade-off between intracell and intercell moves in group technology cell formation
  publication-title: J Manuf Syst
  doi: 10.1016/S0278-6125(01)89003-8
– volume: 38
  start-page: 46
  year: 2016
  ident: 10.1016/j.jmsy.2017.04.017_bib0020
  article-title: A bi-objective model in sustainable dynamic cell formation problem with skill-based worker assignment
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2015.11.001
– volume: 141
  start-page: 639
  year: 2013
  ident: 10.1016/j.jmsy.2017.04.017_bib0070
  article-title: A tabu search approach for cell scheduling problem with makespan criterion
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2012.10.001
– volume: 25
  start-page: 1113
  issue: 5
  year: 2014
  ident: 10.1016/j.jmsy.2017.04.017_bib0205
  article-title: Generalized cell formation: iterative versus simultaneous resolution with grouping genetic algorithm
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-013-0749-7
– volume: 38
  start-page: 2401
  year: 2011
  ident: 10.1016/j.jmsy.2017.04.017_bib0195
  article-title: A hybrid grouping genetic algorithm for reviewer group construction problem
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.08.029
– volume: 60
  start-page: 7
  year: 2011
  ident: 10.1016/j.jmsy.2017.04.017_bib0120
  article-title: An efficient tabu search algorithm to the cell formation problem with alternative routings and machine reliability considerations
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2010.08.016
– volume: 40
  start-page: 169
  issue: 1
  year: 2016
  ident: 10.1016/j.jmsy.2017.04.017_bib0055
  article-title: A robust optimization approach for an integrated dynamic cellular manufacturing system and production planning with unreliable machines
  publication-title: Appl Math Modell
  doi: 10.1016/j.apm.2015.05.005
– start-page: 205
  year: 2012
  ident: 10.1016/j.jmsy.2017.04.017_bib0265
  article-title: Genetic algorithms for manufacturing process planning
– volume: 34
  start-page: 2059
  year: 2007
  ident: 10.1016/j.jmsy.2017.04.017_bib0100
  article-title: Keeling A hybrid grouping genetic algorithm for the cell formation problem
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2005.08.010
– year: 2006
  ident: 10.1016/j.jmsy.2017.04.017_bib0185
– volume: 56
  start-page: 1340
  year: 2009
  ident: 10.1016/j.jmsy.2017.04.017_bib0310
  article-title: Manufacturing cell formation with production data using neural networks
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2008.08.003
– volume: 61
  start-page: 171
  year: 2011
  ident: 10.1016/j.jmsy.2017.04.017_bib0065
  article-title: A simulated annealing algorithm for the job shop cell scheduling problem with intercellular moves and reentrant parts
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2011.03.007
– volume: 29
  start-page: 343
  issue: 2
  year: 1991
  ident: 10.1016/j.jmsy.2017.04.017_bib0300
  article-title: A linear formulation of the machine-part cell formation problem
  publication-title: Int J Prod Res
  doi: 10.1080/00207549108930075
– volume: 6
  issue: 2
  year: 1986
  ident: 10.1016/j.jmsy.2017.04.017_bib0010
  article-title: Procedures for the part family/machine group identification problem in cellular manufacturing
  publication-title: J Oper Manage
  doi: 10.1016/0272-6963(86)90021-5
– volume: 66
  start-page: 781
  year: 2013
  ident: 10.1016/j.jmsy.2017.04.017_bib0030
  article-title: Clustering algorithm for solving group technology problem with multiple process routings
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2013.09.002
– volume: 35
  start-page: 155
  year: 2015
  ident: 10.1016/j.jmsy.2017.04.017_bib0160
  article-title: Design of robust cellular manufacturing system for dynamic part population considering multiple processing routes using genetic algorithm
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2014.09.008
– volume: 39
  start-page: 9695
  year: 2012
  ident: 10.1016/j.jmsy.2017.04.017_bib0200
  article-title: A new grouping genetic algorithm for clustering problems
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.02.149
– volume: 190
  start-page: 662
  year: 2007
  ident: 10.1016/j.jmsy.2017.04.017_bib0280
  article-title: Designing a new mathematical model for cellular manufacturing system based on cell utilization
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2007.01.060
– volume: 57
  start-page: 1155
  year: 2011
  ident: 10.1016/j.jmsy.2017.04.017_bib0025
  article-title: Cristina Mora A hybrid procedure for machine duplication in cellular manufacturing systems
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-011-3334-2
– volume: 178
  start-page: 634
  year: 2007
  ident: 10.1016/j.jmsy.2017.04.017_bib0255
  article-title: Ensuring population diversity in genetic algorithms: a technical note with application to the cell formation problem
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.02.012
– volume: 39
  start-page: 2642
  issue: 39
  year: 2012
  ident: 10.1016/j.jmsy.2017.04.017_bib0245
  article-title: Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2012.01.012
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.jmsy.2017.04.017_bib0285
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume: 51
  start-page: 257
  year: 2000
  ident: 10.1016/j.jmsy.2017.04.017_bib0080
  article-title: Grouping genetic algorithms: an efficient method to solve the cell formation problem
  publication-title: Math Comput Simul
  doi: 10.1016/S0378-4754(99)00122-6
– year: 1992
  ident: 10.1016/j.jmsy.2017.04.017_bib0225
SSID ssj0012402
Score 2.2552836
Snippet [Display omitted] •Proposes Cellular Manufacturing Systems (CMS) model that evolves integrated structural and operational design decisions.•Presents a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115
SubjectTerms Adaptive parameters
Cell formation
Cellular manufacturing system
Genetic algorithm
Grouping genetic algorithm
Title An adjustable grouping genetic algorithm for the design of cellular manufacturing system integrating structural and operational parameters
URI https://dx.doi.org/10.1016/j.jmsy.2017.04.017
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4IHPwZiqFbrflSIgENXJREm7NvqoQKETw4MUf4K92ZtsSTAwHT03b3aTZ2c58s_vNt4xdY9Lhp0K1vcDEChMU5XtKpMazbW1D8pmtlKqRnwaiP-QPo3BUYd2yFoZolYXvz32689bFk0Yxmo3FeNx4pj0zF59Jcj1yOqacRzTLb7_WNI8m7R64dRbMlqh1UTiTc7wms-Un0bsiJ3fqDi37IzhtBJzeAdsvkCJ08o85ZBWbHbG9Df3AY_bdyUCaCdVAqakFV6GBLwAnBdUmgpy-zjH5f5sBQlNAqAfGETZgngKt2BMFFWYy-6DyBlevCLmyM5QqEu6Rk5gleQ6QmYH5wr4XK4hAwuEzItQsT9iwd_fS7XvF4Qqe5k2-8iIttRI8FSRQZnXcUtpQdhNGkfbRGwsdWD8ITUvxwAipQ82F9XUQ4g-sYs2DU1bN5pk9YyACI2UYERhIeSxtbBBTmFS3EWykiH9qrFmOaqIL5XE6AGOalBSzSUKWSMgSic8TvNTYzbrPItfd2No6LI2V_Jo9CQaGLf3O_9nvgu3SXU7bvWRVtIO9QnCyUnU3--psp3P_2B_8AB7l6HE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQOQAHxCrKOgduKGpobCc9VghUtl4AiZvlLUDVphXLgV_gq5lxHAQS4sApkp2RItuZxX7vmbFDLDrSUppekrnCYIFi0sTI0iW-Z70gn9ktiY18PZSDO35xL-7n2EnDhSFYZfT9tU8P3jq2dOJodmZPT50bOjML8Zkk13PSMZ0ndSrRYvP988vB8OswgQ4QwlYLFkxkELkzNcxrNHl5J4RXHhRPw71lv8SnbzHnbIUtx2QR-vX3rLI5X62xpW8Sguvso1-BdiOiQZmxh0DSwA7AdUH0RNDjhynW_48TwOwUMNsDFzAbMC2BNu0JhQoTXb0RwyFQFqEWd4ZGSCI0BZVZUugAXTmYzvxz3EQE0g6fEKbmZYPdnZ3engySeL9CYvkxf01yq62RvJSkUeZt0TXWUYEj8tym6JClzXyaCdc1PHNSW2G59KnNBP7DprA822Stalr5LQYyc1qLnPKBkhfaFw7TClfaHuYbJaZAbXbcjKqyUXyc7sAYqwZlNlI0E4pmQqVc4aPNjr5sZrX0xp9vi2ay1I8FpDA2_GG3_U-7A7YwuL2-Ulfnw8sdtkg9NYp3l7VwTvwe5iqvZj-uxU8RV-si
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adjustable+grouping+genetic+algorithm+for+the+design+of+cellular+manufacturing+system+integrating+structural+and+operational+parameters&rft.jtitle=Journal+of+manufacturing+systems&rft.au=Jawahar%2C+N.&rft.au=Subhaa%2C+R.&rft.date=2017-07-01&rft.issn=0278-6125&rft.volume=44&rft.spage=115&rft.epage=142&rft_id=info:doi/10.1016%2Fj.jmsy.2017.04.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmsy_2017_04_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-6125&client=summon